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Abstract

Following the industrial demand to address the problem of software correct-
ness, the computer science research community puts a lot of efforts into devel-
opment of scalable and precise formal methods that are applicable to industrial-
size programs. Unfortunately, most of software verification techniques suffer
from the effect of combinatorial blowup also known as a “state-space explo-
sion”, i.e., situation, when the size of the system state space and, consequently,
the complexity of the verification problem grows exponentially in the size of
the input program. This thesis tackles this problem by development of new ab-
straction techniques as well as novel approaches of employing already existing
ones. The results were used to construct algorithms for software verification
and static analysis that discover security faults in low-level C programs.

First, this thesis presents a new algorithm that combines precise (but slow)
abstraction method with over-approximated (but fast) one in the abstraction-
refinement loop. It starts with the coarse over-approximated abstraction and
then refines precisely, but restricts the refinement only to a subset of system
state space that is related to a spurious counter-example discovered in the pre-
vious verification step of the abstraction-refinement loop. Thus, it is possible
to keep the refinement computational burden low and decrease the number of
required refinement iterations at the same time. We also propose a threshold-
based optimization that further controls precise computation in order to avoid
the unnecessary application of expensive quantifier elimination.

Second, this work defines a new technique for program abstraction. Unlike
traditional program approximation approaches (e.g., abstract interpretation) it
does not employ iterative fixpoint computation, instead it uses a new summa-
rization algorithm that non-iteratively computes symbolic abstract transformers
with respect to a set of abstract domains. Summaries are shorter, loop-free
program fragments, which are used to substitute the original loops to obtain
a conservative abstraction of the program. Our approach computes abstract
transformers starting from the inner-most loop. It obtains a loop invariant by
checking if the constraints defined by a chosen abstract domain are preserved

v



vi Abstract

by the loop. These checks are performed by means of calls to a quantifier-free
decision procedure, which allows us to check (possibly infinite) sets of states
with one query. Thus, unlike other approaches, our algorithm is not restricted
to finite-height domains. Therefore, it allows for effective usage of problem-
specific abstract domains for summarization and, as a consequence, precision
of an abstract model can be tuned for specific verification needs. In particular,
several memory operations-related abstract domains were applied to perform
static analysis of programs for buffer overflows.

Third, this thesis addresses the problem of scalable program termination
analysis. Termination of a (sequential) program can be concluded from ter-
mination of all its loops. Existing algorithms rely on iterative enumeration of
all paths through a program (loop) and construction of a valid termination ar-
gument (well-founded transition invariant) for each of them using available
ranking discovery methods. Instead, we present a new algorithm the applies
relational abstract domains for loop summarization to discover transition invari-
ants. Well-foundedness can be ensured either by separate decision procedure
call (though it requires quantifier elimination) or by using the abstract domains
that are well-founded by construction. Such a light-weight approach termina-
tion analysis was demonstrated to be effective on a wide range of benchmarks,
including the OS device drivers.
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Preface

This dissertation describes the results of Aliaksei Tsitovich’s Ph.D. research car-
ried out under the supervision of Prof. Natasha Sharygina at the University of
Lugano (USI), Switzerland. The focus of research was on the development of
techniques for software verification. Its originality lies in that it not only created
new verification approaches, but also employed them in conjunction with a
wide range of already-existing time-proven methods. The work resulted in the
development of effective tools useful for program verification, which demon-
strate the practical applicability of the new techniques. The tools are LOOP-
FROG[1] and OPENSMT [2, 3] and they are available for further experiments at
www.verify.inf.usi.ch/loopfrog and www.verify.inf.usi.ch/opensmt.

The first contribution of this thesis is a new abstraction-refinement ap-
proach for software verification that combines precise and over-approximated
techniques to achieve a synergetic effect of reduction in number of refinement
iteration and, thus, the reduction of total verification time [4, 5].

The other contribution is a symbolic program abstraction technique that
over-approximates loops in programs such that both safety- and liveness-related
loop semantics is preserved. The approach allows for effective static analysis
(i.e., safety of the memory access [6]), as well as the light-weight program
termination analysis [7].

The latter work was conducted as a part of the joint project between Uni-
versity of Lugano and ETH Zürich funded by Swiss National Science Founda-
tion project “Detection of Security Flaws and Vulnerabilities by Guided Model
Checking" [8]. The goal of this project was the development of new model
checking and static analysis techniques that aim at detection of security flaws
and vulnerabilities in low-level software implementations. The project was sep-
arated into 2 interdependent parts between USI an ETHZ. The group in Lugano
focused on static analysis by means of symbolic program abstraction in applica-
tion to memory correctness[6, 1] and termination problems [7, 9]. The ETHZ
group instead focused on ranking function computation [CKRW10] for termi-
nation analysis [10] and quantified boolean formula solving [JBS+07]. The
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results achieved at ETHZ are presented in the thesis of Christoph M. Winter-
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Chapter 1

Introduction

There are two ways of
constructing a software design:
One way is to make it so simple
that there are obviously no
deficiencies, and the other way is
to make it so complicated that
there are no obvious deficiencies.
The first method is far more
difficult.

C. A. R. Hoare

1.1 The necessity of software verification

The modern information-driven society demonstrates an obvious need to have
adequate security measures that can safeguard the storage and transfer of sen-
sitive information. Software performs almost 100% of manipulations on infor-
mation around us and, thus, should be placed under particularly strict security
control. Unfortunately, writing a program without bugs is still one of the great-
est challenges for developers. As a result, low-level implementation mistakes
lead not only to malfunctioning software but also to security breaches.

Verification of software using formal methods is recognized as a candidate
to address the problem. Mathematical reasoning gives a guarantee of 100%
confidence in correctness of analysis results. However, the formal methods-
based approach faces multiple challenges when it comes to application in in-
dustry. Currently substantial research efforts are dedicated to both theoretical
and practical aspects of formal verification. The grand challenge for research
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2 Introduction

in formal methods and formal verification tools is to ensure software reliability,
trustworthiness and robustness [Hoa03, Cou01].

1.2 Major approaches to software verification

Verification by model checking One of the most popular and well-studied
verification instruments today is model checking — the technique that attempts
an exhaustive search of the entire state space of a system for violations of
a property of interest. Introduced in 1981 [CE81, QS82], it is one of the
most commonly used formal verification techniques in a commercial setting.
In 2007, a Turing Award was given to the inventors of model checking (Ed-
mund M. Clarke, E. Allen Emerson and Joseph Sifakis) as a commemoration of
its importance.

To perform model checking one starts with a construction of a finite state
machine for a given system, where nodes are possible variable states and edges
are transitions among them. System executions, for which a property of inter-
est is violated, can be identified by particular variable values (or a sequence
of variables valuations). All possible executions of the finite state machine are
analyzed using some form of graph exploration algorithms. A big advantage of
model checking is that it produces a counterexample if the violation of the prop-
erty is found, i.e., there is step-wise evidence of system execution that leads to
a violation state. Such a counterexample is extremely helpful for diagnosis of
the error.

Verification of hardware designs, inherently finite in its nature, is the most
straightforward application of model checking. Software systems are more
complex since they can potentially have an infinite number of executions. Nev-
ertheless, techniques that enable software model checking are also available,
although they are not complete — the model checking tool is not guaranteed to
always terminate with a positive or negative answer. Practical applications of
software model checking are also heavily limited by a combinatorial blow up of
the system state-space representation, a phenomenon known as state-space ex-
plosion. That is, the size of the system state space grows exponentially in num-
ber and size of program variables. The task of explicit state-space exploration
quickly exceeds the capacity of the tool. Therefore, the main research challenge
of practical software model checking is to address the scalability problem.

Throughout the history of model checking research, a number of methods
were proposed for scalability improvement. Symbolic model checking [McM93]
was a breakthrough when Kenneth McMillan proposed using Binary Decision
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Diagrams for the symbolic representation of a system state-space, instead of
the previously common explicit state-space representation. For software model
checking, it raised the applicability level from hundreds to thousands lines of
code. Also, substantial improvement was proposed by Doron Peled[PP90] and
Patrice Godefroid [God90] who noticed that the size of the system state-space
can be reduced based on partial order relation between the transitions in a
system: indeed, it is common for asynchronous systems (which are popular
models of software), that certain transitions in a system cannot be taken before
the others.

Bounded model checking Further improvement of verification scalability, from
thousands to tenth of thousands lines of verified code, was achieved with the
help of another prominent technique — Bounded Model Checking (BMC) pro-
posed by Biere and others [BCCZ99]. BMC does not aim to verify all possible
program executions, but only those of limited length. Starting from the initial
state algorithm unrolls the program for a fixed number of steps and checks
whether a property is violated in all the executions of this fixed length. This
process terminates either if the underlying decision procedure exceeds its time
or memory bounds, or if a counterexample is found.

Notably, the presence of loops is the major obstacle for the successful ap-
plication of BMC to program verification. Each loop needs to be explicitly un-
rolled, or unwound, so that all possible paths through the loop are consid-
ered. If the loop termination or loop bound cannot be established, BMC cannot
progress beyond the loop, forced to unroll (infinitely) many loop iterations.

Abstraction The research results presented in this thesis are related to the
most promising techniques used to combat the “state-space explosion” of pro-
gram verification : abstraction and abstraction refinement-based approaches.

The term of abstraction [CGL94] groups the family of techniques that re-
duce the state-space by mapping the set of states of the actual, concrete system
to an abstract, and smaller, set of states in a way that preserves all behaviors of
the original system. The latter property of the abstract system is called sound-
ness, i.e., no original behaviors are lost. However, abstraction can introduce
new behaviors that are impossible in the original system.

The value of abstraction for software verification is twofold. First of all, it
allows the possibility to obtain a finite representation of a program, while the
state-space of the original program can be infinite. Second, it reduces the size
of the model for analysis. The right abstraction choice is a key to a scalable
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verification.

One way to incorporate abstraction in a verification algorithm is to com-
bine it with refinement. Refinement is applied to an abstract model in order
to remove any unrealistic, spurious, behavior that was found during verifi-
cation (model-checking) of an abstract system. Since refinement can be ap-
plied several times, this approach is also known as an abstraction-refinement
loop [Kur95]. When refinement is based on the counterexample obtained from
model-checking of an abstract system, the technique is also named Counterexample-
Guided Abstraction-Refinement (CEGAR).

Abstraction exploits concepts of abstract interpretation, first proposed by
Patrick and Radhia Cousot [CC77]. It is an approach for construction and
evaluation of abstract systems, which builds sound (over-)approximations of
computer programs. A program is (partially) executed with abstract variable
values instead of concrete ones, such that program semantics is preserved with
respect to an abstract domain. The process is iteratively repeated until a fixpoint
is reached. To guarantee convergence of the fixpoint computation in programs
with loops or recursive procedures an extrapolation technique is used, called
widening — an over-approximation of a set of abstract values.

Examples of abstract domains include interval arithmetic [CC77], which ab-
stracts variables’ values to intervals, and the octagon domain [Min01b, Min06],
which uses a constraint representation in the form ±v1 ± v2 ≤ c, that, in two
dimensions, coincides with the set of eight-sided polyhedra. Other examples
are octahedra [CC04], convex polyhedra [CH78a, HPR97], difference-bound
matrices [Min01a] and linear inequalities [SKH03].

The models constructed by abstract interpretation can be used for program
analysis either by itself or in combination with techniques like model check-
ing [CC99]. A number of static analysis tools are based on abstract interpreta-
tion (e.g., ASTRÉE [CCF+05]). Such analysis is sound, i.e., it does not report
that a property holds when it does not hold in the concrete program. How-
ever, abstraction often leads to false positives — it is reported that a property
is violated, while in fact it does hold in the concrete program. In particular the
aggressive widening required to achieve scalable fixpoint computation leads to
an increase in the number of false positives. The possibility of false positives
makes the technique incomplete.
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1.3 Challenges in software verification

Finding the right abstraction is a key to further extension of the applicability
of formal methods to real problems of software and hardware engineering.
Building a concise model that precisely represents the semantics of a system is
an objective of research in this area, including our work.

Practical application of numerous theoretical abstraction frameworks often
faces the wall of inefficiency when it comes to real systems. The size of the
formal model that is constructed for the pair program/property, and the com-
plexity of the following analysis depends on a number of factors. First of all, the
logic used to encode the problem and the algorithm that validates the problem
in this logic defines the theoretical complexity. Secondly, the number of vari-
ables in the program and their data types set the boundaries of the state space.
Next, the control flow of the program in combination with program variables
defines the possible behaviors (executions) of the program. Both number of
possible executions and the state space can be often infinite in real systems.
The ability to manage all these dimensions of complexity defines the scalability
of each technique.

It worth noting that, in contrast to software engineering, where scalability
means being able to treat proportionally more lines of code, in verification the
scalability term is referred to being able to reason (soundly) about bigger state
spaces and larger sets of behaviors. Although there is a connection between
size of the program and its state-space the correspondence between these two
notions is not straightforward. Even a program of 10 lines can exhibit infinite
number of executions, state space of millions of states, multiple nested loops
making it complex to verify all possible behaviors of it as safe/unsafe. See
Figures 1.1 for examples.

The specific challenges addressed in this thesis were motivated by a simple
practical observation: formal tools often “loop around” a particular location in
the program, trying to “clarify” its formal meaning in order to conclude if it can
lead to a bug or not. This behavior varies in representation for different tech-
niques: bounded model checking cannot unwind infinite loops without losing
soundness; abstract interpretation over-approximates such locations with ag-
gressive widening that causes imprecise abstract values; abstraction refinement
struggles to find the right predicates; invariant discovery methods are not ap-
plicable to complex data manipulation, etc. This thesis tackles the challenges
of the practical application of formal methods by proposing new algorithms
for efficient verification. In particular, this thesis addresses the problems of 1)
reducing the number of abstraction-refinement iterations needed for program
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#define SIZE 8
in t c [SIZE ] ;
in t main () {

in t i ;
for ( i=0; i<SIZE;++ i )

c [ i ]= i+1;
}

24+ 1 states, 1 execution

#define SIZE 256
in t c [SIZE ] ;
in t main () {

in t i ;
for ( i=0; i<SIZE;++ i )

c [ i ]= i+1;
}

29+ 1 states, 1 execution

#define SIZE 256
in t c [SIZE ][ SIZE ] ;
in t main( in t argc , char argv [] )
{

in t i , j ;
for ( i=0; i<SIZE;++ i )

for ( j=0; j<SIZE;++ j )
c [ i ][ j ]=argc>1 ? argv [1][0] : 0;

}

210+ 1 states, 28 executions

#define SIZE 256
in t c [SIZE ] ;
in t main () {

in t i=0;
do {

i f ( i>=SIZE ) i=0;
c [ i ]=getchar ( ) ;
} while ( c [ i++] != ’ . ’ ) ;
}

224 states, infinite executions

Figure 1.1. Verification of buffer access correctness in all these programs can be done,
for instance, by analysis of the abstract system constructed using only two predicates:
i ≥ 0 and i < SI Z E
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verification and 2) scalable construction of loop over-approximations that allow
preservation of both safety- and liveness-related semantics of a loop.

Problems with abstraction refinement-based verification

A low number of abstraction refinement iterations is fundamental for the suc-
cess of the CEGAR loop and, consequently, to overall verification effort, espe-
cially when applied to industrial benchmarks. In fact, the number of predicates
required to verify the property grows with the complexity of a system. Fur-
thermore, the time spent in model checking steps grows exponentially with the
number of predicates. For this reason, it is of paramount importance to avoid as
many redundant iterations as possible: even a single saved iteration can result
in a substantial time-saving for large systems.

Verification of programs with loops

Loops in programs are the Achilles’ heel of program verification. Sound analysis
of all program paths through loops requires either an explicit unwinding or an
over-approximation (of an invariant) of the loop.

Unwinding is computationally too expensive for many industrial programs.
For instance, loops greatly limit the applicability of bounded model checking. In
practice, if the bound on the number of loop iterations cannot be precomputed
(the problem is undecidable by itself), BMC tools simply unwind the loop a
finite number of times, thus trading the soundness of the analysis for scalability.

At the same time computation of sufficiently strong invariants for loops is
an art. Abstract interpretation and CEGAR rely on saturating procedures to
compute over-approximations of the loop. For complex programs, this pro-
cedure may require many iterations until the fixpoint is reached or the right
set of predicates is determined. Widening is a remedy for this problem, but it
introduces further imprecision, yielding spurious behavior.

Thus, it can be concluded that, loop over-approximation techniques that are
predictably fast, scalable and precise are essential for program verification.

Verification in the presence of (possibly) infinite loops

Furthermore, construction of program over-approximation often assumes that
every path through a loop terminates, i.e., eventually it leaves the loop after a
finite number of iterations. Unfortunately, it is not the case for many real appli-
cations (some loops are even designed to be infinite). Thus, careful reasoning
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about loop (non-) termination should be addressed by abstraction techniques
as well.

1.4 Thesis statement and contributions

In this dissertation, we establish the following theses:

1. Computationally expensive precise program abstraction can be effectively
incorporated in the abstraction-refinement loop if synergetically interwo-
ven with its fast, approximated counterpart. The precise computation
pays off if applied not to a whole set of predicates, but only to those re-
lated to a discovered spurious counter-example. This way, it is possible to
keep the refinement computational burden low and to decrease the num-
ber of required refinement iterations at the same time. In addition, the
on(off)-line computed threshold of expensive precise computation can
help to leverage its cost in the overall verification process.

2. Programs with loops can be abstracted with a controlled level of preci-
sion without iterative fixpoint computation or explicit loop unwinding.
Abstract transformers can be constructed to over-approximate program
fragments with infinitely many behaviors in a way that requires a finite
number of satisfiability checks. The resulting models can encode both
safety- and liveness-related semantics of the original program and, thus,
can be used to verify properties of both classes, e.g., buffer access cor-
rectness, program termination, etc.

3. Termination of a (sequential) program can be concluded from termina-
tion of all its loops. Program abstraction via loop summarization is able
to preserve termination property of over-approximated loops. For that,
one should employ an abstract domain capable of encoding the relation
the between pre- and post states of a loop iteration, thus, enabling the
discovery of disjunctively well-founded transition invariants for a loop.

These theses are addressed as follows:

1.4.1 Reducing CEGAR iterations by combining fast and pre-
cise abstraction

Idea We distinguish between two classes of abstraction methods — precise
and fast. The first enables only those transitions between abstract states that
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correspond to transitions in the concrete system. The second allows additional
transitions, i.e., it over-approximates the set of transitions, causing more spu-
rious behaviors in the abstract system. The first is usually expensive in compu-
tation because it requires explicit quantification of the transitions set. The sec-
ond can be effectively implemented without quantification, but requires more
refinement steps to remove all spurious behaviors.

We find a balance between the two types of abstraction by applying a fast
abstraction first and then refining precisely only the subset of a system that is
related to the detected counterexample. This way, the cost of the precise com-
putation in the refinement is kept relatively low, but we achieve an important
reduction in the number of refinement iterations that lead to a decrease of the
total verification time.

Practical application We implemented the algorithm using the SATABS CEGAR-
based model-checker for ANSI-C programs [CKSY04] and demonstrated with
experiments the practical value of the approach. The combined method uni-
formly outperforms both precise and fast counterparts on a wide set of bench-
marks.

The technique is described in detail in Chapter 3 and was presented at the
24th Annual ACM Symposium on Applied Computing (SAC 2009) [4]. It was
also further extended to be published in the International Journal on Software
Tools for Technology Transfer (STTT) [5]. Experimental results and the tool
are available at: www.verify.inf.usi.ch/projects/synergy.

1.4.2 Symbolic program summarization using abstract trans-
formers

Idea We focus on efficient program abstraction and, to that end, we propose
an algorithm that replaces program fragments by their symbolic abstract trans-
formers. Specifically, for programs with no loops, an algorithm precisely en-
codes the program semantics into symbolic formulæ. For loops, the abstract
transformers are constructed based on the problem-specific abstract domains.
The approach does not rely on fixpoint computation of the abstract transformer
and, instead, builds the latter as follows: an abstract domain is used to draw
a candidate abstract transition relation, which is checked to be consistent with
the semantics of the loop.

The algorithm allows tailoring the abstraction to each program fragment.
Also, it avoids the possibly expensive fixpoint computation of the abstract trans-
former and relies on the finite number of relatively simple consistency checks.

www.verify.inf.usi.ch/projects/synergy
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Those are performed by means of calls to a SAT(SMT)-based decision proce-
dure, which enables the checking of (possibly infinite) sets of states within one
query. Thus, the algorithm is not restricted to finite-height domains.

Practical application We implemented our loop summarization technique in
a tool called LOOPFROG. We reported on our experience using abstract domains
tailored to the discovery of buffer overflows on a large set of ANSI-C bench-
marks. We demonstrate the applicability of the approach to industrial code
and its advantage over fixpoint-based static analysis tools.

The algorithm is described in Chapter 4 and also appeared in the paper
presented at the 6th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2008) [6]. LOOPFROG was demonstrated at the
24th IEEE/ACM International Conference on Automated Software Engineer-
ing [1] and now is available at: www.verify.inf.usi.ch/loopfrog.

1.4.3 Program termination analysis using loop summarization

Idea Our loop summarization technique (briefed in Section 1.4.2) is a general-
purpose loop and function summarization method. We employed it to address
the problem of program termination. We extended it with relational abstract
domains to discover (disjunctively well-founded) transition invariants — valid
relations between pre- and poststates of a loop. If a disjunctively well-founded
transition invariant exists for a loop, we can conclude that it is terminating,
i.e., any execution through a loop contains a finite number of loop iterations.
We also exploited compositionality of transition invariants to limit analysis to a
single loop iteration.

Practical application We implemented loop termination analysis in the LOOP-
FROG static analyzer. Due to the fact that the safety checker is employed to
analyze only a single unwinding of a loop at any point, we gain large speedups
compared state-of-the-art tools that are based on path enumeration. At the
same time, the false-positive rate of our algorithm is very low in practice, which
we demonstrate in experimental evaluation on a large set of Windows device
drivers.

The algorithm and results are detailed in Chapter 5; the work was also pre-
sented at the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2011) [7]. The implementa-
tion is available within the functionality of the LOOPFROG tool: http://www.

verify.inf.usi.ch/loopfrog.

www.verify.inf.usi.ch/loopfrog
http://www.verify.inf.usi.ch/loopfrog
http://www.verify.inf.usi.ch/loopfrog
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1.5 Outline

The dissertation is structured as follows. Chapter 2 introduces the required con-
cepts and notation. Chapter 3 presents a technique to combine fast and precise
abstractions. Chapter 4 describes program abstraction via loop summarization
and discusses the practical applicability of this approach to program analysis.
The algorithm is extended in Chapter 5 to work with transition invariants that
allow a termination analysis technique to be built on top of it. Related work is
discussed at the end of each chapter. Finally, Chapter 6 states the conclusion of
the work.
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Chapter 2

Background, Concepts and Notation

The noblest pleasure is the joy of
understanding.

Leonardo da Vinci

This chapter introduces the notation required to present the results of the
dissertation work, and provides an overview of the state of the art in the rele-
vant fields of program verification.

2.1 Program modelling

Transition systems

To reason formally about a software or hardware system one should first build
a formal model of it. Transition systems (TS) are the most common models
used for the faithful representation of system behavior. Intuitive understanding
of a transition system is quite simple: it is a directed graph with nodes that
represent program states and edges that reflect transitions among states.

Definition 1. A transition system is a tuple 〈S, I , R〉, where:

• S is a set of states;

• I ⊆ S is the set of initial states;

• R⊆ S× S is the transition relation.

13
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A path of a transition system is a (possibly infinite) sequence of states s0,
s1, . . . such that (si, si+1) ∈ R for all i ≥ 0.

A prefix is a finite path that starts in an initial state, i.e., s0 ∈ I .
A state si ∈ S is reachable if there exists a prefix that ends with it.
A path is maximal if it ends in a terminal state (state with no outgoing

transitions) or is infinite.
An execution of a transition system is a maximal path that starts in an initial

state.
We use a relational composition operator ◦ which is defined for two binary

relations Ri ⊆ S× S and R j ⊆ S× S as

Ri ◦ R j :=
¦

(s, s′) ∈ S× S ∃s′′ ∈ S . (s, s′′) ∈ Ri ∧ (s′′, s′) ∈ R j

©

.

To simplify the presentation, we also define R1 := R and Rn := Rn−1 ◦ R for any
relation R : S× S.

Note that a relation R is transitive if it is closed under relational composi-
tion, i.e., when R ◦ R ⊆ R. The reflexive and non-reflexive transitive closures
of R are denoted as R∗ and R+ respectively. The set of reachable states is then
defined as R∗(I) := {s ∈ S ∃s′ ∈ I . (s′, s) ∈ R∗}.

Although the TS of Definition 1 is powerful enough to model the behavior
of any hardware or software system, it is distant from the design primitives
of modern systems: there are no explicit notions of variables, commands or
program structure. Therefore, to facilitate reasoning about programs, the for-
malism describing transition systems can be enriched with other elements, such
as:

• set of actions Act — to describe commands that relate the states (transi-
tion relation is then defined as R⊆ S× Act × S);

• set of atomic propositions AP — to represent some facts about a program,
e.g., variable values;

• labeling function L : S → 2AP — to map variable values to states of a
program;

A transition system is considered finite if S, Act and AP are finite.

An alternative way to include the notion of program variables into a tran-
sition system is to use a set of state variables V . Then the set of states S is
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implicitly given by all assignments to the variables of V . The transition rela-
tion is then defined as a formula over the variables of V . Let us use V ′ in pair
with V to denote the set of next state variables, i.e., v′ ∈ V ′ represents the
next value of v ∈ V . The set of transitions is then denoted as T (V, V ′). We use
in(t) and out(t) to denote respectively pre-state and post-state of a transition
t ∈ T (V, V ′). Given a formula φ, we write φ[V/V ′] to denote the result of sub-
stituting every free occurrence of every variable v′ ∈ V ′ with its corresponding
v. We use ∃V (φ) to denote the existential quantification of every variable in
V . We also use ∃V \ {v}(T ) to denote the existential quantification of every
variable in V except from v (whose occurrences remain free).

Altogether it gives us another way to define the transition system:

Definition 2. A transition system is a tuple M = 〈V, I , T 〉, where

• V is a set of variables;

• I(V ) is a formula that represents the initial states;

• T (V, V ′) is a formula that represents the transitions.

A state s is initial iff s |= I(V ). Given two states s1 and s2, there exists a
transition t between s1 and s2 iff s1, s′2 |= T (V, V ′).

A path of M is a finite sequence π of transitions t0, t1, ..., tn such that
in(t0) |= I , and, for every 0 ≤ i < n, out(t i) = in(t i+1). In general, given
a transition relation formula T and a path π, π |= T is used to denote that
π[i] |= T for every 0≤ i ≤ |π|.

Program graph

Another program modeling structure — program graph — allows explicit rea-
soning about the program states to be avoided. Instead, it uses program loca-
tions as nodes and program commands as edges that connect locations. For-
mally:

Definition 3. A program graph is a tuple G = 〈P L, E, pli, plo, L, C〉, where

• P L is a finite non-empty set of vertices called program locations;

• pli ∈ P L is the initial location;

• plo ∈ P L is the final location;
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p=a;
while(*p!=0){
if(*p==’/’)

*p=0;
p++;
}

*p!=’/’

p++*p==0

p=a

vo

vi

*p=0

*p==’/’*p!=0

Figure 2.1. The example of a program and its program graph

• E ⊆ P L × P L is a non-empty set of edges; E∗ denotes the set of paths, i.e.,
the set of finite sequences of edges;

• L is a set of elementary commands;

• C : E→ L associates a command with each edge.

A program graph is often used as an intermediate modeling structure in
program analysis. In particular, it is used to represent a control-flow graph of
a program. It reflects all possible paths in a program but does not represent all
concrete variable valuations and, thus, just by itself, it is not enough to model
a program. It needs to be paired with concrete variables to depict the program
semantics.

Example 2.1. To demonstrate the notion of a program graph we use the program
fragment in Figure 2.1 as an example. On the left-hand side, we provide the
program written in programming language C. On the right-hand side, we depict
its program graph.

Let dom(v) for v ∈ V denote the set of possible values of a variable v, the
domain of v.

Then let U denote the universe where the values of the program variables
are drawn, a union of the domains of all variables in V , i.e.,

U :=
⋃

v∈V

dom(v)

The set of commands L consists of tests LT and assignments LA, i.e., L =
LT ∪̇LA, where:

• a test q ∈ LT is a predicate over dom(q)⊆ U;

• an assignment e ∈ LA is a total map from dom(e)⊆ U to U .



2.1 Program modelling 17

A program P is then formalized as the pair 〈U , G〉, where U is the uni-
verse and G is a program graph. We write L∗ for the set of sequences of
commands. Given a program P, the set paths(P) ⊆ L∗ contains the sequence
C(e1), . . . , C(en) for every 〈e1, .., en〉 ∈ E∗.

State-space explosion

We can relate modeling using program graphs and the transition system: in
order to obtain a TS(G) we apply commands L∗ to variables values of U , i.e.,
we unfold a program graph with variables to a transition system:

• S = P L× dom(v);

• I = {pli} × dom(v);

• R= S× E × S;

Even if we assume the program graph to be finite1, the unfolded transition
system often can be infinite (in case of dynamic memory allocation) or at least
significantly bigger (in number of nodes and edges) than the program graph.
For instance, if we limit the domain of the variable a in the program graph of
Example 2.1 to all strings of 5 characters, the image of the transition system will
hardly fit on the page. Provided a pointer p can point to 232 different locations,
a buffer a can have 10∗28 different elements and we have 6 program locations
we end up with a set of states S of size 6×(232)×5×(28) = 3.29853488×1013.

The growth of a transition system corresponding to example 2.1 is an in-
stance of a combinatorial blow up, state-space explosion, which happens when
explicit transition system is constructed from a program graph. Clearly, explicit
representation of a set of states is impossible for any realistic program analysis
scenario.

Although, not every state of S is reachable from I following the transitions
of R. In the unfolded transition system only those states are connected that
correspond to program locations originally joined by edges E of a program
graph. Notably, loops in programs have a big impact on the resulting size of
reachable subset of S as they cause mapping of a single program location to
|dom(v)| reachable states. Therefore loops are identified as the major obstacles
in practical program analysis.

1This assumption holds for many existing languages, though there are several (mostly
scripting) ones that allow dynamic modification of the program text and, thus, correspond-
ing program graph can be infinite
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The later chapters of this dissertation make use of both transition systems
and program graphs to present algorithms that were designed to cope with the
state-space explosion.

2.2 Properties specification

After the system behavior is formalized and prior to its analysis, we need to
define an important element of the verification process — a property of interest.
The specified property answers a question: what does it mean for the system to
be correct? System correctness (or equivalently incorrectness) is then defined
with regard to properties, which hold (or may not) for the analyzed system.

We briefly introduce the most important classes of properties, namely safety
and liveness, and elaborate on the particular subclasses that are the main focus
for the dissertation:

Safety

The properties, grouped in the safety category, can be characterized informally
as “nothing bad should happen” [Lam77], i.e., they aim to guarantee the ab-
sence of some bad behavior in the system. Formally it is defined as follows:

Definition 4. A property ψ over V ∗ is called a safety property iff for each path σ
where ψ does not hold, there exists a finite bad prefix σ̂ that can not be extended
to hold in ψ.

A classical example of a safety property in the context of security vulner-
abilities is correctness of memory access. It can be formulated as “a program
never accesses memory beyond allocated space”.

Liveness

The informal definition of liveness sounds like: “something good should even-
tually happen” [Lam77], i.e., if a liveness property holds, the system is guaran-
teed to reach some state of interest. Formally:

Definition 5. A property ψ over V ∗ is called a liveness property iff every finite
prefix σ̂ can be extended in to an execution were ψ holds.

Program termination is a classical example of a liveness property: a program
is terminating iff it does not have infinite executions.
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Note, that separation into safety and liveness classes is not exclusive. The
correctness of the system maybe defined by the property which is of both classes
at the same time. For example: “a correct program always terminates and does
not access non-allocated memory”.

2.2.1 Invariants

Many interesting properties are grouped under the notion of invariants. Infor-
mally, an invariant is a property that always holds for (a part of) the analyzed
system. The notion of invariants in computer science has been actively used
since it was introduced by C. A. R. Hoare in his work about the logic rules for
reasoning about program correctness [Hoa69]. A naïve algorithm to check if
some formula ψ is an invariant of a system M boils down to a complete depth-
first or breadth-first graph exploration with an invariant check performed for
every visited state or transition.

Important types of invariants that are distinguished and used in this work
are state invariants, transition invariants and loop invariants.

State invariants

Definition 6. Formula ψ over V of a transition system M = 〈V, I , T 〉 is a state
invariant for M iff ψ holds in all reachable states of M (including all initial
states).

A naïve procedure that checks, if some ψ is a state invariant of a system M ,
terminates iff the M is finite, i.e., we can explore all states of M and check if ψ
holds for them. Thus, state invariant checking corresponds to verification of a
safety property.

In terms of relations, a state invariant is defined as a superset of a set of
reachable states, i.e., R∗(I)⊆ Ŝ.

The state invariant was the first important type of invariant put in service
for program analysis. For historical reasons, it is often referred to simply as an
invariant; we, however, will explicitly call it a state invariant when it is required
to stress its difference with other classes of invariants.

Transition Invariants

In contrast to state invariants that represent the safety class of properties, tran-
sition invariants, introduced by Podelski and Rybalchenko [PR04b], enable rea-
soning about liveness properties and, in particular, about program termination.
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A program is terminating if it does not allow infinite computations, which
follows from the well-foundedness of the transition relation (restricted to the
reachable states). A well-founded relation is a relation that does not contain
infinite descending chains or, in other words:

Definition 7 (Well-foundedness). A relation R is well-founded (wf.) over S if
for any non-empty subset of S, there exists a minimal element (with respect to R),
i.e., ∀X ⊆ S . X 6= ; =⇒ ∃m ∈ X ,∀s ∈ S(s, m) /∈ R.

The same does not hold true for the weaker notion of disjunctive well-
foundedness. However, Podelski and Rybalchenko show that disjunctive well-
foundedness of a transition invariant is equivalent to program termination:

Definition 8 (Disjunctive Well-foundedness [PR04b]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪· · ·∪ Tn of well-founded
relations.

Definition 9 (Transition Invariant [PR04b]). A transition invariant T for pro-
gram P represented by a transition system 〈S, I , R〉 is a superset of the transitive
closure of R restricted to the reachable state space, i.e., R+ ∩ (R∗(I)× R∗(I))⊆ T.

Termination is can then be defined as:

Theorem 1 (Termination [PR04b]). A program P is terminating iff there exists
a d.wf. transition invariant for P.

Discovery of d.wf. transition invariants is discussed later in Chapter 5, in-
cluding the technique for program termination analysis reported in this disser-
tation.

Loop invariants

To simplify reasoning about loops — the major obstacles in practical program
analysis — a special kind of invariant is used — loop invariant [Hoa69]. A loop
invariant is a formula ψ that holds on entry into a loop and on every iteration
of the loop. As a result, it is guaranteed to hold immediately on exit of the
loop2. For example, the loop in Figure 2.1 can have a loop invariant “p ≤
length(a)”.

Discovering loop invariants proved to be a non-trivial problem through
the 40 year history of active research on the subject [CH78a, HH95, BL99,

2Here we consider structured loops or, at least, loops, for which the only way to break out
of it is before an iteration has changed the state of variables.
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SSM08]. The early work in this area was mostly about heuristically-based
methods [KM73, Weg73]. The methods were incomplete and practically in-
applicable because of the lack of computational power. A complete approach
was developed later based upon the mechanical derivation of a loop invariants
technique [CP93], which derived logical consequences of first-order formulæ.
These techniques, however, turns out to be computationally demanding and
also require inductive lemmas to be provided manually.

The increased availability of computing resources and advances in symbolic
analysis brought attention back to automated invariant generation. A number
of iterative methods were successfully applied for invariant discovery, including
abstract interpretation [CH78a, BL99], abstraction refinement methods and
constraint colving [SSM04, RCK07].

Note, that both state and transition invariants can be used as loop invari-
ants, once we consider a loop of a program as a separate sub-program. Both
state and transition invariants are employed in this dissertation to construct
sound over-approximations of program fragments. This algorithm is detailed
in Chapter 4.

2.2.2 Security flaws and vulnerabilities

There is no exact unified definition of what a security vulnerability is. The un-
derstanding of what it means for software to be secure varies between research
fields and industrial settings. The focus of this work is on the analysis of real
software, in particular, of programs written in ANSI-C. Therefore, we target
possible low-level errors in code — both accidentally or maliciously planted.
It should be noted that, though security analysts are mainly interested in ex-
ploitation of errors, we focus on technical details (i.e., buffer overflows) that
allow formal encoding of an error as a property for verification.

Buffer overflows

The SANS Software Security Institute [SAN] lists buffer overflows as one of the
three major programming errors which account for more than 85% of the criti-
cal security vulnerabilities in last decade. Nearly half of the SANS Top-25 attack
targets of the 2009 are due to buffer overflow vulnerabilities. Buffer overflow
vulnerabilities remain a constantly increasing source of security vulnerabilities
in software systems, and thus an unsolved problem.

SANS also reports that the attacker community does not mainly target op-
erating systems anymore, but also applications in popular areas such as media
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players, anti-virus systems, back-up systems, and office applications.

Furthermore, IBM’s ISS X-Force Team reports [IBM07] that 88.4% of the
7,247 vulnerabilities discovered in 2006 (a 40% increase over 2005) could be
exploited remotely. Half of all vulnerabilities (50.6%) would allow an attacker
to gain access to the host after successful exploitation. A further 11% allow
for denial of service attacks. These numbers further increased in their 2007
Midyear Report: 51.6% allow gaining access and 13.4% allow denial of service
attacks, and 90% of all vulnerabilities can be exploited remotely. To a large
degree, these vulnerabilities can be blamed on buffer overflows.

Buffer overflows occur whenever a program loop runs over some part of
memory, failing to stop before the end of the memory block. In languages
like C and C++, this is usually due to zero-terminated string buffers. Over-
running loops that write to strings, or data arrays in general, are the most
dangerous threat: Often they allow an attacker to execute arbitrary, injected
code. Buffer overflows came to fame when “Aleph One” published a tutorial on
how to exploit them in “Phrack Magazine” [Ale96], an online Hacker journal.
Further details of buffer overflow attacks can, for example, be found in the
SANS online reading room [Don02].

A loop that reads a string from memory and returns this data to the user
might reveal confidential information to an attacker when the string memory is
overrun. More often, the system might simply crash because of segmentation
faults — the desired outcome of a denial of service attack.

This is possible, if the attacker can control data that is being written in the
over-running loop. By supplying excess data, variables that reside in memory
locations after the string (or before, for buffer underflows) can be overwritten
with attacker controlled data. The most common exploitation technique is to
overwrite a function’s return value on the stack with a pointer into the injected
data. In contrast to a stack-based exploitation technique, many heap-based
techniques are known as well. For example, attackers can overwrite function
pointers that are held in dynamically allocated memory on the heap.

Buffer overflow is one of the most important bugs that should be addressed
by software analysis techniques. For this reason we focus on practical evalua-
tion of the algorithm via analysis of this type of vulnerabilities as described in
Chapter 4. However, the presented techniques are general and can be applied
to verify other security-related properties as well, including numeric under and
over-flows, input sanitization, etc.
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2.3 Model checking

Once a system model and a property are defined, the verification itself can be
performed. If someone is looking to perform an verification task automatically,
the most probable candidate will be model checking. Techniques gathered under
the guise of this name allow exhaustive search of the entire state space of a
system for violations of a property of interest.

Given a transition system M and a propertyψ, a model checking problem is
to determine whether all system executions satisfy the property, i.e., M |=∀ ψ
(universal quantifier ∀ denotes that all executions should be satisfied). The
effective solution usually takes into account the characteristics of a pair M and
ψ such as symbolic or explicit representation of M , logic of ψ, etc. The type
of the property also plays an important role as different algorithms are used
to verify different classes of properties (i.e., safety and liveness, or state and
transition invariant).

An important symbolic model checking algorithm is Bounded Model Check-
ing (BMC) [BCCZ99]. BMC does not aim to verify all possible program exe-
cution, but only those of length k or less. Starting from the initial state, the
algorithm unrolls the program for a fixed number of steps and checks whether
a property is violated in all executions of this fixed length. It is achieved by:

• constructing a symbolic representation formula that encodes possible state
transformations along the transitions of all k-paths;

• constructing a formula that reflects the projection of a property φ to un-
wound transitions;

• performing a satisfiability check if there exists an execution that does not
fulfill the property, i.e., M 6|=k φ.

In the case when φ is a safety property, the formula is satisfiable iff there ex-
ists a counterexample of length k. If not so, k is increased to search for longer
counterexamples. This process terminates either if the underlying decision pro-
cedure exceeds its time or memory bounds, a counterexample is found, or k
exceeds a completeness threshold [KS03]. In the latter case, k is sufficiently
large to ensure that no counterexample exists, and thus, it can be concluded
that M |=∀ φ.

Depending on the formula encoding, different decision procedures can be
used for satisfiability checks in BMC. When BMC was originally proposed it
relied on a Boolean encoding and a propositional solving procedure. That
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is, a Boolean satisfiability problem [DPG97] (also known as SAT-problem) is
constructed — the problem of determining if the variables of a given Boolean
formula can be assigned in a way that makes the formula evaluate to TRU E.
Special tools, SAT-Solvers, are used to find an answer in this case. SAT-Solvers
underwent a period of rapid growth starting from the late 90th. Effective imple-
mentations like Grasp [SS96], Chaff [MMZ+01] and MiniSAT [eNS03] raised
the level of machine-solvable formulæ to millions of Boolean variables. As a
consequence, BMC, as well as the other verification techniques that rely on
SAT, benefited from this progress.

The recent advances in research on decision procedures allow replacing
propositional solvers with new computational engines called SMT-solvers (Sat-
isfiability Modulo Theories). In SMT, the formulæ used for path representation
are no longer limited to Boolean variables but can also include first-order con-
straints in decidable theories of equalities, bit-vectors, arrays, linear arithmetic,
etc. First, this enables more compact and simple symbolic encoding of program
models. Second, specialized decision procedures for each theory and their com-
bination speed up the satisfiability checks. Examples of SMT-Solvers in active
development are Yices [Yic], Z3 [Z3], Mathsat [MSA], OPENSMT [BPST10].

2.4 Automated theorem proving

SMT-solvers are often recognized as representatives of another major class of
tools that employ math proofs to reason about formal specifications — Auto-
mated Theorem Provers (ATP). ATP are designed to show if some statement
(the conjecture or the property) is a logical consequence of a set of statements
(the axioms and hypotheses or the specification). ATP attempts to construct
the proof automatically, although it is not always possible, i.e. available axioms
can be not enough to conclude on validity of the conjecture. In this case user
input in form of additional lemmas can be of use. Interactive Theorem Provers
are a specialized class of ATP designed for effective interaction with the user.

ATP systems are used in a wide variety of domains including applications
to program verification. Given an appropriate formulation of the problem as
axioms, hypotheses, and a conjecture, it can be employed to performs steps of
verification process (e.g., abstraction or counter-example simulation) or to do
the job completely. The latter is, however, less frequent due to computational
inefficiency of the generalized methods for math proof constructions compared
to techniques specifically designed for program verification.

Examples of ATP tools in active development are ACL2 [Kau98], Coq [BC04],
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HOL [NPW02], Vampire [RV99].

2.5 Abstraction

Symbolic representation alone is not enough for addressing the “state-space
explosion” problem. The research presented in this dissertation focuses on
abstraction — an over-approximation of a model that preserves the behavior of
the original program.

2.5.1 Abstraction of a transition system

Definition 10. Given two TSs M = 〈V, I , T 〉 and M̂ = 〈V̂ , Î , T̂ 〉, a relation H(V, V̂ )
is an abstraction relation iff the following conditions hold:

• every initial state of M corresponds to an initial state of M̂; namely, if s |=
I(V ), then there exists a state ŝ of M̂ such that ŝ |= Î(V̂ ) and s, ŝ |= H(V, V̂ );

• every transition of M corresponds to a transition of M̂; namely, if s1, ŝ1 |=
H(V, V̂ ), and s1, s′2 |= T (V, V ′), then there exists a state ŝ2 of M̂ such that
s2, ŝ2 |= H(V, V̂ ) and ŝ1, ŝ′2 |= T̂ (V, V ′) .

If such a relation exists, then M̂ is an abstraction of M, or M refines M̂ (M � M̂).

Definition 11. Given the abstraction relation H, the abstraction function is de-
fined as αH : 2S → 2Ŝ and the concretization function γH : 2Ŝ → 2S as follows:

• αH(Q) = {ŝ ∈ Ŝ | there exists s ∈Q s.t. s, ŝ |= H(V, V̂ )}, for every Q ⊆ S;

• γH(Q̂) = {s ∈ S | there exists ŝ ∈ Q̂ s.t. s, ŝ |= H(V, V̂ )}, for every Q̂ ⊆ SV̂ .

γ can be extended to transitions and paths so that:

• γH( t̂) = {t | in(t) ∈ γ(in( t̂)), out(t) ∈ γ(out( t̂))}, for every transition t̂
of M̂ .

• γH(π̂) = {π | π[i] ∈ γ(π̂[i]) for every 0 ≤ i ≤ |π̂|}, for every path π̂ of
M̂ .

From the various of techniques developed for abstraction computation we
elaborate on those that are relevant to the algorithms developed in this disser-
tation. The techniques are abstract interpretation, predicate abstraction and
predicate abstraction-based counterexample-guided abstraction refinement.
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2.5.2 Abstract interpretation

Abstract interpretation [CC77] is a theory of sound approximation of program
models. It constructs an abstraction of a program with regards to values from
an abstract domain by iteratively applying the instructions of a program to ab-
stract values until the fixpoint is not reached.

Formally, for a program P = 〈U , G〉, where U is the universe and G is a
program graph, the (concrete) semantics of a program is given by the pair
〈A,τ〉, where:

• A is the set of assertions of the program, where each assertion p ∈ A is a
predicate over U; A(⇒, f alse, t rue,∨,∧) is a complete Boolean lattice;

• τ : L→ (A→ A) is the predicate transformer.

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice
Â(v,⊥,>,t,u), and t : L → (Â → Â) is a predicate transformer. Note that
〈A,τ〉 is a particular abstract interpretation called the concrete interpretation.
In the following, we assume that for every command c ∈ L, the function t(c)
is monotone (which is the case for all natural predicate transformers). Given a
predicate transformer t, the function t̃ : L∗→ (Â→ Â) is recursively defined as
follows:

t̃(p)(φ) =

¨

φ if p is empty
t̃(e)(t(q)(φ)) if p = q; e for some q ∈ L, e ∈ L∗.

2.5.3 Predicate abstraction

Predicate abstraction [GS97a, CU98] is one of the most popular and widely ap-
plied methods used in model checking for systematic abstraction of programs.
It abstracts data by only keeping track of certain predicates on the states. Each
predicate is represented by a Boolean variable in the abstract program, while
the original data variables are eliminated. Verification of a software system
with predicate abstraction consists of constructing and evaluating a finite-state
model that is an abstraction of the original system with respect to a set of pred-
icates.

Predicate abstraction relation

Given a TS M = 〈V, I , T 〉, let Π be a set of predicates and v̂p an abstract variable
for every predicate p ∈ Π. The set of abstract variables is the set V̂Π = {v̂p}p∈Π.
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The abstraction relation for predicate abstraction is defined as follows:

HΠ(V, V̂Π) =
∧

p∈Π

v̂p↔ p(V )

2.5.4 Abstraction-refinement loop

The system abstraction, even if computed precisely, may contain unrealistic be-
haviors: i.e., some traces of the abstract system cannot be simulated on the
concrete system. If, after the verification of a property, it is found that a coun-
terexample is not simulatable, it is considered spurious. The presence of such
non-realistic traces requires one to remove them in order to be able to conclude
if the property holds or not. The CounterExample-guided Abstraction Refine-
ment (CEGAR) [CGJ+00, Kur95] is a technique that automates this process.

In case of predicate abstraction, CEGAR consists of a loop that maintains a
set Π of predicates incremented at every iteration.

Each iteration of the CEGAR-loop has 4 basic steps:

• abstraction, where it builds an abstract system M̂ according to a given set
of predicates Π;

• verification (or model checking), where it checks if all the executions of
M̂ satisfy the property; if the property is correct in the abstract system, it
is concluded that it is also true in the concrete system;

• simulation: if the verification produces a counterexample, the simulation
checks if it is spurious, by simulating it in the concrete program; if the
counterexample is simulatable, it is reported as a real counterexample;

• refinement: if the simulation establishes that the counterexample is spu-
rious, the refinement is performed.

The refinement step strongly depends on the type of the spurious behavior
the counterexample reveals. In Chapter 3, we detail on the types of spurious
behaviors, refinement approaches and propose an algorithm that optimizes the
number of required CEGAR-loop iterations.
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Chapter 3

Synergy of Precise and Fast
Abstraction

Absolute truth exists.
But it is absolutely useless.

<from philosophical debates>

This chapter presents a CEGAR-based technique that controls the number
of abstraction-refinement iterations and reduces the verification time by in-
terleaving precise (but slow) and approximated (but fast) abstractions. The
abstraction is first computed with a high level of approximation exploiting the
weakest precondition of the predicates. Then, during the refinement step, the
technique uses the SAT-based quantifier elimination in order to compute the
precise abstraction over the restricted subset of predicates relevant to the dis-
covered counter-example. We also show how the precise computation can be
further heuristically restricted in order to avoid possible exponential blow up
caused by increase in the number of predicates.

Overall, the new technique manages the verification complexity by using
the precise abstraction on demand and locally. The advantage is that the ex-
pensive abstraction is only used on a small portion of the program, yet the
higher quality of abstraction refinement is sufficient to reduce the number of
refinement iterations, thus improving the overall performance of verification.

3.1 Introduction

Predicate abstraction, when combined with reachability analysis and an auto-
mated abstraction refinement mechanism, is an effective model checking strat-

29
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egy. The CEGAR-based verification using predicate abstraction consists of con-
structing and evaluating a finite-state system that is an abstract model of the
original system with respect to a set of predicates.

The abstract model is a conservative over-approximation of the original pro-
gram with respect to the set of given predicates. Thus, if the property holds on
the abstract model, it also holds on the original program. The drawback of
the conservative abstraction is that it can introduce unrealistic behaviors, i.e.,
model checking phase of CEGAR-loop can discover spurious counterexamples
— valid for abstract model, but not realizable on a concrete system. Such spu-
rious behaviors should be removed by adjusting the set of predicates in a way
that eliminates the given counterexample. Therefore, the overall efficiency of
verification is highly dependent on the efficiency of the abstraction and refine-
ment procedures.

We distinguish between precise abstraction and approximated abstraction
(as also done, for example, in [CGJ+00, DD01, JM05]): a precise abstraction
is minimal in the sense that it contains only those transitions that correspond
to some transition in the concrete model; instead, an approximated abstrac-
tion is a further over-approximation of the minimal abstract model so that the
transition relation is relaxed. In this work we refer to the latter simply as ap-
proximation.

Approximation techniques are important because they allow a less expen-
sive (as compared to precise abstraction) computation of the abstract transition
relation. Cartesian abstraction [BPR03], for example, loses every relationship
among predicates, but has been successfully used to verify large programs, such
as operating system device drivers. However, abstraction approximations add
spurious behaviors in addition to the spurious counterexamples resulting from
precise abstraction. In order to rule out this kind of “impurity”, the approxima-
tion must be refined without changing the set of predicates and focusing only
on the spurious transitions caused by the approximation [DD01]. This proce-
dure on its own might become very costly and does not scale to verification of
large programs.

When refining the abstract model, we distinguish between two types of spu-
rious behavior (as also done in [CGKS02]). 1) Spurious path is due to the over-
approximating nature of the precise abstraction: states are merged together so
that some resulting paths cannot be simulated on the concrete system. This
happens when the set of predicates is not sufficient to capture the relevant be-
haviors of the concrete system. 2) Spurious transitions are abstract transitions
which do not have corresponding concrete transitions. This happens when the
set of transitions is over-approximated too much while abstraction is computed.
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void main() {

int x=*;

int y;

l0: y=x+1;

l1: if (x<0)

l2: if (!(x<y))

l3: assert(0);

l4: }

(a)

void main() {

int x = *;

int y;

int z;

y=x+1;

z=y-1;

if (x<0||y>0||z>0){

x++;

z++;

if (y<z && z>x)

assert(0); } }

(b)

Figure 3.1. Sample program for which the approximated abstraction causes spurious
paths.

By definition, spurious transitions cannot appear in the most precise abstraction
and are caused by using the approximation techniques. Clearly, the efficiency
of the approximated abstraction depends on a tradeoff between time spent in
computing the abstraction and refining spurious transitions.

In order to illustrate the abstraction approximation and its refinement pro-
cedures, consider the example of Figure 3.1(a). The variable x is assigned
non-deterministically with an unknown value “*”. The property we verify is
the reachability of line l3. It never can be reached since the condition !(x<y)

at line l2 never holds (together with the guard x<0 at line l1, which is suffi-
cient to avoid integer overflow). Thus if in the abstract program there is a path
leading to the assertion, then it is spurious. The predicates x<0 and x<y are
sufficient to prove the property. However, approximate methods like Cartesian
abstraction cannot prove it because they cannot infer that after the assignment
y=x+1, the condition (!(x<0) || !(x<y)) is true. Thus, most model checkers
that use such abstractions refine the transition relation by adding a constraint
that removes the spurious transition.

To demonstrate the difference in performance between precise and approx-
imated abstractions, let us extend the previous example in order to have more
spurious behaviors. The program of Figure 3.1(b) has one more variable and a
slightly more complex control flow graph. As before the assertion is not reach-
able, and all abstract counterexamples are spurious. Though, if we consider
the predicates in the guards of the program, an approximated abstraction may
produce many spurious behaviors. Table 3.1 reports the verification results
obtained with the SATABS model checker [CKSY04], by running approximated
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Total Abs MC Ref Iter
Approximated abstraction [DD01] 5.817 0.063 2.659 2.112 42

Approximated abstraction [JKSC05] 1.469 0.046 0.501 0.617 12
Precise abstraction [CKSY04] 3.591 3.478 0.076 0.01 2

New approach 0.467 0.039 0.161 0.189 4

Table 3.1. Verification results on the example presented in Figure 3.1(b). Total,
Abs, MC, Ref refer to the time, in seconds, for total verification, abstraction, model
checking and refinement respectively; Iter refers to the number of iterations of the
abstraction-refinement loop.

and precise abstractions. The final number of predicates is in all cases 10. The
approximated abstraction spends most of time in refining the transition rela-
tion (Ref). Since it runs for 12 iterations (or even 42 in case when we used
the refinement procedure of [DD01]), also the time for the verification (MC) is
not negligible. On the contrary, the precise abstraction takes only 2 iterations
to terminate (the first refinement is necessary to add a sufficient set of predi-
cates). Nevertheless, the amount of time spent in computing the abstraction is
too high for such example.

A low number of refinement iterations is fundamental for the success of
the CEGAR loop, especially when applied to industrial benchmarks: in fact,
when the system is complex, the number of predicates required to verify the
property becomes high, and the time spent in the reachability (model checking)
procedure grows exponentially. For this reason, it is of paramount importance
to avoid as many redundant iterations as possible: even a single saved iteration
can result into a huge saving in time for large systems.

This chapter presents a new technique that controls the number of itera-
tions in CEGAR loop and reduces the verification time by interleaving precise
(but slow) and approximated (but fast) abstractions. The abstraction is first
computed with a high level of approximation. Then, during the refinement
step, the precise abstraction is applied to a limited subset of transitions, related
to detected spurious behavior.

Notably, the method is independent of any particular technique used to define
either abstraction procedure.

The difficulty that we would experience in computing the precise abstrac-
tion of the whole program is avoided by exploiting the localized abstraction: as
in static analysis [NNH99], in most model checkers (such as SLAM [BMMR01],
BLAST [HJMS02a], SATABS [CKSY04], F-Soft [JIGG05]) the abstract model
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keeps the control flow graph of the original program and has a different ab-
stract transition relation for each location of the control-flow graph1. This way,
during the refinement step, we add the constraints built with a precise ab-
straction only to relevant transition relations, affecting only those parts of the
system that caused the spurious counterexample.

In order to illustrate the immediate advantages of our approach, consider
the fourth line of Table 3.1 that is based on the implementation of our tech-
nique. Our approach is able to avoid both a high number of iterations and an
expensive abstraction, resulting in an optimized verification time.

The rest of the Chapter is organized as follows: Section 3.2 defines precise
and fast abstractions; Section 3.3 describes the algorithm to combine them in a
CEGAR-loop. Next, Section 3.4 discusses the experimental support for the new
algorithm including the modification with the threshold on precise computa-
tion. Finally, Section 3.5 summarizes and relates presented contribution to the
existing work.

3.2 Precise abstraction vs. fast abstraction

We deal with a program modeled as a transition system (TS) M = 〈V, I , T 〉
(Definition 2) and rely on a notion of abstraction for a transition system as
introduced in Section 2.5. We also make use of earlier defined predicate ab-
straction (Section 2.5.3) and CEGAR-loop (Section 2.5.4).

3.2.1 Precise abstraction

Given a TS M = 〈V, I , T 〉, an abstraction M̂ = 〈V̂ , Î , T̂ 〉 of M is said to be precise
when every abstract initial state and transition of M̂ corresponds respectively
to a concrete initial state and transition of M , i.e., for every abstract transi-
tion, every corresponding concrete transition can occur. Given the abstraction
relation H, M̂ can be obtained as:

• ÎH(V̂ ) = ∃V (I(V )∧H(V, V̂ )),

• T̂H(V̂ , V̂ ′) = ∃V∃V ′(T (V, V ′)∧H(V, V̂ )∧H(V ′, V̂ ′))

The precise abstraction is also called minimal or existential or exact or eager
abstraction [CGL94].

1Localized abstraction is further investigated in [HJMS02a, HJMM04].
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Precise predicate abstraction

The minimal predicate abstraction is the TS M̂ = 〈V̂Π, ÎΠ, T̂Π〉, where:

• ÎΠ(V̂Π) = ∃V (I(V )∧
∧

p∈Π v̂p↔ p(V ))

• T̂Π(V̂Π, V̂ ′Π) = ∃V∃V
′(T (V, V ′)∧
∧

p∈Π(v̂p↔ p(V )∧ v̂′p↔ p(V ′))).

Quantifier elimination

While attempting to model check the precise abstract TS, one faces the need to
remove the quantifiers from the above defined abstract transition relation. In
general, given a transition relation T and a set of predicates P, to compute T̂P

means to find a quantifier-free formula that is equivalent to T̂P .

Example 3.1. Consider the program of Figure 2.1(a). It can be represented by
the TS M = 〈V, I , T 〉, where

• V := {x , y, pc}, where pc is the program counter;

• I := (pc = l0);

• T := (pc = l0)→ (pc′ = l1 ∧ y ′ = x + 1∧ x ′ = x)∧
(pc = l1 ∧ x < 0)→ (pc′ = l2 ∧ x ′ = x ∧ y ′ = y)∧
(pc = l1∧!x < 0)→ (pc′ = l4 ∧ x ′ = x ∧ y ′ = y)∧
(pc = l2∧!x < y)→ (pc′ = l3 ∧ x ′ = x ∧ y ′ = y)∧
(pc = l2 ∧ x < y)→ (pc′ = l4 ∧ x ′ = x ∧ y ′ = y)∧
(pc = l3)→ (pc′ = l4 ∧ x ′ = x ∧ y ′ = y)

Now consider the predicates P1 := (x < 0) and P2 := (x < y). Let the abstract
variables v̂1 and v̂2 correspond respectively to P1 and P2. We do not abstract the
program counter. The precise abstract transition relation results to be equivalent
to

• T̂P ≡ (pc = l0 ∧ v̂1)→ (pc′ = l1∧!v̂′2)∧
(pc = l0∧!v̂1)→ (pc′ = l1)∧
(pc = l1 ∧ v̂1)→ (pc′ = l2 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l1∧!v̂1)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l2∧!v̂2)→ (pc′ = l3 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l2 ∧ v̂2)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l3)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)
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In hardware and software verification, different techniques have been con-
ceived to compute T̂P . In symbolic model checking [BCM+90] of finite state
machines, the existential quantification can be removed either by a Shannon
expansion technique when using BDDs [Bry86] or by SAT techniques when us-
ing CNF [McM02]. In software model checking, the problem is exacerbated by
the fact that the concrete transition relation may contain first-order terms. The
abstract transition relation can be obtained by enumerating the abstract states,
and checking if, for each pair of states, there exists an abstract transition. As it
is done by most software model checkers, this requires an exponential number
of calls to a theorem prover [DDP99, BMMR01]. In [CKSY04] a SAT-Solver
is exploited for this purpose, the technique is known as SATQE — SAT-based
quantifier elimination.

3.2.2 Approximated abstraction

Precise abstractions are very expensive to compute because of the existential
quantification operations. Thus, in practice, model checkers use approxima-
tions to trade-off precision with complexity. Formally:

Definition 12. Given MH = 〈V, IH , TH〉 and M̃ = 〈V, Ĩ , T̃ 〉, M̃ is an approximation
of MH (MH ­ M̃) iff the following formulas are valid:

• IH =⇒ Ĩ , i.e., every initial state of the minimal abstraction is an initial
state in the approximation;

• TH =⇒ T̃ , i.e., every transition of the minimal abstraction is a transition
in the approximation.

Intuitively, M̃ has more initial states and transitions than MH . Note that
an approximation is also an abstraction namely, if MH ­ M̃ , then MH � M̃ .
However, the set of predicates is not affected, in the sense that M̃ and MH have
the same abstract variables.

Approximation for predicate abstraction

Many approximation techniques have been developed both in hardware and
software verification. Their aim is to alleviate the computation of T̂Π. The
easiest way is to reduce the scope of quantifiers. This can be done with early
quantification [CGL94], by pushing quantifiers in front of predicates. Predi-
cate partitioning [JKSC05] approximates T̂Π by taking the conjunction of its
projections over subsets of predicates. This technique is pushed to its limit by
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Cartesian abstraction [BPR01] that, given a set of states Q, approximates tran-
sition relation with the product of the projections on each variable. This way,
the approximated abstraction ignores every relation among predicates.

3.2.3 Spurious behaviors

Spuriousity, which is introduced during abstraction computation, should be
automatically removed during the refinement phase of CEGAR-loop. The re-
finement step strongly depends on the type of the spurious behavior the coun-
terexample reveals. Two types are possible:

Spurious transitions

Spurious transitions are transitions that satisfy the abstract transition relation,
but not the concrete one.

Definition 13 (Spurious transition). Given a TS M = 〈V, I , T 〉, an abstraction
M̂ = 〈V̂ , Î , T̂ 〉, and a transition t̂ of M̂ , t̂ is a spurious transition iff t̂ |= T̂ and
t 6|= T for every t ∈ γ( t̂).

In order to refine an approximation that contains a spurious transition, a
new transition relation is obtained by adding a constraint in conjunction to
the old abstract transition relation. As a result, the spurious counterexample
is ruled out. Different techniques use as such a constraint either the exact en-
coding of the spurious transition [DD01], or the UNSAT core produced by the
SAT solver when checking if the transition is spurious [JKSC05], or an inter-
polant between the exact abstraction and the current approximated abstraction
[JM05].

Note that if the abstraction is precise, there is no need for spurious tran-
sition refinement, because this type of spurious behavior can not happen in
minimal abstraction by definition. However the existence of spurious paths is
still possible.

Spurious path

If there are no spurious transitions (which is the case for precise abstraction),
but the counterexample is spurious, then there is a spurious path. Spurious
paths are sequences of transitions that satisfy the abstract transition relation,
but not the concrete one.
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Definition 14 (Spurious path). Given a TS M = 〈V, I , T 〉, an abstraction M̂ =
〈V̂ , Î , T̂ 〉, and a sequence π̂ of transitions of M̂ , π̂ is a spurious path iff π̂ |= T̂
and π 6|= T for every π ∈ γ(π̂).

In order to refine the abstraction and remove a spurious path, refinement
procedures need to add more predicates to the abstraction. There are differ-
ent techniques to discover the new set of predicates, either based on weakest
precondition [BR02], interpolation [HJMM04], or UNSAT core [GS05].

3.3 Combining fast and precise abstractions

Now we define a new algorithm, which combines fast and precise abstrac-
tion. The algorithm implements the standard CEGAR-loop as described in Sec-
tion 2.5.4. Each iteration of the CEGAR-loop is composed of an abstraction
step, a model checking step, a simulation step and, finally, a refinement step.

First we present here the high-level overview of the combined algorithm
and then we provide the description of the specifics of the new refinement
procedures. For simplicity, the algorithm is initially explained with regard to a
monolithic transition relation. In Section 3.3.3 it is extended to the case where
a transition relation is defined for every location of the program.

The algorithm is parametrized by a number of subroutines that take care of
the abstraction and refinement steps. In particular, the algorithm contains the
following procedures:

• FastAbstraction: given a set of predicates Π and a concrete transition
relation T , it computes an over-approximation of T̂Π.

• PreciseAbstraction: given a set of predicates Π and a concrete transi-
tion relation T , it computes the minimal abstraction T̂Π.

• SpuriousTransition: given a path π, it returns a function σST that
maps every transition t in π to a set of predicates P, s.t., P ⊆ Π and
t 6|= T̂P .

• SpuriousPath: given a path π, it returns a function σSP that maps every
transition t in π to a set of predicates P, s.t. π 6|= T̂P . Note that P may
contain new and old predicates.

Also, note that, depending on the detected counterexample pi and P, both
σST and σSP may or may not be defined.
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Algorithm 1 shows how the FastAbstraction and PreciseAbstraction

are combined. It first computes the approximated abstraction (line 4). When
a spurious counterexample is encountered as a result of the model checking
(line 6), the spurious transitions are removed by using the precise abstraction
technique (line 12) with the predicates returned by SpuriousTransition (line
9). If no spurious transitions are found, the spurious path is removed by using
the precise abstraction technique (line 21) with the predicates returned by Spu-
riousPath (line 16).

3.3.1 Refining spurious transitions

Suppose some transitions t1, ..., tn of the counterexample π found by Model-

Check are spurious. This means that the function σST returned by Spurious-

Transition maps those transitions to some non-empty set of predicates. The
clustering of predicates Γ is defined as {σST (t i)}1≤i≤n (i.e., Γ contains the set
of predicates σST (t i) for every transition in the spurious counterexample). The
spurious transition refinement procedure proceeds as follows. For each cluster,
P ∈ Γ, the refinement algorithm computes T̂P , which is a precise computation
of the abstract transition relation projected on the predicates of the cluster.
In order to rule out every spurious transition among t1, ..., tn, the refinement
algorithm updates the abstract transition relation α as follows: for each set of
predicates, it adds the precise abstraction of the transition relation projected
on those predicates. The updated abstract transition relation becomes:

α′ := α∧
∧

P∈Γ

T̂P

Note that, in general, every cluster, P, is a subset of the global set of pred-
icates, Π. This means that each constraint T̂P is an over-approximation of the
precise abstraction computed over Π. Neverthless T̂P is precise with regards to
the predicates P, in the sense, that it removes all the unrealistic abstract transi-
tions that can be defined by those predicates.

The following theorem states the soundness of this refinement step.

Theorem 2. For every spurious transition t i, 1≤ i ≤ n, t i 6|= α′.

Proof. By definition of the function σST , it maps every transition t i, 1 ≤ i ≤ n,
to a set of predicates P such that t i 6|= T̂P . Since α′ := α ∧

∧

P∈Γ T̂P , then
t i 6|= α′.
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Algorithm 1: A new abstraction-refinement algorithm combining fast and
precise abstractions. α — abstract transition relation (symbolic repre-
sentation); T — concrete transition relation; Π — predicate set; π —
counterexample; C — constraints added to abstract transition relation on
refinement step.
1 MixCegarLoop(TransitionSystem M, Property F)
2 begin
3 Π = InitialPredicates(F,T);
4 α = FastAbstraction(T,Π);
5 while not TIMEOUT do
6 π = ModelCheck(α,F);
7 if π= ; then return CORRECT;
8 else
9 σST = SpuriousTransition(π);

10 if σST 6= ; then
11 foreach t ∈ π do
12 C = PreciseAbstraction(T,σST (t));
13 α= α∧ C;
14 end foreach
15 else
16 σSP = SpuriousPath(π);
17 if σSP = ; then return INCORRECT;
18 else
19 foreach t ∈ π do
20 Π = Π∪σSP(t);
21 C = PreciseAbstraction(T,σSP(t));
22 α= α∧ C;
23 end foreach
24 end if
25 end if
26 end if
27 end while
28 end
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Note that the proof relies on the soundness of a particular SpuriousTran-
sition and PreciseAbstraction techniques. For a correctly returned by Spu-

riousTransition set of predicates, PreciseAbstraction guarantees to pro-
duce a constraints sufficiently strong to remove a spurious transition between
the states that predicates are related to.

3.3.2 Refining spurious paths

The cluster-based approach described above is adopted to the removal of the
spurious path. The technique uses SpuriousPath to produce the set of pred-
icates that are sufficient to rule out the spurious counterexample. The set
of predicates generated by the standard predicate-discovery techniques (de-
scribed in Section 2.5.3) includes both current predicates and new predicates,
that together rule out the spurious counterexample. Our technique considers
this set of old and new predicates as a new cluster.

Suppose the path t1, ..., tn to be spurious. This means that the function σSP

returned by SpuriousPath maps each t i to some non-empty set of predicates.
The clustering of predicates Γ is defined as {σSP(t i)}1≤i≤n (i.e., Γ contains the
set of predicates σSP(t i) for every transition in the spurious counterexample).
For each set of predicates, we add a precise computation of the abstract relation
with regards to those predicates. The computation of the updated abstract
transition relation α is identical to spurious transition case, i.e.,

α′ := α∧
∧

P∈Γ

T̂P

Note that this time, unlike the case of spurious transitions, the clusters involve
new predicates.

The advantage of this refinement procedure over classical path-based re-
finement techniques is that not only does it use new predicates to remove spu-
rious paths, but it also makes use of precise components to make sure that no
spurious transitions are created as a result of the refinement step. In the long
run, it helps to reduce the number of the CEGAR-loop iterations as well.

By definition, the set of predicates produced by SpuriousPath is sufficient
to remove the spurious counterexample only if the precise abstraction is used.
In fact, spurious transitions over such predicates (possibly created by the ap-
proximation abstraction) might create the same spurious counterexample. The
proposed technique guarantees that this does not happen. This is achieved by
using the precise component T̂P .
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The following theorem states the soundness of this refinement step.

Theorem 3. For every spurious path π, π 6|= α′.

Proof. By definition of the function σSP , it maps every transition t of π, to a
set of predicates P such that π 6|= T̂σSP (t), i.e., precise abstraction, computed for
any cluster P, rules out a spurious path π. Since abstract transition relation
is updated with a constraint for every cluster P, i.e., α′ := α ∧

∧

P∈Γ T̂P , then
π 6|= α′.

Note that the proof relies on the soundness of a particular SpuriousPath

technique.

3.3.3 Localized abstraction

The algorithm shown in Algorithm 1 was defined for a monolithic transition
relation. When the set of predicates returned by the SpuriousTransition or
SpuriousPath procedures covers the whole set Π of current predicates, the
constraint that MixCegarLoop adds to the abstract transition corresponds ex-
actly to the precise abstraction. This way, the abstraction refinement becomes
as expensive as PreciseAbstraction. This disadvantage is limited by localiz-
ing the abstraction to some parts of the program. Some software model check-
ers (e.g., BLAST [HJMS02a] and SATABS [CKSY04]) use the control flow graph
as a partitioning of the transition relation to implement such localization. Dur-
ing the abstraction refinement, they keep a set of predicates and an abstract
transition relation for each program location, and perform the abstraction for
each local transition relation separately.

The algorithm implements the localized procedure as part of the CEGAR
loop as shown in Algorithm 2. It treats the system M as a set of concrete
transition relations, one for every location of the control-flow graph. For each
transition relation T , it computes an abstract transition relation α(T ) (line 4);
when a spurious counterexample is encountered as a result of the model check-
ing (line 6), spurious transitions and paths are removed by using the precise
abstraction technique (line 13 and 23). The difference from the monolithic
case (presented earlier in this section) is that in the localized version, every
transition t of the spurious counterexample π is associated with a particular
abstract transition relation, denoted τ(t). Thus, when the refinement step of
the algorithm has to add a new constraint, it changes only the transition re-
lation corresponding to either the spurious transition (as part of the spurious
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Algorithm 2: An algorithm that implements a combination of fast and
precise abstractions together with localized abstraction.
1 MixCegarLoop(TransitionSystem M, Property F)
2 begin
3 foreach T in M do Π(T ) = InitialPredicates(F,T);
4 foreach T in M do α(T ) = FastAbstraction(T,Π);
5 while not TIMEOUT do
6 π = ModelCheck(α,F);
7 if π= ; then return CORRECT;
8 else
9 σ = SpuriousTransition(π);

10 if σ 6= ; then
11 foreach t ∈ π do
12 T = τ(t);
13 C = PreciseAbstraction(T,σ(t));
14 α(T ) = α(T )∧ C;
15 end foreach
16 else
17 σSP = SpuriousPath(π);
18 if σSP = ; then return INCORRECT;
19 else
20 foreach t ∈ π do
21 T = τ(t);
22 Π(T ) = Π(T )∪σSP(t);
23 C = PreciseAbstraction(T,σSP(t));
24 α(T ) = α(T )∧ C;
25 end foreach
26 end if
27 end if
28 end if
29 end while
30 end
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transition refinement step, lines 9-14) or to each transition of the spurious path
(as part of the spurious path refinement step, lines 17-24).

By exploiting the localized-abstraction framework, the algorithm reduces
the abstraction computation to the parts of the system that are relevant to the
property and keeps the approximated abstraction in all parts of the program
that are irrelevant to prove the property.

3.4 Experimental evaluation

We performed a thorough evaluation comparing the new technique with the
purely precise and imprecise counterparts. Our tests with various real life
benchmarks show a systematic advantage of our approach over both precise
and imprecise techniques reaching up to 90% improvement in time.

We implemented the proposed algorithm in the framework of software
model checking. We used the SATABS [CKSY04] model checker as a platform
for our experiments. As described in Section 3.3, the new CEGAR loop uses four
subroutines. We experimented with the following techniques implemented in
SATABS:

• for FastAbstraction, we used a fast abstraction technique based on the
computation of the weakest precondition; it assigns to the next predicate
its weakest precondition if this is a current predicate; it does not allow a
general Boolean combination of predicate variables;

• for PreciseAbstraction, we used a precise abstraction based on the
enumeration of possible transitions by means of a SAT solver: we force
the SAT solver to find all the solutions of the quantifier-elimination prob-
lem by iteratively adding the negation of previous assignments as clauses
[CKSY04];

• for SpuriousTransition, we used the SAT-based technique of [JKSC05]2;
this calls a SAT solver to check if a transition is spurious; if the transition
is not realistic, it inspects the UNSAT proof to find the relevant predicates;

• for SpuriousPath, we used a technique based on weakest precondition;
it computes the weakest preconditions of the current predicates along the
transitions of the spurious path; it uses these expressions to produce a set

2We also experimented with a direct implementation of technique [DD01], but it reached
200 CEGAR iterations even on the small examples.
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of current and new predicates that are sufficient to rule out the spurious
path.

The SAT solver used by PreciseAbstraction and SpuriousTransition was
MiniSAT [ES03].

We implemented the new algorithm and enhanced SATABS with two new
procedures: the first (we will refer to it as NewST) affects how the abstraction
is refined in the case of spurious transitions, as described in Section 3.3.1;
the second (NewSP) refines the abstraction in the case of spurious paths, as
described in Section 3.3.2.

We compared the new algorithm with the abstraction-refinement loop based
on the pure fast abstraction (referred as WP) and the pure precise abstraction
(referred as SATQE) using the standard SATABS implementations of latter tech-
niques. The new algorithm was evaluated with either NewSP or NewST or both
together. Thus, in case NewSP was not used, the default refinement of SATABS

based on fast abstraction was used.
Note that the focus of the experimental evaluation was on effectiveness of

abstraction-refinement approaches. Thus, we maintained the same tool frame-
work and we did not change orthogonal techniques such as predicate discovery.

We ran the experiments on an AMD Dual-Core Opteron 2212 machine with
2GHz CPU and Ubuntu 7.04. The techniques were evaluated on the sets of
ANSI-C programs as benchmarks with different assertions in it. For every ex-
periment, we verified one property at a time.3

3.4.1 Client-server updating mechanism benchmark

We first compared the analyzed techniques on the C implementation of a client-
server mobile agent system [BDNL02, BSBA07], where updates from a central
update server are pushed to several clients in form of mobile agents. This
enables keeping the client software up to date, without forcing the client to
poll the update server.

This benchmark can be parametrized in number of simultaneously executed
clients. The increase of the latter parameter results in growth of number of
predicates required to verify the complete system. This example is particularly
interesting because the fast abstraction produces a number of spurious transi-
tions exponential in the number of predicates.

3We observed that verifying several assertions at the same time may affect the comparison
in a unreliable way, since the counterexample produced by the model checker may vary ac-
cording to different abstract models. This way, in the same iteration we might obtain different
predicates which might close the CEGAR loop in a different number of iterations.



3.4 Experimental evaluation 45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2  3  4  5  6  7

T
im

e 
in

 s
ec

on
ds

Number of client nodes

WP
SATQE
NewST
NewSP
NewST+NewSP

 0

 10

 20

 30

 40

 50

 60

 2  3  4  5  6  7

N
um

be
r 

of
 it

er
at

io
ns

Number of client nodes

WP
SATQE
NewST
NewSP
NewST+NewSP

Figure 3.2. Client-server updating mechanism benchmark: total running time in sec-
onds (left) and number of iterations (right) plotted against the number of clients.

The results are reported in Figure 3.2. The performance of the weakest-
precondition-based (WP) and the SAT-based abstractions (SATQE) is compara-
ble. Notably, NewST separately and in combination with NewSP is much more
efficient than either WP or SATQE. WP and NewSP are sensitive to a number of
spurious transitions and, due to the nature of the example, grow exponentially
with the size of the model. NewST efficiently removes spurious transitions and
significantly reduces the number of iterations. In Figure 3.2 (right) we note
that the new technique as expected has a balanced number of iterations be-
tween WP and SATQE. This produces an evident saving in time (as shown in
Figure 3.2 left) comparing to either WP (up to factor of 5) and to SATQE (up to
factor of 7).

3.4.2 Benchmark test suite from Ku et al.

Next, we evaluated the techniques on the benchmark set proposed by Ku et
al. in [KHCL07]. For this benchmark set, the authors collected a large num-
ber of large-scale C programs with known buffer-overflow bugs and their fixed
versions. The test suite includes applications such as Sendmail, Apache HTTP
server, Samba; though, the original programs were stripped down by substitut-
ing libraries with stubs. The benchmark set contains 5684 test cases, of which
261 are fixed versions of the programs.

4We reported to the benchmark authors that 17 test cases are incorrect, 31 test cases do
not pass correctly through our front-end, thus only 520 test cases were used.
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Figure 3.3. Benchmark suite [KHCL07]: comparison of time in seconds (left) and
number of iterations (right) used by WP and NewST.

Overall results

We limited the execution with 1 hour or 200 iterations of CEGAR per test case.
Under this threshold 377 test cases completed by at least one of the techniques.
In fact, 40% of them were completed in less than 2 seconds by all techniques
and not more than 5 iterations. For these test cases the performance difference
was not relevant and we exclude them from the comparison charts (if the op-
posite is not stated explicitly). For the remaining test cases SATABS needs on
average 42 predicates to perform a check, with a maximum of 177 predicates.

Only NewST was able to complete all of 377 considered test cases. WP did
9 less, while SATQE and NewSP failed to finish within a given limit on 76 and
26 test cases respectively. The complete results per individual benchmark are
placed in Table A.1; the discussion in the next subsections is based on the
aggregated scatter plots.

WP vs. NewST

The notable comparison of the two most effective methods — WP and New-

ST — gives a better understanding of the advantage of the new techniques.
Figure 3.3 reports the scatter plots of the comparison. The results show that
NewST almost systematically outperforms WP. In 98% of the test cases it requires
fewer iterations to verify the property. Smaller number of iterations leads to
reduction of the total verification time for 53% of the tests. On average, it
decreased the total time by 42%, reaching more than double performance gain
for some cases. For the small test cases (i.e., 5-10 iterations to complete) the
application of the new technique does not give any significant advantage, but
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Figure 3.4. Benchmark suite [KHCL07]: scatter plot of time (left) and number of
iterations (right) used by WP and NewST with a threshold.
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Figure 3.5. Benchmark suite [KHCL07]: comparison of time (left) and number of
iterations (right) used by NewST and NewST with a threshold.

it becomes more pronounced with the growth of the test case complexity. The
more time the model checking step in CEGAR requires, the bigger reduction in
total time the CEGAR loop obtains due to fewer iterations.

3.4.3 A threshold for precise abstraction

In 47% of the test cases, where NewST was not better than WP, the difference in
verification time usually was not bigger than 15%. As an exception, we found
only one test case, in which the advantage of the smaller number of iterations
was not able to compensate for the additional time spent for refinement (the
point above the diagonal line in Figure 3.3, left).

We investigated the test case: for several program locations, the Precise-
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Abstraction computation took longer than the time saved from the reduction
in refinement iterations. This was due to the fact that the SAT-based enumera-
tion of all spurious transitions was exponential in the number of predicates re-
turned by SpuriousTransition (or SpuriousPath). Although there were only
few transitions where it became critical, we decided to implement a heuristic,
which would limit the application of precise computation. The heuristic for-
bids the application of PreciseAbstraction when the number of predicates
reaches a given threshold Nσ. In such cases, FastAbstraction is applied in-
stead of PreciseAbstraction. The value of the threshold depends on the
application and the effectiveness of the predicate discovery techniques as well
as the implementation of PreciseAbstraction and FastAbstraction.

The idea can be further modified to use the already known threshold val-
ues. Separate limits can be set for PreciseAbstraction in the Spurious-

Transition and SpuriousPath branches. In our experiments we used the pre-
computed thresholds that seem optimal for the current implementation of the
procedure: we use NσST

= 13 for the call of PreciseAbstraction dedicated
to the removal of spurious transition, while NσSP

= 17 when PreciseAbstrac-

tion is used to rule out spurious paths.

We can further optimize this approach by computing the threshold on-the-
fly by limiting the maximum execution time for PreciseAbstraction: when
the time-out is reached, the number of predicates that made the procedure
blow up is used as a new threshold. The approach is shown in Algorithm 3.

We evaluated NewST with the pre-computed thresholds on the test suite
from Ku et al. and obtained even better results than for pure NewST. The com-
parison of the NewST with the threshold against WP (Figure 3.4) shows that the
improvement is systematic. The comparison between NewST with and without
the threshold is shown in Figure 3.5. As expected, the results of both techniques
are similar in more than 90% of the test cases, because the threshold was never
reached and FastAbstraction was never applied. When the threshold was
reached, the results of NewST with Nσ remained very close to the original New-
ST. But whenever the precise abstraction computation was a bottleneck, the use
of the threshold enabled the use of the cheaper fast abstraction consequently
resulting in a smaller computation time. The point below the diagonal line in
Figure 3.5 (left) corresponds to one of the test cases where it happened. As an
overall result NewST with a threshold reduced the total verification time by 5%
compared to pure NewST.
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Algorithm 3: The algorithm with localized abstraction and on-the-fly
threshold computation. NTO — time-out value for the PreciseAbstrac-
tion; Nσ — computed threshold value; TimeoutWasReached — flag,
which tracks if PreciseAbstraction was stopped by time-out Nσ.
1 MixCegarLoop(TransitionSystem M, Property F, Time NTO)
2 begin
3 Nσ = unknown;
4 foreach T in M do Π(T ) = InitialPredicates(F,T);
5 foreach T in M do α(T ) = FastAbstraction(T,Π);
6 while not TIMEOUT do
7 π = ModelCheck(α,F);
8 if π= ; then return CORRECT;
9 else

10 σST = SpuriousTransition(π);
11 if σST 6= ; then foreach t ∈ π do
12 T = τ(t);
13 if Nσ = unknown or size(σST (t))< Nσ then
14 C = PreciseAbstraction(T,σST (t), NTO);
15 if TimeoutWasReached then
16 C = FastAbstraction(T,σST (t));
17 Nσ = size(σST (t));
18 end if
19 else C = FastAbstraction(T,σST (t));
20 α(T ) = α(T )∧ C;
21 end foreach
22 else
23 σSP = SpuriousPath(π);
24 if σSP = ; then return INCORRECT;
25 else foreach t ∈ π do
26 T = τ(t);
27 Π(T ) = Π(T )∪σSP(t);
28 if Nσ = unknown or size(σSP(t))< Nσ then
29 C = PreciseAbstraction(T,σSP(t), NTO);
30 if TimeoutWasReached then
31 C = FastAbstraction(T,σSP(t));
32 Nσ = size(σSP(t));
33 end if
34 else C = FastAbstraction(T,σSP(t));
35 α(T ) = α(T )∧ C;
36 end foreach
37 end if
38 end if
39 end while
40 end
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Figure 3.6. Benchmark suite [KHCL07]: scatter plot of time (left) and number of
iterations (right) used by SATQE and NewSP.
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Figure 3.7. Benchmark suite [KHCL07]: scatter plot of time (left) and number of
iterations (right) used by NewSP and NewST + NewSP.

SATQE, NewSP and NewST + NewSP

As expected, SATQE did not perform efficiently whenever a large number of
predicates was involved in the abstraction. Although on smaller instances
(≤ 30 predicates on average) it showed good results, on large instance it tended
to time-out. Thus, it completed 76 fewer test cases than NewST. NewSP per-
formed better (only 26 test cases were not finished) but still was worse than
WP and NewST. The cause of the problem was similar to the one of SATQE or
of NewST without a threshold: NewSP obtained too many predicates from Spu-

riousPath and the precise computation became very expensive. Nevertheless
it scaled better than SATQE — see Figure 3.6 for comparison. Notice, that both
techniques required fewer iterations than NewST and WP (Figure 3.3).
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Figure 3.8. Benchmark suite [KHCL07]: scatter plot of time (left) and number of
iterations (right) used by NewST and NewST + NewSP with thresholds.

The combination of NewST and NewSP outperformed NewSP (Figure 3.7). But
the usage of PreciseAbstraction also caused the problem here and did not
allow it to compete against NewST. Therefore a threshold for NewSP was also
applied similar to its use in the NewST branch (Algorithm 3, lines 28–32).

We compared the fastest technique so far, NewST with a threshold, and a
combination of NewSP and NewST with thresholds (Figure 3.8). However, on
our test suite the winner was not obvious. Although the NewST + NewSP variant
got more information from counterexamples to remove the spurious behaviors
with (likely) cheap computation, the advantage over NewST was not enough to
compensate for the additional call to precise abstraction computation. Never-
theless it confirmed that the use of a threshold helped to avoid problems caused
by PreciseAbstraction.

3.4.4 Evaluation on large-scale programs

We experimented with the various large-scale programs from the open-source
software packages like INN, WU-FTPD, GnuPG and others5. We applied the most
effective methods — WP, NewST and NewST + NewSP with thresholds — and
analyzed the programs for memory bounds violations.

The overall results on average repeated those from the benchmark suite
with an exception that real programs had fewer trivial assertions. Here we re-
port the outcome for one of the experiments. We analyzed the encode program
from the inn utilities suite version 2.4.3 [inn]. It produces a seven-bit print-
able encoding of stdin on stdout and serves as a good example of a small

5All the benchmarks were taken from http://www.cprover.org/goto-cc/

http://www.cprover.org/goto-cc/
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memory-operating piece of C code. This program was taken as an example also
because it is not very big (1.1KLOC) and has only 28 locations where a safety of
the memory access should be checked. The size of the program allowed most
of the claims to be verified within a one-hour time limit.

The results are reported in Table 3.2. For each claim and each technique we
show total verification time and a number of the required refinement iterations.
As expected reduction in the refinement iterations resulted in reduction of the
total verification time. NewST used fewer refinements than WP in 12 out of 28
claims and won in verification time as well. Interesting to notice, the advantage
was achieved any time more than 10 refinement iterations were required. For
the other 16 claims, two techniques showed approximately the same result.
Precise abstraction computation was localized and never required significant
time. NewST + NewSP required fewer refinements than WP in all 28 claims and,
as a result, it outperformed WP on all but 3 claims. However it did not perform
better than NewST on every claim and therefore they are comparable in their
advantages.

3.5 Related work and summary

This Chapter addresses the problem of refining the abstraction in the presence
of spurious transitions. The solution was first given by Das and Dill [DD01]
whose technique consists of removing one spurious transition at every refine-
ment iteration. The approach may be very expensive because it requires a high
number of iterations of the abstraction-refinement loop. In practice, the origi-
nal technique of [DD01] is not feasible for real systems, but can be improved
in a number of ways that will remove more spurious transitions at a time. For
instance, Ball et al. [BCDR04] improved the refinement by strengthening the
condition added to the transition relation to remove more spurious transitions.
Their idea is to syntactically simplify the condition and to check if a larger set
of spurious transitions is found. The technique cannot guarantee the removal
of all spurious transitions relevant to a detected counterexample as achieved
by our method. But, due to the syntactic nature of the analysis, it is computa-
tionally not very expensive and, thus, can be included as a fast refinement in
our combined algorithm.

In [CTVW03, JKSC05, JIGG05], a different technique is presented based on
the use of SAT techniques. Transitions are simulated over the concrete program
by means of SAT formulæ. If the transition is not concretizable the SAT solver
will produce a resolution proof of unsatisfiability. It is then possible to extract
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Total time, in seconds Number of iterations

Claim # WP NewST

NewST

+
NewSP

WP NewST
NewST

+
NewSP

1 3.478 3.464 2.871 5 5 4
2 2.243 2.318 1.892 4 4 3
3 7.977 8.345 6.640 6 6 5
4 124.013 104.657 83.893 25 19 10
5 4.149 4.222 3.529 4 4 3
6 137.317 97.449 121.919 28 17 12
7 2.683 2.698 1.567 3 3 2
8 2.712 2.636 1.594 3 3 2
9 37.860 28.783 31.429 10 8 7
10 27.575 27.225 29.612 9 9 7
11 5.975 5.801 4.727 6 6 4
12 76.945 49.822 71.106 13 10 10
13 TO TO TO TO TO TO
14 7.894 8.195 6.985 6 6 5
15 128.271 98.010 88.266 26 19 10
16 4.207 4.261 3.420 4 4 3
17 145.884 112.898 122.006 30 19 13
18 2.113 2.123 1.330 3 3 2
19 2.193 2.158 1.370 3 3 2
20 31.598 22.788 27.131 9 7 6
21 27.163 22.906 28.050 10 8 6
22 4.349 4.495 3.111 5 5 3
23 77.919 49.293 67.942 13 10 10
24 10.981 9.494 11.103 8 7 6
25 7.408 7.603 6.620 6 6 5
26 0.151 0.124 0.113 32 23 14
27 4.439 4.393 3.592 4 4 3
28 125.827 73.210 97.236 30 15 14

Table 3.2. inn-encode 2.4.3 program: total time and number of re-
finement iterations required to verify 28 memory-bounds claims (auto-
matically planted by SATABS); TO stands for time-out (3600 sec.).
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from the proof either a core set of predicates or a constraint sufficient to re-
move the spurious transition. Though, in principle, the technique can remove
many spurious transitions at once, the efficiency strongly depends on the un-
satisfiability proof. In the worst case, it may require a number of abstraction
refinements exponential in the number of predicates.

The technique of [JM05] also exploits the unsatisfiability proof but it is
based on interpolation. The interpolant produced by the proof is indeed an
over-approximation of the exact abstraction able to remove the spurious tran-
sition. As in the case of unsat cores, the technique depends on the heuristics to
produce unsatisfiability proofs. The interpolant is not always strong enough to
remove all spurious transitions as done in our algorithm.

This work instead proposes a greedy approach where all spurious transi-
tions between two locations are removed. The idea is that the computation can
be efficient because it is localized and on-demand. The technique inherits the
efficiency of the approximated abstraction which is used any time new predi-
cates are discovered. At the same time, the precision of the minimal abstraction
is exploited whenever spurious transitions are found.

In future it would be interesting to implement the combined fast/precise ab-
straction approach in tools that are based on interpolation for predicate discov-
ery [HJMM04, JM06] and investigate the same trade-off between precise and
approximated approaches in the context of purely interpolation-based model
checking[McM06], which does not need predicate abstraction.

Summary

This chapter presented a new approach to the abstraction refinement that com-
bines precise and approximated techniques. First, the proposed algorithm ben-
efits from the precise component, because it avoids too many iterations due to
spurious transitions of the abstract model. Second, it uses the fast component
to discover the spurious counterexample. Moreover, by exploiting the localized-
abstraction framework, it reduces the abstraction computation to the parts of
the system that are relevant to the property and keeps the approximated ab-
straction in all parts of the program that are irrelevant to prove the property.
Our technique is independent of any particular abstraction or refinement pro-
cedure and can be used for any combination of the existing abstraction and
refinement techniques.

The algorithm was implemented in SATABS software model checker and is
available for experiments by other researchers.

We performed an extensive evaluation on programs of various sizes com-
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paring the new technique with the classical precise and imprecise algorithms.
Our tests with various benchmarks show that the new approach systematically
outperforms both precise and imprecise techniques. Altogether, it confirms that
our new technique achieves the goal of reducing the number of iterations of the
CEGAR loop.

We notice that our techniques are particularly efficient when the approxi-
mated abstraction produces a large number of spurious transitions and, at the
same time, hand the precise abstraction does not blow up. It is clear that our
techniques always take a number of iterations that lies between the ones used
by the precise abstraction and the ones used by the approximated abstraction.
The difference of iterations between the fast and the precise abstraction is due
to the spurious transition refinement step. As expected, our technique removed
the necessary spurious transitions in fewer iterations.



56 Synergy of Precise and Fast Abstraction



Chapter 4

Program Summarization using
Abstract Transformers

Understanding is but the sum of
our misunderstandings.

Haruki Murakami

This chapter tackles the problem of scalable and precise program abstrac-
tion. We identify loops in a program as the main obstacle for the successful
application of the existing abstraction methods, especially those that rely on
the fixpoint-based over-approximation computation.

To address this problem we present an algorithm that constructs an over-
approximation of the program’s set of reachable states by replacing loops in
the control-flow graph with their abstract transformer. For each loop, starting
from the inner-most one, the abstract transformer is obtained by 1) employing
a (problem-specific) abstract domain to generate candidate assertions and 2)
checking if such an assertion is a loop invariant. The algorithm run-time is
linear in the number of loops and relies on a finite number of relatively cheap
calls to first-order decision procedures. It also allows localizing the application
of abstract domains to an individual loop, thus helping to improve the precision
of the constructed abstraction.

4.1 Introduction

As described before in Section 2.5.2, abstract interpretation [CC77] is one of the
approaches that enables practical program verification. It is a commonly-used
framework for the approximative analysis of discrete transition systems, and it

57
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is based on fixpoint computations. In abstract interpretation, the behavior of
a program is evaluated over the abstract domain using an abstract transformer
— predicate transformer that reflects the semantics of program instructions
into mutation of an abstract value. This is iterated until the set of abstract
states saturates, i.e., an abstract fixpoint is reached. This abstract fixpoint is
guaranteed to be an over-approximation of the set of reachable states of the
original program with regards to employed abstract domains.

A main issue in employing abstract interpretation is the number of itera-
tions required to reach the abstract fixpoint. On large benchmarks, thousands
of iterations are commonly observed, even when using simplistic abstract do-
mains. Thus, many tools implementing abstract interpretation apply widening
in order to accelerate convergence. Widening, however, may yield imprecision,
and thus, the abstract fixpoint may not be strong enough to prove the desired
property [CC92].

This Chapter presents a novel technique to address this problem, which uses
a symbolic abstract transformer [RSY04]. A symbolic abstract transformer for
a given program fragment is a relation over a pair of abstract states ŝ, ŝ′ that
holds if the fragment transforms ŝ into ŝ′. We propose to apply the transformer
to perform sound summarization, i.e., to replace parts of the program by a
smaller representative. In particular, we use the transformer to summarize
loops and (recursion-free) function calls.

The symbolic abstract transformer is usually computed by checking if a
given abstract transition is consistent with the semantics of a program state-
ment [RSY04, CKSY04]. Our technique generalizes the abstract transformer
computation and applies it to program fragments: given an abstract transition
relation, we check if it is consistent with the program semantics. This way, we
can tailor the abstraction to each program fragment. In particular, for loop-
free programs, we precisely encode their semantics into symbolic formulas. For
loops, we exploit the symbolic transformer of the loop body to infer invariants
of the loop. This is implemented by means of a sequence of calls to a decision
procedure (i.e., SAT- or SMT-solver) for the chosen program logic.

When applied starting from the inner-most loops and the leaves of the call
graph, the run-time of the resulting procedure becomes linear in the number
of looping constructs in the program, and thus, is often much smaller than
the number of iterations required by the traditional saturation procedure. We
show soundness of the procedure and discuss its precision compared to the
conventional approach on a given abstract domain. In case the property fails,
a diagnostic counterexample can be obtained, which we call leaping counterex-
ample. This diagnostic information is often very helpful for understanding the
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nature of the problem, and is considered a major plus for program analysis
tools. Additionally, our technique localizes the abstract domains: we use differ-
ent abstract domains for different parts of the code. This further improves the
scalability of the analysis.

We implemented the loop summarization procedure in a tool called LOOP-
FROG and applied it to search for buffer-overflow errors in well-known UNIX
programs. Our experimental results demonstrate that the procedure is more
precise than other static analysis tools tailored to analysis of buffer overruns.
Moreover, it scales gracefully to large programs even if complex abstract do-
mains are used.

This Chapter is structured as follows. Section 4.2 formalizes the notion of
abstract interpretation and abstract transformer for a program. Section 4.3 first
describes construction of an abstract transformer for loop-free and single-loop
fragments of the program. Next, it generalizes the procedure to an arbitrary
program and presents a loop summarization algorithm. Section 4.4 details the
LOOPFROG implementation. Section 4.5 demonstrates the experimental evalu-
ation and, finally, Section 4.6 discuses the related work and summarizes the
results.

4.2 Abstract interpretation

We use program formalization as described in Section 2.1, i.e., a program P is
defined using a pair 〈U , G〉, where U is the universe, from which the values of
the program variables are drawn, and G is a program graph.

The (concrete) semantics of a program is given by the pair 〈A,τ〉, where:

• A is the set of assertions of the program, where each assertion p ∈ A is a
predicate over U; A(⇒, f alse, t rue,∨,∧) is a complete Boolean lattice;

• τ : L→ (A→ A) is the predicate transformer.

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice Â(v
,⊥,>,t,u), and t : L→ (Â→ Â) is a predicate transformer [CC79]. Note that
〈A,τ〉 is a particular abstract interpretation called the concrete interpretation.
In the following, we assume that for every command c ∈ L, the function t(c)
is monotone (which is the case for all natural predicate transformers). Given a
predicate transformer t, the function t̃ : L∗→ (Â→ Â) is recursively defined as



60 Program Summarization using Abstract Transformers

follows:

t̃(p)(φ) =

¨

φ if p is empty
t̃(e)(t(q)(φ)) if p = q; e for some q ∈ L, e ∈ L∗.

Example 4.1. We continue using the program in Figure 2.1. Consider an abstract
domain where abstract states are a four-tuple 〈pa, za, sa, la〉. The first member, pa

is the offset of the pointer p from the base address of the array a (i.e., p − a in
our example), the Boolean za holds if a contains the zero character, the Boolean
sa holds if a contains the slash character, la is the index of the first zero character
if present. The predicate transformer t is defined as follows:

t(p = a)(φ) = φ[pa := 0] for any assertion φ;
t(∗p != 0)(φ) = φ ∧ (pa 6= la) for any assertion φ;
t(∗p == 0)(φ) = φ ∧ za ∧ (pa ≥ la) for any assertion φ;
t(∗p ==′ /′)(φ) = φ ∧ sa for any assertion φ;
t(∗p !=′ /′)(φ) = φ for any assertion φ;

t(∗p = 0)(φ) =

¨

φ[za := t rue, la := pa] if φ⇒ (pa < la)
φ[za := t rue] otherwise;

t(p++)(φ) = φ[pa := pa + 1] for any assertion φ.
(We used φ[x := v] to denote an assertion equal to φ apart from the variable

x that takes value v.)

Given a program P, an abstract interpretation 〈Â, t〉, and an element φ ∈ Â,
we define the Merge Over all Paths MOPP(t,φ) as

MOPP(t,φ) :=
⊔

π∈paths(P)

t̃(π)(φ) .

Given two complete lattices Â(v,⊥,>,t,u) and Â′(v′,⊥′,>′,t′,u′), the
pair of functions 〈α,γ〉, with α : Â→ Â′ and γ : Â′→ Â is a Galois connection iff
α and γ are monotone and satisfy:

for all φ ∈ Â : φ v γ(α(φ))
for all φ′ ∈ Â′ : α(γ(φ′)) v′ φ′ .

An abstract interpretation 〈Â, t〉 is a correct over-approximation of the con-
crete interpretation 〈A,τ〉 iff there exists a Galois connection 〈α,γ〉 such that
for all φ ∈ Â and p ∈ A, if p ⇒ γ(φ), then α(MOPP(τ, p)) v MOPP(t,φ) (i.e.,
MOPP(τ, p)⇒ γ(MOPP(t,φ))).
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4.2.1 Approaches to computation of an abstract transformer

In order to implement abstract interpretation for a given abstract domain, an
algorithmic description of the abstract predicate transformer t(p) for a spe-
cific command p ∈ L is required. Reps et al. describe an algorithm that im-
plements the best possible (i.e., most precise) abstract transformer for a given
finite-height abstract domain [RSY04]. Graf and Saïdi’s algorithm for con-
structing predicate abstractions [GS97b] is identified as a special case.

The algorithm has two inputs: a formula Fτ(q), which represents a com-
mand q ∈ L symbolically, and an assertion φ ∈ Â. It returns the image of the
predicate transformer t(q)(φ). The formula Fτ(q) is passed to a decision pro-
cedure, which is expected to provide a satisfying assignment to the variables.
The assignment represents one concrete transition p, p′ ∈ A. The transition is
abstracted into a pair φ,φ′ ∈ Â, and a blocking constraint is added to remove
this satisfying assignment. The algorithm iterates until the formula becomes
unsatisfiable. An instance of the algorithm for the case of predicate abstrac-
tion is the implementation of SATABS described in [CKSY04]. SATABS uses a
propositional SAT-solver as decision procedure for bit-vector arithmetic. The
procedure is worst-case exponential in the number of predicates, and thus,
alternatives have been explored. In [LBC05, KS06] a symbolic decision pro-
cedure generates a symbolic formula that represents the set of all solutions.
In [LNO06], a first-order formula is used and the computation of all solutions
is carried out by an SMT-solver. In [CCF+07], a similar technique is proposed
where BDDs are used in order to efficiently deal with the Boolean component
of Fτ(q).

4.3 Summarization using symbolic abstract trans-
formers

In the following four subsections, we describe the steps of our summarization
approach. We first define summarization as an over-approximation of a code
fragment. Next, we show that a precise summary can be computed for a loop-
free code fragment, and we explain how a precise summary of a loop body
is used to obtain information about the loop. Finally, we give a bottom-up
summarization algorithm for arbitrary programs.
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4.3.1 Abstract summarization

The idea of summarization is to replace a code fragment, e.g., a procedure of
the program, by a summary, which is a representation of the fragment. Com-
puting an exact summary of a program (fragment) is in general undecidable.
We therefore settle for an over-approximation. We formalize the conditions the
summary must fulfill in order to have a semantics that over-approximates the
original program.

We extend the definition of a correct over-approximation (from Sec. 4.2) to
programs. Given two programs P and P ′ on the same universe U , we say that
P ′ is a correct over-approximation of P iff for all p ∈ A(⇒, f alse, t rue,∨,∧),
MOPP(τ, p)⇒ MOPP ′(τ, p).

Definition 15. [Abstract Summary] Given a program P, and an abstract inter-
pretation 〈Â, t〉 with a Galois connection 〈α,γ〉 with 〈A,τ〉, we denote the ab-
stract summary of P by Sum〈Â,t〉(P). It is defined as the program 〈U , G〉, where
G = 〈{vi, vo}, {〈vi, vo〉}, vi, vo, {a}, C〉 and {a} together with C(〈vi, vo〉)→ {a} is a
new (concrete) command a such that τ(a)(p) = γ(MOPP(t,α(p))).

Lemma 1. If 〈Â, t〉 is a correct over-approximation of 〈A,τ〉, the abstract sum-
mary Sum〈Â,t〉(P) is a correct over-approximation of P.

Proof. Let P ′ = Sum〈Â,t〉(P). For all p ∈ A,

MOPP(τ, p)) ⇒ γ(MOPP(t,α(p))) [by definition of correct over-approximation,

page 56, Section 4.2, last paragraph]

= τ(a)(p) [by Definition 15]

= MOPP ′(τ, p) [MOP over a single-command path a in P ′].

The next sections discuss our algorithms for computing abstract summaries.
Summarization technique is first applied to particular fragments of the pro-
gram, specifically to loop-free (Section 4.3.2) and single-loop programs (Sec-
tion 4.3.3). In Section 4.3.4, we use these procedures as subroutines to obtain
the summarization of an arbitrary program. We formalize code fragments as
program sub-graphs.

Definition 16. Given two program graphs G = 〈V, E, vi, vo, L, C〉 and G′ = 〈V ′, E′,
v′i , v′o, L′, C ′〉, G′ is a program sub-graph of G iff V ′ ⊆ V , E′ ⊆ E, and C ′(e) =
C(e) for every edge e ∈ E′.
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4.3.2 Summarization of loop-free programs

Obtaining MOPP(t,φ) is as hard as assertion checking on the original pro-
gram. Nevertheless, there are restricted cases where it is possible to represent
MOPP(t,φ) using a symbolic predicate transformer.

Let us consider a program P with a finite number of paths, in particular, a
program whose program graph does not contain any cycle. A program graph
G = 〈V, E, vi, vo, L, C〉 is loop free iff G is a directed acyclic graph.

In the case of a loop-free program P, we can compute a precise (not ab-
stract) summary by means of a formula FP that represents the concrete behav-
ior of P. This formula is obtained by converting P to a static single assignment
(SSA) form, whose size is at most quadratic in the size of P (the details of this
step are beyond the scope of this work; see [CKL04] for details).

Example 4.2. We continue the running example (Fig. 2.1). The symbolic trans-
former of the loop body P ′ is represented by:
((∗p =′ /′ ∧ a′ = a[∗p = 0])∨ (∗p 6=′ /′ ∧ a′ = a))∧ (p′ = p+ 1).

Recall the abstract domain from Ex. 4.1. We can deduce that:

1. if m < n, then MOPP ′(t, (pa = m ∧ za ∧ (la = n) ∧ ¬sa)) = (pa = m+ 1 ∧
za ∧ la = n∧¬sa)

2. MOPP ′(t, za) = za.

This example highlights the generic nature of our technique. For instance,
case 1 of the example cannot be obtained by means of predicate abstraction be-
cause it requires an infinite number of predicates. Also, the algorithm presented
in [RSY04] cannot handle this example because assuming the string length has
no a-priori bound, the lattice of the abstract interpretation has infinite height.

4.3.3 Summarization of single-loop programs

We now consider a program that consists of a single loop.

Definition 17. A program P = 〈U , G〉 is a single-loop program iff G = 〈V, E, vi,
vo, L, C〉 and there exists a program sub-graph G′ and a test q ∈ LT such that



64 Program Summarization using Abstract Transformers

vi

vo

vb

q
q

G′

• G′ = 〈V ′, E′, vb, vi, L′, C ′〉 with

– V ′ = V \ {vo},

– E′ = E \ {〈vi, vo〉, 〈vi, vb〉},

– L′ = L \ q,

– C ′(e) = C(e) for all e ∈ E′,

– G′ is loop free.

• C(〈vi, vb〉) = q, C(〈vi, vo〉) = q.

The following can be seen as the “abstract interpretation analog” of Hoare’s
rule for while loops.

Theorem 4. Given a single-loop program P with guard q and loop body P ′, and
an abstract interpretation 〈Â, t〉, letψ be an assertion satisfying MOPP ′(t, t(q)(ψ))
vψ and let 〈Â, tψ〉 be a new abstract interpretation s.t.

MOPP(tψ,φ) =

¨

t(q)(ψ) if φ vψ
> elsewhere.

If 〈Â, t〉 is a correct over-approximation, then 〈Â, tψ〉 is a correct over-approxima-
tion as well.

We first record the following simple lemma.

Lemma 2. Given a loop-free program P, and an abstract interpretation 〈Â, t〉, if
MOPP(t,ψ) v ψ, then, for all repetitions of loop-free paths of a program P, i.e.,
for all π ∈ (paths(P))∗, t̃(π)(ψ)vψ.

Proof. If MOPP(t,ψ) =
⊔

π∈paths(P) t̃(π)(ψ)vψ, then, for all pathsπ ∈ paths(P),
t̃(π)(ψ)vψ. Thus, by induction on repetitions of loop-free paths, for all paths
π ∈ (paths(P))∗, t̃(π)(ψ)vψ.
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Proof of Theorem 4. If φ vψ,

α(MOPP(τ, p)) v MOPP(t, p) [〈Â, t〉 is a correct over-approximation]

=
⊔

π∈paths(P)

t̃(π)(φ) [by definition of MOP]

v
⊔

π∈paths(P)

t̃(π)(ψ) [φ vψ]

=
⊔

π∈(q;π′)∗,π′∈paths(P ′)

t̃((π′; q)∗)(ψ) [P is a single-loop program]

=
⊔

π∈(q;π′)∗,π′∈paths(P ′)

t̃((q)∗)( t̃((π′)∗)(ψ)) [by definition of t̃]

v t(q)(
⊔

π∈(q;π′)∗,π′∈paths(P ′)

t̃((π′)∗)(ψ)) [t is monotone]

v t(q)(ψ) [by Lemma 2]

Otherwise, trivially α(MOPP(τ, p))v>=MOPP(tψ,φ).

In other words, if we apply the predicate transformer of the test q and
then the transformer of the loop body P ′ to the assertion ψ, and we obtain an
assertion at least as strong asψ, thenψ is an invariant of the loop. If a stronger
assertion φ holds before the loop, the predicate transformer of q applied to φ
holds afterwards.

Theorem 4 gives rise to a summarization algorithm. Given a program frag-
ment and an abstract domain, we heuristically provide a set of formulas that
encode that a (possibly infinite) set of assertions ψ are invariant (for example,
x ′ = x encodes that every ψ defined as x = c, with c a value in the domain
U , is an invariant); we apply a decision procedure to check if the formulas are
satisfiable.

The construction of the summary is then straightforward: given a single-
loop program P, an abstract interpretation 〈Â, t〉, and an invariant ψ for the
loop body, let 〈Â, tψ〉 be the abstract interpretation as defined in Theorem 4.
We denote the summary Sum〈Â,tψ〉(P) by SlS(P, Â, tψ) (Single-Loop Summary).

Corollary 1. If 〈Â, t〉 is a correct over-approximation of 〈A,τ〉, then SlS(P, Â, tψ)
is a correct over-approximation of P.

Example 4.3. We continue the running example from Figure 2.1. Recall the ab-
stract domain in Ex. 4.1. Let P ′ denote the loop body of the example program and
let q denote the loop guard. By applying the symbolic transformer from Ex. 4.2,
we can check that the following conditions hold:
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1. MOPP ′(t, t(q)(φ))v φ for any assertion ((pa ≤ la)∧ za ∧¬sa).

2. MOPP ′(t, t(q)(φ))v φ for the assertion za.

Thus, we summarize the loop with the following predicate transformer:

(za→ z′a)∧ (((pa ≤ la)∧ za ∧¬sa)→ ((p′a = l ′a)∧ z′a ∧¬s′a)) .

4.3.4 Summarization for arbitrary programs

We now describe an algorithm for over-approximating an arbitrary program.
Like traditional algorithms (e.g., [Tar81]), the dependency tree of program
fragments is traversed bottom-up, starting from the leaves. The code fragments
we consider may be function calls or loops. We treat function calls as arbitrary
sub-graphs (see Def. 16) of the program graph, and do not allow recursion. We
support irreducible graphs using loop simulation [AM79].

Specifically, we define the sub-graph dependency tree of a program P =
〈U , G〉 as the tree 〈T,>〉, where:

• the set of nodes of the tree are program sub-graphs of G;

• for G1, G2 ∈ T , G1 > G2 iff G2 is a program sub-graph of G1 with G1 6= G2;

• the root of the tree is G;

• every leaf is a loop-free or single-loop sub-graph;

• every loop sub-graph is in T .

Algorithm 4 takes a program as input and computes its summary by follow-
ing the structure of the sub-graph dependency tree (Line 3). Thus, the algo-
rithm is called recursively on the sub-program until a leaf is found (Line 5). If
it is a single loop, an abstract domain is chosen (Line 11) and the loop is sum-
marized as described in Section 4.3.3 (Line 13). If it is a loop-free program,
it is summarized with a symbolic transformer as described in Section 4.3.2
(Line 15). Finally, the old sub-program is replaced with its summary (Line 7)
and the sub-graph dependency tree is updated (Line 8). Eventually, the entire
program is summarized1.

1Algorithm 6 in Section 5.2.2 presents the arbitrary program summarization split into sub-
routines
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Algorithm 4: Arbitrary program summarization

1 SUMMARIZE(P)
input : program P = 〈U , G〉
output: over-approximation P ′ of P

2 begin
3 〈T,>〉 :=sub-graph dependency tree of P;
4 Pr := P;
5 for each G′ such that G > G′ do
6 〈U , G′′〉:=SUMMARIZE(〈U , G′〉);
7 Pr := Pr where G′ is replaced with G′′;
8 update 〈T,>〉;
9 end for

10 if Pr is a single loop then
11 〈Â, t〉 := choose abstract interpretation for Pr;

/* Choice of abstract interpretation defines set of
candidate assertions ψ, which are checked to hold in
the next step. */;

12 ψ := test invariant candidates for t on Pr;
13 P ′ := SlS(Pr , Â, tψ);

/* Those ψ that hold on Pr form the single-loop
summary (SlS). */;

14 else
/* Pr is loop-free */;

15 P ′ := Sum〈A,τ〉(Pr);
16 end if
17 return P ′

18 end
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Theorem 5. SUMMARIZE(P) is a correct over-approximation of P.

Proof. We prove the theorem by induction on the structure of the sub-graph
dependency tree.

In the first base case (Pr is loop-free) summary is precise by construction
and, thus, is a correct over-approximation of P.

In the second base case (Pr is a single loop), by hypothesis, each abstract
interpretation chosen at Line 11 is a correct over-approximation of the concrete
interpretation. Thus, if P is a single-loop or a loop-free program, P ′ is a correct
over-approximation of P (resp. by Theorem 4 and by definition of abstract
summary).

In the inductive case, we select a program subgraph G′ and we replace
it with G′′, where 〈U , G′′〉=Summarize(〈U , G′〉). By inductive hypothesis, we
know that 〈U , G′′〉 is a correct over-approximation of 〈U , G′〉. Thus, for all
p ∈ A, MOP〈U ,G′〉(τ, p) ⇒ MOP〈U ,G′′〉(τ, p). Note that G′′ contains only a single
command g.

We want to prove that for all p ∈ A, MOPP(τ, p)⇒ MOPP ′(τ, p) (for read-
ability, we replace the subscript “(πi;πg;π f ) ∈ paths(P), πg ∈ paths(〈U , G′〉),
and πi ∩ G′ = ;” with ∗ and “π ∈ paths(P), and π∩ G′ = ;” with ∗∗):

MOPP(τ, p) =
⊔

π∈paths(P)

τ̃(π)(p) [by definition of MOP]

=
⊔

∗

τ̃(π f )(τ̃(πg)(τ̃(πi)(p)))∪
⊔

∗∗

τ̃(π)(p) [G′ is a subgraph]

⇒
⊔

∗

τ̃(π f )(MOP〈U ,G′′〉(τ̃, (τ̃(πi)(p))))∪
⊔

∗∗

τ̃(π)(p) [G′′ is an over-approx.]

=
⊔

∗

τ̃(π f )(MOP〈U ,(G′′;πi)〉(τ, p))∪
⊔

∗∗

τ̃(π)(p) [by definition of MOP]

=
⊔

π∈paths(P)

MOPπ[g/πg](τ, p) [by induction on length of paths]

=
⊔

π∈paths(P ′)

MOPπ(τ, p) [by definition of π′]

=MOPπ′(τ, P) [by definition of MOP]

The precision of the over-approximation is controlled by the precision of the
symbolic transformers. However, in general, the computation of the best ab-



4.3 Summarization using symbolic abstract transformers 69

stract transformer is an expensive iterative procedure. We use the inexpensive
syntactic procedure for loop-free fragments. Loss of precision only happens
when summarizing loops, and greatly depends on the abstract interpretation
chosen in Line 11.

Note that Algorithm 4 does not limit the selection of abstract domains to
any specific type of domains, and that it does not iterate the predicate trans-
former on the program. Furthermore, this algorithm allows for localization of
the summarization procedure, as a new domain may be chosen for every loop.
Once the domains are chosen, it is also easy to monitor the progress of the
summarization, as the number of loops and the cost of computing the symbolic
transformers are known – another distinguishing feature of our algorithm.

The summarization can serve as an over-approximation of the program.
It can be trivially analyzed to prove unreachability, or equivalently, to prove
assertions.

4.3.5 Leaping counterexamples

Let P ′ denote the summary of the program. The program P ′ is a loop-free se-
quence of symbolic summaries for loop-free fragments and loop summaries. A
counterexample for an assertion in P ′ follows this structure: when traversing
symbolic summaries for loop-free fragments, it is identical to a concrete coun-
terexample. Upon entering a loop summary, the effect of the loop body is given
as a single transition in the counterexample: we say that the counterexample
leaps over the loop.

Example 4.4. Consider the summary from Ex. 4.3. Suppose that in the initial
condition, the buffer a contains a null terminating character in position n and no
′/′ character. If we check that, after the loop, pa is greater than the size n, we
obtain a counterexample with p0

a = 0, p1
a = n.

The leaping counterexample may only exist with respect to the abstract in-
terpretations used to summarize the loops, i.e., they may be spurious in the
concrete interpretation. Nevertheless, they provide useful diagnostic feedback
to the programmer, as they show a (partial) path to the violated assertion, and
contain many of the input values the program needs to read to violate the asser-
tion. Furthermore, spurious counterexamples can be eliminated by combining
our technique with counterexample-guided abstraction refinement, as we do
have an abstract counterexample.
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4.4 Loopfrog

The theoretical concept of symbolic abstract transformers is implemented and
put to use by our tool LOOPFROG. The architecture is outlined in Figure 4.1.
As input, LOOPFROG receives a model file, extracted from software sources by
GOTO-CC2. This model extractor features full ANSI-C support and simplifies
verification of software projects that require complex build systems. It mimics
the behavior of the compiler, and thus ‘compiles’ a model file using the original
settings and options. Switching from compilation mode to verification mode is
thus achieved by changing a single option in the build system. As suggested by
Figure 4.1, all other steps are fully automated.

The resulting model contains a control flow graph and a symbol table, i.e.,
it is an intermediate representation of the original program in a single file.
For calls to system library functions, abstractions containing assertions (pre-
condition checks) and assumptions (post-conditions) are inserted. Note that
the model also contains the properties to be checked in the form of assertions
(calls to the ASSERT function).

Preprocessing

The instrumented model is what is passed to the first stage of LOOPFROG. In
this preprocessing stage, the model is adjusted in various ways to increase per-
formance and precision. First, irreducible control flow graphs are rewritten ac-
cording to an algorithm due to Ashcroft and Manna [AM79]. Like in a compiler,
small functions are inlined. This increases the model size, but also improves
the precision of subsequent analysis. After this, LOOPFROG runs a field-sensitive
pointer analysis. The information obtained through this is used to insert asser-
tions over pointers, and to eliminate pointer variables in the program where
possible. On request, LOOPFROG automatically adds assertions to verify the cor-
rectness of pointer operations, array bounds, and arithmetic overflows.

Loop summarization phase

Once the preprocessing is finished, LOOPFROG starts to replace loops in the pro-
gram with summaries. These are shorter, loop-less program fragments that
over-approximate the original program behavior. To accomplish this soundly,
as described in Section 4.3, each loop is replaced with a loop-less piece of
code that ‘havocs’ the program state, i.e., it resets all variables that may be

2http://www.cprover.org/goto-cc/

http://www.cprover.org/goto-cc/
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Figure 4.1. Architecture of LOOPFROG

changed by the loop to unknown values. Additionally, a copy of the loop body
is executed after the loop summary, such that assertions within the loop are
preserved in the original context.

While this is already enough to prove some simple properties, much higher
precision is required for more complex ones. As indicated in Fig. 4.1, LOOPFROG

makes use of predefined abstract domains to achieve this. Every loop body of
the model is passed to a set of abstract domains, through each of which a set
of potential invariants of the loop is derived (heuristically).

The choice of the abstract domain for the loop summarization has a signifi-
cant impact on the performance of the algorithm. A carefully selected domain
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generates fewer invariant candidates and thus speeds up the computation of a
loop summary. Besides, the abstract domain has to be sufficiently expressive to
retain enough of the semantics of the original loop to show the property.

Invariant candidates check

All potential invariants obtained from abstract domains always constitute an
abstract (post-)state of the loop body, which may or may not be correct in the
original program. To ascertain that a potential invariant is an actual invari-
ant, LOOPFROG makes use of a verification engine. In the current version, the
symbolic execution engine of CBMC [CKL04] is used. This engine allows for
bit-precise, symbolic reasoning without abstraction. In our context, it always
gives a definite answer, since only loop-less program fragments are passed to
it. It is only necessary to construct an intermediate program that assumes the
potential invariant to be true, executes the loop body once and then checks if
the potential invariant still holds. If the verification engine returns a counter-
example, we know that the potential invariant does not hold (i.e., it is not in-
ductive); in the contrary case it must be a true invariant and it is subsequently
added to the loop summary, since even after the program state is havoced, the
invariant still holds. LOOPFROG starts this process from the innermost loop, and
thus there is never an intermediate program that contains a loop. In case of
nested loops, the inner loop is replaced with a summary, before the outer loop
is analyzed. Due to this and the shortness of the fragments checked (only the
loop body), small formulas are given to the verification engine and an answer
is obtained quickly.

Verification of the resulting loop-less program abstraction

The result, after all loops have been summarized, is a loop-less abstraction of
the input program. This abstract model is then handed to another verification
engine. Again, the verification time is much lower than that of the original
program, due to the model not containing any loops. As indicated by Fig. 4.1,
the verification engine used to check the assertions in the abstract model, may
be different from the one used to check potential invariants. In LOOPFROG, we
choose to use the same engine (CBMC). We do so for two reasons: 1) it is
very efficient and 2) it returns leaping counterexamples in case of assertion
violations.
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An abstract domain for analysis of string-manipulating programs

# Constraint Meaning

1 Z Ts String s is zero-terminated
2 Ls < Bs Length of s (Ls) is less than the size of the allocated

buffer (Bs)
3 0≤ i ≤ Ls Bounds on integer variables i (i is

non-negative, i is bounded by buffer
size, etc.) k is an arbitrary integer
constant.

4 0≤ i
5 0≤ i < Bs

6 0≤ i < Bs − k
7 0< offset(p)≤ Bs Pointer offset bounds
8 valid(p) Pointer p points to a valid object

Table 4.1. Examples of abstract domains tailored to buffer-overflow analysis.

The first experiments with LOOPFROG were done with a set of abstract do-
mains that are specialized to buffer-related properties, in order to demonstrate
the benefits of our approach on buffer-overflow benchmarks. The constrains of
the domains are listed in Table 4.1.

We also make use of string-related abstract domains instrumented into the
model similar to approach Dor et al. [DRS03]: for each string buffer s, a
Boolean value zs and integers ls and bs are tracked. The Boolean zs holds if
s contains the zero character within the buffer size bs. If so, ls is the index of
the first zero character, otherwise, ls has no meaning.

The chosen domains are instantiated according to variables occurring in the
code fragment taken into account. To lower the amount of template instantia-
tions, the following set of simple heuristics can be used:

1. Only variables of appropriate type are considered (we concentrate on
string types).

2. Indices and string buffers are combined in one invariant only if they are
used in the same expression, i.e., we detect instructions which contain
p[i] and build invariants that combine i with all string buffers pointed by
p.

As shown in the next section these templates have proven to be effective in
our experiments. Other applications likely require different abstract domains.
However, new domain templates may be added quite easily: they usually can
be implemented with less than a hundred lines of code. The example of imple-
mentation is provided in Appendix (Fig. A.1).
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4.5 Experimental evaluation

In experiments we focus on ANSI-C programs: the extensive buffer manipu-
lations in it provide a “ground” for multiple buffer overruns. We apply the
domains from Table 4.1 to small programs collected in benchmarks suites and
to real applications as well. All experimental data, an in-depth description of
LOOPFROG, the tool itself, and all our benchmark files are available on-line for
experimentation by other researchers3.

All data was obtained on an 8-core Intel Xeon 3.0 GHz. We limited the
run-time to 4 hours and the memory per process to 4 GB.

4.5.1 Evaluation on the benchmark suites

The experiments are performed on two recently published benchmark sets. The
first one, by Zitser et al. [ZLL04], contains 164 instances of buffer overflow
problems, extracted from the original source code of sendmail, wu-ftpd, and
bind. The test cases do not contain complete programs, but only those parts
required to trigger the buffer overflow. According to Zitser et al., this was
necessary because the tools in their study were all either unable to parse the
test code, or the analysis used disproportionate resources before terminating
with an error ([ZLL04], pg. 99). In this set, 82 tests contain a buffer overflow,
and the rest represent a fix of a buffer overflow.

We use metrics proposed by Zitser et al. [ZLL04] to evaluate and compare
the precision of our implementation. We report the detection rate R(d), i.e.,
percentage of correctly reported bugs, and the false positive rate R( f ) — per-
centage of incorrectly reported bugs in the fixed versions of the test cases. The
discrimination rate R(¬ f |d) is defined as the ratio of test cases on which an
error is correctly reported, while it is, also correctly, not reported in the corre-
sponding fixed test case. Using this measure, tools are penalized for not finding
a bug, but also for not reporting a fixed program as safe.

The results of a comparison with a wide selection of static analysis tools4

are summarized in Table 4.2. Almost all of the test cases involve array bounds
violations. Even though Uno, Archer and BOON were designed to detect these
type of bugs, they hardly report any errors. BOON abstracts all string ma-
nipulation using a pair of integers (number of allocated and used bytes) and
does flow-insensitive symbolic analysis over collected constraints. These three

3http://www.cprover.org/loopfrog/
4The data for all tools but LOOPFROG, “=, 6=, ≤", and the Interval Domain is from [ZLL04].

http://www.cprover.org/loopfrog/
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tools use different approaches for the analysis. BOON and Archer do sym-
bolic, while UNO does model-checking-based one. Archer and UNO are flow-
sensitive, BOON is not. All three are interprocedural.

R(d) R( f ) R(¬ f |d)
LOOPFROG 1.00 0.38 0.62
=, 6=, ≤ 1.00 0.44 0.56

Interval Domain 1.00 0.98 0.02
Polyspace 0.87 0.50 0.37
Splint 0.57 0.43 0.30
Boon 0.05 0.05 0
Archer 0.01 0 0
Uno 0 0 0

LOOPFROG [KHCL07] 1.00 0.26 0.74
=, 6=, ≤[KHCL07] 1.00 0.46 0.54

Table 4.2. Effectiveness of various static analysis tool
in Zitser et al. [ZLL04] and Ku et al. [KHCL07] bench-
marks: detection rate R(d), false positive rate R( f ),
and discrimination rate R(¬ f |d).

But they share the same
problem — the approxima-
tion is too coarse and ad-
ditional heuristics are ap-
plied in order to lower false
positive rate, what all to-
gether makes hardly possi-
ble any complex bug to be
detected. The source code
of the test cases was not
annotated, but neverthe-
less, the annotation-based
Splint tool performs reason-
ably well on these bench-
marks. LOOPFROG and In-
terval Domain are the only
entries that report all buffer
overflows correctly (a detection rate of R(d) = 1) and with 62% LOOPFROG also
has the highest discrimination rate among all the tools. It is also worth noticing
that our summarization technique performs quite well when only a few rela-
tional domains are used (the second line of Table 4.2). The third line in this
table contains the data for a simple interval domain, not implemented in LOOP-
FROG, but as a traditional abstract domain used in SATABS model checker as a
part of pre-processing; it reports almost everything as unsafe.

The second set of benchmarks was proposed by Ku et al. [KHCL07]. It con-
tains 568 test cases, of which 261 are fixed versions of buffer overflows. This
set partly overlaps with the first one, but contains source code of a greater vari-
ety of applications, including the Apache HTTP server, Samba, and the NetBSD
C system library. Again, the test programs are stripped down, and are partly
simplified to enable current model checkers to parse them. Our results on this
set confirm the results obtained using the first set; the corresponding num-
bers are given in the last two lines of Table 4.2. On this set the advantage
of selecting property-specific domains is clearly visible, as a 20% increase in
the discrimination rate over the simple relational domains is witnessed. Also,
the performance of LOOPFROG is much better if specialized domains are used,
simply because there are fewer candidates for the invariants.
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freecell-solver aisleriot-board-2.8.12 347 26 10s 295s 305s 111MB 358 165 193
freecell-solver gnome-board-2.8.12 208 8 0s 3s 4s 13MB 49 16 33
freecell-solver microsoft-board-2.8.12 168 4 2s 9s 11s 32MB 45 19 26
freecell-solver pi-ms-board-2.8.12 185 4 2s 10s 13s 33MB 53 27 26
gnupg make-dns-cert-1.4.4 232 5 0s 0s 1s 9MB 12 5 7
gnupg mk-tdata-1.4.4 117 1 0s 0s 0s 3MB 8 7 1
inn encode-2.4.3 155 3 0s 2s 2s 6MB 88 66 22
inn ninpaths-2.4.3 476 25 5s 40s 45s 49MB 96 47 49
ncompress compress-4.2.4 806 12 45s 4060s 4106s 345MB 306 212 94
texinfo ginstall-info-4.7 1265 46 21s 326s 347s 127MB 304 226 78
texinfo makedoc-4.7 701 18 9s 6s 16s 28MB 55 33 22
texinfo texindex-4.7 1341 44 415s 9336s 9757s 1021MB 604 496 108
wu-ftpd ckconfig-2.5.0 135 0 0s 0s 0s 3MB 3 3 0
wu-ftpd ckconfig-2.6.2 247 10 13s 43s 57s 27MB 53 10 43
wu-ftpd ftpcount-2.5.0 379 13 10s 32s 42s 37MB 115 41 74
wu-ftpd ftpcount-2.6.2 392 14 8s 24s 32s 39MB 118 42 76
wu-ftpd ftprestart-2.6.2 372 23 48s 232s 280s 55MB 142 31 111
wu-ftpd ftpshut-2.5.0 261 5 1s 9s 10s 13MB 83 29 54
wu-ftpd ftpshut-2.6.2 503 26 27s 79s 106s 503MB 232 210 22
wu-ftpd ftpwho-2.5.0 379 13 7s 23s 30s 37MB 115 41 74
wu-ftpd ftpwho-2.6.2 392 14 8s 27s 35s 39MB 118 42 76
wu-ftpd privatepw-2.6.2 353 9 4s 17s 22s 32MB 80 51 29

Table 4.3. Large-scale evaluation of LOOPFROG on the programs from wu-ftpd, tex-
info, gnupg, inn, and freecell-solver tools suites.

The leaping counterexamples computed by our algorithm are a valuable
aid in the design of new abstract domains that decrease the number of false
positives. Also, we observe that both test sets include instances labeled as
unsafe that LOOPFROG reports to be safe (1 in [ZLL04] and 9 in [KHCL07]).
However, by manual inspection of the counterexamples for these cases, we find
that our tool is correct, i.e., that the test cases are spurious.5 For most of the test
cases in the benchmark suites, the time and memory requirements of LOOPFROG

are negligible. On average, a test case finishes within a minute.

4.5.2 Large-scale benchmarks

We also evaluated the performance of LOOPFROG on a set of large-scale bench-
marks, that is, complete un-modified program suites. Table 4.3 contains a se-
lection of the results.

5We exclude those instances from our benchmarks.
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These experiments clearly show that the algorithm scales reasonably well
in both memory and time, depending on the program size and the number
of loops contained. The time required for summarization naturally depends
on the complexity of the program, but also to a large degree on the selection
of (potential) invariants. As experience has shown, unwisely chosen invariant
templates may generate many useless potential invariants, each requiring to be
tested by the SAT-solver.

In general, the results regarding the program assertions shown to hold are
not surprising; for many programs (e.g., texindex, ftpshut, ginstall), our selec-
tion of string-specific domains proved to be quite useful. It is also interesting
to note that the results on the ftpshut program are very different on program
versions 2.5.0 and 2.6.2: This program contains a number of known buffer-
overflow problems in version 2.5.0, and considerable effort was spent on fixing
it for the 2.6.2 release; an effort clearly reflected in our statistics. Just like
in this benchmark, many of the failures reported by LOOPFROG correspond to
known bugs and the leaping counterexamples we obtain allow us to analyze
those faults. Merely for reference we list CVE-2001-1413 (a buffer overflow
in ncompress) and CVE-2006-1168 (a buffer underflow in the same program),
for which we are easily able to produce counterexamples.6 On the other hand,
some other programs (such as the ones from the freecell-solver suite) clearly re-
quire different abstract domains, suitable for other heap structures than strings.
The development of suitable domains and subsequent experiments, however,
are left for future research.

4.5.3 Comparison with the interval domain

To highlight the applicability of LOOPFROG to large-scale software and to demon-
strate its main advantage, we present a comparative evaluation against a sim-
ple interval domain, which tracks the bounds of buffer index variables, an often
employed static analysis. For this experiment, LOOPFROG was configured to use
only two abstract domains, which capture the fact that an index is within the
buffer bounds (#4 and #5 in Table 4.1). As apparent from Table 4.4, the per-
formance of LOOPFROG in this experiment is far superior to that of the simple
static analysis.

We analyze a single benchmark in detail, in order to explain the data deliv-
ered by the tool: The ncompress program (version 4.2.4) contains about 2.2K
lines of code (which translates to 963 instructions in the model file) and 12

6The corresponding bug reports may be obtained from http://cve.mitre.org/.

http://cve.mitre.org/
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LOOPFROG Interval Domain
Suite Benchmark Total Failed Ratio Failed Ratio

bchunk bchunk 96 8 0.08 34 0.35
freecell-solver make-gnome-freecell 145 40 0.28 140 0.97
freecell-solver make-microsoft-freecell 61 30 0.49 58 0.95
freecell-solver pi-make-microsoft-freecell 65 30 0.46 58 0.89
gnupg make-dns-cert 19 5 0.26 19 1.00
gnupg mk-tdata 6 0 0.00 6 1.00
inn encode 42 11 0.26 38 0.90
inn ninpaths 56 19 0.34 42 0.75
ncompress compress 204 38 0.19 167 0.82
texinfo makedoc 83 46 0.55 83 1.00
wu-ftpd ckconfig 1 1 1.00 1 1.00
wu-ftpd ftpcount 61 7 0.11 47 0.77
wu-ftpd ftpshut 63 13 0.21 63 1.00
wu-ftpd ftpwho 61 7 0.11 47 0.77

Table 4.4. Comparison between LOOPFROG and an interval domain: The column
labelled ‘Total’ indicates the number of properties in the program, and ‘Failed’
shows how many of the properties were reported as failing; ‘Ratio’ is Failed/Total.

loops. During preprocessing, LOOPFROG detected 204 potential buffer overflows
and inserted an assertion for each of them in the model. Loop summarization
took 14.4 seconds. During this time, 67 potential invariants were created and
17 of them were confirmed as actual invariants. The overall analysis took 668
seconds. Finally, 166 assertions hold and 38 are reported as failing (while pro-
ducing leaping counterexamples for each violation).

To evaluate scalability, we applied other verification techniques to this ex-
ample. CBMC [CKL04] tries to unwind all the loops, but fails, reaching the 2GB
memory limit. The same behavior is observed using SATABS [CKSY05], where
the underlying model checker (SMV) hits the memory limit.

4.6 Related work and summary

Other work on analysis using summaries of functions is quite extensive (see
a nice survey in [GR07]) and dates back to Cousot and Halbwachs [CH78b],
and Sharir and Pnueli [SP81]. In a lot of projects, function summaries are cre-
ated for alias analysis or points-to analysis, or are intended for the analysis of
program fragments. As a result, these algorithms are either specialized to par-
ticular problems and deal with fairly simple abstract domains or are restricted
to analysis of parts of the program. An instance is the summarization of library



4.6 Related work and summary 79

functions in [GR07]. In contrast, our technique aims at computing a summary
for the entire program, and is applicable to complex abstract domains.

The same practical motivation, sound analysis of ANSI-C programs, drives
our work and the work behind Frama-C project [Fra]. In particular, the PhD
work of Moy [Moy09] even targets, among others, the same set of bench-
marks — Verisec [KHCL07] and Zitser’s [ZLL04] test suites. To tackle them
with Frama-C tools Moy employs a number of techniques that discover pre-
and post-conditions for loops as well as loop invariants. He combines abstract
interpretation-based invariant inference with weakest precondition-based iter-
ative methods such as Suzuki-Ishihata algorithm [SI77]. The latter one, induc-
tion iteration, applies weakest precondition computation to a candidate loop
invariant iteratively until inductive invariant is found. Thus, loop summariza-
tion can be seen as 1-step application of the induction-iteration method, in
which weakest precondition computation is replaced with strongest postcondi-
tion one7.

Note that application of the Suzuki-Ishihata algorithm to string operation-
intensive programs (as our benchmarks are) often leads to non-terminating
iterative computation since there is no guarantee to obtain an inductive invari-
ant from a candidate. To avoid this uncertainty, we are interested only in those
candidates that can be proven to be an inductive invariant in a single step. We
claim that a careful choice of candidates would contribute more to precision
and scalability of analysis. In fact, our results on the aforementioned bench-
mark suites support the claim. We analyze Zitser’s benchmark suite in a matter
of seconds and are able to discharge 62% of bug-free instances, while Frama-C
does not complete any of test cases within 1 hour limit. When applied to a
smaller programs of the Verisec test suite both tools are able to discharge 74%
of bug-free test cases; LOOPFROG required almost no time for this analysis.

LOOPFROG shares a lot in idea and architecture with Houdini, an annotation
assistant for ESC/Java [FL01]. Houdini was first created as a helper to ESC/-
Java; the goal was to lower the burden of manual program annotation (having
enough useful annotations is critical for successful application of ESC/Java).
Similar to loop summarization, Houdini “magically” guesses a set of candidate
relations between program variables and then discharges or verifies them one
by one using the ESC/Java as a refuter. Verified candidates are added to the
program as annotations and are used later by the main ESC/Java check of a
program in a same way as symbolic execution makes uses of summaries when

7However, the choice of inference“direction", i.e. pre-condition or post-condition computa-
tion, is irrelevant for 1-step application.
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it runs over a loop-free program.
However there are also numerous differences between these two. Houdini

is designed to be applied to any program module or a routine in a library while
our summarization concentrates deliberately on loops. Houdini adds annota-
tions to the program, while LOOPFROG replaces each loop with the summary,
thus keeping the cost of analysis for every consecutive loop as low as was the
inner-most one.

Houdini as well as LOOPFROG suggest a lot of candidates that help to ad-
dress buffer access checks. For instance, it generates 6 different comparison
relations for each integral type and a constant in a program. However, while
experimenting with LOOPFROG, we found such an abstract domain of arbitrary
relations to be effective, though very expensive. With its help we generate
too many candidates and find too many useless loop invariants. Therefore we
prefer problem-tailored domains that generate fewer candidates, but keep the
“usefulness” at an appropriate level.

Also, as we show later in Chapter 5, LOOPFROG extends candidates selec-
tion to those that relate two different valuations of the same program variable,
e.g., before and after a loop iteration. This allows discovering not only safety,
but also liveness-related loop invariants; in particular loop termination can be
proven with the help of this addition.

A series of work by Gulwani et al. [GLAS09, GMC09] uses loop invariants
discovery for the purpose of worst-case execution time analysis. One of the
approaches (reported as practically the most effective one) employs template-
based generation of invariant candidates. Starting from the inner-most loop, a
bound of the loop’s maximal resources usage is computed. Therefore, it can be
seen as a loop summarization with the domains tuned for WCET-analysis rather
then string-operations as in the current LOOPFROG.

The Saturn tool [ABD+07] computes a summary of a function with respect
to an abstract domain using a SAT-based approach to improve scalability. How-
ever, summaries of loop-bodies are not created. In favor of scalability, Saturn
simply unwinds loops a constant number of times, and thus, is unsound as bugs
that require more iterations are missed.

SAT-solvers, SAT-based decision procedures, and constraint solvers are fre-
quently applied in program verification. Notable instances are Jackson’s Alloy
tool [JV00] and CBMC [CKL04]. The SAT-based approach is also suitable for
computing abstractions, as, for example, in [ABD+07, CKSY04, RSY04] (see
detailed discussion in Sec. 4.2.1). The technique reported in this Chapter also
uses the flexibility of a SAT-based decision procedure for a combination of the-
ories to compute loop summaries.



4.6 Related work and summary 81

Our technique can be used for checking buffer overruns and class-string
vulnerabilities. There exist a large number of static analysis tools focusing
on these particular problems (a summary is given in Section 4.5). In this re-
spect, the principal difference of our technique is that it is a general purpose
abstraction-based checker which is not limited to special classes of faults.

A major benefit of our approach is its ability to generate diagnostic in-
formation for failed properties. This is usually considered a distinguishing
feature of model checking [CGP99] and, sometimes, extended static check-
ing [FLL+02], but rarely found in tools based on abstract interpretation. Most
model checkers for programs implement a CEGAR approach [BR01, HJMS02b],
which combines model checking with counterexample-guided abstraction re-
finement. The best-known instance is SLAM [BR01], and other implementa-
tions are BLAST [HJMS02b], MAGIC [CCG+04], and SATABS [CKSY05], which
implement predicate abstraction. Recently, a number of projects applied coun-
terexample-guided refinement to abstract domains other than predicate ab-
straction. Manevich et al. [MFH+07] formalize CEGAR for general powerset
domains; Beyer et al. [BHT06] integrate the TVLA system [LAS00] into BLAST
and use counterexamples to refine 3-valued structures to make shape analysis
more scalable; Gulavani and Rajamani devised an algorithm for refining any
abstract interpretations [GR06, GCNR07] by combining widening with inter-
polation. Our procedure is also able to generate counterexamples with respect
to the abstract domain and could be integrated into a CEGAR loop for auto-
matic refinement.

Summary

We presented a novel algorithm for program verification using symbolic ab-
stract transformers. The algorithm computes an abstraction of a program with
respect to a given abstract interpretation by replacing loops and function calls
in the control flow graph by their symbolic transformers. The run-time of our
algorithm is linear in the number of looping constructs in the program. It ad-
dresses the perennial problem of the high complexity of computing abstract
fixpoints. The procedure over-approximates the original program, which im-
plies soundness of our analysis. An additional benefit of the technique is its
ability to generate leaping counterexamples, which are helpful for diagnosis of
the error or for filtering spurious warnings. Experimental results show the best
error-detection and error-discrimination rates comparing to a broad selection
of static analysis tools. The implemented LOOPFROG tool is available for experi-
ments by other researchers.
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Chapter 5

Termination Proofs via Loop
Summarization

I hate assumptions. Assumption is
the mother of all mess-ups.

Brian Sheehy

This chapter proposes a new approach to establishing program termination
proofs. We employ abstract domains, capable of encoding transition invari-
ants, for loop summarization. Transitivity (or compositionality) is used as a
criterion that ensures transition invariants are strong enough to conclude loop
termination.

5.1 Introduction

The problem of program termination (also known as the uniform halting prob-
lem) is one of the oldest and most well-known in the arena of computer science.
Rooted in the historical Hilbert’s Entscheidungsproblem it can be formulated as
follows:

In finite time, determine whether a given program always finish run-
ning or could execute forever.

Turing is famous for showing its undecidability [Tur36]. The publicity plays
a bad trick with the problem — its formulation is, sometimes, exaggerated to
a level that people believe termination for any program cannot be proven. In
contrast to this popular belief, it can be proven for many realistic classes of pro-
grams. In fact, the study of program termination received increased interest in

83
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the recent past. Termination analysis is at a point where industrial application
of termination proving tools is feasible. This is possible through a series of
improvements upon methods introduced by the same Turing [Tur49]. The key
fact underlying these methods is that termination may be reduced to the con-
struction of well-founded ranking relations. Such a relation establishes an order
between the states of the program, or, to say it differently, it ranks all the states
— assigns them with natural numbers such that for any pair of consecutive
states si, si+1 the rank is decreasing, i.e., rank(si+1) < rank(si). The existence
of such an assignment ensures well-foundedness of the given set of transitions.
Consequently, a program is terminating if there exists a ranking function for
every program execution.

Podelski and Rybalchenko proposed disjunctive well-foundedness of transi-
tion invariants [PR04b](defined in Chapter 2.2.1) as a means to improve the
performance of termination proving, as well as to simplify synthesis of rank-
ing relations. Based on their crucial discovery, the same authors together with
Cook gave an algorithm to verify program termination using iterative construc-
tion of transition invariants — the Terminator algorithm [CPR05, CPR06]. This
algorithm exploits the relative simplicity of ranking relations for a single path
of a program. It relies on a safety checker to find previously unranked paths of
a program, computes a ranking relation for each of them individually, and dis-
junctively combines them in a global (disjunctively well-founded) termination
argument. This strategy shifts the complexity of the problem from ranking rela-
tion synthesis to safety checking, a problem for which many efficient solutions
exist (mainly, by means of model cheking-based reachability analysis).

The Terminator algorithm was successfully implemented in tools (e.g., TER-
MINATOR [CPR06], ARMC [PR07], SATABS [CKRW10]) and applied to verify
industrial code, most notably, Windows device drivers. However, it has subse-
quently become apparent that the safety check is a bottleneck of the algorithm,
taking up to 99% of the run-time [CPR06, CKRW10] in practice. The runtime
required for ranking relation synthesis is negligible in comparison. A solution to
this performance issue is Compositional Termination Analysis (CTA) [KSTW10].
This method limits path exploration to several iterations of each loop of the
program. Transitivity (or compositionality) of the intermediate ranking argu-
ments is used as a criterion to determine when to stop the loop unwinding.
This allows for a reduction in runtime, but introduces incompleteness since a
transitive termination argument may not be found for each loop of a program.
However experimental evaluation on Windows device drivers confirmed that
this case is rare in practice.
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The complexity of the termination problem together with the observation
that most loops in practice have (relatively) simple termination arguments sug-
gests the use of light-weight static analysis for this purpose. In particular, this
Chapter proposes a termination analysis based on the loop summarization algo-
rithm described in Chapter 4. We build a new technique for termination analy-
sis by 1) employing an abstract domain of (disjunctively well-founded) transi-
tion invariants during summarization and 2) using compositionality check as a
completeness criterion for discovered transition invariant.

As before, our algorithm constructs summaries for loops, starting from the
inner-most loop in the control flow graph of the program. In case of nested
loops, inner loops are replaced with their summaries during verification. At any
point during the analysis, the problem is therefore reduced to the analysis of
a single loop. During construction of the loop summaries, our algorithm relies
on a library of templates for abstract domains. These are used to construct
candidates for transition invariants which subsequently are verified to be actual
disjunctively well-founded transition invariants by means of a safety checker
and a satisfiability decision procedure. Due to the fact that the safety checker
is employed to analyze only a single unwinding of a loop at any point, we gain
large speedups compared to algorithms like Terminator or CTA. At the same
time, the false-positive rate of our algorithm is very low in practice, which we
demonstrate in an experimental evaluation of our algorithm on a large set of
Windows device drivers.

The rest of the Chapter is organized as follows: Section 5.2 introduces re-
quired theoretical concepts and, in particular, demonstrates the flow from TER-
MINATOR via CTA to our new algorithm. Section 5.3 presents our new method.
Section 5.4 proposes an optimization that simplifies the selection of candidates
for transition invariants. In Section 5.5 we give experimental evidence of the
practicality of our approach and, finally, Section 5.6 discusses the related work
and summarizes.

5.2 Preliminaries

We consider programs as transition systems P = 〈S, I , R〉 (Definition 1, page 13)
and rely on the notion of (disjunctively well-founded) transition invariants in-
troduced by Podelski and Rybalchenko [PR04b]. It was stated in this work in
Chapter 2, but we repeat it here for convenience of the reader:
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Definition 9 (Transition Invariant [PR04b]). A transition invariant T for pro-
gram P represented by a transition system 〈S, I , R〉 is a superset of the transitive
closure of R restricted to the reachable state space, i.e., R+ ∩ (R∗(I)× R∗(I))⊆ T.

Definition 8 (Disjunctive Well-foundedness [PR04b]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪· · ·∪ Tn of well-founded
relations.

The main result of the work [PR04b] concludes program termination from
the existence of disjunctively well-founded transition invariant.

Theorem 1 (Termination [PR04b]). A program P is terminating iff there exists
a d.wf. transition invariant for P.

The result was put in use by the Terminator1 algorithm [CPR06] that auto-
mates construction of d.wf transition invariants. It starts with an empty termi-
nation condition T = ; and queries a safety checker for a counterexample — a
computation that is not covered by the current termination condition T . Next,
a ranking relation synthesis algorithm is used to obtain a termination argument
T ′ covering the transitions in the counterexample. The termination argument
is then updated as in T = T ∪ T ′ and the algorithm continues to query for
counterexamples. Finally, either a complete (d.wf.) transition invariant is con-
structed or there does not exist a ranking relation for some counterexample, in
which case the program is reported as non-terminating.

5.2.1 Compositional termination analysis

Podelski and Rybalchenko [PR04b] remarked an interesting fact regarding the
compositionality (transitivity) of transition invariants: If T is transitive, it is
enough to show that T ⊇ R instead of T ⊇ R+ to conclude termination, because
a compositional and d.wf. transition invariant is well-founded, since it is an
inductive transition invariant for itself [PR04b]. Therefore, compositionality of
a d.wf. transition invariant implies program termination.

To comply with the terminology in the existing literature, we define the
notion of compositionality for transition invariants as follows:

Definition 18 (Compositional Transition Invariant [PR04b, KSTW10]). A d.wf.
transition invariant T is called compositional if it is also transitive, or equiva-
lently, closed under composition with itself, i.e., when T ◦ T ⊆ T.

1The Terminator algorithm is, sometimes, referred to as Binary Reachability Analy-
sis (BRA), though BRA is only a particular technique to implement the algorithm (e.g.,
[CKRW10]).
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This useful property did not find its application in transition invariant-
based termination analysis until 2010. To understand its value we need to
look closer at the transitive closure of a program’s transition relation R. The
safety checker in the Terminator algorithm verifies that a candidate transition
invariant T indeed includes R+ restricted to the reachable states. Note that the
(non-reflexive) transitive closure of R is essentially an unwinding of program
loops:

R+ = R∪ (R ◦ R)∪ (R ◦ R ◦ R)∪ . . .=
∞
⋃

i=1

Ri .

Thus, instead of searching for a d.wf. transition invariant that is a superset
of R+, we can therefore decompose the problem into a series of smaller ones.
We can consider a series of loop-free programs in which R is unwound k times,
i.e., the program that contains the transitions in R1 ∪ . . . ∪ Rk. As was shown
in [KSTW10], if there is a d.wf. Tk with

⋃k
j=1 R j ⊆ Tk and Tk is also transitive,

then Tk is a compositional transition invariant for P.
This idea results in an algorithm that constructs d.wf. relations Ti for in-

crementally deep unwindings of P until it finally finds a transitive Tk, which
proves termination of P. In [KSTW10], the algorithm was named a Composi-
tional Termination Analysis (CTA); it is depicted in Algorithm 5.

This algorithm makes use of an external ranking procedure called rank,
which generates a d.wf. ranking relation for a given set of transitions, or alter-
natively a set C ∈ S of states such that R∗(C) contains infinite computations.
We say that rank is sound if it always returns either a d.wf. superset of its input
or a non-empty set of states C , and we call it complete if it terminates on every
input.

The literature presents a broad range of methods to implement a rank pro-
cedure. Usually, this is accomplished via synthesis of ranking functions, which
define well-founded ranking relations [CKRW10, CS01, PR04a, BMS05]. Both
Terminator and CTA are making use of such a ranking synthesis.

Algorithm 5 maintains a set X ⊆ S that is an over-approximation of the
set of reachable states, i.e., R∗(I) ⊆ X . It starts with X = S and i = 1. It
iterates over i and generates d.wf. ranking relations Ti for the transitions in
⋃i

j=1 R j \ T . As long as such relations are found, they are added to T . Once
it finds a transitive T , the algorithm stops, as P is proven to terminate. When
ranking fails for some i, the algorithm checks whether there is a reachable state
in C , in which case R∗(C) contains a counterexample to termination and the
algorithm consequently reports P as non-terminating. Otherwise, it removes
C from X , which represents a refinement of the current over-approximation of
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Algorithm 5: Compositional Termination Analysis [KSTW10]
input : P = 〈S, I , R〉
output: ‘Terminating’ / ‘Non-Terminating’

1 begin
2 T := ;;
3 X := S;
4 i := 1;
5 while true do
6 〈Ti, C〉 := rank ((

⋃i
j=1 R j \ T )∩ (X × X ));

7 if C ∩ R∗(I) 6= ; then
8 return ‘Non-Terminating’;
9 else if C = ; and T ∪ Ti is transitive then

10 return ‘Terminating’;
11 else
12 X := X \ C;
13 T := T ∪ Ti;
14 i := i+ j, where j > 0;
15 end if
16 end while
17 end

the set of reachable states.
Lines 12–14 ensure progress between iterations by excluding unreachable

states (C) from the approximation X and adding the most recently found Ti

in T . However, for non-terminating input programs, the algorithm may not
terminate for two reasons: a) rank is not required to terminate, and b) there
may be an infinite sequence of iterations. This is not the case for finite S if
the input program is non-terminating, since sound and complete ranking pro-
cedures exist (e.g., [PR04b, CKRW10]) and progress towards the goal can thus
be ensured.

From TERMINATOR via CTA to a light-weight static analysis

TERMINATOR is a complete algorithm (with regards to completeness of the rank-
ing procedure). Note that CTA is not complete for terminating programs even
if they are finite-state. This is due to the fact that T is not guaranteed to ever
become transitive, even if it contains R+.

TERMINATOR strategy can be seen as a “proof by construction”: it explic-
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itly builds the valid terminating argument for every path in a program. CTA
combines “proof by construction” with a “proof by induction”: it first tries to
construct a base step and then checks the inductiveness of it. Surely, not for ev-
ery problem an inductive proof exists. However, as it was shown in [KSTW10]
for loops in industrial applications such as Windows device drivers, the CTA
approach pays off with several orders of improvement over TERMINATOR.

That gives us an intuition to go further in lightening the proof strategy
— from a mix of “proof by construction” with a “proof by induction” to a pure
“proof by induction”. I.e., a technique where ranking synthesis-based transition
invariant discovery is replaced by abstract domain-based transition invariant
discovery. Instead of a complex base case construction, we “guess” several
variants of it using lightweight static analysis methods and then check if the
inductive step holds as well. The method is still incomplete, but allows avoiding
non-effective path enumeration inside the safety checker2.

We propose to use for this purpose the loop summarization (described in
Chapter 4) with the specific relational domains. We show the details of it later
in Section 5.3, but first we formulate several useful summarization subroutines.

5.2.2 Loop summarization subroutines

First we recap the summarization algorithm of Chapter 4 such that it conforms
to the program modelling used for termination analysis. Algorithm 6 presents
an outline of the procedure. The function SUMMARIZE traverses the control-
flow graph of the program P and calls itself recursively for each block with
nested loops. If a block contains a non-nested loop, it is summarized using the
function SUMMARIZELOOP and the resulting summary replaces the original loop
in P ′. Thereby, outer loops become non-nested as well, which enables further
progress.

The function SUMMARIZELOOP computes the summaries. The most general
abstraction is to replace a loop by a program fragment that ‘havocs’ the state
by setting all variables which are (potentially) written to during loop execution
to non-deterministic values. To improve the precision of these summaries, they
are strengthened by (partial) loop invariants. SUMMARIZELOOP has two subrou-
tines that are related to invariant discovery: PICKINVARIANTCANDIDATES, which
returns a set of ‘invariant candidates’ depending on an abstract interpretation

2As a future stand-alone theoretical problem we see a definition of a class of systems and
properties, for which termination (liveness) can be proved by induction, i.e., by guess and
proof of the base step (discovery of a transition invariant) and proof of the inductive step
(compositionality of a transition invariant).
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Algorithm 6: Routines of loop summarization (details are in Chapter 4)

1 SUMMARIZE(P)
2 input: program P
3 output: Program summary
4 begin
5 foreach Block B in CONTROLFLOWGRAPH(P) do
6 if B has nested loops then
7 B :=SUMMARIZE(B)
8 else if B is a single loop then
9 B :=SUMMARIZELOOP(B)

10 endif
11 end foreach
12 return P
13 end

14 SUMMARIZELOOP(L)
15 input: Single-loop program L (over variable set X )
16 output: Loop summary
17 begin
18 I :=>
19 foreach Candidate C(X ) in PICKINVARIANTCANDIDATES(L) do
20 if ISINVARIANT(L, C) then
21 I := I ∧ C
22 endif
23 end foreach
24 return “Xpre := X ;havoc(X );assume(I(Xpre) =⇒ I(X ));"
25 end

26 ISINVARIANT(L, C)
27 input: Single-loop program L (over variable set X ), invariant candidate

C
28 output: TRUE if C is invariant for L; FALSE otherwise
29 begin
30 return UNSAT(¬(L(X , X ′)∧ C(X )⇒ C(X ′)))
31 end
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based static analysis of the loop and ISINVARIANT that established whether a
candidate is an actual invariant.

Note that this summarization algorithm does not take loop termination into
account. The summaries computed by the algorithm are always terminating
program fragments. The abstraction is therefore a sound over-approximation,
but it may be too coarse for programs that contain unreachable paths.

5.3 Loop summarization with transition invariants

In this section we introduce a method that allows transition invariants to be
included for strengthening of loop summaries. This increases the precision of
the summaries by allowing loop termination to be taken into account.

According to Definition 9 (page 20), a binary relation T is a transition in-
variant for a program P if it contains R+ (restricted to the reachable states).
Note, however that transitivity of T is also a sufficient condition when T is
only a superset of R:

Theorem 6. A binary relation T is a transition invariant for the program 〈S, I , R〉
if it is transitive and R⊆ T.

Proof. From transitivity of T it follows that T+ ⊆ T . Since R⊆ T it follows that
R+ ⊆ T .

This simple fact allows for an integration of transition invariants into the
loop summarization framework by a few adjustments to the original algo-
rithm. Consider line 19 of Algorithm 6, where candidate invariants are se-
lected. Clearly, we need to allow selection of transition invariants here, i.e.,
invariant candidates now take the form C(X , X ′), where X is the post-state of
L.

What follows is a check for invariance of C over L(X , X ′), i.e., a single un-
winding of the loop. Consider the temporary (sub-)program 〈S, S, L〉 to repre-
sent the execution of the loop from a non-deterministic entry state, as required
by ISINVARIANT. A transition invariant for this program is required to cover L+,
which, according to Theorem 6, is implied by L ⊆ C and transitivity of C . The
original invariant check in ISINVARIANT establishes L ⊆ C , when the check for
unsatisfiability receives the more general formula L(X , X ′) ∧ C(X , X ′) as a pa-
rameter. The summarization procedure furthermore requires a slight change to
include a check for compositionality. The resulting procedure is Algorithm 7.
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Algorithm 7: Loop summarization with transition invariants.

1 SUMMARIZELOOP-TI(L)
2 input: Single-loop program L with a set of variables X
3 output: Loop summary
4 begin
5 T :=>
6 foreach Candidate C(X , X ′) in PICKINVARIANTCANDIDATES(L) do
7 if ISINVARIANT(L, C) ∧ ISCOMPOSITIONAL(C) then
8 T := T ∧ C
9 endif

10 end foreach
11 return “Xpre := X ;havoc(X );assume(T (Xpre, X ));"
12 end

The additional compositionality (transitivity) check ISCOMPOSITIONAL at line
7 of Algorithm 7 corresponds to a check for unsatisfiability of

∃si, s j, sk ∈ S . ¬
�

C(si, s j)∧ C(s j, sk)⇒ C(si, sk)
�

, (5.1)

which may be decided by a suitable decision procedure, e.g., SAT- or SMT-
solver. Formula 5.1 has only existential quantification and, thus, its complex-
ity for state-of-the-art decision procedures depends only on the complexity of
the candidate relation C . If no quantified logic is used for a expressing C ,
Fomula 5.1 can be encoded into a propositional or a decidable first-order prob-
lem.

Of course, this check may be omitted if the selected invariant candidates
are compositional by construction.

Termination

The changes to the summarization algorithm allow for termination checks dur-
ing summarization through application of Theorem 1, which requires a tran-
sition invariant to be disjunctively well-founded. This property may be estab-
lished by allowing only disjunctively well-founded invariant candidates, or it
may be checked by means of decision procedures (e.g., SMT solvers where
applicable).

According to Definition 8 (page 20) in order to ensure d.wf. of a candidate
relation T the well-foundedness of each of its disjuncts must be established.
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This can be done by explicit encoding of the well-foundedness criteria of Def-
inition 7 (page 20). However the resulting formula contains quantifiers. The
consequence is that, in the case of infinite state systems, decision procedures
may be unable to decide it.

The difference with TERMINATOR and CTA

The complexity of establishing well-foundedness of a transition invariant hints
at the explanation of a major difference between our new algorithm and TERMI-
NATOR/CTA. The latter two construct the transition invariant using the abstraction-
refinement loop such that it is already disjunctively well-founded, while we
allow any transition invariant to be discovered, though, later it needs to be
checked for well-foundedness. Note that even if the discovered transition in-
variant is not well-founded, it is still a valid part of a loop summary, i.e., it can
be used to improve precision of the constructed abstraction.

However, the research in size-change termination for functional languag-
es [BAL09]3 suggests that a small set of templates for ranking relations is
enough to cover many classes of programs. Besides, the expensive well-founded-
ness check can be completely omitted if we employ specialized abstract do-
mains that produce only well-founded candidates for transition invariants. We
propose a solution for that in Section 5.4.

in t x = 0;
while (x<255)

x++;

Figure 5.1. An example of
a terminating loop with a
strictly increasing iterator

Example 5.1. Consider the program in Figure 5.1.
The symbolic transformer for the loop body is:
φL := x ′ = x + 1. Also consider the relation “>”
for a pair x ′ and x as a candidate relation Tc. Tc

is indeed a transition invariant if the following for-
mula is unsatisfiable:

x < 255∧ x ′ = x + 1∧¬(x ′ > x) .

The formula is UNSAT, the invariant holds, and x ′ > x is added to the symbolic
transformer as a transition invariant. Since the relation is compositional and
d.wf. (we show later why) the loop is marked as terminating.

3We discuss the relation of our method to size-change termination later in Section 5.6.1



94 Termination Proofs via Loop Summarization

5.4 Invariant candidate selection

In this section, we propose a set of specialized candidate relations which we
find to be useful in practice, as demonstrated in the following section. We
focus on transition invariants for machine-level integers (i.e., finite integers
with overflows) for a bit-precise analysis of programs implemented in low-level
languages like ANSI-C.

In contrast to other work on termination proving with abstract domains
(e.g., [BCC+07]), we do not aim for general domains like Octagon and Polyhe-
dra. Although fast in computation, they are not designed for termination and
d.wf. and compositionality checks for them can be costly. Instead we focus on
domains that

• generate few, relatively simple candidate relations;

• allow for efficient d.wf. and compositionality checks.

Arithmetic operations on machine-level integers usually allow overflows, e.g.,
the instruction i = i+1 for a pre-state i = 2k−1 results in a post-state i′ =−2k−1

(when represented in two’s-complement). If termination of the loop depends
on machine-level integers, establishing well-foundedness of a relation over it is
not straightforward — monotonical increase/decrease for this set of numbers
can be affected by overflow. However we can use the following theorem to
simplify the discovery of a d.wf. transition invariant.

Theorem 7. If T : K × K is a strict order relation for a finite set K ⊆ S and is a
transition invariant for the program 〈S, I , R〉, then T is well-founded.

Proof. If T is a transition invariant, than it holds also for all pairs (k1, k2) ∈
K × K . Thus, it is total over K . Non-empty finite totally-ordered sets always
have a least element and, therefore, T is well-founded.

The proof uses the fact that, when checking T for being a transition invari-
ant, we implictely enumerated all the pairs of pre- and post-states to discover
if any of them violates the order.

A total strict order relation is also transitive, which allows for an alternative
(stronger) criterion than Theorem 1:

Corollary 2. A program terminates if it has a transition invariant T that is also
a finite strict order relation.
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# Constraint Meaning

1 i′ < i
i′ > i

A numeric variable i is strictly decreasing
(increasing).

2 x ′ < x
x ′ > x

Any loop variable x is strictly decreasing
(increasing) in lexicographical order.

3
sum(x ′, y ′)< sum(x , y)
sum(x ′, y ′)> sum(x , y)

Sum of all numeric loop variables is strictly
decreasing (increasing).

4

max(x ′, y ′)< max(x , y)
max(x ′, y ′)> max(x , y)
min(x ′, y ′)< min(x , y)
min(x ′, y ′)> min(x , y)

Maximum or minimum of all numeric loop
variables is strictly decreasing (increas-
ing).

5

(x ′ < x ∧ y ′ = y)∨
(x ′ > x ∧ y ′ = y)∨
(y ′ < y ∧ x ′ = x)∨
(y ′ > y ∧ x ′ = x)

A combination of strict increase or de-
crease for one of loop variables while the
remaining ones are not updated.

Table 5.1. Templates of abstract domains used to draw transition invariant candidates

This corollary allows for a selection of invariant candidates that ensures
(disjunctive) well-foundedness of transition invariants. An explicit check is
therefore not required. An example of such a candidate appears in Example 5.1

Note that strictly ordered and finite transition invariants exist for many
programs in practice: machine-level integers or strings of fixed length have
a finite number of possible distinct pairs and strict natural or lexicographical
orders are defined for them as well.

5.5 Evaluation

For a proof of concept we put the described theory in use in our static analyzer
LOOPFROG (Section 4.4). As before, the tool works with the program models
produced by GOTO-CC model extractor; ANSI-C programs are considered as a
primary experimental target.

We implemented a number of domains based on strict order numeric rela-
tions, thus, following Corollary 2, additional checks for compositionality and
d.wf-ness of candidate relations were not required. The domains are listed in
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Table 5.1. Here we report the results for two most illustrative schemata:

• LOOPFROG 1: domain #3 in Table 5.1. Expresses the fact that a sum of
all numeric variables of a loop is strictly decreasing (increasing). Fastest
approach, because it generates very few (but large) invariant candidates
per loop;

• LOOPFROG 2: domain #1 in Table 5.1. Expresses strict decrease (increase)
for every numeric variable of a loop. Generates twice as many simple
strict order relations as there are variables in a loop;

As a reference tool we used a termination prover built upon the CBMC-SAT-
ABS [CKSY05] framework. This tool implements Compositional Termination
Analysis (CTA) [KSTW10] and Binary Reachability Analysis of TERMINATOR al-
gorithm [CPR05]. For both the default ranking function synthesis methods
were enabled — templates for relations on bit-vectors with SAT-based enumer-
ation of coefficients; for more details see [CKRW10].

We experimented with a large number of ANSI-C programs including:

• The SNU real-time benchmark suite that contains small C programs used
for worst-case execution time analysis [snu];

• The Powerstone benchmark suite as an example set of C programs for
embedded systems [SLAM98];

• The Verisec 0.2 benchmark suite [KHCL07];

• The Jhead 2.6 utility;

• The Bchunk 1.2.0 utility;

• Windows device drivers (from Windows Device Driver Kit 6.0).

All experiments were run on an Ubuntu server equipped with Dual-Core
2GHz Opteron 2212 CPU and 4GB of memory. The analysis was set to run with
the timeout of 120 minutes for all loops at once (LOOPFROG) or of 60 minutes
per loop (CTA and TERMINATOR).

The results for SNU, Powerstone, Bchunk and Jhead are presented in Ta-
bles 5.3, 5.4, 5.6 and 5.5. Each table in columns 3 to 5 reports quantity of
loops that were proven as terminating (T), potentially non-terminating (NT)
and time-out (TO) for each of the compared techniques.
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Time in column 6 is computed only for loops noted in T and NT; time-outed
loops are not included in total time. Instead, ’+’ is used to denote the cases
where at least one time-out occured.

The results for the Verisec 0.2 benchmark suite are given in the aggregated
form in Table 5.2. The suite consists of a large number of stripped C programs
that correspond to known security bugs. Although each program has very few
loops, the variety of loop types is fairly big and, thus, is interesting for analysis.

Method T NT TO Time

244 loops in 160
benchmarks

LOOPFROG 1 33 211 0 11.38
LOOPFROG 2 44 200 0 22.49
CTA 34 208 2 1207.62 +
Terminator 40 204 0 4040.53

Table 5.2. Aggregated data of comparison between LOOPFROG, CTA
and TERMINATOR on the Verisec 0.2 suite.

Benchmark Method T NT TO Time

adpcm-test
18 loops

LOOPFROG 1 13 5 0 470.05
LOOPFROG 2 17 1 0 644.09
CTA 13 3 2 260.98 +
TERMINATOR 12 2 4 165.67 +

bs
1 loop

LOOPFROG 1 0 1 0 0.05
LOOPFROG 2 0 1 0 0.12
CTA 0 1 0 12.22
TERMINATOR 0 1 0 18.47

crc
3 loops

LOOPFROG 1 1 2 0 0.17
LOOPFROG 2 2 1 0 0.26
CTA 1 1 1 0.21 +
TERMINATOR 2 1 0 13.88

fft1k
7 loops

LOOPFROG 1 2 5 0 0.36
LOOPFROG 2 5 2 0 0.67
CTA 5 2 0 141.18
TERMINATOR 5 2 0 116.81

fft1
11 loops

LOOPFROG 1 3 8 0 3.68
LOOPFROG 2 7 4 0 4.98
CTA 7 4 0 441.94
TERMINATOR 7 4 0 427.36

fir
8 loops

LOOPFROG 1 2 6 0 2.90
LOOPFROG 2 6 2 0 8.48
CTA 6 2 0 2817.08
TERMINATOR 6 1 1 236.70 +

Continued on the next page. . .

Table 5.3. SNU real-time benchmarks suite: comparison of LOOP-
FROG with CTA and TERMINATOR.
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Table 5.3 – Continued

Benchmark Method T NT TO Time

insertsort
2 loops

LOOPFROG 1 0 2 0 0.05
LOOPFROG 2 1 1 0 0.06
CTA 1 1 0 226.45
TERMINATOR 1 1 0 209.12

jfdctint
3 loops

LOOPFROG 1 0 3 0 5.61
LOOPFROG 2 3 0 0 0.05
CTA 3 0 0 1.24
TERMINATOR 3 0 0 0.98

lms
10 loops

LOOPFROG 1 3 7 0 2.86
LOOPFROG 2 6 4 0 10.49
CTA 6 4 0 2923.12
TERMINATOR 6 3 1 251.03 +

ludcmp
11 loops

LOOPFROG 1 0 11 0 96.73
LOOPFROG 2 5 6 0 112.81
CTA 3 5 3 3.26 +
TERMINATOR 3 8 0 94.66

matmul
5 loops

LOOPFROG 1 0 5 0 0.15
LOOPFROG 2 5 0 0 0.09
CTA 3 2 0 1.97
TERMINATOR 3 2 0 2.15

minver
17 loops

LOOPFROG 1 1 16 0 2.57
LOOPFROG 2 16 1 0 7.66
CTA 14 1 2 105.26 +
TERMINATOR 14 1 2 87.09 +

qsort-exam
6 loops

LOOPFROG 1 0 6 0 0.67
LOOPFROG 2 0 6 0 3.96
CTA 0 5 1 45.92 +
TERMINATOR 0 5 1 2530.58 +

qurt
1 loop

LOOPFROG 1 0 1 0 8.02
LOOPFROG 2 1 0 0 13.82
CTA 1 0 0 55.65
TERMINATOR 0 0 1 0.00

select
4 loops

LOOPFROG 1 0 4 0 0.55
LOOPFROG 2 0 4 0 3.56
CTA 0 3 1 32.60 +
TERMINATOR 0 3 1 28.12 +

sqrt
1 loop

LOOPFROG 1 0 1 0 0.60
LOOPFROG 2 1 0 0 5.10
CTA 1 0 0 15.28
TERMINATOR 0 0 1 0.00

Table 5.3. SNU real-time benchmarks suite (continued): compari-
son of LOOPFROG with CTA and TERMINATOR.
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Benchmark Method T NT TO Time

adpcm
11 loops

LOOPFROG 1 8 3 0 59.66
LOOPFROG 2 10 1 0 162.75
CTA 8 3 0 101.30
TERMINATOR 6 2 3 94.45 +

bcnt
2 loops

LOOPFROG 1 0 2 0 2.63
LOOPFROG 2 0 2 0 2.82
CTA 0 2 0 0.79
TERMINATOR 0 2 0 0.30

blit
4 loops

LOOPFROG 1 0 4 0 0.16
LOOPFROG 2 3 1 0 0.05
CTA 3 1 0 5.95
TERMINATOR 3 1 0 3.67

compress
18 loops

LOOPFROG 1 5 13 0 3.13
LOOPFROG 2 6 12 0 33.92
CTA 5 12 1 699.00 +
TERMINATOR 7 10 1 474.36 +

crc
3 loops

LOOPFROG 1 1 2 0 0.15
LOOPFROG 2 2 1 0 0.21
CTA 1 1 1 0.33 +
TERMINATOR 2 1 0 14.58

engine
6 loops

LOOPFROG 1 0 6 0 2.40
LOOPFROG 2 2 4 0 9.88
CTA 2 4 0 16.20
TERMINATOR 2 4 0 4.88

fir
9 loops

LOOPFROG 1 2 7 0 5.99
LOOPFROG 2 6 3 0 21.59
CTA 6 3 0 2957.06
TERMINATOR 6 2 1 193.91 +

g3fax
7 loops

LOOPFROG 1 1 6 0 1.57
LOOPFROG 2 1 6 0 6.05
CTA 1 5 1 256.90 +
TERMINATOR 1 5 1 206.85 +

huff
11 loops

LOOPFROG 1 3 8 0 24.37
LOOPFROG 2 8 3 0 94.61
CTA 7 3 1 16.35 +
TERMINATOR 7 4 0 52.32

jpeg
23 loops

LOOPFROG 1 2 21 0 8.37
LOOPFROG 2 16 7 0 32.90
CTA 15 8 0 2279.13
TERMINATOR 15 8 0 2121.36

Continued in the next page. . .

Table 5.4. Powerstone benchmark suite: comparison of LOOPFROG

with CTA and TERMINATOR.
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Table 5.4 – Continued

Benchmark Method T NT TO Time

pocsag
12 loops

LOOPFROG 1 3 9 0 2.07
LOOPFROG 2 9 3 0 6.91
CTA 9 3 0 10.39
TERMINATOR 7 3 2 1557.57 +

qurt
2 loops

LOOPFROG 1 0 2 0 3.56
LOOPFROG 2 1 1 0 11.67
CTA 1 1 0 30.77
TERMINATOR 0 0 2 0.00

ucbqsort
15 loops

LOOPFROG 1 1 14 0 0.79
LOOPFROG 2 2 13 0 2.06
CTA 2 12 1 71.73 +
TERMINATOR 9 5 1 51.08 +

v42
12 loops

LOOPFROG 1 0 12 0 82.84
LOOPFROG 2 0 12 0 2587.22
CTA 0 12 0 73.57
TERMINATOR 1 11 0 335.69

Table 5.4. Powerstone benchmark suite (continued): comparison
of LOOPFROG with CTA and TERMINATOR.

Benchmark Method T NT TO Time

jhead
8 loops

LOOPFROG 1 1 7 0 23.78
LOOPFROG 2 4 4 0 78.93
CTA 3 5 0 42.38
TERMINATOR 2 4 2 208.78 +

Table 5.5. Jhead-2.6 utility: comparison of LOOPFROG with
CTA and TERMINATOR.

Benchmark Method T NT TO Time

bchunk
9 loops

LOOPFROG 1 3 6 0 1.67
LOOPFROG 2 3 6 0 31.16
CTA 3 6 0 53.03
TERMINATOR 4 5 0 91.13

Table 5.6. Bchunk 1.2.0 utility: comparison of LOOP-
FROG with CTA and TERMINATOR.

The aggregated data on experiments with Windows device drivers is pro-
vided in Table 5.7. The benchmarks are grouped according to the harness used
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Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

LOOPFROG 1 135 389 33 1752.1
LOOPFROG 2 215 201 141 10584.4
CTA 166 160 231 25399.5

SDV FLAT DISPATCH STARTIO
HARNESS
557 loops in 30 benchmarks

LOOPFROG 1 135 389 33 1396.0
LOOPFROG 2 215 201 141 9265.8
CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

LOOPFROG 1 170 416 49 1323.0
LOOPFROG 2 239 205 191 6816.4
CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

LOOPFROG 1 135 398 40 1510.0
LOOPFROG 2 200 191 182 6814.0
CTA 166 169 238 30292.7

SDV HARNESS DRIVER CREATE
9 loops in 5 benchmarks

LOOPFROG 1 1 8 0 0.1
LOOPFROG 2 1 8 0 0.2
CTA 1 8 0 151.8

SDV HARNESS PNP DEFERRED IO
REQUESTS
177 loops in 31 benchmarks

LOOPFROG 1 22 98 57 47.9
LOOPFROG 2 66 54 57 617.4
CTA 80 94 3 44645.0

SDV HARNESS PNP IO REQUESTS
173 loops in 31 benchmarks

LOOPFROG 1 25 94 54 46.6
LOOPFROG 2 68 51 54 568.7
CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

LOOPFROG 1 172 417 29 8209.5
LOOPFROG 2 261 231 126 12373.2
CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

LOOPFROG 1 173 426 36 7402.2
LOOPFROG 2 261 230 144 13500.2
CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

LOOPFROG 1 128 355 23 8082.5
LOOPFROG 2 189 188 129 13584.6
CTA 137 130 239 20967.8

SDV WDF FLAT SIMPLE HARNESS
172 loops in 18 benchmarks

LOOPFROG 1 27 125 20 30.3
LOOPFROG 2 61 91 20 202.0
CTA 73 95 4 70663.0

Table 5.7. Aggregated data of the comparison between LOOPFROG and CTA on
Windows device drivers

upon extraction of a model with GOTO-CC. Note that we skip the benchmarks
where no loops are detected. Therefore, groups in Table 5.7 have different
number of benchmarks/loops to report. Also, we do not report TERMINATOR re-
sults here because, as it was shown in [KSTW10], CTA outperforms it on these
big benchmarks.
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Discussion of experiments

Note, that direct comparison of LOOPFROG in time with iterative techniques like
CTA and TERMINATOR is not fair. The latter methods are complete at least for
finite-state programs, relative to the completeness of ranking synthesis method
(which is not complete by default in the current CTA/TERMINATOR implemen-
tation for scalability reasons). Our loop summarization technique on the other
hand is a static analysis which aims only for conservative abstractions. In par-
ticular, it does not try to prove unreachability of a loop or of preconditions that
lead to non-termination.

The timing information provided here serves as a reference that allows to
compare efforts of achieving the same result. Note that:

• LOOPFROG spends time enumerating invariant candidates, provided by the
chosen abstract domain, against a path of one loop iteration. Composi-
tionality and d.wf. checks are not required for the chosen domains.

• CTA spends time 1) unwinding loop iterations, 2) discovering a ranking
function for each unwounded path and 3) checking compositionality of a
discovered relation.

• TERMINATOR spends time 1) enumerating all paths through the loop and
2) discovering a ranking function for each path.

The techniques can greatly vary in time of dealing with a particular loop/pro-
gram. CTA and TERMINATOR give up on a loop once a they hit a path on which
ranking synthesis fails. LOOPFROG gives up on a loop if it runs out of tran-
sition invariant candidates to try. In a few tests it leads to an advantage of
TERMINATOR (huff and engine in Table 5.4), however, we observe in almost all
other tests that the LOOPFROG technique is generally cheaper (often in orders of
magnitude) in computational efforts required for valid termination argument
discovery.

Tables 5.3, 5.4 and 5.5 show that loop summarization is able to prove ter-
mination for the same number of loops as CTA and TERMINATOR, but does so
with less resource requirements. In particular it demonstrates that a simple
strict order relation for all numeric variables of the loop (Table 5.1, domain
#1) is, in practice, as effective as CTA with default ranking functions. The
results on the considerably larger Windows device drivers (Table 5.7) lead to
similar conclusions.

The comparison demonstrates some weak points of the iterative analysis:
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• Enumeration of all paths through the loop can require many iterations
or even can be infinite for infinite state systems (as are most of realistic
programs).

• The ranking procedures can often fail to produce a ranking argument;
but if it succeeds, a simple relation has could be enough as well.

• The search for a compositional transition invariant sometimes results in
exponential growth of required loop unrollings (in case of CTA).

LOOPFROG does not suffer from at least the first of these problems: the anal-
ysis of each loop requires a finite number of calls to a decision procedure. The
second issue is leveraged by relative simplicity of adding new abstract domain
over implementing complex ranking function method. The third issue is trans-
formed into generation of suitable invariant candidates, which, in general, may
generate many candidates, i.e., that also slows the procedure down. However
we can control the order of candidates by prioritizing some domains over the
others, thus, can expect simple ranking arguments to be discovered earlier.

The complete results of experiments as well as the LOOPFROG tool, are avail-
able at www.verify.inf.usi.ch/loopfrog/termination.

5.6 Related work and summary

Although the field of program termination analysis is relatively old and the
first results date back to Turing [Tur49], recent years have seen a tremendous
increase in practical applications of termination proving. Two directions of
research enabled the efficacy of termination provers in practice:

• Transition invariants by Podelski and Rybalchenko [PR04b], and

• the size-change termination principle (SCT) by Lee, Jones and Ben-Am-
ram [LJBA01],

where the latter has its roots in previous research on termination of declarative
programs. Until very recently, these two lines of research did not intersect
much. The first systematic attempt to understand their common treats is a very
recent publication by Heizmann et al. [HJP11].

www.verify.inf.usi.ch/loopfrog/termination
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5.6.1 Relation to size-change termination principle

Termination analysis based on the SCT principle usually involves two steps:

1. construction of an abstract model of the original program in the form of
size-change graphs (SC-graphs) and

2. analysis of the SC-graphs for termination.

SC-graphs contain abstract program values as nodes and use two types of
edges, along which values of variables must decrease, or decrease or stay the
same. No edge between nodes means that none of the relations can be ensured.
Graphs G which are closed under composition with itself, are called idempotent,
i.e., G; G = G.4

Lee et al. [LJBA01] identify two termination criteria based on a size-change
graph:

1. The SC-graph is well-founded, or

2. The idempotent components of an SC-graph are well-founded.

An SC-graph can be related to transition invariants as follows. Each sub-
graph corresponds to a conjunction of relations, which constitutes a transition
invariant. The whole graph forms a disjunction, resulting in a termination crite-
rion very similar to that presented as Theorem 1: if an SC-graph is well-founded
then there exists a d.wf. transition invariant. Indeed, Heizmann et al. [HJP11]
identify the SCT termination criterion as strictly stronger than the argument via
transition invariants [PR04b]. In other words, there are terminating programs
for which there are no suitable SC-graphs that comply with termination criteria
above.

The intuition behind SCT termination being a stronger property comes from
the fact that SC-graphs abstract from the reachability of states in a program,
i.e., SC-graph requires termination of all paths regardless of whether those
paths are reachable or not. Transition invariants, on the other hand, require the
computation of the reachable states of the program. In this respect our light-
weight analysis is closely related to SCT, as it havocs the input to individual
loop iterations before checking a candidate transition invariant.

The domains of SC-graphs correspond to abstract domains in our approach.
The initial inspiration for the domains we experimented with comes from a

4In this discussion we omit introducing the notation necessary for a formal description of
SCT; see Lee et al. [LJBA01, HJP11] for more detail.
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recent survey on ranking functions for SCT [BAL09]. The domains #1-4 in
Table 5.1 encode those graphs with only down-arcs. Domain #5 has down-
arcs and edges that preserve the value. However, note that, in order to avoid
well-foundedness checks, we omit domains that have mixed edge types.

Program abstraction using our loop summarization algorithm can be seen
as construction of size-change graphs. The domains suggested in Section 5.4
result in SC-graphs that are idempotent and well-founded by construction.

Another relation to SCT is the second SCT criterion based on idempotent
SC-components. In [HJP11] the relation of idempotency to some notion in
transition invariant-based termination analysis was stated as an open question.
However, there is a close relation between the idempotent SC-components and
compositional transition invariants (Definition 18, page 86) used here and in
compositional termination analysis [KSTW10]. The d.wf. transition invariant
constructed from idempotent graphs is also a compositional transition invari-
ant.

5.6.2 Relation to other research in transition invariant-based
termination

The work in this Chapter is a continuation of the research of transition invariants-
based termination proving methods initiated by [PR04b]. Methods developed
on the basis of transition invariants rely on an iterative abstraction refinement-
like construction of d.wf. transition invariants [CPR05, CPR06, KSTW10]. Our
approach is different, because it aims to construct a d.wf. transition invariant
without refinement. Instead of ranking function discovery for every non-ranked
path, we use abstract domains that express ranking arguments for all paths at
the same time.

Chawdhary et al. [CCG+08] propose a termination analysis using a com-
bination of fixpoint-based abstract interpretation and an abstract domain of
disjunctively well-founded relations. The abstract domain they suggest is of
the same form as domain #5 in Table 5.1. However their technique attempts
iterative computation of the set of abstract values and has a fixpoint detection
of the form T ⊆ R+, while in our approach it is enough to check T ⊆ R, com-
bined with the compositionality criterion. This allows more abstract domains to
be applied for summarization, as each check is less demanding on the theorem
prover.

Dams et al. [DGG00] present a set of heuristics that allow heuristic infer-
ence of candidate ranking relations from a program. These heuristics can be
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seen as abstract domains in our framework. Moreover, we also show how can-
didate relations can be checked effectively.

Cook et al. [CPR09] use relational predicates to extend the framework of
Reps et al.[RHS95] to support termination properties during computation of
inter-procedural program summaries. Our approach shares a similar motiva-
tion and adds termination support to abstract domain-based loop summariza-
tion. However, we concentrate on scalable non-iterating methods to construct
the summary while Cook et al. [CPR09] rely on a refinement-based approach.
The same argument applies in the case of Balaban et al.’s framework[BCP06]
for procedure summarization with liveness properties support.

Berdine et al. [BCC+07] use the Octagon and Polyhedra abstract domains to
discover invariance constraints sufficient to ensure termination. Well-foundedness
checks, which we identify as an expensive part of the analysis, are left to
iterative verification by an external procedure like in the TERMINATOR algo-
rithm [CPR06] and CTA [KSTW10]. In contrast to these methods, our ap-
proach relies on abstract domains which are well-founded by construction and
therefore do not require explicit checks.

Dafny, a language and a program verifier for functional correctness [RL10],
employs a very similar method to prove a loop (or a recursive call) termination.
First, each Dafny type has an ordering, values are finite, and, except for inte-
gers, values are bounded from below. Second, Dafny offers a special decrease
predicate. Now, if one can provide a tuple of variables (a termination metric)
for which decrease holds then termination can be concluded (note below a
special case of integer variables). A termination metric can be suggested by a
developer or guessed using predefined heuristics. Effectively, this method maps
one to one to strict order relational domains used in LOOPFROG.

It is interesting to note one particular case in Dafny, that is, if integer vari-
able is used in termination metric than an additional invariant is required,
namely, the existence of the minimal element in ordering. LOOPFROG usually
deals with machine integers and, thus, enjoys having a minimum by design.
But in Dafny integers are unbounded from below and, therefore, it has to prove
a simple invariant for integer, for instance, check if the integer variable is ≥ 0.
Thus, Dafny already combines state and transition invariants, the research di-
rections which is yet to be explored in LOOPFROG.

Altogether, successful usage of the relatively simple predefined heuristics
in Dafny and our experiments supports the main claim of this chapter: light-
weight analysis based on simple heuristics is often enough to prove many loops
terminating.
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Summary

In this Chapter we present an extension to a loop summarization algorithm
such that it correctly handles termination properties while constructing a loop-
less program over-approximation. To that end, we employ abstract domains
that encode transition invariants, i.e., relations over pre- and post-state of the
summarized loop. Termination of loops may be established at the same time,
by checking compositionality and disjunctive well-foundedness of the discov-
ered transition invariants. We implemented the algorithm in the LOOPFROG

tool (www.verify.inf.usi.ch/loopfrog) and demonstrate the practicality of
our approach on a large set of benchmarks including open-source programs
and Windows device drivers. Though theoretically weaker than existing path
exploration-based algorithms like TERMINATOR, it achieves the comparable prac-
tical result with a solid advantage in time performance. Besides, the method
suggests that existing abstract domain-based abstraction techniques can be ex-
tended to support reasoning about termination. For that, compositionality and
d.wf.-ness should be established either for the individual invariants or for the
abstract domains used to discover them.

www.verify.inf.usi.ch/loopfrog
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Chapter 6

Conclusion

If you know where you’re going
— you aren’t lost!

Sport orienteering wisdom

The discovery of an appropriate abstraction is a fundamental step in es-
tablishing a successful verification framework. Abstraction not only reduces
the computational burden of verification, but also makes it possible to verify
infinite-state software models. Also, as noted by Clarke, Grumberg and Peled
in the seminal “Model checking” book [EMCGP99]:

Abstraction is probably the most important technique for reducing the
state explosion problem.

This thesis is a step towards understanding of what is a right abstraction, how
it should be discovered and used to enable efficient analysis of programs by
formal verification tools.

6.1 Contributions

Synergy of fast and precise abstraction in the abstraction-refinement loop
First, this thesis reports on a new approach to the abstraction refinement that
combines precise and approximated techniques. The new algorithm benefits
from the precise abstraction computation, as it allows to avoid too many it-
erations due to spurious transitions of the abstract model. At the same time,
fast abstraction computation helps to discover more of previously untouched
spurious behaviors. Moreover, by exploiting the localized-abstraction frame-
work, algorithm reduces the abstraction computation to the parts of the system

109
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that are relevant to the property and keeps the approximated abstraction in all
parts of the program that are irrelevant to prove the property. This technique
is orthogonal to any particular abstraction or refinement procedure and can be
used for any existing abstraction-refinement combination.

The conducted evaluation compares the new technique with the classical
precise and imprecise algorithms. These tests with various benchmarks show
that the new approach systematically outperforms both precise and imprecise
techniques. The results confirm that the new technique achieves the goal of
reducing the number of iterations of the CEGAR loop.

Based on evaluation results we also developed a threshold-based optimiza-
tion that further restricts precise computation in order to avoid unnecessary
application of expensive quantifier elimination.

Program abstraction by loop summarization Second, a novel algorithm for
program abstraction using symbolic abstract transformers is described. The
algorithm computes an abstract model of a program with respect to a given
abstract interpretation by replacing loops and function calls in the control flow
graph by their symbolic transformers. The run-time of the new algorithm is
linear in the number of looping constructs in a program and a finite number
of (relatively simple) decision procedure calls is used for discovery of every
abstract symbolic transformer. Therefore, it addresses the perennial problem
of the high complexity of computing abstract fixpoints.

The procedure over-approximates the original program, which implies sound-
ness of the analysis, but, as any other abstraction-based technique, it can in-
troduce false positives on the consequent phase of analysis of the constructed
abstract model. An additional benefit of the technique is its ability to generate
leaping counterexamples, which are helpful for diagnosis of the error or for
filtering spurious warnings. The conducted experimental evaluation demon-
strates the best error-detection and error-discrimination rates comparing to a
broad selection of static analysis tools.

Light-weight program termination analysis Third, this thesis describes an ap-
proach for the light-weight program termination analysis. For a sequential pro-
gram, termination of all loops is enough to conclude program termination,
therefore we focused our analysis on individual loops. The new algorithm is
based on loop summarization and employs relational abstract domains to dis-
cover transition invariants for loops. It uses compositionality of a transition
invariant as a completeness criterion, i.e., that a discovered transition invari-
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ant holds for any execution through the loop. If such an invariant exists and it
is (disjunctively) well-founded, then the loop is guaranteed to terminate. Well-
foundedness can be checked either by an application of a quantifier-supporting
decision procedure or be ensured by construction. In the latter case an abstract
domain for producing candidates for transition invariants should be chosen
appropriately.

Note, that, although this algorithm is theoretically incomplete (because a
compositional transition invariant does not always exist and the ability to dis-
cover transition invariants is restricted by expressiveness of the selected ab-
stract domains) the practical evaluation demonstrates its effectiveness. We ap-
plied new termination analysis to numerous benchmarks including Windows
device drivers and demonstrated high scalability as well as precision level that
matches to the state-of-the-art path enumeration-based algorithms such as TER-
MINATOR and CTA.

In contrast to other methods, our algorithm performs both loop summariza-
tion and transition invariant inference at the same time, thus, both safety- and
liveness properties of loop semantics are preserved. Also, it utilizes a family of
simple, custom abstract domains whereas other works in termination analysis
often use off-the-shelf domains; it seems very interesting to note that simpler
domains can go a long way in solving those problems, while keeping computa-
tional costs low.

Implementations The algorithm that combines fast and precise abstraction
was implemented on top of a CEGAR-based model checker SATABS. The pro-
gram summarization algorithm and program termination analysis were imple-
mented in our tool LOOPFROG, that performs static analysis for ANSI-C pro-
grams. The tools and the experimental results (reported in this thesis) are
available respectively at:

• www.verify.inf.usi.ch/projects/synergy

• www.verify.inf.usi.ch/loopfrog

• www.verify.inf.usi.ch/loopfrog/termination

6.2 Future Work

Loop summarization as a helper to loop invariant-based code motion Loop
invariant-based code motion is known to be an effective code optimization dur-
ing compilation [ASU86]. Recently it received an additional attention because

www.verify.inf.usi.ch/projects/synergy
www.verify.inf.usi.ch/loopfrog
www.verify.inf.usi.ch/loopfrog/termination
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of active research in just-in-time compilation for dynamic typed languages such
as JavaScript and PHP. Despite it is complicated by the dynamic nature of the
targeted languages, we believe specially designed abstract domains for both
state and transition invariants can help to discover assumptions (e.g., loop ter-
mination, variable bounds, branch frequencies) that compiler can rely on for
the code motion.

Loop invariants to speed up paths exploration for symbolic execution En-
gineering advances in symbolic execution for software testing purposes (e.g.
DART [GKS05], SAGE [GLM08], KLEE [CDE08], S2E [CKC11]) stressed out
the problem of paths explosion in program analysis — a problem of a rapid in-
crease in a number of paths that have to be considered for a thorough testing of
a software. Paths explosion is a particular form of state-space explosion, and,
the same way as a latter one, is often caused by loops in a program. To fight it
one may apply problem-tailored abstraction of several paths in one satisfying
a particular criteria. If a technique can also be effectively deployed within an
existing symbolic execution framework the speed up in paths exploration can
be achieved.

We consider loop summarization as a potential candidate to address the
paths explosion problem since it focuses on abstraction of loop behaviors. As
a future work we would like to identify abstract domains that can be used
for paths grouping and evaluate it within a path exploration framework or an
automated testing framework.

Problem-specific abstract domains for termination (liveness) analysis Addi-
tional relational abstract domains should be considered for termination (live-
ness) analysis in areas where it is appropriate. Possible applications include:

• Verification of liveness properties in protocols implementations with ab-
stract domains used to ensure the message ordering.

• Verification of liveness properties in concurrent programs with abstract
domains employed to express the independence of termination from thread
scheduling or the execution progress over all threads at once.

Recent attempt to build a bridge between transition invariants-based termi-
nation analysis and size-change termination by Heizmann et al. [HJP11] sug-
gests that relatively well-studied size-change graphs can be adopted as abstract
domains.
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As a stand-alone theoretical program we see definition of class of systems
and properties for which termination (liveness) can be proved by induction,
i.e., by guess and proof of the base step (discovery of a transition invariant)
and proof of the inductive step (compositionality of a transition invariant).

Loop invariants on demand for dynamic analysis Dynamic analysis (i.e.,
analysis of program traces) is a widely applied instrument in software engineer-
ing. It can be used, for instance, to discover likely program invariants [EPG+07]
that can be valuable for compilation optimization, testing, thread scheduling,
etc. Instead of likely invariants we want to contribute with real program in-
variants (both state and transition ones), but discover them on demand, based
on abstract domains defined using the constraints from dynamic analysis.

Combined state/transition invariants abstract domains for conditional termi-
nation (liveness) Cook et. al. aim to compute a loop precondition that implies
termination and use it to establish conditional termination [CGLA+08]. A com-
bined state/transition invariants can be used for the similar purpose.

It is also interesting to figure out if the negative result of transition invariant
candidate check can be mapped directly to a non-terminating counterexample
or precondition. For instance, the failure to ensure the total order between
all values of iterator i in a loop may hint the integer overflow that leads to
non-termination.

Integration of the fast/precise abstraction within other abstraction-refinement
loops (e.g., interpolation-based model checking) It is interesting to imple-
ment the combined fast/precise abstraction approach in tools that are based
on interpolation for predicate discovery [HJMM04, JM06]. Another direc-
tion to consider is the investigation of the same trade-off between precise and
approximated approaches in the context of purely interpolation-based model
checking[McM06], which does not need predicate abstraction.

Besides, it may be interesting to establish fine-grained correspondence be-
tween the semantics of the analyzed model (e.g., semantics of C code instruc-
tions), predicate discovery and the combination of fast/precise abstraction.
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Appendix A

Additional experimental data

In Chapter 3 we reported an experimental evaluation of abstraction-refinement
techniques on the Verisec test suite by Ku et al. [KHCL07]. Table A.1 reports the
raw results of the experiment, which were used to draw plots in Figures 3.3,
3.4, 3.5, 3.6, 3.7 and 3.8 in Section 3.4.2.

Figure A.1 presents an example of a class that implement an abstract do-
main in LOOPFROG (as presented in Chapter 4).
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126 Additional experimental data

#include <ansi−c/expr2c . h>
#include <ansi−c/ c_ types . h>
#include <goto−programs/ s t r i n g _ a b s t r a c t i o n . h>
#include <s td_expr . h>
#include <e x p r _ u t i l . h>
#include <po in ter_expr . h>
#include <s t r i n g _ u t i l s . h>
#include < i n v a r i a n t _ t e s t . h>

c lass n u l l _ p o i n t e r _ i n v a r i a n t _ t e s t t : public i n v a r i a n t _ t e s t t
{
public :

n u l l _ p o i n t e r _ i n v a r i a n t _ t e s t t ( con t ex t t &contex t ) :
i n v a r i a n t _ t e s t t ( "NP" , "NULL−Po in te r " , contex t ) {}

v i r tua l ~n u l l _ p o i n t e r _ i n v a r i a n t _ t e s t t ( void ) {}
v i r tua l void g e t _ i n v a r i a n t s (
const loop_summaryt &summary , s td : : set<exprt> &p o t e n t i a l _ i n v a r i a n t s ) ;

} ;

// Purpose : T e s t s f o r p o i n t e r o f f s e t v a l i d i t y p r e s e r v a t i o n
void n u l l _ p o i n t e r _ i n v a r i a n t _ t e s t t : : g e t _ i n v a r i a n t s ( const loop_summaryt &summary ,

s td : : set<exprt> &p o t e n t i a l _ i n v a r i a n t s )
{

namespacet ns ( contex t ) ;
stream_message_handlert mh( s td : : cout ) ;
s t r i n g _ a b s t r a c t i o n t abs ( context , mh) ;
s td : : l i s t <exprt> po in t e r s ;

// f i n d some p o i n t e r s in loop v a r i a b l e s
for ( s td : : set<exprt >:: c o n s t _ i t e r a t o r i t=summary . v a r i a n t . begin ( ) ;

i t !=summary . v a r i a n t . end ( ) ; i t++)
{

i f ( i t−>type ( ) . id()== " po in te r " && i s_cha r_ t ype ( i t−>type ( ) . subtype ( ) ) )
po in t e r s . push_back ( i t ) ;

}

// t e s t the i n v a r i a n t f o r e v e r y p o i n t e r
for ( s td : : l i s t <exprt >:: i t e r a t o r i t = po in t e r s . begin ( ) ; i t !=po in t e r s . end ( ) ; i t++)
{

same_object_exprt i n v a r i a n t ( i t , gen_zero ( i t−>type ( ) ) ) ;
i n v a r i a n t . make_not ( ) ;
p o t e n t i a l _ i n v a r i a n t s . i n s e r t ( i n v a r i a n t ) ;

}
}

Figure A.1. An example of the class that extends generic invariant_test class to
implement a domain of (non-)NULL pointer preservation invariants. Every discovered
potential invariant is added to a common pool and will be checked later in program
execution.



Tables

3.1 Verification results on the example presented in Figure 3.1(b).
Total, Abs, MC, Ref refer to the time, in seconds, for total ver-
ification, abstraction, model checking and refinement respec-
tively; Iter refers to the number of iterations of the abstraction-
refinement loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 inn-encode 2.4.3 program: total time and number of refine-
ment iterations required to verify 28 memory-bounds claims (au-
tomatically planted by SATABS); TO stands for time-out (3600
sec.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Examples of abstract domains tailored to buffer-overflow analysis. 73
4.2 Effectiveness of various static analysis tool in Zitser et al. [ZLL04]

and Ku et al. [KHCL07] benchmarks: detection rate R(d), false
positive rate R( f ), and discrimination rate R(¬ f |d). . . . . . . . . 75

4.3 Large-scale evaluation of LOOPFROG on the programs from wu-
ftpd, texinfo, gnupg, inn, and freecell-solver tools suites. . . . . . 76

4.4 Comparison between LOOPFROG and an interval domain: The
column labelled ‘Total’ indicates the number of properties in the
program, and ‘Failed’ shows how many of the properties were
reported as failing; ‘Ratio’ is Failed/Total. . . . . . . . . . . . . . . 78

5.1 Templates of abstract domains used to draw transition invariant
candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Aggregated data of comparison between LOOPFROG, CTA and
TERMINATOR on the Verisec 0.2 suite. . . . . . . . . . . . . . . . . . 97

5.3 SNU real-time benchmarks suite (continued): comparison of LOOP-
FROG with CTA and TERMINATOR. . . . . . . . . . . . . . . . . . . . . 98

5.4 Powerstone benchmark suite (continued): comparison of LOOP-
FROG with CTA and TERMINATOR. . . . . . . . . . . . . . . . . . . . . 100

127



128 Tables

5.5 Jhead-2.6 utility: comparison of LOOPFROG with CTA and TERMI-
NATOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Bchunk 1.2.0 utility: comparison of LOOPFROG with CTA and TER-
MINATOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Aggregated data of the comparison between LOOPFROG and CTA
on Windows device drivers . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 Ku et. al. benchmark suite [KHCL07]: detailed results for WP,
NewST, NewST with a threshold k = 7, SATQE, NewSP and NewST

+NewSP. Red color is used to show that the time limit or refine-
ment iterations limits was reached. . . . . . . . . . . . . . . . . . . 125



Figures

1.1 Verification of buffer access correctness in all these programs can
be done, for instance, by analysis of the abstract system con-
structed using only two predicates: i ≥ 0 and i < SI Z E . . . . . . 6

2.1 The example of a program and its program graph . . . . . . . . . 16

3.1 Sample program for which the approximated abstraction causes
spurious paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Client-server updating mechanism benchmark: total running time
in seconds (left) and number of iterations (right) plotted against
the number of clients. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Benchmark suite [KHCL07]: comparison of time in seconds (left)
and number of iterations (right) used by WP and NewST. . . . . . 46

3.4 Benchmark suite [KHCL07]: scatter plot of time (left) and num-
ber of iterations (right) used by WP and NewST with a threshold.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Benchmark suite [KHCL07]: comparison of time (left) and num-

ber of iterations (right) used by NewST and NewST with a thresh-
old. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Benchmark suite [KHCL07]: scatter plot of time (left) and num-
ber of iterations (right) used by SATQE and NewSP. . . . . . . . . 50

3.7 Benchmark suite [KHCL07]: scatter plot of time (left) and num-
ber of iterations (right) used by NewSP and NewST + NewSP. . . . 50

3.8 Benchmark suite [KHCL07]: scatter plot of time (left) and num-
ber of iterations (right) used by NewST and NewST + NewSP with
thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Architecture of LOOPFROG . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 An example of a terminating loop with a strictly increasing iterator 93

129



130 Figures

A.1 An example of the class that extends generic invariant_test

class to implement a domain of (non-)NULL pointer preservation
invariants. Every discovered potential invariant is added to a
common pool and will be checked later in program execution. . 126



List of Algorithms

1 A new abstraction-refinement algorithm combining fast and pre-
cise abstractions. α — abstract transition relation (symbolic rep-
resentation); T — concrete transition relation; Π— predicate set;
π — counterexample; C — constraints added to abstract transi-
tion relation on refinement step. . . . . . . . . . . . . . . . . . . . . 39

2 An algorithm that implements a combination of fast and precise
abstractions together with localized abstraction. . . . . . . . . . . . 42

3 The algorithm with localized abstraction and on-the-fly threshold
computation. NTO — time-out value for the PreciseAbstrac-

tion; Nσ — computed threshold value; TimeoutWasReached —
flag, which tracks if PreciseAbstraction was stopped by time-
out Nσ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Arbitrary program summarization . . . . . . . . . . . . . . . . . . . . 67

5 Compositional Termination Analysis [KSTW10] . . . . . . . . . . . 88
6 Routines of loop summarization (details are in Chapter 4) . . . . . 90
7 Loop summarization with transition invariants. . . . . . . . . . . . 92

131



132 LIST OF ALGORITHMS

Bibliography

[ABD+07] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian
Hackett, and Peter Hawkins. An overview of the Saturn project. In
Manuvir Das and Dan Grossman, editors, Workshop on Program
Analysis for Software Tools and Engineering, pages 43–48. ACM,
2007.

[Ale96] Aleph One. Smashing the stack for fun and profit. Phrack Maga-
zine, 7(49), 1996.

[AM79] E. Ashcroft and Z. Manna. The translation of ’go to’ programs to
’while’ programs. pages 49–61, 1979.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples, techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1986.

[BAL09] Amir M. Ben-Amram and Chin Soon Lee. Ranking functions for
size-change termination II. Logical Methods in Computer Science,
5(2), 2009.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development, Coq’Art:the Calculus of Inductive Construc-
tions. Springer-Verlag, 2004.

[BCC+07] Josh Berdine, Aziem Chawdhary, Byron Cook, Dino Distefano,
and Peter O’Hearn. Variance analyses from invariance analyses.
SIGPLAN Not., 42(1):211–224, 2007.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic model checking without BDDs. In Rance
Cleaveland, editor, Tools and Algorithms for Construction and Anal-
ysis of Systems, volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[BCDR04] Thomas Ball, Byron Cook, Satyaki Das, and Sriram K. Rajamani.
Refining approximations in software predicate abstraction. In
Tools and Algorithms for Construction and Analysis of Systems,
pages 388–403, 2004.



BIBLIOGRAPHY 133

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and
beyond. In Logic in Computer Science, pages 428–439. IEEE Com-
puter Society, 1990.

[BCP06] Ittai Balaban, Ariel Cohen, and Amir Pnueli. Ranking abstraction
of recursive programs. In E. Emerson and Kedar Namjoshi, edi-
tors, Verification, Model Checking, and Abstract Interpretation, vol-
ume 3855 of Lecture Notes in Computer Science, pages 267–281.
Springer Berlin / Heidelberg, 2006.

[BDNL02] Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Software
update via mobile agent based programming. In Proceedings of
the 2002 ACM symposium on Applied computing, SAC ’02, pages
32–36, New York, NY, USA, 2002. ACM.

[BHT06] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Lazy
shape analysis. In Computer Aided Verification, volume 4144 of
Lecture Notes in Computer Science, pages 532–546. Springer, 2006.

[BL99] Saddek Bensalem and Yassine Lakhnech. Automatic generation of
invariants. Form. Methods Syst. Des., 15(1):75–92, 1999.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K.
Rajamani. Automatic predicate abstraction of c programs. In Pro-
gramming Language Design and Implementation, pages 203–213,
2001.

[BMS05] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear
ranking with reachability. In CAV, pages 491–504. Springer, 2005.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean
and cartesian abstraction for model checking c programs. In
Tiziana Margaria and Wang Yi, editors, Tools and Algorithms for
Construction and Analysis of Systems, volume 2031 of Lecture
Notes in Computer Science, pages 268–283. Springer, 2001.

[BPR03] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. STTT, 5(1):49–58,
2003.



134 LIST OF ALGORITHMS

[BPST10] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei
Tsitovich. The OPENSMT solver. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 6015, pages 150–153, Paphos, Cyprus, 2010.
Springer.

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Com-
puter Aided Verification, volume 2102 of Lecture Notes in Computer
Science, pages 260–264. Springer, 2001.

[BR02] T. Ball and S. K. Rajamani. Generating abstract explanations of
spurious counterexamples in C programs. Technical Report 2002-
09, Microsoft Research, September 2002.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691,
August 1986.

[BSBA07] Chiara Braghin, Natasha Sharygina, and Katerina Barone-Adesi.
Automated verification of security policies in mobile code. In In-
tegrated Formal Methods IFM07, volume 4591 of Lecture Notes in
Computer Science, pages 37–53. Springer, 2007.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Principles of Programming Languages,
pages 238–252, 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Principles of Programming Languages, pages 269–
282, 1979.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation.
In PLILP, Lecture Notes in Computer Science, pages 269–295.
Springer, 1992.

[CC99] Patrick Cousot and Radhia Cousot. Refining model checking by
abstract interpretation. Automated Software Engineering, 6:69–
95, 1999.



BIBLIOGRAPHY 135

[CC04] Robert Clarisó and Jordi Cortadella. The octahedron abstract
domain. In 11th International Symposium on Static Analysis,
SAS2004, volume 3148 of Lecture Notes in Computer Science,
pages 312–327. Springer, 2004.

[CCF+05] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Ri-
val. The ASTREÉ analyzer. In Shmuel Sagiv, editor, 14th
European Symposium on Programming (ESOP), volume 3444 of
Lecture Notes in Computer Science, pages 21–30. Springer, 2005.

[CCF+07] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram,
M. Roveri, and R. K. Shyamasundar. Computing predicate ab-
stractions by integrating BDDs and SMT solvers. In FMCAD, pages
69–76. IEEE, 2007.

[CCG+04] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular verification of software components in C.
IEEE Trans. Software Eng., 30(6):388–402, 2004.

[CCG+08] Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and
Hongseok Yang. Ranking abstractions. In Sophia Drossopoulou,
editor, Programming Languages and Systems, volume 4960 of Lec-
ture Notes in Computer Science, pages 148–162. Springer Berlin /
Heidelberg, 2008.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Richard Draves and Robbert van Re-
nesse, editors, OSDI, pages 209–224. USENIX Association, 2008.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Dexter Kozen, editor, Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer, 1981.

[CGJ+00] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proceedings of
the 12th International Conference on Computer-Aided Verification,
volume 1855 of Lecture Notes in Computer Science, pages 154–
169. Springer-Verlag, 2000.



136 LIST OF ALGORITHMS

[CGKS02] E.M. Clarke, A. Gupta, J.H. Kukula, and O. Strichman. SAT
based abstraction-refinement using ILP and machine learning
techniques. In Computer Aided Verification, pages 265–279, 2002.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking and
Abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, 1994.

[CGLA+08] Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko,
and Mooly Sagiv. Proving conditional termination. In CAV, vol-
ume 5123 of LNCS, pages 328–340. Springer, 2008.

[CGP99] E.M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, 1999.

[CH78a] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Principles of
Programming Languages, pages 84–96, 1978.

[CH78b] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of
Linear Restraints Among Variables of a Program. In POPL, pages
84–96, 1978.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2e: a platform for in-vivo multi-path analysis of software sys-
tems. SIGARCH Comput. Archit. News, 39:265–278, March 2011.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In Kurt Jensen and Andreas Podel-
ski, editors, Tools and Algorithms for Construction and Analysis of
Systems, volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[CKRW10] Byron Cook, Daniel Kroening, Philipp Ruemmer, and Christoph
Wintersteiger. Ranking function synthesis for bit-vector relations.
In TACAS, pages 236–250. Springer, 2010.

[CKSY04] E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate
abstraction of ANSI-C programs using SAT. Formal Methods in
System Design, 25(2-3):105–127, 2004.



BIBLIOGRAPHY 137

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and
Karen Yorav. SATABS: SAT-based predicate abstraction for ANSI-
C. In TACAS, LNCS, pages 570–574. Springer, 2005.

[Cou01] Patrick Cousot. Abstract interpretation based formal methods and
future challenges, invited paper. In Informatics — 10 Years Back,
10 Years Ahead, volume 2000 of Lecture Notes in Computer Science,
pages 138–156. Springer-Verlag, 2001.

[CP93] Ritu Chadha and David A. Plaisted. On the mechanical derivation
of loop invariants. J. Symb. Comput., 15(5/6):705–744, 1993.

[CPR05] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstrac-
tion refinement for termination. In SAS, volume 3672 of LNCS,
pages 87–101. Springer, 2005.

[CPR06] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termi-
nation proofs for systems code. In PLDI, pages 415–426. ACM,
2006.

[CPR09] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Sum-
marization for termination: no return! Formal Methods in System
Design, 35(3):369–387, 2009.

[CS01] Michael Colón and Henny Sipma. Synthesis of linear ranking
functions. In TACAS, pages 67–81. Springer, 2001.

[CTVW03] E.M. Clarke, M. Talupur, H. Veith, and D. Wang. SAT based predi-
cate abstraction for hardware verification. In Theory and Applica-
tions of Satisfiability Testing, pages 78–92, 2003.

[CU98] M. Colón and T.E. Uribe. Generating Finite-State Abstractions of
Reactive Systems Using Decision Procedures. In Computer Aided
Verification, pages 293–304, 1998.

[DD01] Satyaki Das and David L. Dill. Successive approximation of ab-
stract transition relations. In LICS ’01: Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Science, page 51,
Washington, DC, USA, 2001. IEEE Computer Society.



138 LIST OF ALGORITHMS

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with
predicate abstraction. In CAV ’99: Proceedings of the 11th Interna-
tional Conference on Computer Aided Verification, pages 160–171,
London, UK, 1999. Springer-Verlag.

[DGG00] Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for
the automatic generation of ranking functions. In Workshop on
Advances in Verification, pages 1–8, 2000.

[Don02] Mark E. Donaldson. Inside the buffer overflow attack: Mech-
anism, method, & prevention. The SANS’ Information Security
Reading Room. http://www.sans.org/, April 2002.

[DPG97] Du Dingzhu, Panos M. Pardalos, and Jun Gu, editors. Satisfia-
bility Problem: Theory and Applications. American Mathematical
Society, Boston, MA, USA, 1997.

[DRS03] Nurit Dor, Michael Rodeh, and Shmuel Sagiv. CSSV: towards a
realistic tool for statically detecting all buffer overflows in C. In
PLDI, pages 155–167, 2003.

[EMCGP99] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model checking. MIT Press, 1999.

[eNS03] Niklas Eén Niklas Sörensson. An extensible SAT-solver. In Pro-
ceedings of the Sixth International Conference on Theory and Appli-
cations of Satisfiability Testing, LNCS 2919, pages 502–518, 2003.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCa-
mant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The
daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69:35–45, December 2007.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In
Theory and Applications of Satisfiability Testing, pages 502–518,
2003.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation
assistant for esc/java. In José Oliveira and Pamela Zave, editors,
FME 2001: Formal Methods for Increasing Software Productivity,
volume 2021 of Lecture Notes in Computer Science, pages 500–
517. Springer Berlin / Heidelberg, 2001.

http://www.sans.org/


BIBLIOGRAPHY 139

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static checking
for java. SIGPLAN Not., 37:234–245, May 2002.

[Fra] Frama-C. http://frama-c.com/.

[GCNR07] B. Gulavani, S. Chakraborty, A. Nori, and S. Rajamani. Automat-
ically refining abstract interpretations. Technical report, CFDVS,
IIT Bombay, 2007.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: di-
rected automated random testing. SIGPLAN Not., 40:213–223,
June 2005.

[GLAS09] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination
framework for tracking partition sizes. In POPL ’09: Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 239–251, New York, NY, USA,
2009. ACM.

[GLM08] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Au-
tomated whitebox fuzz testing. In NDSS. The Internet Society,
2008.

[GMC09] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed:
precise and efficient static estimation of program computational
complexity. In POPL ’09: Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 127–139, New York, NY, USA, 2009. ACM.

[God90] Patrice Godefroid. Using partial orders to improve automatic ver-
ification methods. In Edmund M. Clarke and Robert P. Kurshan,
editors, Computer Aided Verification, volume 531 of Lecture Notes
in Computer Science, pages 176–185. Springer, 1990.

[GR06] Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample
driven refinement for abstract interpretation. In Tools and Algo-
rithms for Construction and Analysis of Systems, volume 3920 of
Lecture Notes in Computer Science, pages 474–488. Springer, 2006.

[GR07] Denis Gopan and Thomas W. Reps. Low-level library analysis and
summarization. In Werner Damm and Holger Hermanns, editors,

http://frama-c.com/


140 LIST OF ALGORITHMS

Computer Aided Verification, volume 4590 of Lecture Notes in Com-
puter Science, pages 68–81. Springer, 2007.

[GS97a] S. Graf and H. Saidi. Construction of abstract state graphs with
PVS. In O. Grumberg, editor, Proc. 9th International Conference
on Computer Aided Verification (Computer Aided Verification’97),
volume 1254, pages 72–83. Springer Verlag, 1997.

[GS97b] Susanne Graf and Hassen Saïdi. Construction of abstract state
graphs with PVS. In Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

[GS05] A. Gupta and O. Strichman. Abstraction Refinement for Bounded
Model Checking. In Proceedings of the 8th International Conference
on Computer Aided Verification CAV’05, pages 112–124, 2005.

[HH95] Thomas A. Henzinger and Pei-Hsin Ho. Hytech: The cornell hy-
brid technology tool. In Hybrid Systems II, pages 265–293, Lon-
don, UK, 1995. Springer-Verlag.

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Ken-
neth L. McMillan. Abstractions from proofs. In Neil D. Jones and
Xavier Leroy, editors, Principles of Programming Languages, pages
232–244. ACM, 2004.

[HJMS02a] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy ab-
straction. In Proceedings of the 29th Symposium on Principles of
Programming (POPL’02), pages 58–70, 2002.

[HJMS02b] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gré-
goire Sutre. Lazy abstraction. In Principles of Programming Lan-
guages, pages 58–70, 2002.

[HJP11] Matthias Heizmann, Neil Jones, and Andreas Podelski. Size-
change termination and transition invariants. In Radhia Cousot
and Matthieu Martel, editors, Static Analysis, volume 6337 of Lec-
ture Notes in Computer Science, pages 22–50. Springer Berlin /
Heidelberg, 2011.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.



BIBLIOGRAPHY 141

[Hoa03] Tony Hoare. The verifying compiler: A grand challenge for com-
puting research. Journal of the ACM (JACM), 50(1):63–69, 2003.

[HPR97] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Veri-
fication of real-time systems using linear relation analysis. Formal
Methods in System Design, 11(2):157–185, 1997.

[IBM07] IBM Internet Security Systems. X-Force 2006 trend statistics.
http://www.iss.net/, January 2007.

[inn] https://www.isc.org/software/inn.

[JBS+07] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kroening, and
Christoph Wintersteiger. A first step towards a unified proof
checker for QBF. In Proceedings of SAT 2007, volume 4501 of Lec-
ture Notes in Computer Science, pages 201–214. Springer, 2007.

[JIGG05] Himanshu Jain, Franjo Ivancic, Aarti Gupta, and Malay K. Ganai.
Localization and register sharing for predicate abstraction. In
Tools and Algorithms for Construction and Analysis of Systems,
pages 397–412, 2005.

[JKSC05] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Ed-
mund M. Clarke. Word level predicate abstraction and refine-
ment for verifying rtl verilog. In William H. Joyner Jr., Grant Mar-
tin, and Andrew B. Kahng, editors, Design Automation Conference,
pages 445–450. ACM, 2005.

[JM05] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transi-
tion relation approximation. In Kousha Etessami and Sriram K.
Rajamani, editors, Computer Aided Verification, volume 3576 of
Lecture Notes in Computer Science, pages 39–51. Springer, 2005.

[JM06] R. Jhala and K. L. McMillan. A Practical and Complete Approach
to Predicate Refinement. In Tools and Algorithms for Construction
and Analysis of Systems, pages 459–473, 2006.

[JV00] Daniel Jackson and Mandana Vaziri. Finding bugs with a con-
straint solver. In ISSTA, pages 14–25, 2000.

[Kau98] Matt Kaufmann. Acl2 support for verification projects. In
Claude Kirchner and Hélène Kirchner, editors, Automated De-
duction — CADE-15, volume 1421 of Lecture Notes in Computer

http://www.iss.net/


142 LIST OF ALGORITHMS

Science, pages 220–238. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0054262.

[KHCL07] Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie.
A buffer overflow benchmark for software model checkers. In
R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer, editors,
Automated Software Engineering, pages 389–392. ACM, 2007.

[KM73] Shmuel Katz and Zohar Manna. A heuristic approach to program
verification. In IJCAI, pages 500–512, 1973.

[KS03] Daniel Kroening and Ofer Strichman. Efficient computation of re-
currence diameters. In Lenore D. Zuck, Paul C. Attie, Agostino
Cortesi, and Supratik Mukhopadhyay, editors, Verification, Model
Checking, and Abstract Interpretation, volume 2575 of Lecture
Notes in Computer Science, pages 298–309. Springer, 2003.

[KS06] Daniel Kroening and Natasha Sharygina. Approximating predi-
cate images for bit-vector logic. In Tools and Algorithms for Con-
struction and Analysis of Systems, Lecture Notes in Computer Sci-
ence, pages 242–256. Springer, 2006.

[KSTW10] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. Termination analysis with com-
positional transition invariants. In International Conference
on Computer-Aided Verification (CAV), Edinburgh, UK, 2010.
Springer.

[Kur95] Robert Kurshan. Computer-Aided Verification of Coordinating Pro-
cesses. Princeton University Press, Princeton, 1995.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Trans. Software Eng., 3(2):125–143, 1977.

[LAS00] Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing
static analyses. In Static Analysis (SAS), volume 1824 of Lecture
Notes in Computer Science, pages 280–301. Springer, 2000.

[LBC05] Shuvendu K. Lahiri, Thomas Ball, and Byron Cook. Predicate ab-
straction via symbolic decision procedures. In Computer Aided
Verification, Lecture Notes in Computer Science, pages 24–38.
Springer, 2005.



BIBLIOGRAPHY 143

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
change principle for program termination. In POPL, pages 81–92.
ACM, 2001.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for
Fast Predicate Abstraction. In Computer Aided Verification, Lecture
Notes in Computer Science, pages 424–437. Springer, 2006.

[McM93] K. L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers, 1993.

[McM02] Kenneth L. McMillan. Applying SAT methods in unbounded sym-
bolic model checking. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Computer Aided Verification, volume 2404 of Lecture Notes
in Computer Science, pages 250–264. Springer, 2002.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In Com-
puter Aided Verification, pages 123–136, 2006.

[MFH+07] Roman Manevich, John Field, Thomas A. Henzinger, G. Rama-
lingam, and Mooly Sagiv. Abstract counterexample-based refine-
ment for powerset domains. In PAC, volume 4444 of Lecture Notes
in Computer Science, pages 273–292. Springer, 2007.

[Min01a] Antoine Miné. A new numerical abstract domain based on
difference-bound matrices. In Programs as Data Objects: Interna-
tional Conference on the Theory and Application of Cryptographic
Techniques, volume 2053 of Lecture Notes in Computer Science,
pages 155–172. Springer, 2001.

[Min01b] Antoine Miné. The octagon abstract domain. In Analysis, Slicing,
and Transformation Workshop in Working Conference on Reverse
Engineering 2001, IEEE, pages 310–319. IEEE CS Press, October
2001.

[Min06] Antoine Miné. The octagon abstract domain. Higher Order Sym-
bolic Computation, 19(1):31–100, 2006.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient Theory
and Applications of Satisfiability Testing solver. In Proceedings of
the 38th Design Automation Conference (DAC’01), pages 530–535,
June 2001.



144 LIST OF ALGORITHMS

[Moy09] Yannick Moy. Automatic Modular Static Safety Checking for C Pro-
grams. PhD thesis, Université Paris-Sud, January 2009.

[MSA] MATHSAT. http://mathsat.itc.it.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris L. Hankin. Prin-
ciples of Program Analysis. Springer, 1999.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[PP90] Doron Peled and Amir Pnueli. Proving partial order liveness prop-
erties. In Mike Paterson, editor, ICALP, volume 443 of Lecture
Notes in Computer Science, pages 553–571. Springer, 1990.

[PR04a] Andreas Podelski and Andrey Rybalchenko. A complete method
for the synthesis of linear ranking functions. In VMCAI, pages
465–486. Springer, 2004.

[PR04b] Andreas Podelski and Andrey Rybalchenko. Transition invariants.
In LICS, pages 32–41. IEEE Computer Society, 2004.

[PR07] Andreas Podelski and Andrey Rybalchenko. ARMC: The logical
choice for software model checking with abstraction refinement.
In PADL, pages 245–259. Springer, 2007.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and veri-
fication of concurrent systems in cesar. In Mariangiola Dezani-
Ciancaglini and Ugo Montanari, editors, Symposium on Program-
ming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer, 1982.

[RCK07] Enric Rodríguez-Carbonell and Deepak Kapur. Generating all
polynomial invariants in simple loops. J. Symb. Comput.,
42(4):443–476, 2007.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interpro-
cedural dataflow analysis via graph reachability. In POPL ’95: Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 49–61, New York, NY, USA,
1995. ACM.

http://mathsat.itc.it


BIBLIOGRAPHY 145

[RL10] K. Rustan and M. Leino. Dafny: an automatic program verifier
for functional correctness. In Proceedings of the 16th interna-
tional conference on Logic for programming, artificial intelligence,
and reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg, 2010.
Springer-Verlag.

[RSY04] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symbolic im-
plementation of the best transformer. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract
Interpretation, volume 2937 of Lecture Notes in Computer Science,
pages 252–266. Springer, 2004.

[RV99] Alexandre Riazanov and Andrei Voronkov. Vampire. In Harald
Ganzinger, editor, CADE, volume 1632 of Lecture Notes in Com-
puter Science, pages 292–296. Springer, 1999.

[SAN] The SANS Institute. http://www.sans.org/.

[SI77] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array
bound checker. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’77,
pages 132–143, New York, NY, USA, 1977. ACM.

[SKH03] Axel Simon, Andy King, and Jacob M. Howe. Two variables per
linear inequality as an abstract domain. In Proceedings of the
12th International Workshop on Logic Based Program Synthesis and
Transformation (LOPSTR 2002), volume 2664 of Lecture Notes in
Computer Science, pages 71–89. Springer, 2003.

[SLAM98] Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer. Design-
ing the low-power m*core architecture, 1998.

[snu] SNU real-time benchmarks. http://archi.snu.ac.kr/

realtime/benchmark/.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data
flow analysis. Program Flow Analysis: theory and applications.
Prentice-Hall, 1981.

[SS96] João P. Marques Silva and Karem A. Sakallah. Grasp - a new
search algorithm for satisfiability. In International Conference on
Computer-Aided Design, pages 220–227, 1996.

http://www.sans.org/
http://archi.snu.ac.kr/realtime/benchmark/
http://archi.snu.ac.kr/realtime/benchmark/


146 LIST OF ALGORITHMS

[SSM04] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna.
Non-linear loop invariant generation using gröbner bases. In Prin-
ciples of Programming Languages, pages 318–329, 2004.

[SSM08] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna.
Constructing invariants for hybrid systems. Form. Methods Syst.
Des., 32(1):25–55, 2008.

[Tar81] Robert Endre Tarjan. Fast algorithms for solving path problems.
J. ACM, 28(3):594–614, 1981.

[Tur36] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., 2(42):230–265,
1936.

[Tur49] A.M. Turing. Checking a large routine. In Report of a Conference
on High Speed Automatic Calculating Machines, pages 67–69. Univ.
Math. Lab., Cambridge, 1949.

[Weg73] Ben Wegbreit. Heuristic methods for mechanically deriving in-
ductive assertions. In IJCAI, pages 524–536, 1973.

[Yic] YICES. http://yices.csl.sri.com.

[Z3] Z3. http://research.microsoft.com/projects/z3.

[ZLL04] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static
analysis tools using exploitable buffer overflows from open source
code. In Richard N. Taylor and Matthew B. Dwyer, editors, In-
ternational Symposium on Foundations of Software Engineering,
pages 97–106. ACM, 2004.

http://yices.csl.sri.com
http://research.microsoft.com/projects/z3

	Abstract
	Acknowledgements
	Preface
	Contents
	Introduction
	The necessity of software verification
	Major approaches to software verification
	Challenges in software verification
	Thesis statement and contributions
	Reducing CEGAR iterations by combining fast and precise abstraction
	Symbolic program summarization using abstract transformers
	Program termination analysis using loop summarization

	Outline

	Background, Concepts and Notation
	Program modelling
	Properties specification
	Invariants
	Security flaws and vulnerabilities

	Model checking
	Automated theorem proving
	Abstraction
	Abstraction of a transition system
	Abstract interpretation
	Predicate abstraction
	Abstraction-refinement loop


	Synergy of Precise and Fast Abstraction
	Introduction
	Precise abstraction vs. fast abstraction
	Precise abstraction
	Approximated abstraction
	Spurious behaviors

	Combining fast and precise abstractions
	Refining spurious transitions
	Refining spurious paths
	Localized abstraction

	Experimental evaluation
	Client-server updating mechanism benchmark
	Benchmark test suite from Ku et al. 
	A threshold for precise abstraction
	Evaluation on large-scale programs

	Related work and summary

	Program Summarization using Abstract Transformers
	Introduction
	Abstract interpretation
	Approaches to computation of an abstract transformer

	Summarization using symbolic abstract transformers
	Abstract summarization
	Summarization of loop-free programs
	Summarization of single-loop programs
	Summarization for arbitrary programs
	Leaping counterexamples

	Loopfrog
	Experimental evaluation
	Evaluation on the benchmark suites
	Large-scale benchmarks
	Comparison with the interval domain

	Related work and summary

	Termination Proofs via Loop Summarization
	Introduction
	Preliminaries
	Compositional termination analysis
	Loop summarization subroutines

	Loop summarization with transition invariants
	Invariant candidate selection
	Evaluation
	Related work and summary
	Relation to size-change termination principle
	Relation to other research in transition invariant-based termination


	Conclusion
	Contributions
	Future Work

	Additional experimental data
	List of Tables
	List of Figures
	List of Algorithms
	Bibliography

