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Abstract

In recent years, automated formal verification of software has progressed from a few research
labs into large-scale applications, such as cloud infrastructure and smart contracts. Formal
verification techniques based on model checking provide the necessary guarantees by ex-
ploring systems’ behaviour exhaustively and automatically. Moreover, they provide witnesses
(explanations) for the result of their analysis: a faulty behaviour, if there exists one, or a proof
of the absence of such behaviour.

However, the general problem that automated software verification is trying to solve
is undecidable. Despite this theoretical barrier, it is quite efficient on many instances that
arise in practice. We ascribe this (perhaps surprising) success to a combination of factors:
the relentless effort of researchers that come up with new verification procedures to tackle
classes of problems where existing techniques struggle; amazing progress in the foundational
technologies of satisfiability solving, especially in Satisfiability Modulo Theories (SMT); and in-
crease of available computational power through parallel and cloud computing. Nevertheless,
the growing complexity of real-world systems poses new challenges for formal verification,
especially for the scalability of the techniques.

The task of automated software verification has two parts: modelling the task in a formal
framework and solving the resulting mathematical problem. While modelling is a non-trivial
step in the verification process, it has been addressed widely, and there exist numerous
modelling concepts suitable for various systems. Solving, on the other hand, is a bottleneck
when it comes to complex modern programs. This thesis focuses on the solving part of
the task, where there is a need for new effective solutions. We assume the problems are
modelled symbolically, with formulas in first-order logic. Specifically, we work in the logical
framework of constrained Horn clauses (CHC) and research the mathematical problem of
deciding satisfiability of a CHC system. CHC satisfiability generalizes the common task
of verifying safety properties in transition systems, a widespread model in formal verification.
This task is complex and undecidable in general already if the language of the constraints
contains linear integer arithmetic. In our work, we argue that this task can be approached
by providing solutions at different levels, which we identify as foundational, verification and
cooperative layers of the problem. These correspond to decision and interpolation procedures,
sequential model-checking algorithms, and multi-agent solving approaches. We further
argue that the next (higher) layers build on, and interact with, the previous (lower) layers
and that working on the higher layers can significantly benefit from a deep understanding
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of the layers beneath them. Overall, we advance the field of automated software verification
by contributing solutions on all three layers.

On the foundational layer, we contribute a new interpolation algorithm for conflicts in the
theory of linear arithmetic. It extends the standard approach based on the Farkas lemma and
can compute logically stronger interpolants. Experimental evaluation in a model-checking
scenario shows that with our interpolation algorithm, the same model-checking algorithm
can successfully solve some problems on which it diverges using the original interpolation
algorithm.

On the verification layer, we invent the concept of transition power abstraction (TPA)
sequence and contribute TPA-based model-checking algorithms that address the known
problem of detecting deep counterexamples in transition systems. Moreover, we show that
the TPA sequence can be mined for candidates for transition invariants. This allows TPA-based
algorithms to prove systems safe by means largely orthogonal to existing techniques.

To support the development of verification techniques, we contribute GOLEM, a new
solver for the satisfiability of systems of constrained Horn clauses. The main features of
GOLEM are its tight integration with the underlying interpolating SMT solver and support
for multiple back-end solving algorithms. GOLEM is primarily meant to serve as a research
tool for further investigation of SMT-based algorithms for model checking and general Horn
solving. It was instrumental in developing our prototype implementation of the TPA-based
algorithms. However, it is also efficient compared to other Horn solvers in the latest edition
of CHC-COMP. As such, it can be used as the back end for domain-specific tools that model
various verification tasks in the CHC framework. It has already been included as a possible
back end for the software verifier Korn.

On the cooperative layer, we contribute an abstract framework that generalizes concepts
from induction-based model-checking algorithms. The abstraction aims explicitly at the
application in a multi-agent solving scenario where multiple instances of the same solver
exchange information and, in this way, cooperate to solve a single problem instance. We
instantiate the framework to obtain a parallel version of a successful PD-KIND algorithm and
experimentally show that exchanging information can significantly improve performance.
Since PD-KIND relies on interpolation as a sub-procedure, we use our novel interpolation
algorithm to obtain more diverse behaviour of the agents, and this constitutes a large part of
the performance improvement.
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Chapter 1

Introduction

Nowadays, the presence of software in our lives is inescapable. The problems caused by
software errors range from minor inconveniences to severe threats to human lives. Significant
resources are therefore applied to eliminate such errors and ensure that programs conform to
their specifications. Testing is the traditional method for detecting bugs in software systems.
Different testing methods, from unit tests through integration tests to system tests, aim to
detect problems in different phases of a development cycle. While testing is very good at
quickly detecting common issues, it suffers from two deficiencies. Firstly, designing the tests
requires a substantial manual effort. Secondly, testing can uncover errors but cannot prove
their absence.1 Moreover, testing often fails to cover the corner cases of the system under
test. These deficiencies of testing led to the development of semi-automated and later fully
automated formal methods that can also prove the absence of errors, not only their presence.
Such techniques fall under the broad notion of automated software verification.

1.1 Automated Software Verification

Formal verification applies logic-based methods to prove, in a mathematical sense, that a
system satisfies its specification. In the software domain, formal verification can be interactive
or automated. In interactive verification, a human user guides the verification tool in its search
for mathematical proof of correctness. Several popular large projects, such as Dafny [145],
seL4 [134] or CompCert [147, 148] heavily rely on interactive theorem provers for verification.
While effective, interactive verification can be very tedious and requires expert knowledge on
the user’s side to guide the tool successfully. On the other hand, automated formal verification
aims to eliminate the human factor from the process altogether. The growing complexity of
the systems being built nowadays requires automating the verification process as much as
possible. For this reason, automated software verification has attracted much attention in the
last two decades, not only in the research community but also in the industry. Companies such

1To quote Djikstra precisely: “Program testing can be used to show the presence of bugs, but never to show
their absence!” [76]
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2 1.1 Automated Software Verification

as Microsoft, Amazon, Meta and Ethereum Foundation are investing in automated reasoning
with the goal of providing formal proofs of correctness to their customers (see, e.g.,[53]).
From the theoretical perspective, the undecidability of the halting problem [70] represents
the fundamental barrier to what is possible to achieve in automated software verification.
We cannot hope to find an algorithm that would work and terminate on every single problem
instance of automated verification. Nevertheless, researchers from academia and industry are
developing new techniques and heuristics to constantly push the frontier of what is possible
in practice.

Logic plays a fundamental role in formal verification. The case for applying logic to
formally prove correctness of programs has been made very early in the history of computers
by such great names as Floyd, Hoare, Dijkstra and others [77, 97, 112]. Hoare logic [112] (also
Floyd-Hoare logic) is a paradigm for program verification that is still widely used nowadays.
The idea is to construct Hoare triples, annotations of the program statements of the form
{P}S{R} where S is the program statement, P is a precondition and Q is a postcondition.
Given a program state that satisfies the precondition P, executing the statement S yields a
state that satisfies the postcondition R. Hoare triples can serve as a proof of the correctness of
a program. They are still used today, e.g., in a modern automata-based approach to software
verification [110].

Another logic-based method for automated verification is model checking [64, 167]. In
short, model checking consists of formally modelling a system and its specification—for
example, with finite-state transition graphs and temporal logic formulas—and automatically
deciding if the specification holds in the model using efficient decision procedures. Full
automation, together with the ability to produce counterexamples (error traces) when the
specification is not satisfied, has been the key ingredient in the success and broader adoption
of model checking. Although theoretically model checking can verify finite-state systems
completely, it was initially used mainly for bug-finding due to scaling issues. A great leap
in scalability has been achieved by a switch from explicit graph representation to symbolic
representation.2 The advantage of symbolic reasoning is the ability to manipulate and reason
about large sets of states, instead of one state at a time. At first, binary decision diagrams
(BDDs) were used for the symbolic representation [46]. However, with the significant
advancement in satisfiability solving in the last two decades, most symbolic model checkers
now use logical formulas (propositional or first-order) to represent and reason about the
problem.

The first approach relying purely on a SAT solver was Bounded Model Checking (BMC) [29].
BMC formulates the existence of a counterexample path of fixed length in the system as a
satisfiability query. It iteratively increases the considered length until a counterexample is
found. If an upper bound on possible lengths can be computed, BMC can even prove the
system safe by refuting the existence of a counterexample of any possible length. However,
such an upper bound might not exist (in infinite-state systems) or might be prohibitively large

2Correspondingly, the original approach is now referred to as explicit-state model checking, while the latter is
now known as symbolic model checking.



3 1.1 Automated Software Verification

in practice. Nevertheless, BMC has proven to be an excellent bug-finding technique and is
still considered state-of-the-art even nowadays. A related technique, that aims to prove that
a given (safety) property holds in all states of the system, is k-induction [186]. It also uses a
BMC-style search for counterexamples, but it additionally attempts to construct an inductive
proof of safety (using increasing induction depth). This technique is complete for finite-state
systems if only loop-free paths are considered as potential counterexamples to induction.
A different approach based on BMC that can prove the system safe is Interpolation-based
Model Checking (IMC) [155]. IMC was the first algorithm to apply Craig interpolation [68]
to compute over-approximations of reachable states and use the over-approximations in a
fixed-point computation to prove that all reachable states satisfy the safety property. IMC
popularized the concept of Craig interpolation for abstraction in the verification community,
and this led to a large amount of research on interpolation procedures, as well as to several
new verification algorithms that rely on Craig interpolation to a lesser or greater extent [2,
4, 129, 157, 176, 177, 183]. However, the concept of abstraction in verification is more
general, and its importance was recognized even before Craig interpolation was introduced
to the verification community. Abstraction, in general, means deliberately ignoring properties
of the system deemed unimportant for the property that should be proven. It reduces the
number of states in the model, preventing the state-space explosion. If the abstract system is
proven safe, the original system is also safe. However, abstraction may introduce spurious
behaviour. If an abstract counterexample is found but does not correspond to a feasible
behaviour of the original system, the abstraction must be refined to exclude the spurious
counterexample. Predicate abstraction [100] is a common technique that abstracts a program
using a fixed set of predicates over the program variables. The construction of an abstract
system is fully automatic; however, initially, it could not refine the abstraction automatically.
This missing piece was provided by Counterexample-guided abstraction refinement (CEGAR)
framework [63]. CEGAR automatically analyzes spurious counterexamples and refines the
abstraction to rule out the infeasible path. Further improvements were achieved with Lazy
Abstraction [111], which refines the abstraction on demand instead of starting the analysis of
the refined system from scratch. Craig interpolants have also been successfully applied in the
context of lazy abstraction to discover relevant predicates automatically [157].

As mentioned before, many of the new model-checking techniques were enabled by the
incredible advancement in SAT solving [30]. However, in an orthogonal direction, the advance-
ment in SAT solving also fueled advancement in Satisfiability Modulo Theories (SMT) [17].
New efficient SMT solvers allowed the researchers to lift many model-checking techniques,
initially developed for hardware and relying on SAT solvers, to software verification. The
application of k-induction for software verification has been studied, e.g., in [21, 43, 79, 80].
The combination of predicate abstraction and CEGAR is the core solving algorithm in the
ELDARICA Horn solver [117]. Interpolation-based algorithms for the analysis of software were
proposed, e.g., in [157, 158, 159]. A thorough comparison of several SMT-based software
verification techniques—BMC, k-induction, predicate abstraction and lazy abstraction with
interpolants—on a large set of C programs, together with an overview of related work, can
be found in [22].
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Another breakthrough in symbolic model checking occurred with the introduction of
an algorithm called IC3 [41], later generalized to an approach dubbed Property Directed
Reachability (PDR) [85]. One of the key features of the algorithm is that, unlike the pre-
vious algorithms, it does not require unrolling the transition relation. Relatively quickly
after its introduction, it has become the dominant approach in hardware verification. The
algorithm has been studied thoroughly [104], and various modifications have been pro-
posed [18, 82]. Similar to other hardware model-checking algorithms, IC3/PDR has also
been lifted and applied in the domain of software [58, 59, 113]. Soon after its introduction,
PDR was generalized from transition systems to non-linear fixed-point operators, opening
the door for efficient compositional analysis of programs with (recursive) functions [113].
Continuing in this direction, SPACER algorithm [137] introduced two novel aspects: under-
approximating summaries and Model-based Projection (MBP). Under-approximating sum-
maries serve as caches of truly reachable states, which allow the algorithm to avoid repeated
work. MBP enables efficient computations of predecessors by under-approximating quan-
tifier elimination. The combination of CEGAR and IC3/PDR, named Counterexample to
Induction-guided Abstraction Refinement (CTIGAR), has been proposed in [31]. Property-
directed k-induction (PD-KIND) successfully replaced the inductive reasoning in IC3/PDR
with k-inductive reasoning [129].

1.1.1 Modelling Software Verification Problems as Constrained Horn Clauses

The earlier discussion highlighted that there is a large body of logic-based algorithms for
automated verification. These algorithms eventually represent the problem using logical
formulas and reduce subtasks to satisfiability checks, decided by underlying SAT or SMT solver.
However, software verifiers that implement these algorithms are typically developed for a
single domain, and non-trivial effort is required to successfully apply a concrete algorithm in
a concrete domain. Much of this work is repeated when the same algorithm is applied in a
new domain (such as a new programming language).

To overcome this problem hindering developments of software verification tools, the
framework of Constrained Horn Clauses (CHC) has been proposed as a unified, purely logic-
based, intermediate format for reasoning about software verification tasks [101]. Originally
named Horn-like clauses [101], they use the language of logical constraints to capture various
verification tasks (e.g., safety, termination and loop invariants computation) from different
domains such as transition systems, functional programs, procedural and recursive programs,
concurrent and distributed systems [101, 105, 118]. The advantage of CHC representation is
that it nicely separates the task of modelling a verification problem from the actual solving.
It represents an application of a well-known and important principle in software design—
separation of concerns. It avoids repeated engineering effort: a specialized CHC solver can be
re-used for different verification tasks across domains and programming languages. On the
side of the front end, the main task becomes the translation of the source code to the language
of constraints. Several CHC-based verification frameworks have already been developed, for
example, SEAHORN for C/C++ [107], JAYHORN for Java [132], RUSTHORN for Rust [154],



5 1.2 Challenges and Contributions

cooperative layer

verification layer

foundational layer

IcE/FiRE [Chap. 6]

TPA [Chap. 4] GOLEM [Chap. 5]

Decomposed Farkas
interpolants [Chap. 3]

Figure 1.1. Layered approach to CHC solving and our contributions

HORNDROID for Android [48], SolCMC for Solidity [5, 153]. At the back end, developing the
solver is freed from the complexities and peculiarities of a given application domain. It can
focus on a well-defined formal problem—satisfiability of a system of constrained Horn clauses.
Many techniques developed in the context of model checking and software verification have
been lifted to the uniform setting of CHC. They are now implemented in the specialized Horn
solvers, for example, SPACER [137], ELDARICA [117, 175], FREQHORN [93, 94], HOICE [52]
and others. Horn solvers now compete in an annual international competition CHC-COMP3

on a large set of benchmarks from various domains.

1.2 Challenges and Contributions

As mentioned in the previous section, many interesting problems in automated software
verification can be reduced to the problem of the satisfiability of a system of constrained Horn
clauses. However, this means that one has to pay the price for the powerful formalism of CHC:
satisfiability of CHC over most interesting theories (e.g., linear real or integer arithmetic) is
undecidable [119, 126, 137, 176]. Thus, we cannot hope to find a single algorithm to solve
all instances of CHC satisfiability: there is no “holy grail” that we could hope to discover.
Nevertheless, there are compelling reasons for developing techniques and tools for CHC
solving. On the theoretical side, there are specific subclasses of CHC satisfiability that are
decidable, for example, CHC over propositional logic or recursion-free CHC over linear integer
arithmetic [137, 176]. On the practical side, many interesting instances from industry can be
solved very efficiently. Researchers are continuously coming up with new improvements or
even whole new algorithms to attack the classes of problems not solvable before with existing
resources. However, many problems, especially related to scalability, persist.

3https://chc-comp.github.io

https://chc-comp.github.io
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In this thesis, we show how the challenge of automated software verification can be
approached on multiple levels and we present contributions on all layers. The layered ap-
proach and our contributions are depicted on Figure 1.1. The foundational layer represents
decision and interpolation procedures which constitute the backbone of logic-based verifica-
tion algorithms. The verification layer represents sequential verification algorithms which
verify software systems against their specification. On the cooperative layer, multiple agents
cooperate on solving a single instance of the verification problem. While research has been
conducted on all layers, it is often narrow in scope, focusing only on one layer at a time.
For example, Satisfiability Modulo Theories (SMT) solvers, which implement decision and
interpolation procedures for various theories of first-order logic, are often used as black
boxes in traditional software verifiers. While possible, we argue that such strict separation
does not unlock the full potential of SMT-based software verification. In our research we
promote a tight integration of the verification algorithm and the underlying SMT solver. This
integration is quite natural in the CHC framework; it can be found in the best CHC solvers
ELDARICA and SPACER. Similarly, on the cooperative layer, the large amount of computational
power available nowadays with multi-core and cloud computing can be easily utilized to
run multiple verification algorithm in parallel with a portfolio approach. However, only
full understanding of the sequential algorithms enables information exchange between the
individual agents and consequently cooperative learning for all agents. Multi-agent solving
with cooperative learning achieves greater improvement over sequential algorithms than
a pure portfolio. In our work, we have identified challenges across all three layers and
proposed solutions that are the contributions of this thesis.

At the foundational layer, we studied interpolation procedures for conflicts in linear real
arithmetic (LRA). This is a core subprocedure in the computation of interpolants in general
problems, not only in linear real arithmetic but also in linear integer arithmetic. As such, it
can significantly affect the performance of any interpolation-based model-checking algorithm
that analyzes systems with discrete or continuous behaviour. This work was motivated by the
problems at the verification layer, where interpolation-based verification algorithms relying
on existing interpolation procedure were sometimes diverging even on relatively simple
programs. We have developed and implemented a new interpolation algorithm for LRA to
address this problem.

At the verification layer, we have developed a novel concept of transition power abstraction
and created a model-checking algorithm that builds on this idea, utilizing interpolation and
SMT solving. This technique addresses the apparent scalability issue in existing model-
checking techniques when dealing with systems with deep counterexamples, i.e., systems that
exhibit faulty behaviour only after a very long time. Transition power abstraction automatically
computes abstract transitions that guide the search for faulty behaviour. Additionally, it can
be used to prove the absence of such faulty behaviour by discovering safe transition invariant
of the system. Another contribution at the verification layer is our new efficient Horn solver
GOLEM. GOLEM is tightly integrated with the interpolating SMT solver OpenSMT [122] and
offers several model-checking algorithms as the back-end reasoning engine, including our
novel algorithms based on the transition power abstraction. It is implemented in C++ and
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publicly available on GitHub4.
At the cooperative layer, we have formalized an abstract framework for induction-based

reasoning suitable for cooperative multi-agent solving with information exchange. Leveraging
the SMTS infrastructure for distributed constraint solving [152], we have implemented a
parallel version of the PD-KIND algorithm [129] as an instance of our proposed multi-agent
architecture. Next, we describe each of the contributions in more detail.

1.2.1 Decomposed Farkas Interpolants

Craig interpolants are key ingredients in interpolation-based model-checking algorithms, used
for computing abstractions or as candidates for inductive invariants. In the theory of linear
arithmetic—required for modelling any numerical properties of a system—an interpolant
is typically computed based on Farkas’ lemma [90]. Such an interpolant, called Farkas
interpolant, is always a single inequality. In model-checking, this property is not always
desirable and can even lead to divergence of the model-checking algorithm [179, 190].
This problem can be fixed on the level of the model checker, for example, by globally
monitoring progress and applying specialized techniques when a diverging behaviour has been
detected [190]. Alternatively, the model checker can apply Interpolation abstraction [177]
to restrict interpolants to conform to a prescribed form. A different approach is to keep the
model-checking algorithm unchanged and attempt to fix the problem at the foundational layer
by modifying the interpolation procedure. A specialized interpolation procedure ensuring
finite convergence property has been proposed to address this divergence problem in model
checking [179]. The disadvantage of these solutions is that they are rather intrusive. They
either introduce complexity to the model-checking algorithm [177, 190] or require a less
efficient decision procedure than the one used in state-of-the-art SMT solvers [179].

A mechanism for controlling the strength of an arithmetic interpolant that is not intrusive
has been proposed in [8]. However, it can only compute interpolants weaker than Farkas
interpolant (and stronger than its dual). In Chapter 3, we propose an interpolation procedure
for theory conflict over linear arithmetic that uses the methods from linear algebra to identify
independent components in the Farkas coefficients and decompose the Farkas interpolant into
multiple linear inequalities. Our approach is simple yet powerful. Similar to [8], it is not
intrusive. It only requires minor changes in the interpolation procedure, where the proof of
unsatisfiability in the form of Farkas coefficients is analyzed to discover linearly independent
components. Decomposition to multiple independent components yields a decomposed Farkas
interpolant in the form of a conjunction of linear inequalities. The decomposed interpolant
always implies the Farkas interpolant, i.e., it is logically stronger. Stronger interpolants can
be beneficial, for example, to compute tighter abstractions. We show that decomposed
interpolants can prevent divergence of the model-checking algorithm. The results presented
in Chapter 3 were published in the proceedings of TACAS 2019 [37] and in the extended
journal publication [38].

4https://github.com/usi-verification-and-security/golem/

https://github.com/usi-verification-and-security/golem/
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1.2.2 Transition Power Abstraction

In this line of research, we investigated transition systems, a common formal model for
hardware and software. Transition systems are characterized by a set of initial states, a set
of bad states and a transition relation that defines reachability in the system. The safety
problem in transition systems translates to the problem if some error state is reachable from
the initial states in a finite number of steps of the transition relation.

Existing model-checking algorithms struggle to scale when faced with unsafe systems
where only deep counterexamples exist. Deep counterexamples represent behaviours of the
system that reach an error state after a large number of transition steps, roughly in the order
of thousands. The reason existing algorithms struggle to scale is the inherent slow increment
of the safety horizon—a number of steps for which an algorithm in the current run has already
proved that no counterexample of that length exists.

The concept of transition power abstraction (TPA) is a solution to this problem. The idea is
to maintain a sequence of transition formulas where each element over-approximates twice as
many steps as its predecessor. This doubling abstraction enables doubling the safety horizon
with a single SMT query if the current abstraction is sufficiently precise. With this ability, the
algorithm can quickly rule out the existence of short counterexamples and focus the search
on the deeper parts of the state space. The key point is that all elements of the TPA sequence
are quantifier-free transition formulas, i.e., containing only two copies of the state variables.
This keeps the satisfiability queries representing the existence of (abstract) paths manageable
for the underlying SMT solver. Craig interpolation plays a crucial role in the computation
and refinement of the TPA sequence.

With the TPA sequence, it is possible to quickly reach far greater depths in the system
than traditional algorithms. However, it can also serve as a source of candidates for transition
invariants. Transition invariants over-approximate unbounded reachability in the system,
regardless of the initial or bad states. Intuitively, if a state s1 can reach state s2 in some number
of transition steps, then the pair (s1, s2) satisfies the relational property defined by the tran-
sition invariant. While transition invariants have been studied in connection to termination
and other liveness properties [141, 164, 165], they can also be used to prove safety.

Chapter 4 presents a novel model-checking algorithm based on the TPA sequence. We
show how the construction and refinement of the TPA sequence are elegantly interwoven with
checking the existence of bounded paths from initial to bad states. The experiments on a set of
challenging safety problems of multi-phase loops show a substantial improvement in detecting
deep counterexamples. In proving safety, the ability of the proposed algorithm is orthogonal
to other model-checking techniques. These results were published in the proceedings of
TACAS 2022 [36] and in the proceedings of FMCAD 2022 [35].

1.2.3 The Golem Horn Solver

In Chapter 5, we present GOLEM, a new efficient Horn solver for CHCs over linear real and
integer arithmetic. It can serve as a research tool for prototyping new ideas related to CHC
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solving and as a powerful back end for domain-specific verification tools. The key features of
GOLEM are:

• Tight integration with SMT solver GOLEM is tightly coupled with the underlying
interpolating SMT solver OPENSMT. Tight coupling brings several advantages for
GOLEM. The main advantage is full control over the solving and interpolation processes
in OPENSMT. From the engineering point of view, GOLEM re-uses mature and efficient
data structures of OPENSMT for term representation and manipulation. This saves
development time and makes GOLEM more efficient and less error-prone.

• Modular architecture The process of deciding CHC satisfiability is separated into
normalization, preprocessing and actual solving. The normalization creates an internal
representation of a CHC system in the form of a labeled multi-hypergraph which is the
representation on which the transformations in preprocessing and the solving algo-
rithms (back-end engines) operate. Preprocessing consists of several transformations
that take as input the graph representation and output a modified graph. These transfor-
mations are similar to the idea of optimization passes on intermediate representation in
compilers. The final graph of the preprocessed system is passed to the model-checking
algorithm in the chosen back-end engine.

• Multiple back-end solving engines The aim from the beginning of the development
was to implement multiple, mostly interpolation-based, algorithms for solving CHC
systems. GOLEM currently supports five different back-end engines: Bounded Model
Checking [29], k-induction [186], Lazy Abstraction with Interpolants [157] (also known
as IMPACT), Spacer [137], and TPA (Chapter 4). The modular architecture and tight
integration with the SMT solver enable easy prototyping of new algorithms as the
infrastructure of GOLEM already provides procedures to handle many subtasks, and the
engine developer can focus on the algorithm itself.

GOLEM has been crucial for developing and evaluating the TPA algorithms proposed in this
thesis. It was used in the experiments reported in TPA publications [35, 36]. It has also
successfully participated in the international CHC competition (CHC-COMP) in 2021 and
2022: It took second place in LRA-TS track and third place in LIA-Lin track in 2021. In
2022, it beat all solvers except the non-competing SPACER in the tracks LRA-TS, LIA-Lin and
LIA-nonlin. An official tool paper for GOLEM is currently under preparation.

1.2.4 The IcE/FiRE Framework for Cooperative Model Checking

Given that the problem we are trying to solve is undecidable in general, it is natural that
different solving techniques exhibit different strengths and weaknesses on various instances of
the problem. The straightforward way to harness the strengths of various approaches is to run
them in parallel in a portfolio manner [121]. The portfolio approach represents concurrent
and independent execution of multiple agents (different tools, different configurations of the

https://chc-comp.github.io
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same tool) on the same problem instance. The advantage of the portfolio is that no changes
are required in the participating agents. However, there is no communication between the
agents, hence no cooperation, no learning from each other.

A potentially better approach is a cooperative one, where the agents share the knowledge
they acquire during the solving process. The knowledge sharing in the form of lemmas
has been successfully applied in SMT solving [151, 199], as well as in IC3-based model
checking [50, 150]. A push for cooperative solving is also present in the software verification
community [24, 27].

In Chapter 6, we generalize the concepts of recently developed induction-based model-
checking algorithms, especially PD-KIND [129]. We propose an abstract IcE/FiRE framework,
whose instances can easily participate in cooperative parallel solving. Our contribution is
the theoretical IcE/FiRE framework and its concrete instantiation yielding a parallel PD-
KIND algorithm. Using SMTS [152], a framework for distributed solving, we experimentally
show the viability and usefulness of parallel PD-KIND. The results show the importance
of sharing information between solvers. Moreover, as PD-KIND is an interpolation-based
algorithm, the experiments also show that using both Farkas interpolants and decomposed
Farkas interpolants from Chapter 3 is an important source of diverse behaviour that leads
to much better performance of our parallel solver. The results presented in Chapter 6 were
published in the proceedings of VMCAI 2020 [39].

1.3 Organization of This Thesis

After this Introduction, Chapter 2 gives an overview of the main notions we use throughout
this thesis, including Satisfiability Modulo Theories (SMT), interpolation, constrained Horn
clauses, and transition systems. The following chapters present our contributions to automated
software verification. Chapter 3 presents our main contribution at the foundational layer:
new interpolation algorithm for conflicts in the theory of linear arithmetic. Chapter 4 presents
our new model-checking algorithm based on the concept of Transition Power Abstraction
(TPA) sequence. Chapter 5 describes our next contribution at the verification layer: the
Horn solver GOLEM. Our final contribution, the IcE/FiRE framework for cooperative parallel
verification, is given in Chapter 6. We conclude in Chapter 7 with final remarks and outline
future work based on the results presented in this thesis.

1.4 Publications Overview

1.4.1 Publication in Thesis

Much of the material presented in this thesis was published at conferences and in journals as
listed below:

• Blicha, M., Hyvärinen, A. E. J., Kofroň, J. and Sharygina, N. [2019]. Decomposing
Farkas interpolants, in T. Vojnar and L. Zhang (eds), Tools and Algorithms for the
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Construction and Analysis of Systems, Springer International Publishing, Cham, pp. 3–
20.

• Blicha, M., Hyvärinen, A. E. J., Marescotti, M. and Sharygina, N. [2020]. A cooperative
parallelization approach for property-directed k-induction, in D. Beyer and D. Zufferey
(eds), Verification, Model Checking, and Abstract Interpretation, Springer International
Publishing, Cham, pp. 270–292.

• Blicha, M., Hyvärinen, A. E. J., Kofroň, J. and Sharygina, N. [2022]. Using linear
algebra in decomposition of Farkas interpolants, International Journal on Software Tools
for Technology Transfer 24(1): 111–125.

• Blicha, M., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2022]. Transition
power abstractions for deep counterexample detection, in D. Fisman and G. Rosu (eds),
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Publishing, Cham, pp. 524–542.

• Blicha, M., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2022]. Split
transition power abstractions for unbounded safety, in A. Griggio and N. Rungta (eds),
Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design - FMCAD
2022, TU Wien Academic Press, pp. 349–358.

1.4.2 Additional Publications

In addition to our main results, we participated in related projects whose results were also
published at conferences:

• Asadi, S., Blicha, M., Fedyukovich G., Hyvärinen, A. E. J., Even-Mendoza K., Sharygina
N. and Chockler H. [2018]. Function Summarization Modulo Theories, in G. Barthe,
G. Sutcliffe and M. Veanes (eds), LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, vol 57, pp. 56–75.

• Marescotti, M., Blicha, M., Hyvärinen, A. E. J., Asadi, S. and Sharygina, N. [2018].
Computing Exact Worst-Case Gas Consumption for Smart Contracts. In: T. Margaria,
B. Steffen (eds), Leveraging Applications of Formal Methods, Verification and Valida-
tion. Industrial Practice. ISoLA 2018. Lecture Notes in Computer Science, vol 11247.
Springer, Cham.
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SAS 2020. Lecture Notes in Computer Science, vol 12389. Springer, Cham.
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Incremental Verification by SMT-based Summary Repair. In A. Ivrii and O. Strichman
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Chapter 2

Preliminaries

2.1 Satisfiability Modulo Theories

The question of determining the satisfiability of a boolean formula—the SAT problem—is one
of the most famous problems in computer science. The formulation of the problem is simple:
Given a boolean formula, decide if there exists an assignment of its variables under which
the formula evaluates to true (⊤). However, solving the SAT problem is complex. It was
the first problem shown to be an NP-complete problem, a result now known as Cook-Levin
theorem [66, 188]. Despite its theoretical complexity, there have been extensive studies
of algorithms for solving the SAT problem. The reason has been mostly pragmatic; many
interesting problems can be efficiently encoded to SAT, including problems from hardware
and software verification. However, problems from the verification domain often require
(or at least benefit from) a stronger modelling language, such as first-order logic. Typically,
the full power of first-order logic is not required; only satisfiability with respect to some
background theory needs to be decided. This observation led to the development of specialized
decision procedures that decide the satisfiability of formulas in a fragment of first-order logic
corresponding to a specific theory. The research field concerned with this problem is called
Satisfiability Modulo Theories (SMT) [14]. Following the SAT terminology, the procedures
for solving the SMT problem are called SMT solvers. After initial independent efforts, an
international initiative for standardization and benchmark collection called SMT-LIB was
formed in 2003 to facilitate research and development in SMT [15]. The SMT-LIB initiative
later established SMT workshop, an international workshop for connecting SMT developers
and users, and SMT-COMP, an international competition of SMT solvers supporting the
SMT-LIB input format.

We refer the reader to the excellent textbooks, e.g. [17, 142], for a detailed overview
of the field, architecture of the solvers and specific decision procedures. The chapter on
Satisfiability Modulo Theories [17] in the Handbook of Satisfiability [30] gives an excellent
general overview; the textbook Decision Procedures [142] focuses on decision procedures for
various theories. Here, we only give the necessary terminology used throughout the thesis.

13
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Syntax

We work in fragments of first-order logic defined by a signature Σ, a set of predicate and
function symbols with an associated arity. Besides the signature, the logic uses the standard
logical connectives ∧,∨,¬,→,↔ (conjunction, disjunction, negation, implication, equivalence,
respectively). A term is a variable or a function symbol applied to terms (respecting the
symbol’s arity). An atomic formula (or simply atom) is a predicate symbol applied to terms
(respecting the symbol’s arity). It is very convenient in SMT to view the logic as multi-sorted
logic, where variables are associated with a specific sort or type. The prominent sort is
Bool associated with the Boolean expressions. Similarly, the function and predicate symbols
prescribe sorts for their arguments; additionally, function symbols have an return sort, while
this is implicitly the sort Bool for predicate symbols. Variables are sometimes viewed as
0-ary constant symbols with Bool variables as 0-ary predicate symbols and other variables
as 0-ary function symbols. Bool variables also count as atomic formulas. SMT assumes that
the equality symbol = is part of the signature for every theory and is always interpreted as
proper equality. A literal is either an atom or its negation. A clause is a disjunction of literals.
A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. SAT solvers
take as input a propositional formula in CNF, and SMT solvers often internally translate the
input formula to CNF. In this thesis, we work, for the most part, with quantifier-free formulas.

Semantics

The goal in SMT is to decide satisfiability of a given formula. A model M for a signature Σ
consists of a non-empty set A called the universe of the model (or a set for each sort in case
of multi-sorted logic) and an interpretation for the symbols from Σ, which maps function
symbols to functions over the universe and predicate symbols to relations over the universe.
The value of terms and formulas in the given model is defined inductively, as usual (see,
e.g., [17]). A formula ϕ is satisfiable if there exist a model M, where it evaluates to true,
i.e., M |= ϕ. In SMT, the satisfiability is decided with respect to some background theory T ,
which specifies the interpretation of the symbols of Σ. Then the model only has to specify
the interpretations of the formula’s variables. A formula is T -valid if it evaluates to true
in all models of T . A clause c that is T -valid is also called a T -lemma. When the theory
is known from the context or the context is independent of a particular theory, we often
refer to T -lemmas simply as theory lemmas. In this thesis, we work with the theory of linear
arithmetic.

2.1.1 Linear Real and Integer Arithmetic

One of the essential theories (not only in software verification) is linear arithmetic. The
following is the grammar from [142] for the conjunctive fragment of linear arithmetic.
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Definition 2.1 (linear arithmetic [142]). The syntax of a formula in linear arithmetic is defined
by the following rules:

formula: formula∧ formula | (formula) | atom

atom: sum op sum

op: = | ≤ |<
sum: term | sum+ term

term: identifier | constant | constant identifier

We consider linear arithmetic over the domain of integers and the domain of reals. In
the former case, we talk about linear integer arithmetic (LIA), and in the latter, about linear
real arithmetic (LRA). In the syntax of Definition 2.1, identifiers correspond to variables,
while constants are mathematical integer constants. LIA corresponds, up to a syntactic
sugar, to the theory of Presburger arithmetic with the signature (0,1,+,−,≤) and the usual
interpretation of the symbols [17]. For example, multiplication by a positive constant is just

a sum, nx =
n times
︷ ︸︸ ︷

x + . . .+ x . Minus operation can also be expressed within the syntax above:
x − y can be written as x +−1y .

Quantifier-free fragments of both LRA and LIA are decidable. While the conjunctive frag-
ment of LRA is decidable in polynomial time, the conjunctive fragment of LIA is NP-complete.
Interestingly, even though polynomial algorithms for deciding LRA exist, most SMT solvers use
decision procedures based on the Simplex algorithm [84]. Simplex is exponential in the worst
case but typically very fast on real-world problems where the exponential behaviour is rarely
observed. Decision procedures for LIA in SMT solvers typically follow the branch-and-bound
or branch-and-cut paradigm. First, the relaxed version of the problem is solved (as if with
the domain of reals). If a solution for the relaxed problem yielded a non-integer solution for
some variable, new constraints are added to exclude the non-integer solution but preserve
the set of integer solutions. For more details on decision procedures for linear arithmetic and
their implementation in SMT solvers, we refer the reader to [34, 44, 78, 84, 102, 142].

2.2 Craig Interpolation

Craig interpolant for a valid implication A→ C is a formula I such that A→ I, I→ C and all
free variables of I occur both in A and C. In verification, an alternative formulation, obtained
by replacing C with ¬B, is more common. Then the validity of the implication A → C is
equivalent to the unsatisfiability of A ∧ B. The rationale is that A represents the feasible
behaviour of a system and B represents the error behaviour. In this case, the interpolant
over-approximates safe behaviour of the system.

Craig [68] showed that in the first-order logic an interpolant always exists for any unsatisfi-
able pair A and B. However, for practical applications, it is crucial to compute the interpolants
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efficiently, and quantifier-free if possible. Interpolating SMT solvers OPENSMT [122], MATH-
SAT [60] and SMTINTERPOL [56] compute interpolants from a proof of unsatisfiability. In
propositional logic, an algorithm that computes interpolant from a resolution proof in linear
time with respect to the size of the proof was introduced by Pudlák [166], Krajíček [139] and
Huang [120] (note, however, that the proof itself might be exponential with respect to the size
of the formula). The algorithm traverses the resolution proof, computing partial interpolant
for each clause derived in the proof. The partial interpolant for the clause ⊥ is an inter-
polant for A∧ B. Another algorithm based on the same proof traversal has been introduced
by McMillan [155] and both have been later showed to be an instantiation of the general
framework of labeled interpolation systems [81]. Further study of interpolation procedures in
propositional context include, e.g., proof manipulation for interpolant generation [170, 172],
proof-sensitive interpolation procedure [4, 6], generalization of the labeled interpolation
systems [197], interpolant computation from DRUP and DRAT proof systems [109, 169].

Moving from propositional logic to the first-order logic, modern SMT solvers based on
the framework known as CDCL(T ) or T -DPLL [17] combine propositional interpolation algo-
rithms with theory-specific interpolation procedures for theory lemmas. During the search,
a CDCL(T )-based SMT solver blocks satisfying assignments of the boolean skeleton of the
formula by generating T -lemmas falsified by the current assignment. These T -lemmas gener-
ated on-the-fly are included in the resolution proof as a new type of leaves, besides the input
clauses. A theory-specific interpolation procedures, theory interpolators, compute interpolants
for each theory lemma; these are then treated as partial interpolants for the corresponding
proof leaves in the standard propositional interpolation procedures. The combination of the
propositional and theory-specific part of the interpolation algorithm has been described in
[200]. More recent work on proof-preserving interpolation that does not restrict the SMT
solver has been given in [55, 57]. Theory-specific interpolation procedures have been given
for the theory of equality and uninterpreted functions [7, 99, 156], linear arithmetic over
rationals [8, 61, 156] and integers [102, 103], and arrays [45, 114]. Interestingly, some
theories, such as linear integer arithmetic or theory of arrays with extensionality, do not
admit quantifier-free interpolation, i.e., there are instances of an interpolation problem with
quantifier-free A and B where all possible interpolants contain quantifiers. However, these
theories can be extended in a simple way to get a theory that admits quantifier-free interpo-
lation. This is the case for the theory of arrays with diff predicate [45] and for the theory
of linear integer arithmetic extended with a ceiling function [103] or division-by-constant
functions [55].

For many applications in model checking, the simple binary interpolant is not sufficient;
instead, a property of a collection of interpolants is required [108]. Examples of such proper-
ties are path interpolation [128, 194], tree interpolation [55, 160, 182] and simultaneous
abstraction [127]. Some interpolation procedures guarantee these properties for a collec-
tion of interpolants computed from a single proof of unsatisfiability, which is important for
efficiency in interpolation-based model-checking algorithms [55, 108].

Path interpolation is of a particular interest in the context of this thesis. Our Horn solver
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GOLEM, which we describe in Chapter 5, uses path interpolation in its engine implementing
Lazy Abstraction with Interpolants [157] and also for recomputation of satisfiability witnesses
required due to preprocessing transformations. The following definition of path interpolation
is taken from [128]. It also appeared under the name interpolation sequence [194]. Given an
inconsistent formula ϕ1 ∧ . . .∧ϕn, a sequence of formula I0, . . . , In is a path interpolant iff

• I0 = true and In = false,

• for all 1≤ i ≤ n, Ii−1 ∧ϕi implies Ii ,

• for all 1≤ i < n, Ii uses only the common symbols of ϕi and ϕi+1.

2.3 OpenSMT Solver

OPENSMT is the in-house SMT solver of our group, Formal Verification and Security Lab,
at USI, Lugano, Switzerland. It is open-source software available at GitHub.1 OPENSMT is
currently one of the best SMT solvers for quantifier-free linear real and integer arithmetic
(QF_LRA and QF_LIA) according to the results from SMT-COMP [196], an annual competition
between SMT solvers.2 It was the best-performing competing solver for the logic QF_LRA in
the single-query track in 2020–2022 and for the logic QF_LIA in 2022.

Interpreter

API Simplification
ϕ1, . . . ,ϕn

CNFizer
ϕs

Core
solver

ϕCNF

result

.smt2

Client
program

Figure 2.1. High-level architecture of OpenSMT

The high-level architecture of OPENSMT is depicted in Figure 2.1. It is the same as
described in the last publication on OPENSMT [122]. Interaction with OPENSMT is available
either through SMT-LIB scripts [15] or its application programming interface (API). The
problem is given to the solver as a sequence of SMT formulas ϕ1, . . . ,ϕn (asserted to the
solver, in the terminology of SMT-LIB), and the goal is to decide if the conjunction of these
formulas is satisfiable. OPENSMT first applies general and theory-specific preprocessing that
yields an equisatisfiable formula ϕs. Then, the formula is translated into a conjunctive normal
form (CNF) and passed to the core solver. The core solver in OPENSMT follows the CDCL(T )
framework (also known as T -DPLL) [17]. Figure 2.2 depicts its internal architecture. The

1https://github.com/usi-verification-and-security/opensmt/
2https://smt-comp.github.io/

https://github.com/usi-verification-and-security/opensmt/
https://smt-comp.github.io/
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SAT
solver
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Theory solvers

TheoryPropositional

Interpolation
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Figure 2.2. Detailed view of OpenSMT’s core solver

core consists of an augmented CDCL-based SAT solver connected to theory solvers able to
decide the satisfiability of a conjunction of theory literals. The SAT solver searches for a
satisfiable assignment of the propositional abstraction of the formula, and the theory solvers
check the consistency of the current assignment in the theory T . If the current assignment
represents a T -conflict, the theory solvers produce a T -lemma which is falsified by the current
assignment. When the theory lemma is added to the SAT solver, it backtracks and tries to find
a different assignment. When the SAT solver finds a full propositional assignment consistent
with the theory, the core solver finishes and reports the formula as satisfiable. If the SAT
solver derives the empty clause, the core solver reports the formulas as unsatisfiable. Besides
theory lemmas, the theory solvers typically apply theory propagation to derive literals that
must be true under the current (partial) assignment. Additionally, they may produce new
clauses and atoms that the SAT solver must decide before theory consistency can be checked.
The SAT solver in OPENSMT’s core solver is based on MiniSAT 2.0 [86], and it has theory
solvers for deciding the theories of uninterpreted functions [74], linear real and integer
arithmetic [78, 84] and arrays [54].

The interpolation module of OPENSMT follows the CDCL(T ) split to the propositional
and the theory part. When requested, the SAT solver in the core keeps track of the resolution
chains that derive new clauses. From this information, the interpolation module reconstructs
a detailed resolution proof and uses standard propositional interpolation procedures to derive
an interpolant from the proof. OPENSMT implements the framework of Labeled Interpolation
Systems (LIS) [81] for propositional interpolation, which gives users some control over



19 2.4 Constrained Horn Clauses

the process of interpolant generation. However, some of the leaves in the proof are theory
clauses. For the propositional interpolation procedure to work, theory-specific interpolation
procedures, theory interpolators, first compute interpolants for these theory lemmas. The
interpolants for theory lemmas are used to annotate the corresponding leaves with partial
interpolants, and the LIS interpolation procedure then works as usual. OPENSMT implements
specific theory interpolators for the theory of equality and uninterpreted functions (EUF)
and linear real arithmetic (LRA) [4]. EUF-interpolation system implements the standard
interpolation computation from coloured congruence graphs [99, 156]. LRA-interpolation
system is based on the standard idea of computing interpolants from proof of unsatisfiability
based on the Farkas’ lemma [156]. However, it does not require the detailed proof. Instead,
it only needs the Farkas coefficients that witness the unsatisfiability of a system of linear
inequalities.3 Then, the interpolant is computed as the weighted sum of the A-part of the
system of inequalities. For linear integer arithmetic (LIA), more advanced solving techniques
are disabled when interpolation is required. Thus, the only theory lemmas that appear in
the proof are either LRA-lemmas or split lemmas of the form x ≤ c ∨ x ≥ c + 1 where x is
a variable, and c is an integer constant. For the former, LRA-interpolator is used, and for
the latter, OPENSMT implements a trick that treats such a clause as an input clause from the
partition of the variable x .

2.4 Constrained Horn Clauses

Our presentation of constrained Horn clauses (CHC) is based on presentations in the existing
literature [105, 176]. Consider a first-order theory T and a set R of uninterpreted predicates
of fixed arity disjoint from the signature of T . Then a constrained Horn clause is a formula

ϕ ∧ B1 ∧ B2 ∧ . . .∧ Bn =⇒ H

where

• ϕ is a (interpreted) formula in the language of T ,

• each Bi is an application of a relation symbol p ∈R to terms of T ,

• H is an application of a relation symbol p ∈R to terms of T , or false.

• All variables in the formula are implicitly universally quantified.

The antecedent of the implication is commonly denoted as the body and the consequent
as the head. ϕ is referred to as the constraint. A clause with head equal to false is commonly
called a query. A clause with no uninterpreted predicate in the body is called a fact.

Given a set of constrained Horn clauses HC over the uninterpreted predicates R and
theory T , we say that HC is satisfiable if there exists a model M of T extended with an

3The weighted sum of the system using Farkas coefficients results in a contradictory inequality 1≤ 0.
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interpretation for all the uninterpreted predicates R, such that all the clauses are valid in M.
This is called semantic solvability in [176]. Often, we are interested not only in deciding the
satisfiability, but also in obtaining the solution. This means we want to express the satisfying
interpretation of predicates in the language of the theory T , i.e., we want a mapping of the
predicates to the set of formulas in the language of T , I : R→ FLA, such that each clause from
HC is valid in T after the uninterpreted predicates are replaced by their interpretations. This
is called syntactic solvability in [176]. Note that every system that is syntactically solvable
is also semantically solvable, but not the other way around. The prominent example of a
system that is semantically solvable, but not semantically solvable is the system that defines
multiplication in Presburger arithmetic.

Example 2.2 ([176]). The following set of Horn clauses is semantically solvable, but not
syntactically solvable in Presburger arithmetic. The unique solution is the multiplication relation,
which is not definable in Presburger arithmetic.

X = 0∧ Z = 0 =⇒ multA(X , Y, Z)

multA(X1, Y, Z1)∧ X = X1+ 1∧ Z = Z1+ Y =⇒ multA(X , Y, Z)

X = 0∧ Z = 0 =⇒ multB(X , Y, Z)

multB(X1, Y, Z1)∧ X = X1+ 1∧ Z = Z1+ Y =⇒ multB(X , Y, Z)

multA(X , Y, Z1)∧multB(X , Y, Z2)∧ Z1 ̸= Z2 =⇒ false

Beside the question of solvability, it is often required to produce also a certificate (witness)
for the answer. If a set of constrained Horn clauses is satisfiable, then the interpretation of
the predicates is the certificate. On the other hand, the unsatisfiability of the clauses can be
witnessed by a ground derivation of false, using resolution.

There are various methods for solving the CHC satisfiability problem. These include, e.g.,
machine-learning-based approaches (HOICE [52]), syntax-based approaches (FREQHORN [92,
93]), or automata-based approaches (ULTIMATE TREEAUTOMIZER [75]). However, the most
successful approaches currently seem to be the generalizations of classical model-checking
techniques from software verification. These treat the CHC satisfiability problem as a reacha-
bility problem where the query in the CHC system defines the error states. The most successful
and general CHC solvers SPACER [137] and ELDARICA [117] fall into this category. It is in-
teresting that in this reachability paradigm, the certificate of the system’s satisfiability can
be equivalently viewed as a certificate for unreachability of the error states defined by query,
and similarly, the certificate of the system’s unsatisfiability can be viewed as instructions how
to reach an error state.

2.5 Transition Systems

Transition systems are a standard tool in computer science for modelling changing (evolving)
systems. In particular, they can represent programs, where the states of a transition system
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are defined by possible program states (represented by, among others, values of program
variables) and the instructions of the program define the possible transitions between the
states. There exist different flavors of transition systems [163]. In our work, we consider
symbolic representation of transition systems.

A transition system has a fixed set of typed variables X called state variables. Let X ′

denote the set of primed versions of variables from X , i.e., X ′ = {x ′ | x ∈ X }. These are
commonly referred to as next-state variables. A state formula F(X ) is any quantifier-free
formula over variables from X . A transition formula Tr(X , X ′) is any quantifier-free formula
over variables from X ∪ X ′. A transition system S (over X ) is a pair 〈Init, Tr〉, where Init is
a state formula denoting the initial states of the system and Tr is a transition formula that
defines the transition relation of the system. A state s is a type-consistent assignment of
variables from X , i.e., s(x) ∈ Dom(x) for all x ∈ X . The transition relation Tr defines possible
executions (transitions) of the system, i.e., how the system can change state. A state s can
transition to a state s′ iff s, s′ |= Tr, i.e., Tr evaluates to true when the state variables X take the
values assigned by s and the next-state variables X ′ take the values assigned by s′. A sequence
of states 〈s0, s1, . . . , sk〉 is called a trace if si−1, si |= Tr(X , X ′) for all 1 ≤ i ≤ k. A state s is
k-reachable in S (reachable in k steps) if there exists a trace 〈s0, s1, . . . , sk〉 such that s0 ⊨ Init
and sk = s. A state is reachable if it is k-reachable for some finite k.

A state formula F(X ) holds in a state s if it evaluates to true under s and we write s ⊨ F .
The states s such that s ⊨ F are called the F-states. State formulas are often identified with
the set of states where they hold and we freely move between these two representations.
A state formula F is a k-invariant of the system if it holds in all states reachable in k or less
steps. If F is a k-invariant then ¬F is not reachable in k steps or less and we say that ¬F
is k-inconsistent with S. When a concrete k is not important or not determined, or when
we refer to multiple k-invariants but with different values of k, we use a more general term
bounded invariant. A bounded invariant F is thus a state formula for which there exists k
such that F is a k-invariant. An invariant is a state formula that is a k-invariant for all k, i.e.,
it holds in all reachable states of S.

Similar to state formulas, transition formulas are identified with binary relations over
the set of states. For example, the identity relation Id(X , X ′) corresponds to the transition
formula
∧

x∈X x = x ′.
In this thesis, we consider verification of safety properties of transition systems. Given a

transition system S and a state formula P, the goal of verification is to prove that P is valid
on all reachable states of S, or equivalently that ¬P is not reachable. We say that the system
is safe with respect to P if P is indeed an invariant of the system, and we say that it is unsafe
if there exists a finite trace starting from an initial state and ending in a ¬P-state. We often
refer to ¬P-states as error states and denote them as Error, i.e., Error≡ ¬P.

2.5.1 Safety Verification of Transition Systems as CHC Satisfiability

In the context of transition systems, a safety verification problem is defined by a triple
〈Init, Tr, Error〉 where Init is a state formula defining the initial states of the system, Tr is a
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assume ( x <= 0) ;
while ( x < 5) {

x = x + 1;
}
a s s e r t ( x < 10);

Init≡ x ≤ 0

Tr≡ x < 5∧ x ′ = x + 1

Error≡ x ≥ 5∧¬(x < 10)

x ≤ 0 =⇒ Inv(x)

Inv(x)∧ x < 5∧ x ′ = x + 1 =⇒ Inv(x ′)

Inv(x)∧ x ≥ 5∧¬(x < 10) =⇒ false

Figure 2.3. An example program with a loop, the corresponding transition system, and its
translation to CHC

transition formula defining the transition relation and Error is a state formula defining the
error states. If an error state is reachable, i.e., there exists a trace starting in an initial state
and ending in an error state, then system is unsafe. If no such trace exists, it is safe. This can
be easily modeled in the CHC framework with a single uninterpreted predicate Inv and the
following three clauses.

Init(X ) =⇒ Inv(X )

Inv(X )∧ Tr(X , X ′) =⇒ Inv(X ′)

Inv(X )∧ Error(X ) =⇒ false

The solution to this system, i.e., the interpretation of Inv that makes all clauses valid, is a
safe inductive invariant of the transition system. The first clause says that the invariant must
hold in all initial states. The second clause says that the invariant is inductive, i.e., it is closed
under the transition relation of the system. The third clause says that the invariant is safe,
i.e., it is disjoint with the error states. Such safe inductive invariant is a witness that no error
state can be reached in the system. On the other hand, every proof of unsatisfiability defines
a trace of the system from some initial to some error state.

To illustrate the CHC modelling and its application in software verification, consider the
example program from [105] in Figure 2.3. This is a simple loop with a safety property
expressed as an assertion. The problem of program safety can be translated to a safety
verification problem of a transition system. One way to prove safety is to find a safe inductive
invariant. This is modelled as a system of Horn clauses. In this case, the system of Horn
clauses is satisfiable with a solution Inv(x)≡ x ≤ 5. It is easy to verify that this is indeed a
safe inductive invariant of the transition system and consequently of our example loop.



Chapter 3

Decomposing Farkas Interpolants

Craig interpolants play a crucial role in many modern verification techniques. Interpolation-
based model-checking algorithms typically rely on an interpolating SMT solver to generate
interpolants from unsatisfiable queries. Internally, SMT solvers produce interpolants by
structural induction over the proof of unsatisfiability. Interpolation procedures build the
interpolant while traversing the proof from leaf nodes to the root. In SMT, many of the leaf
nodes represent a theory conflict—a conjunction of theory literals that is unsatisfiable in
that theory. Proof-based interpolation procedures thus rely on subprocedures that compute
interpolants for the theory conflicts in the leaf nodes. Any theory that contains integer or
real linear arithmetic will produce theory conflicts that represent an unsatisfiable system of
linear inequalities. Given such a system partitioned into two parts (A and B), the main way
to compute an interpolant is to utilize Farkas coefficients that witness the unsatisfiability of
the system, based on the Farkas’ lemma [90]. In modern SMT solvers, Farkas coefficients are
computed as a side product in the Simplex-based algorithm of Dutertre and de Moura [84].
An interpolant can then be obtained by summing up the A contribution to the conflict. We
refer to an interpolant computed in this way as Farkas interpolant. Farkas interpolant always
takes the form of a single inequality. In an application such as model checking, this can be
both an advantage or disadvantage: In some cases, the inequality introduces a new relation
between variables into the abstraction in the model-checking algorithm. Taking this relation
into account then leads the model checker to discover a key part of a safe inductive invariant.
In other cases however, the single inequality is too weak and is the source of divergence of
the model checker.

In this chapter, we study Farkas interpolants and show that under some conditions, it is
possible to decompose the interpolant into a conjunction of inequalities that logically implies
the Farkas interpolant. Farkas interpolation summarizes the contribution of the A-part of
the conflict into a single inequality, losing information about finer constraints on subsets
of variables in the process. On the other hand, full quantifier elimination preserves as
much information about the variables from the A-part as possible; however, this might be
very expensive. Our approach represents a sweet spot between these two extremes. The

23
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decomposition of the weighted sum of the A-part can still be computed efficiently and, if
possible, preserves much more information about variables from the A-part than Farkas
interpolation.

3.1 Preliminaries

3.1.1 Linear Arithmetic and Linear Algebra

We use the letters x , y, z to denote variables and c, k to denote constants. Vector of n variables
is denoted by x = (x1, . . . , xn)

⊺ where n is usually known from context. x[i] denotes the
element of x at position i, i.e. x[i] = x i. The vector of all zeroes is denoted as 0, and ei
denotes the unit vector with ei[i] = 1 and ei[ j] = 0 for j ̸= i. For two vectors x = (x1, . . . , xn)

⊺

and y= (y1, . . . , yn)
⊺ we say that x≤ y iff x i ≤ yi for each i ∈ {1, . . . , n}. Q denotes the set

of rational numbers, Qn the n-dimensional vector space of rational numbers and Qm×n the
set of rational matrices with m rows and n columns. A transpose of matrix M is denoted
as M⊺. A kernel (or nullspace) of a matrix M is the vector space ker(M) = {x | Mx = 0}.
A matrix is said to be in Row Echelon Form (REF) if all non-zero rows are above all rows
containing only zeros and the leading coefficient (first non-zero value) of each row is always
strictly to the right of the leading coefficient of the row above. A matrix is said to be in
Reduced Row Echelon Form (RREF) if it is in REF, the leading entry of each non-zero row is
1, and each column containing the leading entry of some row has zeros everywhere else.
REF of a matrix can be obtained by Gaussian elimination, while RREF can be obtained by
Gauss-Jordan elimination.

We adopt the notation of matrix product for linear arithmetic. For a linear term l =
c1 x1 + · · ·+ cn xn, we write c⊺x to denote l. Without loss of generality we assume that all
linear inequalities are of the form c⊺x ▷◁ c with ▷◁∈ {≤,<}. By linear system over variables
x we mean a finite set of linear inequalities S = {Ci | 1 ≤ i ≤ m}, where each Ci is a linear
inequality over x. Note that from the logical perspective, each Ci is an atom in the language
of the theory of linear arithmetic; thus system S can be expressed as a formula

∧m
i=1 Ci and

we use these representations interchangeably. A linear system is satisfiable if there exists an
evaluation of variables that satisfies all inequalities; otherwise, it is unsatisfiable. This is the
same as the (un)satisfiability of the formula representing the system.

We extend the matrix notation also to the whole linear system. For the sake of simplicity
we use ≤ instead of ▷◁, even if the system contains a mix of strict and non-strict inequalities.
The only important difference is that a (weighted) sum of a linear system (as defined below)
results in a strict inequality, instead of a non-strict one, when at least one strict inequality
is present in the sum with a non-zero coefficient. The theory, proofs and algorithm remain
valid also in the presence of strict inequalities. We write Cx≤ c to denote the linear system S
where C denotes the matrix of all coefficients of the system, x are the variables and c is the
vector of the right sides of the inequalities. With the matrix notation, we can easily express
the sum of (multiples) of inequalities. Given a system of inequalities Cx≤ c and a vector of
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“weights” (multiples) of the inequalities k≥ 0, the inequality that is the (weighted) sum of
the system can be expressed as k⊺Cx≤ k⊺c.

3.1.2 Craig Interpolation Based on Farkas’ Lemma

In linear arithmetic, the interpolation problem is an unsatisfiable linear system S of linear
inequalities partitioned into two parts: A and B. Modern SMT solvers typically compute
interpolant for such a system based on Farkas’ lemma [90, 181]. Farkas’ lemma states that
for an unsatisfiable system of linear inequalities S ≡ Cx ≤ c there exist Farkas coefficients
k≥ 0 such that k⊺Cx≤ k⊺c≡ 0≤ −1. In other words, the weighted sum of the system given
by the Farkas coefficients is a contradictory inequality. If a strict inequality is part of the sum,
the result might also be 0< 0.

The idea behind the interpolation algorithm based on Farkas coefficients is simple. Intu-
itively, given the partitioning of the linear system into A and B, we compute only the weighted
sum of A. It is not hard to see that this sum is an interpolant. It follows from A because a
weighted sum of a linear system with non-negative weights is always implied by the system. It
is inconsistent with B because its sum with the weighted sum of B (using Farkas coefficients)
is a contradictory inequality by Farkas’ lemma. Finally, it cannot contain any A-local variables,
as can be seen from the following reasoning: All variables are eliminated in the weighted
sum of the whole system. Since A-local variables are by definition absent in B, they must be
eliminated already in the weighted sum of A.

More formally, for an unsatisfiable linear system S := Cx ≤ c over n variables, where
C ∈ Qm×n,c ∈ Qm, and its partition to A := CAx ≤ cA and B := CBx ≤ cB, where CA ∈ Q

k×n,
CB ∈Q

l×n, cA ∈Q
k, cB ∈Q

l and k+ l = m, there exist Farkas coefficients k⊺ = (k⊺A k⊺B) such
that

(k⊺A k⊺B)

�

CA
CB

�

= 0, (k⊺A k⊺B)

�

cA
cB

�

= −1,

and the Farkas interpolant for (A, B) is the inequality

I F := k⊺ACAx≤ k⊺AcA. (3.1)

3.2 Motivation

To motivate our work, consider the code in Figure 3.1.1 In this code, the ‘∗’ character
represents a non-deterministic choice (e.g., user input); thus, the body of the while loop can
be executed any number of times. The assert statement captures the property of the program
that variable ‘x ’ should always be non-negative after exiting the while loop.

This code can be modelled as a transition system S = (I , T, Err) given in Equation (3.2);
here, I and Err are predicates that capture the initial and error states, respectively, and T

1This example is commonly used in the literature [42, 179].
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x = 0;
y = 0;
while (*) {

x = x + y ;
y = y + 1;

}
asser t ( x >= 0) ;

Figure 3.1. Motivating example

is the transition relation. The symbols x , y are real variables, and x ′, y ′ are their next-state
versions.

S =







I := (x = 0)∧ (y = 0),
T := (x ′ = x + y)∧ (y ′ = y + 1),
Err := (x < 0)

(3.2)

The aforementioned example is one variant from a family of similar transition systems that
are known not to converge in straightforward implementations of IC3-based algorithms using
LRA interpolation. To prove the safety of the transition system (I , T, Err) we search for a safe
inductive invariant, i.e., a predicate R that satisfies (1) I(X )→ R(X ), (2) R(X )∧ T (X , X ′)→
R(X ′), and (3) R(X )∧ Err(X )→⊥.

We demonstrate the problem that occurs in model checking when using Farkas interpolants
on a simplified run of a model checker for our example. After checking that the initial state
satisfies the property P := x ≥ 0 (the negation of Err), the inductiveness of P is checked. The
inductive check is reduced to a satisfiability check of a formula representing the question
whether it is possible to reach a ¬P-state (a state where ¬P holds) by one step from any
P-state:

x ≥ 0∧ x ′ = x + y ∧ y ′ = y + 1∧ x ′ < 0.

This formula is satisfiable, and a generalized counterexample to induction (CTI) is extracted.
In our case, the CTI is x + y < 0.2 This means that if we make one step from a P-state that
additionally satisfies x + y < 0 we end up in a ¬P-state. Therefore, we have to check if this
CTI is consistent with the initial states. This is again encoded as a satisfiability check of a
formula

x = 0∧ y = 0∧ x + y < 0.

This formula is unsatisfiable, and we can extract an interpolant to obtain a generalized reason
why this CTI is not consistent with the initial states (not reachable in 0 steps in our system).
The interpolant is computed for the partitioning (x = 0 ∧ y = 0, x + y < 0). The Farkas
interpolant for this partitioning is x + y ≥ 0, and we denote it as L1. Interpolation properties

2The exact procedure for obtaining the CTI is not important for the current discussion.
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guarantee that L1 is valid in all initial states. Moreover, P is inductive relative to L1, formally

x ≥ 0∧ x + y ≥ 0∧ x ′ = x + y ∧ y ′ = y + 1 =⇒ x ′ ≥ 0.

This means that by making one step from a P-state that is also an L1-state we always end
up in a P-state again. However, now we need to show that L1 holds in all reachable states.
We check if L1 is inductive (even relative to P). Similarly as before, we encode this as a
satisfiability check of a formula

x + y ≥ 0∧ x ≥ 0∧ x ′ = x + y ∧ y ′ = y + 1∧ x ′ + y ′ < 0.

Again, this formula is satisfiable, and a generalized CTI is x +2y < −1. This CTI is refuted as
inconsistent with the initial states similarly to the first one. The formula

x = 0∧ y = 0∧ x + 2y < −1

is unsatisfiable and Farkas interpolant generalizing the refutation is L2 := x + 2y ≥ 0.
Similarly as before, it can be easily checked that L1 is inductive relative to L2, but L2 is not
inductive (not even relative to P and L1). The CTI is x + 3y < −1, it is refuted by a Farkas
interpolant L3 := x + 3y ≥ 0. L2 is now inductive relative to L3, but L3 is not inductive,
etc. The model checker diverges, since for Ln a CTI x + ny < −1 is discovered and a new
obligation to show inductiveness of Ln+1 is generated.

However, let us get back to the first interpolation query (x = 0∧ y = 0, x + y < 0). Farkas
interpolation, which always computes an interpolant in the form of a single inequality, is not
the only option. It is possible to compute an interpolant that is a conjunction of inequalities.
In our case, L := x ≥ 0∧ y ≥ 0 is also an interpolant. This interpolant L is stronger than
the Farkas interpolant; the property P is inductive relative to L, and, most importantly, L is
inductive:

(x ≥ 0∧ y ≥ 0)∧ x ′ = x + y ∧
∧ y ′ = y + 1 =⇒ (x ′ ≥ 0∧ y ′ ≥ 0)

is a valid formula. Actually, P follows from L, so L represents the inductive strengthening of
P that witnesses the safety of our system.

In this work, we present an approach that allows the computation of Craig interpolants
in LRA in this conjunctive form.

3.3 Decomposed Interpolants

In this section, we present our new approach to computing interpolants in linear arithmetic
based on Farkas coefficients. The definition of Farkas interpolant in Equation (3.1) corresponds
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to the weighted sum of A-part of the unsatisfiable linear system. This sum can be decomposed
into j sums by decomposing the vector kA into j vectors

kA =
j
∑

i=1

kA,i, with 0≤ kA,i ≤ kA for all i, (3.3)

thus obtaining j inequalities
Ii := k⊺A,iCAx≤ k⊺A,icA (3.4)

If kA,i are such that the left-hand side of the inequalities Ii contains only shared variables,
the decomposition has an interesting application in interpolation, as illustrated below.

Definition 3.1 (decomposed interpolants). Given an interpolation instance (A, B), if there
exists a sum from Equation (3.3) such that the left side of Equation (3.4) contains only shared
variables for all 1 ≤ i ≤ j, then the set of inequalities D = {I1, . . . , I j} is a decomposition. In

that case the formula
∧ j

i=1 Ii is a decomposed interpolant (DI) of size j for (A, B).

The decomposed interpolants are proper interpolants, as stated in the following theorem.

Theorem 3.2. Let (A, B) be an interpolation problem in linear arithmetic. If D = {I1, . . . , Ik} is
a decomposition, then I D = I1 ∧ . . .∧ Ik is an interpolant for (A, B).

Proof. Let I D = I1∧ . . .∧ Ik. First, A =⇒ I D since for all Ii , A =⇒ Ii . This is immediate from
the fact that A is a system of linear inequalities CAx≤ cA, Ii = (k

⊺
A,iCAx≤ k⊺A,icA) and 0≤ kA,i.

Second, I D ∧ B =⇒ ⊥ since I D implies Farkas interpolant I F . This holds because
kA =
∑

i kA,i and 0≤ kA,i.
Third, I D contains only the shared variables by the definition of decomposition (Defini-

tion 3.1). Therefore, I D is an interpolant.

Each interpolation instance has a DI of size one, a trivial decomposition, corresponding
to the Farkas interpolant of Equation (3.1). However, interpolation problems, in general, can
admit bigger decompositions. In the following, we give a concrete example of an instance
with decomposition of size two.

Example 3.3. Let (A, B) be an interpolation problem in linear arithmetic with A= (x1 + x2 ≤
0)∧ (x1 + x3 ≤ 0)∧ (−x1 ≤ 0) and B = (−x2 − x3 ≤ −1). The linear systems corresponding to
A and B are

CA =





1 1 0
1 0 1
−1 0 0



 , cA =





0
0
0





CB =
�

0 −1 −1
�

, cB =
�

−1
�

.

Farkas coefficients are
k⊺A =
�

1 1 2
�

and k⊺B =
�

1
�

,
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while Farkas interpolant for (A, B) is the inequality I F := x2+ x3 ≤ 0. However, if we decompose
kA into

k⊺A,1 =
�

1 0 1
�

and k⊺A,2 =
�

0 1 1
�

,

we obtain the decomposition {x2 ≤ 0, x3 ≤ 0} producing the decomposed interpolant I DI :=
x2 ≤ 0∧ x3 ≤ 0 of size two.

3.3.1 Strength-Based Ordering of Decompositions

Decomposition of Farkas coefficients for a single interpolation problem is in general not
unique. However, we can provide some structure to the space of possible interpolants by
ordering interpolants with respect to their logical strength. To achieve this, we define the
coarseness of a decomposition based on its ability to partition the terms of the interpolant
into finer sums, and then prove that coarseness provides us with a way of measuring the
interpolant strength.

Definition 3.4. Let D1, D2 denote two decompositions of the same interpolation problem of
size m, n, respectively, where n < m. Let (q1, . . . ,qm) denote the decomposition of Farkas
coefficients corresponding to D1 and let (r1, . . . , rn) denote the decomposition of Farkas coefficients
corresponding to D2. We say that decomposition D1 is finer than D2 (or equivalently D2 is coarser
than D1) and denote this as D1 ≺ D2 when there exists a partitioning P= {p1, . . . , pn} of the set
{q1, . . . ,qm} such that for each i with 1≤ i ≤ n, ri =

∑

q∈pi
q.

Interpolants of decompositions ordered by their coarseness can be ordered by logical
strength, as stated by the following lemma:

Lemma 3.5. Assume D1, D2 are two decompositions of the same interpolation problem such
that D1 ≺ D2. Let I D1 , I D2 be the decomposed interpolants corresponding to D1, D2. Then I D1

implies I D2 .

Proof. Informally, the implication follows from the fact that each linear inequality of I D2 is a
sum of some inequalities in I D1 .

Formally, let Ii denote the i-th inequality in I D2 . Then Ii = (r
⊺
i CAx≤ r⊺i cA). Since D1 ≺ D2,

there is a set {Ii1
, . . . , Ii j

} ⊆ D1 such that for each k with 1≤ k ≤ j, Iik
= (q⊺ik CAx≤ q⊺ikcA) and

ri =
∑ j

k=1 qik
.

Since qik
≥ 0, it holds that Ii1

∧· · ·∧ Ii j
=⇒ Ii . This means that I D1 implies every conjunct

of I D2 .

Note that the trivial, single-element decomposition corresponding to Farkas interpolant is
the greatest element of this decomposition ordering. Also, for any decomposition of size more
than one, replacing any number of elements by their sum yields a coarser decomposition.

Finally, we emphasize that it is difficult to argue about the suitability of a decomposition
for a particular purpose based solely on strength. For example, a user may opt for a coarser
decomposition because summing up just some elements of a decomposition may result in
eliminating a shared variable.
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3.3.2 Strength of Dual Interpolants

Before we describe the details of the decomposing interpolation procedure, we extend the
picture of interpolation strength related to the decomposed interpolants.

Some applications of interpolation can benefit from computing coarser over-approximation
(i.e., weaker interpolants). For example, a weaker function summary can cover more changes
in an upgrade checking scenario [182], and weaker over-approximations of reachability in a
transition system can converge to fix-point faster [81]. Using the notion of dual interpolation,
decompositions can also be used to compute interpolants weaker than Farkas interpolant (or
even its dual).

Given an interpolation problem (A, B) and an interpolation procedure Itp, we denote the
interpolant computed by Itp for (A, B) as Itp(A, B). Then Itp′ denotes the dual interpolation
procedure, which works as follows: Itp′(A, B) = ¬Itp(B, A). The well-known duality theorem
for interpolation states that Itp′ is a correct interpolation procedure.

Let us denote the interpolation procedure based on Farkas’ lemma as ItpF and the de-
composing interpolation procedure as ItpDI. The relation between ItpF and its dual Itp′F
has been established in [8], namely that ItpF(A, B) =⇒ Itp′F(A, B). We have shown in
Lemma 3.5 that a decomposed interpolant always implies Farkas interpolant computed
from the same Farkas coefficients. Formally, ItpDI(A, B) =⇒ ItpF(A, B). Similar result can be
established for the dual interpolation procedures: As ItpDI(B, A) =⇒ ItpF(B, A), it follows
that ¬ItpF(B, A) =⇒ ¬ItpDI(B, A) and consequently Itp′F(A, B) =⇒ Itp′DI(A, B).

Combining the results on logical strength together we obtain a chain of implications

ItpDI(A, B) =⇒ ItpF(A, B) =⇒ Itp′F(A, B) =⇒ Itp′DI(A, B).

Note that while both ItpF and Itp′F compute interpolants as a single inequality and inter-
polants produced by ItpDI are conjunctions of inequalities, interpolants produced by Itp′DI are
disjunctions of inequalities.

In the following section, we describe the details of the ItpDI interpolation procedure.

3.4 Finding Decompositions

In this section, we present our approach for finding decompositions for linear arithmetic
interpolation problems given their Farkas coefficients.

We focus on the task of finding decomposition of k⊺ACAx. Recall that CA ∈Q
l×n and x is a

vector of variables of length n. Without loss of generality assume that there are no B-local
variables since columns of CA corresponding to B-local variables would contain all zeroes by
definition in any case.

Furthermore, without loss of generality, assume the variables in the inequalities of A are
ordered such that all A-local variables are before the shared ones. Then let us write

CA =
�

L S
�

, x⊺ =
�

xL
⊺ xS

⊺� (3.5)
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with xL the vector of A-local variables of size p, xS the vector of shared variables of size q,
n = p + q, L ∈ Ql×p and S ∈ Ql×q. We know that k⊺AL = 0 and the goal is to find kA,i such
that
∑

i kA,i = kA and for each i 0≤ kA,i ≤ kA and k⊺A,iL = 0.
In the following, we will consider two cases for computing the decompositions. We first

study a common special case where system A contains rows with no local variables, and give
a linear-time algorithm for computing the decompositions. We then move to the general case
where the rows of A contain local variables and provide a decomposition algorithm based on
computing a vector basis for a null space of a matrix obtained from A.

3.4.1 Trivial Elements

First, consider a situation where there is a linear inequality with no local variables. This
means there is a row j in CA (denoted as CA j) such that all entries in columns corresponding
to local variables are 0, i.e., L j = 0⊺. Then {I1, I2} for kA,1 = kA[ j]× ej and kA,2 = kA − kA,1
is a decomposition. Intuitively, any linear inequality that contains only shared variables can
form a stand-alone element of a decomposition. When looking for finest decomposition, we
do this iteratively for all inequalities with no local variables. In the next part, we show how
to look for a non-trivial decomposition when dealing with local variables.

3.4.2 Decomposing in the Presence of Local Variables

For this section, assume that L has no zero rows (we have shown above how to deal with such
rows). We are going to search for a non-trivial decomposition starting with the following
observation:

Observation 3.6. k⊺AL = 0. Equivalently, there are no A-local variables in the Farkas interpolant.
It follows that L⊺kA = 0 and kA is in the kernel of L⊺.

Let us denote by K= ker(L⊺) the kernel of L⊺.

Theorem 3.7. Let v1, . . . ,vn be vectors from K such that ∃α1, . . . ,αn with αivi ≥ 0 for all i and
kA =
∑n

i=1αivi. Then {w1, . . . ,wn} for wi = αivi is a decomposition of kA and D = {I1, . . . , In}
for Ii := wiCAx ≤ cA is a decomposition, i.e., the formula I D =

∧n
i=1 Ii is a decomposed

interpolant.

Proof. The theorem follows from the definition of decomposition (Definition 3.1). From the
assumptions of the theorem, we immediately obtain kA =

∑n
i=1 wi and wi ≥ 0. Moreover,

wi ∈K, since vi ∈K and wi = αivi. As a consequence, L⊺wi = 0 and it follows that there are
no A-local variables in wi

⊺CAx.

Note that Theorem 3.7 permits redundant components of a decomposition. Consider
vectors w1,w2,w3 ∈ K that are part of a decomposition in the sense of Theorem 3.7 and
that w3 =w1 +w2. Then I1 ∧ I2 =⇒ I3 and I3 is a redundant conjunct in the corresponding
decomposed interpolant.
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input : matrix M , vector v such that v ∈ ker(M) and v> 0
output : {w1, . . . , wn}, a decomposition of v, such that wi ∈ ker(M),wi ≥ 0 and
∑

wi = v
1 M ← RREF(M)

2 n← Nullity(M)

3 if n= 1 then return {v}
4 (b1, . . . ,bn)← KernelBasis(M)

5 (α1, . . . ,αn)← Coordinates(v, (b1, . . . ,bn))
6 assert αk > 0 for each k = 1, . . . , n
7 while ∃i, j such that bi j < 0 do

8 C ← 1+
−bi jαi

v j

9 bi← bi +
−bi j
v j

v

10 (α1, . . . ,αn)← (
α1
C , . . . ,

αn
C )

11 assert αk > 0 for each k = 1, . . . , n
12 assert v=

∑n
k=1αkbk

13 assert bk ≥ 0 for each k = 1, . . . , n
14 return {α1b1, . . . ,αnbn}

Algorithm 3.1. Algorithm for decomposition of Farkas coefficients

Good candidates that satisfy most of the assumptions of Theorem 3.7 (and avoid re-
dundancies) are bases of the vector space K. If B = {b1, . . . ,bn} is a basis of K such that
kA =
∑n

i=1αibi with αibi ≥ 0 for all i, then {α1b1, . . . ,αnbn} is a decomposition. Our solution
for computing the decomposition of Farkas coefficients kA is described in Algorithm 3.1. It is
based on the above idea of computing bases of ker(L⊺). First, after transforming the matrix to
the RREF form, we compute a basis of the kernel using the standard linear-algebra algorithm.
The basis is almost what we want, except that some vectors of this basis can have negative
coefficients. In such a case, our algorithm gradually updates the basis until all vectors from
the basis are non-negative while preserving all the necessary properties. Such a basis is used
to compute the desired decomposition. Now, we describe our algorithm in detail, show its
termination and correctness, and discuss its complexity.

The algorithm runs on the matrix M = L⊺ and vector v = kA. At the beginning, the
Reduced Row Echelon Form (RREF) of the matrix is computed (recall definition of RREF from
Section 3.1). Importantly, the transformation of a matrix to RREF preserves its kernel. The
dimension of the kernel, known as nullity, can now be efficiently computed using Rank-Nullity
Theorem, which states that the nullity of a matrix is equal to the number of its columns minus
its rank. For a matrix in RREF, the rank is simply the number of non-zero rows.

We already know that there is a non-zero vector in the kernel; therefore the nullity of
the matrix is at least one. If it is exactly one (line 3), then no non-trivial decomposition of
the vector exists. Intuitively, this means that the Farkas coefficients represent the unique
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way (up to positive scalar multiples) of summing up the inequalities of A-part to eliminate
the A-local variables. However, if the nullity is greater than one, it is possible to compute a
decomposition of size equal to the nullity.

Initial basis computation. First, a basis of the kernel of the matrix in RREF is computed by
a standard algorithm (see, e.g., [10]). This algorithm ensures that the coordinates of v, with
respect to the basis it computes, are positive (lines 5, 6). Since this is an important property,
we include the description of the algorithm with the proof. Given a matrix M in RREF with
m columns, each column is denoted as either pivot or non-pivot. A pivot column contains the
first non-zero entry for a particular row, non-pivot column does not. We say that a non-pivot
column is free. The number of free columns is exactly the nullity of the matrix, i.e., n, and
the number of pivot columns is m− n. Due to the need to iterate over the pivot and free
columns separately, we introduce additional notation: we use f ∈ {1, . . . , n} to iterate over
the free columns, p ∈ {1, . . . , m− n} to iterate over the pivot columns, and we use mapping
functions F : {1, . . . , n} → {1, . . . , m} and P : {1, . . . , m− n} → {1, . . . , m} to get the original
column indices in M .

Now, for each f ∈ {1, . . . , n} denote as bf the solution obtained by solving the system
Mx = 0 where all variables corresponding to free columns are set to 0, except for xF( f ) which
is set to 1. Note that this uniquely determines the value of pivot variables since M is in RREF;
thus

xP(p) =
n
∑

f=1

−MpF( f )xF( f ),∀p ∈ {1, . . . , m− n} (3.6)

Lemma 3.8. B = {bf | f ∈ {1, . . . , n}} is a basis of ker(M). Moreover, ∀v ∈ ker(M) : v =
∑n

f=1 vF( f )bf.

Proof. Linear independence: For each f ∈ {1, . . . , n}, bf has 1 at position F( f ) while all
other elements of B have 0 at position F( f ). Consequently, bf cannot be expressed as a linear
combination of other elements of B.

Generators: We show that each vector v ∈ ker(M) can be written as a linear combination
of elements of B. More precisely, we show that v=

∑n
f=1 vF( f )bf.

(a) For each f ∈ {1, . . . , n} : vF( f ) =
∑n

f̂=1 vF( f̂ )bf̂F( f ) as bfF( f ) = 1 and bf̂F( f ) = 0 for

f̂ ̸= f .

(b) Fix a pivot index p ∈ {1, . . . , m− n}. To see that vP(p) =
∑n

f=1 vF( f )bfP(p), note that v
and all elements of B are solutions to the system Mx = 0, so they satisfy Equation (3.6).
Instantiating Equation (3.6) with bf for f ∈ {1, . . . , n} we get

bfP(p) =
n
∑

f̂=1

−MpF( f̂ )bfF( f̂ ) = −MpF( f ) (3.7)
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since bfF( f̂ ) = 1 when f̂ = f and 0 otherwise. Now, vP(p) =
∑n

f=1 vF( f )bfP(p) is
obtained by instantiating Equation (3.6) with v and then replacing −MpF( f ) by bfP(p)
using Equation (3.7).

Combining (a) and (b), we have shown that v can be expressed as a linear combination of B,
which together with the linear independence of B concludes the proof.

A direct consequence of Lemma 3.8 is that the coordinates of v ∈ ker(M) with respect
to basis B, i.e., the coefficients of elements of B in the linear combination expressing v, are
positive if v> 0. These coordinates are denoted as α1, . . . ,αn in Algorithm 3.1, and we have
just shown that using this standard algorithm for the computation of a kernel’s basis the
coordinates are guaranteed to be positive (line 6). However, the elements of the basis B are
not guaranteed to be non-negative vectors.

Ensuring non-negativity of the basis. The second part of the algorithm, the loop on lines 7-
12, modifies the elements of the basis. It gradually makes all elements non-negative, while
at the same time it keeps the coordinates of vector v, corresponding to the current basis,
positive. Given an element of the basis bi such that its j-th element is negative, the algorithm

replaces the element bi with a new element b′i := bi +
−bi j
v j

v. After replacing bi with b′i, the

resulting set of vectors is still a basis of ker(M).

Lemma 3.9. The set of vectors B′ = (B \ {bi})∪ {b
′
i} is a basis of ker(M).

Proof. We show that bi can be expressed as a linear combination of vectors from B′. This
is sufficient to show that B′ consists of linearly independent vectors and that it generates

ker(M). Let us denote the constant
−bi j
v j

as K and note that K > 0 since v j > 0 and bi j < 0.

We first express b′i as

b′i = bi + Kv= bi + K
n
∑

f=1

α f bf

= bi(1+ Kαi) + K
∑

f ̸=i

α f bf

and now bi can be expressed as a linear combination of elements of B′:

bi(1+ Kαi) = b′i − K
∑

f ̸=i

α f bf

bi =
b′i +
∑

f ̸=i −Kα f bf

1+ Kαi
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After this replacement, (at least) one negative value has been successfully eliminated: As
K > 0 and v> 0, it follows that b′i > bi and b′i j = 0.

As the last step, we show that the new coordinates of v (with respect to the new basis)
are still positive.

Lemma 3.10. Let α′ denote the coordinates of v with respect to the new basis B′. Then α′ > 0.

Proof. First, consider the result of a linear combination of the new basis B′ with the old
coefficients α:

α1b1 + . . .+αib
′
i + . . .+αnbn =

n
∑

f=1

α f bf +αiKv= v+αiKv= v(1+αiK)

Now, set C := 1+αiK and note that C > 1 since K > 0 and αi > 0. It follows that

v=
α1

C
b1 + . . .+

αi

C
b′i + . . .+

αn

C
bn

and that α′ = α
C is the vector of coordinates of v with respect to the new basis B′. Since α> 0

and C > 0, it follows that α′ > 0 as required.

We have shown that the loop on lines 7–12 preserves the invariant that the coordinates
of v with respect to the current basis are all positive (lines 11,12) and that each iteration
decreases the number of negative values of the basis vectors. As a result, Algorithm 3.1
terminates and returns a decomposition of the input vector v of size equal to the nullity of
the input matrix M .

We first simulate the run of the algorithm on an example, then discuss its complexity
and finally compare it to other approaches for computing interpolants as a conjunction of
inequalities.

Example 3.11. Consider an unsatisfiable system of inequalities A∧ B where A= {x1 + x2 ≤ 0,
−x1 + x3 ≤ 0, x1 + x4 ≤ 0,−x1 + x5 ≤ 0} and B = {−x2 − x3 − x4 − x5 ≤ −1}. The vector of
Farkas coefficients witnessing the unsatisfiability of A∧ B is k =

�

1 1 1 1 1
�⊺

and its restriction
to A-part is kA =

�

1 1 1 1
�⊺

. The only A-local variable is x1, so the matrix of A-local coefficients
is L⊺ =
�

1 −1 1 −1
�

. We simulate the run of Algorithm 3.1 on kA and L⊺: Since L⊺ is already
in RREF, nothing changes on line 1. Now, the rank of L⊺ is 1 and it has 4 columns, thus its
nullity is 3 and we can compute a decomposition of kA of size 3. The first column of L⊺ is pivot
while the other three columns are free. The computation of the initial basis of ker(L⊺) (line 4)
yields three vectors:

b1 =









1
1
0
0









, b2 =









−1
0
1
0









, b3 =









1
0
0
1









.

The coordinates of kA with respect to this basis is α =
�

1 1 1
�⊺

. As b21 < 0 we enter the
loop on line 7 where the new vector b′2 is computed as b′2 = b2 + kA =

�

0 1 2 1
�⊺

. Then, the
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coordinates are divided by a constant C = 2 to obtain the new coordinates α =
�

1/2 1/2 1/2
�⊺

.
Since there are no more negative elements in the vectors of the basis, the decomposition kA =
1/2 ∗
�

1 1 0 0
�

+ 1/2 ∗
�

0 1 2 1
�

+ 1/2 ∗
�

1 0 0 1
�

is returned. This decomposition results in
the decomposed interpolant

IDec = (x2 + x3 ≤ 0)∧ (x3 + 2x4 + x5 ≤ 0)∧ (x2 + x5 ≤ 0).

Complexity of Algorithm 3.1. Considering the matrix of A-local coefficients L for m in-
equalities and l A-local variables, the algorithm runs on matrix M = L⊺ with m columns and l
rows. When the transformation of M to RREF is done by Gauss-Jordan elimination, it needs
to perform O(m2l) arithmetic operations. After the transformation, the number of (non-zero)
rows is r, which is the rank of M and we know that r ≤ l. With n denoting the nullity of M ,
Rank-Nullity Theorem implies that r+n = m and consequently that n< m. The complexity of
the computation of an initial basis is O(nm) since we are computing n basis vectors, each of
size m. Determining the value for every element of each basis vector is immediate: it is 0 or 1
for positions corresponding to the free columns, and it is a negated coefficient from RREF(M)
for positions corresponding to the pivot columns, see Equation (3.7). Finally, one iteration of
the loop that ensures non-negativity of the basis needs just O(m) arithmetic operations and
the termination can be ensured after O(n) iteration. To see this, note that a basis vector bi

can be made non-negative in one iteration when the index j is used that maximizes
−bi j
v j

. The

whole loop thus requires O(nm) arithmetic operations. The complexity of the algorithm is
thus dominated by the first part—computing RREF of the input matrix.

3.4.3 Comparison with Other Approaches

Given an unsatisfiable system of inequalities (A, B), Cimatti et al. [61] recognized two extreme
points in the spectrum of possible interpolants. On one side, there is the Farkas interpolant in
the form of single inequality obtained as a weighted sum of inequalities from A with weights
given by Farkas coefficients. On the other side, it is possible to employ quantifier elimination
to compute the strongest possible interpolant for (A, B) which will result in a conjunction of
inequalities (if possible). If all A-local variables are existentially quantified in A and eliminated,
then this is guaranteed to yield an interpolant. However, as Cimatti et al. note, quantifier
elimination is potentially a very expensive operation.3 Therefore, they propose modifications
to the procedure computing the interpolant from the proof of unsatisfiability. The observation
they make is that the only purpose of the summation of inequalities when traversing the proof
is to eliminate A-local variables. If the leaves of the proof do not contain A-local variables,
no summation is needed, and the conjunction of the inequalities in the leaves is already an
interpolant. This corresponds to our notion of trivial elements of the decomposition. Based

3Even when restricted to conjunction of inequalities, as is our case. For example, in Fourier-Motzkin procedure
eliminating one variable can increase the number of inequalities from m to m2/4 in the worst case. Thus,
eliminating n variables increases the number of inequalities to 4(m

4 )
2n

in the worst case.
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0≤ −1

1×(−x2 − x3 − x4 − x5 ≤ −1)x2 + x3 + x4 + x5 ≤ 0

1×(−x1 + x5 ≤ 0)x1 + x2 + x3 + x4 ≤ 0

1×(x1 + x4 ≤ 0)x2 + x3 ≤ 0

1×(−x1 + x3 ≤ 0)1×(x1 + x2 ≤ 0)

Figure 3.2. Proof of unsatisfiability of the system from Example 3.11.

on this observation, they proposed a modification to the proof-based algorithm that performs
only the summations that are necessary for eliminating A-local variables.

Example 3.12. Consider the unsatisfiable system of inequalities from Example 3.11. Figure 3.2
shows a possible proof of unsatisfiability according to the description of [61]. The computation
of Farkas interpolant as described by Equation (3.1) can be simulated by replacing the leaves
from B with 0≤ 0. The resulting Farkas interpolant is

I F = x2 + x3 + x4 + x5 ≤ 0.

Applying the modification from [61] avoids one unnecessary sum and results in an interpolant

I M = (x2 + x3 ≤ 0)∧ (x4 + x5 ≤ 0).4

As seen in Example 3.11, our approach yields interpolant with three conjuncts

IDec = (x2 + x3 ≤ 0)∧ (x3 + 2x4 + x5 ≤ 0)∧ (x2 + x5 ≤ 0).

Finally, existentially quantifying x1 in A and eliminating this quantifier yields interpolant with
four conjuncts

IQE = (x2 + x3 ≤ 0)∧ (x2 + x5 ≤ 0)∧ (x3 + x4 ≤ 0)∧ (x4 + x5 ≤ 0).

Note that IQE is the strongest and I F is the weakest interpolant in this quadruple, while I M

and IDec are incomparable in terms of logical strength. However, the advantage of our algorithm
is that even though its result depends on the order of the inequalities (the order of columns of L⊺),
it guarantees to find a decomposition of size 3 in our example. If the first and third inequalities
are switched, the decomposed interpolant computed by Algorithm 3.1 is

IDec′ = (x4 + x3 ≤ 0)∧ (x3 + 2x2 + x5 ≤ 0)∧ (x4 + x5 ≤ 0)

4This is indeed the interpolant computed by MATHSAT 5.6.0
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while if the first and second inequalities are switched, the computed interpolant is

IDec′′ = (x2 + x4 + 2x5 ≤ 0)∧ (x3 + x4 ≤ 0)∧ (x3 + x2 ≤ 0).

On the other hand, the approach of [61] is, in some sense, even more sensitive to the order
of the input inequalities (the shape of the proof) since the order can influence the size of the
decomposition. If the second and the third inequalities are switched, then their approach does not
detect the opportunity for decomposition and returns the Farkas interpolant I F . Our algorithm
in this situation returns an interpolant equivalent to IDec.

3.5 Experiments

We have implemented the computation of decomposed interpolants and their duals using Algo-
rithm 3.1 in our SMT solver OPENSMT [122], which already provided a variety of interpolation
algorithms for propositional logic [124, 171], theory of uninterpreted functions [7] and theory
of linear real arithmetic [8].

We evaluated the effect of decomposed interpolants in a model-checking scenario using
the model checker SALLY [129] with YICES [83] for satisfiability queries and OPENSMT for
interpolation queries5. We experimented with four LRA interpolation algorithms: the original
interpolation algorithms based on Farkas’ lemma, (i) ItpF and (ii) Itp′F, and the interpolation
algorithm computing decomposed interpolants, (iii) ItpDI and (iv) Itp′DI. OPENSMT computes
interpolants from the proof of unsatisfiability. In this approach, the interpolants computed
for LRA conflicts are combined based on interpolation rules for propositional logic and the
structure of the proof. In our experiments, we fixed the propositional part of the interpolation
algorithm to use McMillan’s interpolation rules [155]. We split our analysis of the experiments
into two parts. In Section 3.5.1, we analyse the performance of the model checker using
different LRA interpolation algorithms. We focus specifically on a detailed comparison of ItpF
and ItpDI, i.e., the default algorithm and our proposed algorithm. In Section 3.5.2, we analyse
the performance of a portfolio of interpolation algorithms and measure the contribution of
our proposed algorithm. For comparison, we also run a version of SALLY using MATHSAT
as the interpolation engine and compare to the contribution of the decomposing algorithm
proposed in [61].

The experiments were run on a large set of benchmarks consisting of several problem
sets related to fault-tolerant algorithms (azadmanesh, approxagree, om, hacms, misc,
ttesynchro, ttastartup,unifapprox), software model checking (cav12, ctigar), simple con-
current programs (conc), and a lock-free hash table (lfht). A benchmark suite of the KIND

model checker is also included (lustre). Each benchmark is a transition system with formulas
characterizing initial states, a transition relation and a property that should hold. SALLY can
finish with two possible answers (or run out of resources with no answer): valid means the

5Detailed description of the set-up and specifications of the experiments, together with all the results, can be
found at http://verify.inf.usi.ch/content/decomposed-interpolants

http://verify.inf.usi.ch/content/decomposed-interpolants
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ItpF Itp′F ItpDI Itp′DI

Problem set solved (V/I)
∑

time(s) solved (V/I)
∑

time(s) solved (V/I)
∑

time(s) solved (V/I)
∑

time(s)

approxagree (9) 9 (8/1) 127 9 (8/1) 138 9 (8/1) 106 9 (8/1) 126

azadmanesh (20) 20 (17/3) 418 20 (17/3) 639 20 (17/3) 422 20 (17/3) 1,202

cav12 (99) 68 (48/20) 2,097 67 (48/19) 2,580 66 (48/18) 1,441 66 (47/19) 2,446

conc (6) 3 (3/0) 20 3 (3/0) 22 5 (5/0) 313 3 (3/0) 21

ctigar (110) 74 (54/20) 3,066 70 (50/20) 1,919 71 (51/20) 3,077 58 (39/19) 1,701

hacms (5) 2 (2/0) 332 2 (1/1) 251 1 (1/0) 5 1 (1/0) 5

lfht (27) 17 (17/0) 319 18 (18/0) 448 22 (22/0) 2,784 16 (16/0) 26

lustre (790) 773 (437/336) 3,530 769 (436/333) 3,180 766 (433/333) 3,990 741 (416/325) 2,021

misc (10) 8 (7/1) 154 8 (7/1) 127 9 (7/2) 57 9 (7/2) 888

om (9) 9 (7/2) 6 9 (7/2) 4 9 (7/2) 6 9 (7/2) 4

ttastartup (3) 2 (1/1) 325 1 (1/0) 7 1 (1/0) 11 1 (1/0) 15

ttesynchro (6) 6 (3/3) 10 6 (3/3) 11 6 (3/3) 13 6 (3/3) 13

unifapprox (11) 11 (8/3) 71 11 (8/3) 64 11 (8/3) 71 11 (8/3) 448

Total (1,105) 1,002 (612/390) 10,475 993 (607/386) 9,390 996 (611/385) 12,296 950 (573/377) 8,916

Table 3.1. Performance of sally using different interpolation algorithms of OpenSMT

property holds and an invariant implying the property has been found; invalid means the
property does not hold and a counterexample leading to a state where the property does
not hold has been found. In the plots, we denote the answers as + and ◦, respectively. The
benchmarks were run on Linux machines with the Intel E5-2650 v3 processor (2.3 GHz) and
64GB of memory. Each benchmark was restricted to 600 seconds of running time and to 4GB
of memory.

3.5.1 Comparing Individual Configurations

Table 3.1 presents the results of the model checker’s runs using different interpolation
algorithms. The results are summarized by category with the name of the category and the
number of corresponding benchmarks in the first column. The two columns per interpolation
algorithm show the number of benchmarks solved successfully (validated/invalidated) within
the resource limits and the total running time for the solved benchmarks.

The results suggest that ItpF interpolation algorithm achieves the best result overall. How-
ever, there are certain cases where ItpDI is faring better, for example the lfht category. Before
we present a more thorough comparison between these two algorithms we note that the config-
uration using Itp′DI, which computes the weakest interpolants, performs very poorly compared
to the others. Closer inspection revealed that it did not solve any benchmarks not solvable by
other configurations. It did solve a few benchmarks faster than others, but the improvement
was negligible. On the other hand, the overall drop in performance is large. We conclude
that computing very weak interpolants is a bad strategy in this model-checking scenario.
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Figure 3.3. Evaluation of the decomposed interpolants in model checking scenario: compar-
ison of performance of sally using OpenSMT with different interpolation procedures, ItpF
and ItpDI.

As mentioned before, the results summarized in Table 3.1 suggest that ItpF performs
better than ItpDI overall. However, a closer look reveals that the situation is more complicated.
Figure 3.3 illustrates a direct comparison between these two algorithms. Each point represents
one benchmark, x-axis corresponds to the runtime (in seconds) of SALLY using ItpF as the
interpolation algorithm in OPENSMT, and y-axis corresponds to the runtime of SALLY using
ItpDI. The direct comparison shows that in some cases the use of decomposed interpolants
outperforms the original procedure, sometimes by an order of magnitude. Even though ItpDI
solved 6 benchmarks less than ItpF, it still managed to solve 12 benchmarks that ItpF was not
able to solve within the resource limits. Moreover, on a common set of non-trivial (runtime
at least 10 seconds) solved benchmarks, it improved the performance by more than 10% on
45 benchmarks (out of 116 such benchmarks).

During the evaluation, we realized that a small modification in the SMT solver sometimes
had a huge effect on the performance of the model checker. It made previously unsolved
instance easily solvable or the other way around. To confirm that using ItpDI is indeed better
than using ItpF for particular benchmarks, we ran an additional set of experiments. For each
of the 12 benchmarks solved by ItpDI but not solved by ItpF we ran the model checker 100
times, each time with a different random seed for the interpolating solver. The results are
summarized in Table 3.2. For each of the two configurations, the table reports how many
runs (out of 100) of the model checker finished successfully within the resource limits and
the average time of the successful runs. This experiment demonstrates that there are indeed
benchmarks where the decomposition is necessary, while using the original Farkas algorithm
leads to divergence. In other cases, the use of decomposed interpolants leads to a higher
chance of a successful result and/or better runtime of the model checker. Note that these
benchmarks were picked deliberately to confirm that ItpDI performs better on them than ItpF,
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ItpF ItpDI

benchmark solved avg. time solved avg. time

fib_benc_safe_v1 0 - 100 46.5
fib_benc_safe_v2 0 - 100 0.01
dillig01.c 0 - 100 0.1
dillig03.c 0 - 100 0.1
lifnat.c 17 510 29 471
lfht_2_mini_cleaned.prop1 21 362 57 344
lfht_2_mini_lemma5c 18 257 69 293
lfht_2_mini_lemma5e 0 - 30 347
lfht_2_mini_lemma5f 1 188 39 363
lfht_2_mini_lemma5g 22 284 47 311
DRAGON_12_e2_1618_e2_138 99 25 100 19
mvs_with_timeouts3 73 251 98 64

Table 3.2. Aggregated results from 100 runs of the model checker on selected benchmarks

based on our experiments on the whole benchmark set.
For the final aspect of the direct comparison of ItpF and ItpDI we collected statistics from

the runs of SALLY with ItpDI about how often ItpDI manages to decompose the vector of
Farkas coefficients, thus returning a different interpolant than ItpF would. These results are
summarized in Table 3.3. The second column reports the number of benchmarks with at least
a single decomposition (any; with at least one trivial element; with at least one non-trivial
element). The third column reports the total number of interpolation problems for theory
conflict, excluding those without even theoretical possibility for decomposition. There is no
possibility for decomposition if all inequalities are from one part of the problem (resulting in
trivial interpolants, either ⊤ or ⊥) or there is only a single inequality in the A-part (trivially
yielding an interpolant equal to that inequality). The last column reports the number of
successfully decomposed interpolants (with at least one trivial element; with at least one
non-trivial element). Note that it can happen that a successful decomposition contains both
trivial and non-trivial elements. We see that at least one decomposition was possible in only
less than half of all the benchmarks. This explains why there are many points on the diagonal
in Figure 3.3. On the other hand, it shows that the test for the possibility of decomposition is
cheap and does not represent a significant overhead. Another conclusion we can draw is that
when the structure of the benchmark enables decomposition, it can often be discovered in
many theory conflicts that appear during the solving.

3.5.2 Analysis of the Portfolio

In this part, we present yet another way to measure the contribution of the decomposed
interpolants: the contribution to the virtual best configuration. We consider a virtual portfolio
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ItpDI

Problem set
#problems with
some decomposition

#non-trivial
itp problems

#decomposed itps

approxagree (9) 1 (1/1) 7 7 (4/3)
azadmanesh (20) 0 (0/0) 1,818 0 (0/0)
cav12 (99) 40 (30/29) 707,414 6,464 (747/5,719)
conc (6) 3 (3/3) 39,135 25,603 (4,030/21,033)
ctigar (110) 70 (58/69) 4,064,827 1,106,642 (61,371/1,049,904)
hacms (5) 5 (5/5) 424,532 32,331 (3,628/28,703)
lfht (27) 14 (14/14) 786,837 126,568 (5,464/121,104)
lustre (790) 327 (96/299) 2,916,829 2,001,503 (9,115/2,001,058)
misc (10) 8 (7/8) 59,266 12,054 (2,363/10,024)
om (9) 6 (6/0) 974 380 (380/0)
ttastartup (3) 3 (2/3) 117,303 12,165 (240/11,925)
ttesynchro (6) 4 (4/4) 90 90 (90/69)
unifapprox (11) 1 (1/0) 1 1 (1/0)

Table 3.3. Interpolation statistics. The numbers in parentheses count only situations where
decomposition contains some trivial and some non-trivial elements (trivial/non-trivial).

consisting of configurations of SALLY using different interpolation algorithms of OPENSMT.
In addition, we also consider a separate virtual portfolio of configurations of SALLY using
MATHSAT. The result of a virtual portfolio on a benchmark is the best result achieved by
any of the configurations of the portfolio. As noted before, the configuration using Itp′DI
performed quite poorly on our benchmarks. Since MATHSAT can compute Farkas interpolants
and its duals, and restricted form of decomposed interpolants but not its dual, we also
exclude Itp′DI from the portfolio of OPENSMT’s configurations, with minimal impact on the
performance. We denote the heuristic for computing decompositions described in [61] and
available in MATHSAT as ItpM. We use the number of solved instances and PAR-2 score as a
metric of measuring the performance. PAR-2 score is computed as the sum of runtime on
solved instances plus two times the timeout for each unsolved instance. Finally, for each
configuration we compute the number of uniquely solved instances (not solved by any other
configuration in the portfolio) and regret, i.e., how much would the PAR-2 score of the
portfolio worsen, if that particular configuration was excluded from the portfolio. The results
are summarized in Table 3.4. Note that OPENSMT and MATHSAT portfolios are considered
separately.

OPENSMT configuration portfolio is able to solve 1,017 benchmarks with PAR-2 score
116,117. MATHSAT configuration portfolio is able to solve 1,018 benchmarks with PAR-2
score 110,356. We hypothesize that the better performance of MATHSAT can be at least
partially attributed to the fact that it supports interpolation in combination with incremental
solving while OPENSMT does not. In both portfolios, the ability to compute decomposed
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config.
#uniq.
solved

PAR-2 regret

O
P

E
N

SM
T ItpF 4 4046 3.5%

Itp′F 3 4586 3.9%

ItpDI 10 10245 8.8%

M
AT

H
SA

T ItpF 0 260 0.2%

Itp′F 3 3594 3.3%

ItpM 6 7754 7%

Table 3.4. Contribution of the configurations to their respective portfolios.

interpolants (even in the restricted form) significantly improves the performance of the
portfolio. We also see that the contribution of our algorithm based on methods from linear
algebra to OPENSMT portfolio is slightly larger than the contribution of the heuristic ItpM to
the MATHSAT portfolio. Additionally, our algorithm solves more instances uniquely within its
portfolio. Interestingly, the contribution of the configuration computing Farkas interpolants
is non-trivial in OPENSMT, but almost non-existent in MATHSAT. Our hypothesis is that ItpM,
compared to ItpDI, decomposes less often and the decompositions are of smaller size (e.g., in
the situation from Example 3.12). This would mean that the interpolants from ItpM are more
often similar (or even identical) to Farkas interpolants, which would make the MATHSAT
portfolio less diverse than the OPENSMT portfolio.

3.6 Related Work

The possible weakness of Farkas interpolants for use in model checking was recognized
in [179]. The authors demonstrate that Farkas interpolation does not satisfy the condition
needed for proving convergence of a model-checking algorithm PD-KIND [129]. Indeed,
the model checker SALLY [129], which implements PD-KIND, diverges on our example from
Section 3.2 if Farkas interpolation is used in its underlying interpolation engine. To resolve
this problem [179] introduces a new interpolation procedure that guarantees the convergence
of a special sequence of interpolation problems often occurring in model checking problems.
However, this interpolation algorithm is based on a decision procedure called conflict resolu-
tion [138], which is not as efficient as the Simplex-based decision procedure used by most
state-of-the-art SMT solvers. In contrast, we show how the original Simplex-based decision
procedure using Farkas coefficients can be modified to produce interpolants not restricted to
the single-inequality form, while additionally obtaining strength guarantees with respect to
the original Farkas interpolants.

The reasoning engine SPACER [137] was also known to be affected by this weakness of
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Farkas interpolants. The verification framework SEAHORN [107], which relies on SPACER,
originally used to obtain additional invariants from abstract interpretation to avoid the
divergence. Recently, the algorithm in SPACER was enriched with global guidance [190].
One part of the global guidance is monitoring the progress of the model checker, detecting
an emergent diverging behaviour and applying a special rule to prevent the divergence.

A different approach to control the interpolants at the level of the model checking algo-
rithm is interpolation abstraction [177]. It is a powerful technique for restricting interpolants
to conform to a prescribed form. It enables fine-grained control over symbol occurrences in an
interpolant. The abstraction is expected to be provided by the application, and a reasonable
choice has been given for software model checking. The disadvantage is that it requires
auxiliary variables to be added to the original interpolation problem to enforce the abstraction
on the interpolant computation.

Besides the application in interpolation-based model checking, the interpolation itself
has received significant attention in the last two decades. The work on LRA interpolation
dates back to 1997 [166]. A compact set of rules for deriving LRA interpolants from the proof
of unsatisfiability in an inference system was presented in [156]. The interpolants in these
works were the Farkas interpolants. Current methods usually compute Farkas interpolants
from explanations of unsatisfiability extracted directly from the Simplex-based decision
procedure inside the SMT solver [84]. Recent investigations of controlling the strength of LRA
interpolants showed that the information from primal and dual Farkas interpolants could be
combined to obtain an interpolant of intermediate strength [8]. There is an infinite family of
interpolants between a primal and a dual interpolant, and the strength can be controlled with
a single strength factor. However, these interpolants are still restricted to single inequalities
and are always weaker than the primal Farkas interpolant.

The first discussion on how to obtain interpolants in the form of a conjunction of in-
equalities from Farkas coefficients is present in [61]. However, their approach is based on
a simple heuristic which does not discover the possibility for decompositions in some cases
where our approach finds the decomposition easily. Moreover, their focus was purely on the
interpolation techniques, and they did not discuss the application in model checking. We
provided a detailed comparison to our approach in Section 3.4.3.

Besides the computation of interpolants from refutation proof, linear programming (LP)
methods have been successfully used to compute interpolants [178]. LP solvers were used to
compute simple, or even beautiful LRA interpolants [3, 180]. In [3], the authors use linear
programming (LP) solver to check for the existence of a common half-plane interpolant for
increasingly larger subparts of the given LRA problem. In [180], the authors use a similar
method but only after the refutation proof has been constructed by standard solving methods.
Our focus is not on the overall interpolant but on a single LRA conflict. However, in the
context of interpolants from proofs produced by SMT solvers, our approach also has the
potential for re-using components of interpolants for LRA conflicts across the whole proof.

Orthogonal to the studies of interpolation algorithms for LRA conflicts is the large body of
work on the propositional part of interpolation procedures, e.g., [6, 81, 108, 125, 172, 197].
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3.7 Conclusion and Future work

In this chapter, we have contributed a new interpolation algorithm for conflicts in the theory
of linear real arithmetic. This algorithm generalizes the interpolation algorithm based on
Farkas’ lemma used in modern SMT solvers; it uses methods from linear algebra to identify
linearly indepedent components and decompose Farkas interpolant. We showed that the
algorithm is able to compute interpolants in the form of a conjunction of inequalities that
are logically stronger than the single inequality returned by the original approach. This
becomes useful in the IC3-style model-checking algorithms where Farkas interpolants have
been shown to be a source of incompleteness. In our experiments, we have demonstrated
that the opportunity to decompose Farkas interpolants frequently occurs in practice and that
the decomposition often leads to (i) lower solving time and, in some cases, to (ii) solving
a problem not solvable by the previous approach.

An interesting future research would be to go beyond a simple portfolio approach and
automatically determine what kind of interpolant would be more useful for the current
interpolation query in (not only) IC3-style model-checking algorithms.
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Chapter 4

Transition Power Abstraction

Automated formal verification by means of model checking is popular because of the ability
to both (1) find error paths for unsafe systems, and (2) prove the absence of error paths for
safe systems. Recent techniques based on Satisfiability Modulo Theories (SMT), as well as the
continuing improvements of SMT solvers [11, 60, 72, 83, 122], enable scalable applications
of model checking to software verification [22]. Specifically, the idea of building a safe
inductive invariant incrementally—pioneered by the hardware model checking algorithm
IC3/PDR [41, 85]—has been successfully applied in several IC3-inspired approaches [58, 59,
93, 113, 129, 137], thus improving the capabilities of verification tools significantly.

Although this progress is undeniably encouraging, model checking still suffers from
scalability issues associated with an exhaustive exploration of a system’s states. For many
systems, a large set of states must be observed to eventually detect a counterexample or
synthesize an invariant.

The basic template for reachability-based analysis originated with bounded model checking
(BMC) [29]. A typical BMC algorithm searches for counterexamples reachable in a finite
number of steps, and if nothing is found, it increases the search limits and restarts. Most mod-
ern model-checking algorithms based on reachability analysis have adopted this philosophy
because one of the advantages of this approach is that it finds the shortest counterexample
(if one exists). However, it also results in scalability issues. Specifically, in modern software
systems, it is not uncommon that a program must iterate through a particular loop thousands
of times (or more) before it reaches some error state. These deep counterexamples pose
problems for reachability-based algorithms that rely on unrolling the bounds of the system’s
transition relation one transition at a time.

In this chapter, we present the concept of Transition Power Abstraction (TPA) sequence and
a novel model-checking algorithm for safety properties of transition systems. One key feature
of this algorithm is a shift from the focus on states and state abstractions to the focus on
transitions and transition abstractions [164]. TPA sequence is a sequence of abstract relations
that gradually summarize (in an over-approximating manner) an increasing number of steps
of the transition relation. The distinguishing feature is that the summarized number of steps
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increases exponentially, not linearly. The algorithm uses the TPA sequence for answering
bounded reachability queries about the system, but it also extends and refines this sequence
based on the information learned. Using the TPA sequence, the algorithm can quickly focus
on the essential part of the search space and not waste time examining short paths that
cannot lead to a counterexample. At the same time, it can discover transition invariants of
the system sufficient to prove the system’s safety. In this chapter, we present the theoretical
ideas and pseudocode of the algorithm. The implementation details and experiments are
given in Chapter 5 as part of the presentation of our Horn solver GOLEM. In the experiments,
we demonstrate that TPA can detect counterexamples beyond the capabilities of state-of-the-
art model checkers due to their depth and that proving safety using transition invariants
complements state-of-the-art techniques for proving safety by discovering safe inductive
invariant.

4.1 Preliminaries

In this chapter, we study the problem of whether or not a safety property holds in a given
transition system. The basic notions related to this problem were explained in Section 2.5. A
key concept in this problem is reachability, i.e., the existence of a trace between states of the
system. The transitions and reachability are captured symbolically by binary relations over the
set of states. Concatenation of relations is used to define relations that represent reachability
in a fixed number of steps. Given two relations R1(x , y) and R2(y, z), their concatenation
R = R1 ◦ R2 is a relation over x , z such that R(x , z) ⇐⇒ ∃y : R1(x , y) and R2(y, z). In
transition systems, we can define relations representing multiple steps of a transition relation.
For example, Tr2(X , X ′′) ≡ Tr(X , X ′) ◦ Tr(X ′, X ′′) relates pairs of states (s, t) such that t is
reachable from s in exactly two steps of the transition relation Tr. We also write that (s, t) ∈ Tr2.
Existence of a counterexample (a trace from some initial to some bad state) of a fixed length
l can be encoded as a satisfiability check of the formula

Init(X (0))∧ Tr(X (0), X (1))∧ Tr(X (1), X (2))∧ . . .∧ Tr(X (l−1), X (l))∧ Bad(X (l)),

where X (i) is a state variable shifted i steps, “with i primes”. A satisfying assignment deter-
mines l + 1 states such that the first one is an initial state, the last one is a bad state, and
each successor can be reached from its predecessor by one step of the transition relation Tr.
If there is no satisfying assignment, no trace of l steps from Init to Bad exists.

4.1.1 State and Transition Inductive Invariants

A set of states S is an inductive invariant iff

• Init(X )∧ Tr(X , X ′) =⇒ S(X ′),

• S(X )∧ Tr(X , X ′) =⇒ S(X ′).
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An inductive invariant is safe if it excludes all bad states. Proving safety of a transition system
by discovering a safe inductive invariant is one of the most popular approaches, especially
for infinite-state systems.

The idea of a safe inductive invariant can be lifted from states to transitions. Let Tr∗

denote the reflexive transitive closure of Tr. Then Tr∗ represents reachability in any number
of steps (including 0) in the system. We say that a transition formula T (X , X ′) is a transition
invariant iff Tr∗ ⊆ T , i.e., ∀X , X ′ Tr∗(X , X ′) =⇒ T (X , X ′).1

A transition formula T (X , X ′) is an inductive transition invariant iff

1. Id(X , X ′) ⊆ T (X , X ′), and

2. either T (X , X ′)∧ Tr(X ′, X ′′) =⇒ T (X , X ′′)
or Tr(X , X ′)∧ T (X ′, X ′′) =⇒ T (X , X ′′).

Note that an inductive transition invariant T is indeed a transition invariant, i.e., it over-
approximates Tr∗. This can be easily proved by induction. Suppose that (s, t) ∈ Tr∗, i.e., s
can reach t. Consider the shortest trace from s to t. If its length is 0, then by condition 1,
(s, t) ∈ T . Suppose that the length of the shortest trace is l > 0. Then there is t ’s predecessor
p on the trace, such that p can be reached from s in l−1 steps and (p, t) ∈ Tr. By the induction
hypothesis, (s, p) ∈ T , and based on the first option in condition 2, we get that (s, t) ∈ T ,
which concludes the proof. For the second option in condition 2, it suffices to consider in the
inductive step the first successor of s instead of the first predecessor of t.

Note, however, that the two versions of condition 2 are not equivalent, as witnessed by
the following example.

Example 4.1. Consider the following transition relation Tr and a transition formula T:

Tr(x , y, x ′, y ′)≡ y ≥ 0∧ x ′ = x ∧ y ′ = y + x (4.1)

T (x , y, x ′, y ′)≡ y ′ ≥ y ∨ y ′ ≥ x (4.2)

It is not hard to verify that Tr ◦ T ⊆ T, but T ◦ Tr ⊈ T. For the first case, we need to show that
y ≥ 0∧ x ′ = x ∧ y ′ = y + x ∧ (y ′′ ≥ y ′ ∨ y ′′ ≥ x ′) implies y ′′ ≥ y ∨ y ′′ ≥ x. We can do a case
analysis for the disjunction in the antecedent: If y ′′ ≥ x ′ then y ′′ ≥ x since x ′ = x. If y ′′ ≥ y ′

then y ′′ ≥ x + y (since y ′ = x + y) and thus y ′′ ≥ x as y ≥ 0.
For the second case, consider the following three states (x = 0, y = 0), (x ′ = −1, y ′ = 0) and

(x ′′ = −1, y ′′ = −1). Then T (x , y, x ′, y ′) and Tr(x ′, y ′, x ′′, y ′′) hold, so (T ◦ Tr)(x , y, x ′′, y ′′)
holds; but T (x , y, x ′′, y ′′) does not hold.

Similarly to inductive invariants, inductive transition invariants can be used as a proof
rule. If T is an inductive transition invariant and T does not relate any initial state with a
bad state, then T is safe. If a safe inductive transition invariant exists, then the system is safe.

1Note that our definition is slightly simpler than that of [164], as it only depends on the transition relation
and not on the initial states of the system.
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Checking whether a transition formula T can be formulated as a satisfiability query: T is safe
iff Init(X )∧ T (X , X ′)∧ Bad(X ′) is unsatisfiable.

This proof rule can be further strengthened by weakening the assumption. We consider
the following notions:

Definition 4.2 (left- and right-grounded transition invariant). Let T be a transition formula.
If Init◁Tr∗ ⊆ Init◁T then we say T is a left-grounded transition invariant. If Tr∗ ▷Bad ⊆ T ▷Bad
then we say T is a right-grounded transition invariant.

We say that a transition formula is a grounded transition invariant if it is either left-
grounded or right-grounded. Note that grounded transition invariants are closely related to
the state invariants in the traditional sense: If T (X , X ′) is a left-grounded transition invariant
then ∃X : Init(X )∧ T (X , X ′) is a state invariant, i.e., it over-approximates all states reachable
from Init. Additionally, we obtain a symmetric concept: If T(X , X ′) is a right-grounded
transition invariant then ∃X ′ : T(X , X ′) ∧ Bad(X ′) over-approximates all states backward
reachable from Bad.

The concept of a safe inductive transition invariant can be extended to grounded transition
invariants.

Definition 4.3. Let T be a transition formula with Id ⊆ T. If Init◁ T ◦Tr ⊆ Init◁ T then T is an
inductive left-grounded transition invariant. If Tr ◦ T ▷ Bad ⊆ T ▷ Bad then T is an inductive
right-grounded transition invariant.

Observation 4.4. If a transition formula T is an inductive grounded transition invariant, then
it is indeed a grounded transition invariant according to Definition 4.2.

Proof. The proof is analogous to the proof that an inductive transition invariant is indeed a
transition invariant. We show only the case of the right-grounded invariant, the left-grounded
case is analogous. We want to show that if (s, t) ∈ Tr∗ and t ∈ Bad then (s, t) ∈ T . The proof
proceeds by induction on the length l of the shortest path from s to t. The base case l = 0
holds because Id ⊆ T . For the inductive step, consider m, the successor of s on the path to t.
By induction, it holds that (m, t) ∈ T . Since (s, m) ∈ Tr, it follows by the assumption on T
that (s, t) ∈ T .

Inductive grounded transition invariants can be used as a proof rule for safety in the same
way as inductive transition invariants: If a safe inductive grounded transition invariant exists,
then the system is safe.

4.2 Intuition behind Transition Power Abstraction

We explain the problem of slow progress in state-of-the-art algorithms and the intuition that
led to TPA in a simple example of a multi-phase loop (generalized from [185] where N=50),
given in Figure 4.1. The program source code is given on the left, while the corresponding
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x = 0; y = N;
while ( x < 2N){

x = x + 1;
i f ( x > N)

y = y + 1;
}
a s s e r t ( y != 2N) ;

Init(x , y)≡ x = 0∧ y = N

Tr(x , y, x ′, y ′)≡ x < 2N ∧ x ′ = x + 1

∧ y ′ = ite(x ′ > N , y + 1, y)

Bad(x , y)≡ x ≥ 2N ∧ y = 2N

Figure 4.1. An example of unsafe multi-phase loop

transition system is given on the right. Note that N represents a parameter of the system, not
a nondeterministic variable.

Since the assertion is placed after the loop, any counterexample requires finding a complete
unrolling of the loop, i.e., all 2N iterations (or 2N steps in the corresponding transition system).
Interestingly, even a linear growth of N results in the exponential growth of complexity of
the search for counterexamples. Because of the control-flow divergence in each iteration of
the loop, the number of possible program paths (that a verifier explores) doubles with each
increment of counter x. Consider a run of BMC on this example: Using SMT queries, it tests
the existence of a counterexample of length 0,1,2, . . . , 2N . All queries except the last one
are unsatisfiable since the loop requires 2N iterations to finish and reach the assertion. Thus
BMC requires 2N SMT queries; however, the queries get more and more complex. Each new
query contains an additional copy of the state variables, compared to the previous query.

This inefficient exploration of a state space caused by the slow increment of the considered
bound was the primary motivation for our search for an alternative approach. We were
inspired by the technique known as binary exponentiation or exponentiation by squaring used
in many areas of computer science (see, e.g., [161]). We can apply this idea to a transition
relation in the following way: Let R≤n denote a relation of reachability in ≤2n steps. The
sequence of relations R≤ can be defined inductively as

R≤0 = Id∪ Tr,

R≤n+1 = R≤n ◦ R≤n.
(4.3)

Note, however, that when representing these relations as formulas, the inductive step would
require quantification over the intermediate states, to keep the relation expressed only over
the source and target state variables, i.e., R≤n+1(X , X ′)≡ ∃Y R≤n(X , Y )∧ R≤n(Y, X ′). Thus,
quantifier elimination is required to avoid the accumulation of many copies of state variables.
One option is to apply quantifier elimination eagerly. A much more common approach in
verification is to use Craig interpolation to over-approximate quantifier elimination and only
lazily refine the abstraction on demand. The transition power abstraction sequence captures
the idea outlined above. Intuitively, the elements of the sequence are formulas that over-
approximate reachability in an exponentially increasing number of steps of the transition
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input : transition system S = 〈Init, Tr, Bad〉
global : TPA sequence ATr≤0, . . . , ATr≤n, . . . (lazily initialized to true)
Function CheckSafetyTPA(〈Init, Tr, Bad〉):

1 ATr≤0← Id∨ Tr; n← 0
2 while TRUE do
3 if IsReachable(n, Init, Bad) ̸= ; then return UNSAFE
4 if HasInvariant(S, n) then return SAFE

Algorithm 4.1. Main procedure for checking safety

relation. Moreover, they are always expressed only over two copies of the state variables.2

For our example in Figure 4.1, first log2 N elements could be x ′ ≤ x + 1, x ′ ≤ x + 2, x ′ ≤
x + 4, x ′ ≤ x + 8, . . . , x ′ ≤ x + 2log2 N . We show how to build a procedure for checking safety
properties of transition systems based on the idea of the TPA sequence.

4.3 Transition Power Abstraction for Checking Safety Properties

First, we present a simpler version of the algorithm for checking safety properties of transition
systems using the TPA sequence; later, we give an improved but more complex version.
The simpler version allows us to better explain the fundamental concepts of the algorithm:
answering bounded reachability queries with the TPA sequence, refinement of the TPA
sequence, and checks for inductive invariants.

Our main procedure—given in Algorithm 4.1—follows the typical scheme of bounded
model checking where, in each iteration, the reachability of Bad is checked within a certain
bounded number of steps, and the bound gradually increases. This scheme has also been
adopted by other model-checking algorithms, such as Spacer [137] and interpolation-based
model checking [91, 155, 194], which further support a generalization/adaptation of the
proof of bounded safety to a proof of unbounded safety.

The distinguishing feature of our approach is that it increases the bound for the safety
check exponentially in the number of iterations, while other approaches do this linearly.
That is, in the nth iteration, traditional algorithms check bounded safety up to n steps, but
our approach does up to 2n+1 steps. However, we do not unroll the transition relation an
exponential number of times. Instead, we maintain a sequence of transition formulas (i.e.,
each formula contains only two copies of the state variables) where each element over-
approximates twice as many steps of transition relation Tr as its predecessor. This is the
Transition Power Abstraction (TPA) sequence. We denote the nth element of the sequence as
ATr≤n and we require that it over-approximates reachability in ≤2n steps of Tr, i.e.,

Id(X , X ′)∨ Tr(X , X ′)∨ Tr2(X , X ′)∨ . . .∨ Tr2n
(X , X ′) =⇒ ATr≤n(X , X ′). (4.4)

2This condition is important to prevent related SMT queries from growing in complexity in terms of the number
of variables.
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Moreover, we require that ATr≤0 ≡ Id∨ Tr. Thus, ATr≤0 is not an over-approximation but a
precise relation capturing true reachability in 0 or 1 steps.

4.3.1 TPA Sequence for Bounded Reachability Queries

The core of our model-checking algorithm lies in answering bounded reachability queries,
i.e., whether some target states are reachable from some source states within some bounded
number of steps. The algorithm uses the TPA sequence to answer such queries and, at the
same time, it extends the sequence and refines its existing elements.

Intuitively, the sub-procedure works as follows: Given two sets of states, Source and
Target, and nth element of the current TPA sequence ATr≤n, it issues the following SMT query:

Sat?[Source(X )∧ ATr≤n(X , X ′)∧ ATr≤n(X ′, X ′′)∧ Target(X ′′)]. (4.5)

If this query is unsatisfiable, there is no intermediate state reachable from Source using
one step of ATr≤n that, at the same time, can reach Target in yet another step of ATr≤n. Since
one step of ATr≤n over-approximates reachability in 0 to 2n steps of Tr, no trace of length
≤2n+1 exists from Source to Target. Thus, the procedure can immediately conclude that no
state from Target is reachable from any state in Source in ≤2n+1 steps.

Additionally, it is also possible to learn new information about the reachability in ≤2n+1

steps in the form of an interpolant between ATr≤n(X , X ′)∧ ATr≤n(X ′, X ′′) and Source(X )∧
Target(X ′′). The properties of interpolation guarantee that the interpolant contains only
variables X , X ′′ (i.e., it does not contain X ′), it over-approximates ATr≤n ◦ ATr≤n, and it does
not relate any source state with a target state. The relation defined by such an interpolant
satisfies the condition from Equation (4.4) for the n+1st element of TPA sequence, and
the current TPA sequence can be refined by conjoining the interpolant (after renaming of
variables) to its n+1st element.

If query from Equation (4.5) is satisfiable, there exists some intermediate state m that
can be reached from Source by one step of ATr≤n and can reach Target by yet another step
of ATr≤n. If n = 0, the procedure returns and reports the answer “reachable” as ATr≤0 is
precise, not over-approximating. Otherwise, such an intermediate state m can be seen as a
potential point on the trace from Source to Target, and this trace can be shown to be real if
there exist two real traces: from Source to m and from m to Target. The existence of these
two real traces can be checked recursively.

The pseudocode for the procedure is given in Algorithm 4.2. We first explain the steps
in more detail and demonstrate a run of the algorithm on our example from Section 4.2.
Then, we prove the correctness and termination of Algorithm 4.2, from which follow the
correctness of Algorithm 4.1 and its termination for unsafe systems.

Bounded Reachability Queries with TPA in Details

Function IsReachable takes as input an integer n ≥ 0, a set of source states, and a set of
target states. The output is a subset of target states that are reachable in ≤2n+1 steps of
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input : level n, source states Source, target states Target
output : subset of Target reachable from Source within 2n+1 steps
global : TPA sequence ATr≤0, . . . , ATr≤n, . . .
Function IsReachable(n,Source,Target):

1 while true do
2 query← Source(X )∧ ATr≤n(X , X ′)∧ ATr≤n(X ′, X ′′)∧ Target(X ′′)
3 sat_res← Sat?[query]
4 if sat_res = UNSAT then
5 I ← Itp(ATr≤n(X , X ′)∧ ATr≤n(X ′, X ′′), Source(X )∧ Target(X ′′))
6 ATr≤n+1← ATr≤n+1 ∧ I[X ′′ 7→ X ′]
7 return ;
8 else
9 if n= 0 then return QE(∃X , X ′ query)[X ′′ 7→ X ]

10 Intermediate← QE(∃X , X ′′ query)[X ′ 7→ X ]
11 IntermediateReached← IsReachable(n− 1, Source, Intermediate)
12 if IntermediateReached= ; then continue
13 TargetReached← IsReachable(n− 1, IntermediateReached, Target)
14 if TargetReached= ; then continue
15 return TargetReached

Algorithm 4.2. Reachability query using TPA

transition relation Tr. The output set is empty if no target state is reachable from any source
state within the given bound.

The procedure loops until it computes a truly reachable subset of target states or proves
all target states unreachable. In each iteration, the procedure uses the current nth element of
the TPA sequence. Note that this will be different in each iteration as the TPA sequence will
be updated in the recursive calls on lines 12 and 14. The procedure constructs a satisfiability
query that represents whether or not an intermediate state is reachable from Source using
one step of ATr≤n and, at the same time, can reach Target in yet another step of ATr≤n. This
query is then passed to a decision procedure for the background theory T (lines 2 and 3).

Query on line 3 is unsatisfiable. If the query is unsatisfiable, then no target state can be
reached from any source state in two steps of ATr≤n. It follows from Equation (4.4) that
no target state can be reached from any source state in ≤2n+1 steps. Before indicating
the unreachability by returning ; (line 7), the procedure updates the TPA sequence to
ensure termination (discussed later): The procedure computes an interpolant between
ATr≤n(X , X ′)∧ ATr≤n(X ′, X ′′) and Source(X )∧ Target(X ′′) (line 5). After renaming variables,
the interpolant is conjoined to the n+1st element of the TPA sequence. In this way, our
algorithm is gradually learning new facts about reachability in the system under inspection and
refining the abstraction maintained in the TPA sequence. The following example demonstrates
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this part of the procedure on our motivating example.

Example 4.5. Consider the system from Figure 4.1 for N = 3. This system is unsafe, and the
counterexample requires six steps of the transition relation Tr. Here, we focus on the search for
counterexample trace and omit the checks for invariant.

After Algorithm 4.1 initializes the base element of TPA sequence to (x ′ = x ∧ y ′ = y)∨ (x <
6∧ x ′ = x + 1∧ y ′ = ite(x ′ > 3, y + 1, y)) it issues a reachability query IsReachable(0, x =
0∧ y = 3, x ≥ 6∧ y = 6) in the first iteration of its loop. This translates to a satisfiability check
of the formula

x = 0∧ y = 3

∧ ((x ′ = x ∧ y ′ = y)∨ (x < 6∧ x ′ = x + 1∧ y ′ = ite(x ′ > 3, y + 1, y)))

∧ ((x ′′ = x ′ ∧ y ′′ = y ′)∨ (x ′ < 6∧ x ′′ = x ′ + 1∧ y ′′ = ite(x ′′ > 3, y ′ + 1, y ′)))

∧ x ′′ ≥ 6∧ y ′′ = 6

on line 3 of Algorithm 4.2. This query is unsatisfiable, and x ′′ ≤ x + 2 is a possible interpolant
computed on line 5. After variable renaming, this interpolant refines ATr≤1, which becomes
x ′ ≤ x+2. Then this call to IsReachable terminates, and the main loop issues a new reachability
query for n = 1. This yields a satisfiability query x = 0∧ y = 3∧ x ′ ≤ x+2∧ x ′′ ≤ x ′+2∧ x ′′ ≥
6∧ y ′′ = 6. Again, this formula is unsatisfiable, and a possible interpolant is x ′′ ≤ x + 4. The
next element of the TPA sequence, ATr≤2 is refined to x ′ ≤ x + 4.

For n = 2 (reachability within eight steps), the query on line 3 is satisfiable, and the procedure
switches to checking if the counterexample from abstract transition is real or exists only due to
a coarse abstraction.

Query on line 3 is satisfiable. If the query on line 8 is satisfiable, a concrete trace of
length ≤2n+1 cannot be ruled out at this point. The algorithm proceeds to check the existence
of such a trace recursively. In the base case of the recursion, ATr≤0 is not an over-approximation
but a precise relation representing 0 or 1 steps of Tr. Thus, a real trace exists from Source
to Target. The algorithm computes a state formula representing a truly reachable subset of
Target. First, all except next-next state variables are eliminated from the query by quantifier
elimination (QE) (line 9). Then, the remaining variables are renamed to state variables.3

If the base case has not been reached yet (n> 0), the procedure first computes a set of
candidate intermediate states by eliminating all except next-state variables from the query
(line 10). Then, the procedure recursively calls itself to determine the existence of a trace from
Source to the newly computed intermediate set with the bound on length halved (line 11).
This check has two possible outcomes. If the recursive call returns ;, none of the intermediate
candidates is reachable (within 2n steps). Moreover, ATr≤n must have been strengthened
(line 6) before the recursive call returned as to not relate any of the source states and

3QE computes maximal reachable subsets. While this is convenient for proving termination of Algorithm 4.2,
in practice, quantifier elimination is a costly operation. Our implementation, therefore, supports also the use of
model-based projection to efficiently under-approximate quantifier elimination (see Section 4.3.4).
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intermediate candidates. The procedure then continues to the next iteration (line 12) where
it tries to find new intermediate candidates or prove there are none anymore. In case the set
returned on line 11 is non-empty, it represents a set of states reachable from Source within
2n steps of Tr. The procedure proceeds to check the existence of a trace from these states
to the target states (line 13). The reasoning here is the same as for the first recursive call:
If Target is not reachable, the procedure attempts to find new intermediate candidates in a
new iteration. Otherwise, a real trace from Source to Target exists, and the computed truly
reachable states are returned. The returned states are reachable with 2n+1 steps as both
recursive calls check reachability within 2n steps.

We continue Example 4.5 to illustrate this phase of Algorithm 4.2.

Example 4.6. Following Example 4.5, the algorithm is checking bounded reachability between
Init and Bad for n = 2, i.e., within 8 steps. The issued satisfiability query is x = 0 ∧ y =
3∧ x ′ ≤ x +4∧ x ′′ ≤ x ′+4∧ x ′′ ≥ 6∧ y ′′ = 6. Eliminating all except next-state variables yields
x ′ ≤ 4∧ x ′ ≥ 2. This results in the recursive call IsReachable(1, x = 0∧ y = 3, x ≤ 4∧ x ≥ 2).
The satisfiability query issued next is x = 0∧ y = 3∧ x ′ ≤ x+2∧ x ′′ ≤ x ′+2∧ x ′′ ≤ 4∧ x ′′ ≥ 2.
It is satisfiable and yields x ′ ≤ 2∧ x ′ ≥ 0 after quantifier elimination. Now we reach level 0 with
a call IsReachable(0, x = 0∧ y = 3, x ≤ 2∧ x ≥ 0). The constructed satisfiability query is
again satisfiable, and since we are at level 0, the procedure returns a set of states truly reachable
from x = 0∧ y = 3 within 2 steps. These can be characterized as (x = 0∨ x = 1∨ x = 2)∧ y = 3.
The reachable states are reported to level 1 which issues reachability query for the second part:
IsReachable(0, (x = 0∨ x = 1∨ x = 2)∧ y = 3, x ≤ 4∧ x ≥ 0). This is also successful and
returns reachable states (x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4) ∧ y = 3. These are states
reachable from Init within 4 steps and they are reported to level 2. There, the second part of
the counterexample is found in a similar way, and the procedure concludes that Bad is truly
reachable from Init within 8 steps.

The algorithm’s behaviour on these examples can be generalized for the system of Figure 4.1
for larger values of N. The length of the counterexample is 2N and let l denote ⌊log2(2N)⌋.
The bounded safety is quickly determined up to 2l steps with l calls to IsReachable, which all
return ; in their first iteration. On the next iteration, for n = l, IsReachable finds the real
counterexample, but it requires O(2l) recursive calls to find the counterexample of length in the
interval (2l , 2l+1].

4.3.2 Correctness and Termination

We first prove the correctness and termination of Algorithm 4.2, which then entails the
correctness of Algorithm 4.1 and its termination for unsafe systems. We prove the correctness
of procedure IsReachable separately for the unreachable and the reachable case.

Lemma 4.7. If IsReachable(n, Source, Target) returns ;, then no state from Target can be
reached from Source within 2n+1 steps.

Proof. The proof relies on the invariant that the sequence ATr≤0, . . . , ATr≤n, . . . maintained
by the algorithm satisfies the over-approximating property of the TPA sequence, given in
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Equation (4.4). This condition holds at the initialization point in Algorithm 4.1. The only
update to the elements of the sequence happens in Algorithm 4.2 on line 6. Consider an
update on any level k ≤ n. From the properties of interpolation, we know that I(X , X ′′)
(on line 5) over-approximates ATr≤k(X , X ′)∧ ATr≤k(X ′, X ′′), which represents two steps of
the relation ATr≤k. Since ATr≤k over-approximates ≤2k steps of Tr, it follows that I(X , X ′′)
over-approximates ≤2k+1 steps of Tr. Thus, conjoining it to ATr≤k+1 preserves the condition
of Equation (4.4).

It follows from Equation (4.4) that when the query on line 3 is unsatisfiable, there exists
no trace of length ≤ 2× 2n = 2n+1 from any source state to any target state.

Lemma 4.8. If IsReachable(n, Source, Target) returns a non-empty set Res, then Res ⊆ Target
and every state in Res can be reached from some state in Source in ≤2n+1 steps.

Proof. The proof is by induction on n.
Base case: For n = 0 ATr≤0 represents precise reachability in 0 or 1 step. It follows that if the

query on line 3 is satisfiable, some target states are truly reachable from the set of source states
in ≤2 steps. Moreover, the properties of QE guarantee that Res = QE(∃X , X ′ query)[X ′′ 7→ X ]
is a subset of Target(X ) that are reachable from Source using ATr≤0 ◦ ATr≤0.

Inductive case: Suppose the claim holds for n− 1. If at level n the procedure returned
a non-empty set, it must have been the case that the first recursive call (line 11) returned
a non-empty set IntermediateReached of states truly reachable from Source in ≤2n steps, by
our induction hypothesis. Additionally, the second recursive call (line 13) also returned a
non-empty set TargetReached that, according to our induction hypothesis, is a subset of Target
truly reachable from IntermediateReached in ≤2n steps. It follows that TargetReached is a
subset of Target truly reachable from Source in ≤2n+1 steps.

The correctness of procedure IsReachable extends naturally to the correctness of our
main procedure.

Theorem 4.9 (Correctness). If Algorithm 4.1 returns UNSAFE, then the system S is unsafe, i.e.,
some bad state is reachable from some initial state.

Proof. Algorithm 4.1 returns UNSAFE only if IsReachable returns a non-empty set of states
for some n. From the correctness of IsReachable, it follows that the returned set is a subset
of Bad reachable from Init in ≤2n+1 steps. Thus there exists a counterexample trace in the
system.

Next, we want to show that if there exists a counterexample trace in the system, our
procedure will eventually report it. This boils down to the question of termination of a single
call to IsReachable.

Lemma 4.10. Assume that the satisfiability check (line 3) terminates, i.e., that the background
theory T is decidable, and that T has procedures for interpolation and quantifier elimination.4

Then, a single call to IsReachable always terminates.
4The linear arithmetic theories satisfy these assumptions.
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Proof. The proof proceeds by induction on level n. The base case (n = 0) trivially terminates
after a single satisfiability query on line 3.

For the inductive case, consider the first iteration of the loop. If the query is unsatisfiable,
the procedure terminates. If it is satisfiable, quantifier elimination yields a set of states
Intermediate= {m | ∃s ∈ Source,∃t ∈ Target : (s, m) ∈ ATr≤n ∧ (m, t) ∈ ATr≤n}. Now consider
the first recursive call (line 11). By induction, it terminates. If it returns ;, then, by properties
of the interpolation, ATr≤n has been strengthened such that ∀s ∈ Source,∀m ∈ Intermediate :
(s, m) /∈ ATr≤n now holds. Consequently, in the second iteration, the query on line 3 must be
unsatisfiable, and the procedure terminates.

Now consider the situation when the recursive call on line 11 returned a non-empty set
IntermediateReached. The procedure continues to the second recursive call (line 13), which
also terminates, by induction. If the returned set TargetReached is non-empty, the procedure
terminates (line 15). If it is empty, no state reachable from Source in ≤2n steps of Tr can
reach any state in Target in another ≤2n steps. Moreover, ATr≤n has been strengthened to
not relate any state from IntermediateReached with a state in Target. In the second iteration,
the query on line 3 could still be satisfiable. However, the extracted Intermediate (of the
second iteration) cannot contain states that are reachable from Source in ≤2n steps. Thus,
the first recursive call (line 11) in the second iteration must return ;. This is followed by an
unsatisfiable query (line 3) in the third iteration, after which the procedure terminates.

The immediate consequence of Lemma 4.10 is that our main procedure will find a
counterexample if one exists.

Theorem 4.11. If a counterexample exists in the system, Algorithm 4.1 terminates with the
UNSAFE result.

4.3.3 Proving Safety

Besides the search for counterexample traces with IsReachable procedure, Algorithm 4.1 also
attempts to prove safety by discovering safe inductive transition invariant in the procedure
HasInvariant. On one extreme, this procedure could be implemented to always return
False, which would turn Algorithm 4.1 into a BMC-like algorithm, though with the bound
increasing exponentially in the number of iterations. However, it is possible to take advantage
of the elements of the TPA sequence, which are guaranteed to satisfy some of the properties
of a safe inductive transition invariant. Moreover, the missing property can be checked for
with a satisfiability query.

It trivially follows from Equation (4.4) that each element of the TPA sequence satisfies
condition 1 of the inductive transition invariant. Moreover, from a certain point onwards, the
elements are also safe.

Observation 4.12. After call to IsReachable(n, Init, Bad) returns ;, ATr≤n+1 is safe for the
rest of the run of Algorithm 4.1.
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This follows from the properties of Craig interpolants and the fact that the elements
can only be strengthened afterwards. Thus, only the condition for the inductive step of the
inductive transition invariant needs to be checked.

Lemma 4.13. Assume that for some n> 0, Init◁ATr≤n◦Tr ⊆ Init◁ATr≤n or that Tr◦ATr≤n▷Bad ⊆
ATr≤n ▷ Bad after IsReachable(n − 1, Init, Bad) returned ;. Then ATr≤n is a safe inductive
grounded transition invariant.

Proof. We have established above that ATr≤n is safe and satisfies the base condition for
inductive transition invariant. The assumption of the lemma is exactly the inductive condition
for inductive grounded transition invariant from Definition 4.3.

A possible implementation of HasInvariant, which we use in our implementation, thus
consists of checking the condition of Lemma 4.13 for each of the (updated) elements of the
TPA sequence. This corresponds to two SMT checks per element. If the condition is satisfied
for any element, a safe inductive (grounded) invariant has been discovered. Algorithm 4.1
reports that no counterexample exists and the transition system is safe.

Note that it is sufficient to test for grounded transition invariants; if a transition formula
is an inductive transition invariant, it is also a grounded transition invariant.

4.3.4 Under-approximating Quantifier Elimination with Model-based Projection

Model-based projection (MBP) [137] is a recent technique for under-approximating quantifier
elimination for existentially quantified formulas. In short, given an existentially quantified
formula ∃Xφ(X , Y ), MBP is a function that maps each model of φ to a quantifier-free formula
that implies ∃Xφ(X , Y ) and is true in the model. Moreover, it is required that the function
has a finite image (it produces only finitely many quantifier-free under-approximations)
and the disjunction of the image is equal to the quantified formula. Efficient model-based
projections have been discovered for various theories, most notably for linear real and
integer arithmetic [33, 137], but also for algebraic datatypes [33], arithmetic signature of
bit-vectors [191] and arrays5 [135].

Quantifier elimination in Algorithm 4.2 can be replaced by MBP in a straightforward way.
On line 3, if the query is satisfiable, we obtain from the SMT solver a model witnessing the
satisfiability. Then, we replace QE with MBP using the obtained model on lines 9 and 10.
It is easy to check that the proof of Lemma 4.8 remains valid with this change, and thus
also the result of Theorem 4.9. We demonstrate the practical advantage of MBP over QE
experimentally in Section 5.7.1.

4.4 Split Transition Power Abstraction

This section presents a variant of the TPA algorithm that is more tailored to proving safety. The
possible implementation of the procedure HasInvariant of Algorithm 4.1 proposed earlier

5MBP for arrays does not satisfy the finite image condition
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uses only induction as a single proof rule, and the only candidates for inductive transition
invariants available are the elements of the TPA sequence. Here, we show that it is possible to
make the search for transition invariant more powerful; however, the procedure for answering
bounded reachability queries gets more complex. First, we obtain an additional source of
candidates for transition invariants by splitting the TPA sequence. Then, we strengthen the
proof rule for proving safety from induction to k-induction. Thus, the algorithm will search
not only for inductive but also k-inductive transition invariants.

The splitting, combined with k-induction, results in much better performance in discover-
ing safe transition invariants, even solving benchmarks not solvable by state-of-the-art tools.
The experiments and analysis of the results are presented later, in Section 5.7.1.

4.4.1 k-inductive Transition Invariants

k-induction principle [73, 186] generalizes induction and can also be used as a proof rule for
safety properties: A state formula S(X ) is a k-inductive invariant iff

• Init(X (0))∧ Tri(X (0), X (i)) =⇒ S(X (i)) for 0≤ i < k,

•
∧k−1

i=0 S(X (i))∧ Tr(X (i), X (i+1)) =⇒ S(X (k)).

If a safe k-inductive invariant exists, the system is safe. Note that the definition of inductive
invariant coincides with 1-inductive invariant. k-inductive invariants can be more com-
pact than inductive invariants, and, for some theories, k-induction is strictly stronger than
induction [129].

The concept of inductive transition invariant can be generalized to k-inductive transition
invariant in the same way as for the state version.

Definition 4.14 (k-inductive transition invariant). A transition formula T(X , X ′) is a k-
inductive transition invariant iff the base condition

Tri ⊆ T for 0≤ i < k, (k-base)

and either of the following inductive conditions hold

k
∧

i=1

T (X (0), X (i))∧ Tr(X (i), X (i+1)) =⇒ T (X (0), X (k+1)), (k-ind-fwd)

k
∧

i=1

T (X (i), X (k+1))∧ Tr(X (i−1), X (i)) =⇒ T (X (0), X (k+1)). (k-ind-bwd)

Observation 4.15. k-inductive transition invariant is indeed a transition invariant.

Proof. We need to show that if (s, t) ∈ Tr∗ then (s, t) ∈ T . The proof proceeds by strong
induction on the length l of the shortest trace from s to t. The base case covers all l < k, in
which case (s, t) ∈ T follows directly from (k-base).
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For the induction step, suppose that l ≥ k and that the claim holds for all traces of
shorter length. We analyze the case of (k-ind-fwd): Take a state m that lies exactly k steps
before t on the trace from s. By the induction hypothesis, every state n that lies between
m (including) and t (excluding) can be reached from s by one step of T , i.e., (s, n) ∈ T .
It follows by (k-ind-fwd) that (s, t) ∈ T . The case of (k-ind-bwd) is analogous; only the k
predecessors of t are replaced by k successors of s in the reasoning.

Similar to inductive transition invariants, it is possible to consider grounded version of
k-inductive transition invariant.

Definition 4.16 (left- and right-grounded k-inductive transition invariant). A transition
formula T (X , X ′) is a left-grounded k-inductive transition invariant if the following conditions
hold:

Init ◁ Tri ⊆ Init ◁ T for 0≤ i < k, (left-k-base)

Init(X (0))∧
k
∧

i=1

T (X (0), X (i))∧ Tr(X (i), X (i+1)) =⇒ T (X (0), X (k+1)). (left-k-ind-fwd)

Similarly, the transition formula T (X , X ′) is a right-grounded k-inductive transition invariant if
the following conditions hold:

Tri ▷ Bad ⊆ T ▷ Bad for 0≤ i < k, (right-k-base)
k
∧

i=1

T (X (0), X (i))∧ Tr(X (i), X (i+1))∧ Bad(X (k+1)) =⇒ T (X (0), X (k+1)). (right-k-ind-bwd)

Observation 4.17. Grounded k-inductive transition invariant is indeed a grounded transition
invariant.

Proof. Same as the proof of Observation 4.15, with restricting s to belong to Init for the
left-grounded case and restricting t to belong to Bad for the right-grounded case.

Note that the stronger version (with weaker antecedent) of (left-k-ind-fwd) Init(X (0))∧
T (X (0), X (1))∧Trk(X (1), X (k+1)) =⇒ T (X (0), X (k+1)) can be nicely expressed in the set notation
as Init ◁ T ◦ Trk ⊆ Init ◁ T . Analogously, the stronger version of (right-k-ind-bwd) can be
expressed as Trk ◦ T ▷ Bad ⊆ T ▷ Bad.

4.4.2 Intuition behind Splitting the TPA Sequence

Suppose that we want to improve the ability of Algorithm 4.1 to prove safety, but we want
to do as minimal changes as possible. We could try adding checks for k-inductive transition
invariant instead of just for inductive transition invariant. However, it is not clear how to do
it efficiently. ATr≤n, nth element of the TPA sequence, satisfies the base case (k-base) for k up
to 2n. But checking the inductive step for k = 2n translates into a satisfiability query with
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2n + 2 copies of the state variables. Thus the checks would get too complex very quickly for
increasing values of n. To remedy the situation, we could apply the same idea that led to the
TPA sequence. Instead of checking the implication from (k-ind-fwd), we could consider a
stronger implication (with weaker antecedent) T (X , X ′)∧ Trk(X ′, X ′′) =⇒ T (X , X ′′). Taking
T := ATr≤n and k = 2n this amounts to a check of ATr≤n ◦ Tr2n

⊆ ATr≤n. Unfortunately,
this would still require 2n + 2 copies of the state variables. Now we could re-use the over-
approximating properties of the TPA sequence and further weaken the antecedent, replacing
Tr2n

with ATr≤n. However, this over-approximation is too coarse, as the resulting check
ATr≤n ◦ ATr≤n ⊆ ATr≤n is strictly subsumed by our original check for inductive transition
invariant ATr≤n ◦ Tr ⊆ ATr≤n. Thus, this is not the right approach. Nevertheless, it hints at
a possible improvement. Instead of replacing Tr2n

with ATr≤n, which captures reachability
in up to 2n steps, we could maintain more precise over-approximation that would capture
reachability in exactly 2n steps.

We can arrive at the idea of maintaining another over-approximating sequence also
by identifying a potentially redundant work in the TPA algorithm and trying to resolve
the redundancy. Let’s revisit the inductive definition of R≤n, given in Equation (4.3). The
intuition behind this inductive definition is that every trace of length ≤2n+1 can be obtained
as a concatenation of two traces of length ≤2n. However, there can be multiple ways
to decompose such a trace into two smaller traces (see Figure 4.2). Proving one such
decomposition infeasible does not entail that others are also infeasible.

Tr Tr Tr Tr Tr Tr

R≤3

R≤2 R≤2

R≤2 R≤2

R≤2 R≤2

Figure 4.2. Three different ways of decomposing trace of length six into two traces of length
at most four

The idea of splitting the reachability sequence arises naturally from an attempt to fix this
redundancy. The reasoning is as follows: Instead of concatenating two steps of R≤n to obtain
R≤n+1, we replace one of these steps with a step of R=n = Tr2n

, which represents reachability
in exactly 2n steps. However, R≤n ◦ R=n covers only traces of length from 2n to 2n+1. To keep
the smaller lengths covered as well, we can add R≤n. The result, R≤n+1 = R≤n ∪ R≤n ◦ R=n,
almost gives us the unique deconstruction we are seeking. The exceptions are traces of length
exactly 2n, which are covered by both R≤n and R≤n ◦ R=n. The final step is a realization that
this last redundancy is removed by replacing the relation R≤n by R<n. The sequence R< has
the following inductive definition:6

R<0 = Id,

R<n+1 = R<n ∪ R<n ◦ R=n,
(4.6)
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with the sequence R= also defined inductively:

R=0 = Tr,

R=n+1 = R=n ◦ R=n.
(4.7)

Notice that we have effectively split the R≤ sequence into two sequences R< and R=,
because R≤n = R<n ∪ R=n. Now, decomposing a trace according to the inductive definitions
from Equations (4.6) and (4.7) is unique. For example, there is only one way to decompose the
trace of length six from Figure 4.2, now viewed as one step of R<3, according to Equation (4.6):
first two steps are covered by R<2 and the last four steps are covered by R=2.

Following the TPA template, we do not use the sequences R< and R= directly. We build
over-approximating sequences TPA< and TPA= whose representation in terms of copies of
state variables does not blow up with increasing n. The elements of the over-approximating
sequences TPA< and TPA= are denoted as ATr<n and ATr=n, respectively, and we require that

ATr<n ⊇ R<n = Id∪ Tr∪ Tr2 ∪ · · · ∪ Tr2n−1, (4.8)

ATr=n ⊇ R=n = Tr2n
. (4.9)

Next, we will see how splitting the TPA sequence affects the procedures for answering
bounded reachability queries and for discovering safe transition invariants.

input : transition system S = 〈Init, Tr, Bad〉
global : TPA< sequence ATr<0, . . . , ATr<n, . . .

TPA= sequence ATr=0, . . . , ATr=n, . . . (lazily initialized to true)
Function IsSafeSplitTPA(〈Init, Tr, Bad〉):

1 ATr<0← Id; ATr=0← Tr; n← 0
2 while true do
3 if IsReachableLt(n, Init, Bad) ̸= ; or IsReachableEq(n, Init, Bad) ̸= ; then

return UNSAFE
4 if HasInvariant(S, n) then return SAFE
5 n← n+ 1

Algorithm 4.3. split-TPA’s main procedure

4.4.3 Main Procedure

We refer to the version of the TPA algorithm that uses the split sequences as SPLIT-TPA. Its
main procedure follows the same template as Algorithm 4.1 and is given in Algorithm 4.3.
Next, we present the implementation of the methods IsReachableLt and IsReachableEq for
answering bounded reachability queries and the implementation of the method HasInvariant

for discovering safe transition invariant.

6An alternative inductive definition R<n+1 = R<n ∪ R=n ◦ R<n leads to a different variant of our algorithm.
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4.4.4 Bounded Reachability Checks with Split Sequences

Compared to the first algorithm, SPLIT-TPA performs the bounded reachability check at level n
in two phases. First, IsReachableLt checks all traces of length strictly smaller than 2n+1.
Then, IsReachableEq checks all traces of length exactly 2n+1.

Recall that the procedure IsReachable from Algorithm 4.2 follows the inductive definition
of R≤ (4.3). The procedures IsReachableEq and IsReachableLt follow in the same way
the inductive definitons of R= (4.7) and R< (4.6). Note that the inductive step for R= has
the same form as that for R≤. Consequently, IsReachableEq is the same as IsReachable,
with the modification that all references to TPA sequence and its elements ATr≤n are replaced
by TPA= sequence and its elements ATr=n. For completeness, we give the pseudocode in
Algorithm 4.4.

input : level n, source states Source, target states Target
output : subset of Target reachable from Source in exactly 2n+1 steps
global : TPA= sequence ATr=0, . . . , ATr=n, . . .
Function IsReachableEq(n,Source,Target):

1 while true do
2 query← Source(X )∧ ATr=n(X , X ′)∧ ATr=n(X ′, X ′′)∧ Target(X ′′)
3 sat_res← Sat?[query]
4 if sat_res = UNSAT then
5 I ← Itp(ATr=n(X , X ′)∧ ATr=n(X ′, X ′′), Source(X )∧ Target(X ′′))
6 ATr=n+1← ATr=n+1 ∧ I[X ′′ 7→ X ′]
7 return ;
8 else
9 if n= 0 then return QE(∃X , X ′ query)[X ′′ 7→ X ]

10 Intermediate← QE(∃X , X ′′ query)[X ′ 7→ X ]
11 IntermediateReached← IsReachableEq(n− 1, Source, Intermediate)
12 if IntermediateReached= ; then continue
13 TargetReached← IsReachableEq(n− 1, IntermediateReached, Target)
14 if TargetReached= ; then continue
15 return TargetReached

Algorithm 4.4. Reachability query using TPA= sequence

IsReachableEq takes as input state formulas representing source and target states and a
number n representing the current level. It outputs either a non-empty subset of Target that is
truly reachable from Source in exactly 2n+1 steps of Tr, or an empty set if no trace from Source
to Target of length 2n+1 exists. The procedure IsReachableLt is designed to complement
IsReachableEq by covering all traces with <2n+1 steps. It is given in Algorithm 4.5.
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input : level n, source states Source, target states Target
output : subset of target states truly reachable in <2n+1 steps
global : TPA< sequence ATr<0, . . . , ATr<n, . . .,

TPA= sequence ATr=0, . . . , ATr=n, . . .
Function IsReachableLt(n,Source,Target):

1 while true do
2 opt1← ATr<n[X ′ 7→ X ′′]
3 opt2← ATr<n(X , X ′)∧ ATr=n(X ′, X ′′)
4 query← Source(X )∧ (opt1∨ opt2)∧ Target(X ′′)
5 sat_res, model ← Sat?[query]
6 if sat_res = UNSAT then
7 Itp(X , X ′′)← GETITP(opt1∨ opt2, Source(X )∧ Target(X ′′))
8 ATr<n+1← ATr<n+1 ∧ Itp[X ′′ 7→ X ′]
9 return ;

10 else
11 if n= 0 then return QE(∃X , X ′ : query)[X ′′ 7→ X ]
12 if model |= opt1 then
13 TargetReached← IsReachableLt(n−1, Source, Target)
14 if TargetReached= ; then continue
15 return TargetReached
16 else
17 Intermediate← QE(∃X , X ′′ : Source(X )∧ opt2∧ Target(X ′′))[X ′ 7→ X ]
18 IntermediateReached← IsReachableLt(n−1, Source, Intermediate)
19 if IntermediateReached= ; then continue
20 TargetReached← IsReachableEq(n−1, IntermediateReached, Target)
21 if TargetReached= ; then continue
22 return TargetReached

Algorithm 4.5. Reachability query using TPA< sequence

Since the code of IsReachableLt is more complex, we explain it in more detail. It first
assembles the query for an abstract trace (lines 2–4) and sends it to the satisfiability solver
(line 5). Following the inductive definition of Equation (4.6), the abstract trace consists of
either one step of ATr<n or a step of ATr<n followed by a step of ATr=n. If no such abstract
trace exists (line 6), the procedure reports that no real trace of length <2n+1 exists (line 9).
Before reporting the result, it uses Craig interpolation [68] to refine the abstraction at the
next level (line 8).

If an abstract trace exists (line 10), the procedure checks whether there is a corresponding
real trace. On level 0 (line 11), the discovered abstract trace is real, and the procedure
returns a reachable subset of target states. On other levels, the procedure first determines
which abstract trace has been found and then tries to refine it.

The first possibility is that the abstract trace is a single step of ATr<n (line 12). The
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refinement of this single abstract step is checked with a single recursive call. If the refinement
is not successful, the procedure attempts to find a new abstract trace (line 14). Otherwise,
the reached target states from the recursive call are returned (line 15).

The second possibility is that the abstract trace consists of one step of ATr<n followed
by one step of ATr=n (line 16). One after another, the procedure attempts to refine these
abstract steps into a real trace by calling the corresponding procedures IsReachableLt and
IsReachableEq with decreased bound. If any of the two steps cannot be refined, that abstract
trace has been refuted, and the procedure attempts to find a new abstract trace (lines 19,
21). If both abstract steps have been successfully refined, a reachable subset of target states
is reported (line 22).

Similarly to Algorithm 4.2, quantifier elimination can be under-approximated with model-
based projection, and we do so in our implementation.

The correctness of the reachability procedures guarantees the correctness of the UNSAFE
answer of SPLIT-TPA.

Lemma 4.18. If IsReachableEq(n, Source, Target) or IsReachableLt(n, Source, Target) re-
turns a non-empty set Res, then Res ⊆ Target and every state in Res can be reached from some state
in Source in exactly 2n+1 steps (for IsReachableEq) or in <2n+1 steps (for IsReachableLt).

Proof. By induction on n, relying on the properties of quantifier elimination (QE) and the
fact that ATr<0 = Id and ATr=0 = Tr represent true reachability.

Theorem 4.19. If SPLIT-TPA (Algorithm 4.3) returns UNSAFE, then there exists a counterexample
trace in the system, i.e., some bad state is reachable from some initial state.

Proof. Follows directly from Lemma 4.18.

4.4.5 Discovering Safe Transition Invariants in split-TPA

Similar to Algorithm 4.1, Algorithm 4.3 can prove the given system safe by discovering a safe
transition invariant. However, the split sequences TPA< and TPA= provide a richer pool of can-
didates and allow easy use of k-induction as a proof rule instead of just simple induction. Note
that elements ATr<n and ATr=n are guaranteed to be safe if IsReachableLt(n− 1, Init, Bad)
and IsReachableEq(n− 1, Init, Bad) return ;, respectively. We show that it is possible to use
satisfiability checks that do not grow in complexity (in terms of the number of variables) to
test the elements for the properties of k-inductive transition invariants.

Lemma 4.20. Assume that for some n, Init ◁ ATr<n ◦ ATr=m ⊆ Init ◁ ATr<n for some 0≤ m≤ n.
Then ATr<n is a left-grounded 2m-inductive transition invariant.

If ATr=m ◦ ATr<n ▷ Bad ⊆ ATr<n ▷ Bad for some 0≤ m≤ n, then ATr<n is a right-grounded
2m-inductive transition invariant.

Proof. We prove only the first statement; the second one is analogous. We show that ATr<n

satisfies (left-k-base) and (left-k-ind-fwd). The base condition (left-k-base) follows trivially
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from Equation (4.8) and the fact m≤ n. The inductive condition (left-k-ind-fwd) is satisfied
because Init ◁ATr<n ◦ ATr=m ⊆ Init ◁ATr<n implies Init ◁ATr<n ◦ Tr2m

⊆ Init ◁ATr<n which is a
stronger version of (left-k-ind-fwd).

Note that the case of m= 0 in Lemma 4.20 corresponds to Lemma 4.13 as ATr=0 ≡ Tr.
If full transition invariants are required, we can instead check for the stronger condition:

Observation 4.21. If ATr<n ◦ ATr=m ⊆ ATr<n or ATr=m ◦ ATr<n ⊆ ATr<n for some 0 ≤ m ≤ n
then ATr<n is 2m-inductive transition invariant.

Next, we show that checking a fixed-point condition on the elements of TPA= can also
yield a transition invariant.

Lemma 4.22. Assume that for some n, Init ◁ATr<n ◦ ATr=n ◦ ATr=n ⊆ Init ◁ATr<n ◦ ATr=n then
Init ◁ ATr<n ∪ ATr<n ◦ ATr=n is a left-grounded 2n-inductive transition invariant.

If ATr=n ◦ ATr=n ◦ ATr<n ▷Bad ⊆ ATr=n ◦ ATr<n ▷Bad then ATr<n ∪ ATr=n ◦ ATr<n ▷Bad is a
right-grounded 2n-inductive transition invariant.

Proof. The proof uses the same ideas as the proof of Lemma 4.20. Again, we show the
proof only for the first claim. The base case (left-k-base) is satisfied by the first component
ATr<n of the formula. For the inductive case (left-k-ind-fwd) we show that even stronger
condition holds: Init ◁ ATr<n ∪ ATr<n ◦ ATr=n ◦ ATr=n ⊆ Init ◁ ATr<n ∪ ATr<n ◦ ATr=n. Suppose
that (s, t) ∈ (ATr<n ∪ ATr<n ◦ ATr=n) ◦ ATr=n and s ∈ Init. Then there is m such that (s, m) ∈
ATr<n ∪ ATr<n ◦ ATr=n and (m, t) ∈ ATr=n. There are two possibilities:

• (s, m) ∈ ATr<n: It follows that (s, t) ∈ ATr<n ◦ ATr=n.

• (s, m) ∈ ATr<n ◦ ATr=n: It follows that (s, t) ∈ ATr<n ◦ ATr=n ◦ ATr=n. But then (s, t) ∈
ATr<n ◦ ATr=n by the assumption of the lemma.

Similarly to Lemma 4.20, full transition invariants can be discovered by checking a
stronger condition:

Observation 4.23. If ATr=n ◦ ATr=n ⊆ ATr=n then both ATr<n ∪ ATr<n ◦ ATr=n and ATr<n ∪
ATr=n ◦ ATr<n are 2n-inductive transition invariants.

One difference compared to proving some ATr<n a transition invariant is that the second
component of the candidate formulas from Lemma 4.22, ATr<n ◦ ATr=n or ATr=n ◦ ATr<n, is
not necessarily safe. However, this can be easily checked by yet another satisfiability query.

The procedure HasInvariant(S, n) thus works by checking the conditions of Lemma 4.20
and Lemma 4.22 for elements of the TPA= and TPA< sequences up to ATr<n+1 and ATr=n+1.
These are already safe after IsReachableLt(n, Init, Bad) and IsReachableEq(n, Init, Bad)
returned ;. The conditions are checked by issuing a series of satisfiability queries. For
example, the condition ATr=n ◦ ATr=n ◦ ATr<n ▷ Bad ⊆ ATr=n ◦ ATr<n ▷ Bad holds if and only
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if the formula ATr=n(X , X ′)∧ ATr=n(X ′, X ′′)∧ ATr<n(X ′′, X ′′′)∧ Bad(X ′′′)∧¬ATr=n(X , X ′′) is
unsatisfiable. Note that each query uses at most 4 copies of the state variables, no matter how
large n is. This is achieved by using the over-approximating elements of the TPA= sequence,
instead of 2n copies of the transition relation Tr.

When the procedure HasInvariant returns true, it means a safe transition invariant has
been discovered. As a consequence, there is no counterexample trace in the system from
Init to Bad, and Algorithm 4.3 returns SAFE. The correctness of this answer is guaranteed by
Lemma 4.20 and Lemma 4.22.

Theorem 4.24 (Correctness of SPLIT-TPA). If SPLIT-TPA returns SAFE, there is no counterex-
ample trace from Init to Bad in S.

Example 4.25. As a short example, we consider the analysis of the following multi-phase loop
by the algorithm SPLIT-TPA:

v = 0; w = 0;
assume ( x > z ) ;
while ( v < 1000) {

i f ( x < z ) v = v + 1;
e l s e w = w + 1;
x = x + 1; z = z + 2;

}
as ser t (w > 0) ;

First, SPLIT-TPA refutes the existence of a counterexample trace of length less than two,
because the assertion after the loop cannot be reached after less than two iterations due to
the loop condition. It learns that ATr<1 ≡ v′ ≤ v + 1. Then it refutes the existence of a
counterexample trace of length 2, not because of the loop variable, but because of the interaction
between variables x, z and w. Namely, it learns that ATr=1 ≡ x > z → w′ ≥ w + 2. In
the next iteration of the main loop, when searching for counterexamples of length up to 4,
ATr=1 is strengthened with the facts x ≥ z → w′ ≥ w + 1 and x < z → w′ ≥ w. These
three facts together concisely over-approximate the change to w after precisely two iterations
of the loop. Moreover, ATr=1 with these three components is closed under composition, i.e.,
ATr=1 ◦ ATr=1 ⊆ ATr=1. Thus, SPLIT-TPA already at this point discovers 2-inductive transition
invariant (based on Observation 4.23), which is also safe. The transition invariant, using
a⃗ = (x , z, v, w), is then ATr<1(a⃗, a⃗′′)∨ (∃a⃗′ : ATr<1(a⃗, a⃗′)∧ ATr=1(a⃗′, a⃗′′)), where

ATr<1(a⃗, a⃗′)≡ w′ ≥ w∧ v′ ≤ v + 1∧ ((x ′ ≥ x ∧ z′ ≤ z)∨ (x ′ ≥ x + 1∧ z′ ≤ z + 2)),

ATr=1(a⃗, a⃗′)≡ x > z→ w′ ≥ w+ 2∧ x ≥ z→ w′ ≥ w+ 1∧ x < z→ w′ ≥ w.

Note that the exact value of ATr<1 is not essential in this case, as long as it over-approximates all
traces of length less than two and both ATr<1 and ATr<1 ◦ ATr=1 are safe.
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4.5 Alternatives, Extensions and Future Work

The presented algorithms TPA and SPLIT-TPA represent a direct application of the main idea
behind transition power abstraction. However, there are variations and extensions yet to
be explored. One variation considers the base of the power in TPA. There is no theoretical
obstacle to using a different base, for example, three. The nth element ATr≤n would then
summarize 3n steps of the transition relation Tr instead of 2n. Evaluation of the advantages
and disadvantages of such a change requires further research.

Another variation of the algorithm is related to how the algorithm searches for the
counterexample path. Recall the inductive definition of R< (4.6). The inductive step of the
definition could be changed to R<n+1 = R<n ∪ R=n ◦ R<n. Though this would still define the
same relation, it would change Algorithm 4.5. The order of the two abstract steps in the second
part of the query (line 3) would be switched to ATr=n(X , X ′)∧ ATr<n(X ′, X ′′). Consequently,
the recursive calls in the refinement of the two-step abstract path (lines 18 and 20) would
also be called in reverse order: IsReachableEq would refine the step from the source to the
intermediate states, and IsReachableLt would refine the step from the reached intermediate
states to the target states.

The search for the counterexample path can also be altered differently. In the presented
version, the real path is built from the source states towards the target states. However, this
can also be reversed. Building the real path from the target states towards the source states
is also possible. This “backward” flow would be more similar to how PDR-based algorithms
propagate proof obligations from the bad states towards the initial states. The combination
of the forward and backward analyses has a potential for a great improvement [184] and is
an intriguing future work.

The focus of the TPA-based algorithms on transitions rather than states opens up possibili-
ties for modular analysis of more complex systems, such as general systems of constrained
Horn clauses. The information learnt about transitions is not invalidated even when the initial
conditions change; this allows efficient independent analysis of multiple connected loops that
exchange information about reachable and unreachable states. Our implementation already
supports the first step in this direction: analysis of chains of transition systems. The details
of this implementation are discussed later, in Section 5.5.5. We imagine the extension to
nonlinear systems of Horn clauses as an unbounded SPACER-like search over a network of
transition systems. The proper design and implementation of this extension is future work.

4.6 Related Work

Many model-checking algorithms search for a safe inductive invariant to prove safety. Can-
didates for inductive invariants are typically obtained from proofs of bounded safety. The
algorithms try to construct the safe inductive invariant either in monolithic [155, 157, 176] or
incremental way [41, 58, 85, 113, 137]. Our work follows a similar strategy, but it primarily
computes transition invariants, not state invariants.
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Transition invariants have been introduced in [164] as a proof rule for program verification,
especially termination and other liveness properties. Transition predicate abstraction [165]
has been introduced as a way to compute transition invariants. Transition invariants have
also been used for loop summarization with the goal of proving termination [141]. However,
in that work candidates for transition invariants were obtained from specialized abstract
domains using techniques from abstract interpretation [67]. In contrast, we use transition
invariants to prove safety, with candidates automatically obtained from proofs of bounded
safety using Craig interpolation.

Craig interpolation [68] is a popular abstraction technique widely used in model checking.
We use standard algorithms to compute interpolants from proofs of unsatisfiability [37, 61,
156]. The integration of domain-specific knowledge [146] is future work.

While in most model checking algorithms interpolants are used as over-approximations of
states, we use them to over-approximate transitions. The idea of abstracting transition relation
with interpolants originates from [127]. However, they maintained an abstraction of only a
single step of the transition relation. We build two sequences of relations over-approximating
doubling number of steps of the transition relation, which are useful both for detecting deep
counterexamples and as a source of candidates for safe transition invariant.

Loop acceleration [12, 40, 98] is a loop analysis technique that can prove safety and detect
deep counterexamples. It transforms the loop to a single quantifier-free formula representing
all possible executions of the loop. While offering significant improvement for a limited
types of integer loops, it is not applicable for code with control-flow divergence and/or data
structures. Acceleration have also been successfully integrated into interpolation-based model
checking [49, 115] where interpolants computed from accelerated paths lead to much better
abstraction refinement in the traditional CEGAR algorithm [63]. In contrast, our technique
does not accelerate paths but builds over-approximations of bounded number of iterations. It
also computes transition interpolants, instead of state interpolants. It is not restricted to any
specific type of loops, and it works over any theory supporting interpolation and quantifier
elimination.

A speciliazed technique technique for fast detection of deep counterexamples for C
programs was proposed in [140]. Given a path through a loop, it computes a new path
that under-approximates an arbitrary number of iterations of the original path. In contrast
to loop acceleration, this technique only under-approximates the loop behaviour. On the
other hand, it can handle conditionals and richer background theories. Our technique also
focuses on the detection of deep counterexamples, but it is over-approximating, which also
allows for detecting transition invariants and proving safety. Their prototype aims at C
programs only (and does not seem to be maintained anymore). Our implementation works
on transition systems in the form of constrained Horn clauses (CHC) and thus is agnostic to
the programming language.

The k-induction principle [73, 186] has been successfully used as a replacement for
basic inductive reasoning in IC3-style algorithms [106, 129, 193]. k-inductive invariants can
be more compact than inductive invariants and for some theories k-induction is a strictly
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stronger proof rule [129]. While the first, simpler version of our algorithm could only use
inductive reasoning for discovering transition invariants, the second version, SPLIT-TPA, uses
k-inductive reasoning. We believe that SPLIT-TPA’s success on challenging systems can be in
large part attributed to the inclusion of k-inductive reasoning, which is missing from our first
TPA algorithm.

4.7 Conclusion

In this chapter, we have introduced a novel model-checking algorithm for safety properties of
transition systems with a focus on finding deep counterexamples. The core component of
the algorithm is a sequence of transition formulas, called transition power abstraction (TPA)
sequence, where each element over-approximates a sequence of transition steps twice as long
as its predecessor. TPA sequence allows the algorithm to quickly answer bounded reachability
queries, in ideal case doubling the size of the covered state space with a single, relatively
simple SMT query. Additionally, the elements of the TPA sequence serve as automatically
discovered candidates for safe transition invariants.

The basic version of the algorithm, with a single TPA sequence, is able to detect an order of
magnitude longer counterexamples that state-of-the-art model checking algorithms within the
same time contraints. However, its ability to prove system safe is very limited. For this reason
we introduced an improved version of the algorithm obtained by splitting the TPA sequence
into two separate sequences. The key ingredients of SPLIT-TPA are more candidates for safe
transition invariants and the ability to efficiently check for k-inductive transition invariants,
not only basic inductive transition invariants. SPLIT-TPA not only retains the ability to detect
deep counterexample, but also significantly improves the ability to prove unbounded safety.
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Chapter 5

The Golem Horn Solver

This chapter describes GOLEM, a solver for the satisfiability of constrained Horn clauses (CHC)
developed to support the research reported in this thesis. GOLEM is an open-source program,
written in C++17, and available at GitHub1. As input, it takes a system of constrained
Horn clauses in the format prescribed by the international competition of Horn solvers (CHC-
COMP).2 The goal is to decide the satisfiability of the input system (see Section 2.4 for details).
If there exists an interpretation of the uninterpreted predicates (a model) that satisfies all
the clauses, then the system is satisfiable. If a derivation of false from the system of clauses
exists, then it constitutes proof that the system is unsatisfiable. Correspondingly, GOLEM

outputs SAT when it finds a model or UNSAT when it finds a proof of unsatisfiability. This
output follows the usual semantics of SMT solvers prescribed by SMT-LIB. CHC-COMP also
uses this semantics. Optionally, GOLEM can also output the model or the proof found.

GOLEM was designed to enable a controlled interaction between SMT-based model-
checking algorithms and the SMT solver used for various computational tasks. In particular,
the interpolating procedures of the SMT solver were designed to be easily accessible and
adaptable to the needs of the verifier engine. The open and modular infrastructure of GOLEM

allowed not only implementing state-of-the-art algorithms such as BMC, k-induction, IMPACT

and SPACER, but also rapidly prototyping our novel TPA-based algorithms (Chapter 4). One
of the key design choices was to tightly integrate GOLEM with the underlying SMT solver
OPENSMT. The practical consequences of the tight integration are twofold: It enables fine-
tuned use of the SMT solver, its decision and interpolation procedures. Additionally, it enables
the re-use of existing data structures for term representation and manipulation, which saves
development time and avoids the runtime overhead of a translation between different term
representations. During the development of GOLEM, the integrated architecture allowed
tuning of the overall infrastructure and removing potential performance bottlenecks, both
in GOLEM and in OPENSMT. The drawback of this design choice is that it is not possible
to easily replace the underlying SMT solver or use multiple different SMT solvers. Other

1https://github.com/usi-verification-and-security/golem
2https://chc-comp.github.io/format.html
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state-of-the-art Horn solvers are integrated quite tightly with their underlying satisfiability
engines as well. SPACER [137] lives as a fixed-point engine inside the Z3 solver [72] and, as
such, has unrestricted access to its various utilities, including the core SMT solver. Similarly,
the interpolating theorem prover PRINCESS [173] is integrated into ELDARICA [117].

An official publication for GOLEM is currently being prepared for submission. However, it
was already used in the experiments for evaluating our TPA algorithms in [35, 36]. In the
experiments, the implementation of TPA algorithms in GOLEM was compared to the existing
model-checking tools on a set of challenging benchmarks representing multi-phase loops.
Additionally, it participated in CHC-COMP in 2021 and 2022; in the 2022 edition, it beat all
other Horn solvers except the non-competing SPACER in the LRA-TS, LIA-Lin and LIA-Nonlin
tracks. A short description of GOLEM has been published in the CHC-COMP-21 competition
report [95].

The organization of this chapter is the following: First, we introduce terminology regarding
the internal representation of a CHC system in GOLEM. Then we describe the high-level
architecture of GOLEM and focus more on the CHC transformations and reasoning engines it
implements. We also briefly discuss some interesting details from our work on OPENSMT as
the core component of GOLEM. After the tool’s description, we present results from several
experiments. Finally, we discuss possible future directions for GOLEM and related work.

5.1 Terminology

The terminology for Horn clauses has been introduced in Section 2.4. GOLEM uses graph rep-
resentation for a system of Horn clauses. Nodes in the graph correspond to the uninterpreted
predicates of the system; edges correspond to the clauses of the system. Additionally, there
are two particular nodes true and false, where true is understood as the body predicate of
facts, and false is the head predicate of queries. The graph has the following properties:

• It is labeled. Each edge is labeled with the constraint of the clause represented by the
edge.

• It is possibly a hypergraph. Each edge connects all the body’s predicates to the head’s
predicate.

• It is directed. Each edge is oriented from the predicates of the body (source nodes) to
the predicate of the head (target node).

• It is possibly a multigraph. There can be multiple clauses with the same body and
head predicates. Each clause has a distinct edge in the graph, labeled with the clause’s
constraint.

Note that only a clause with multiple predicates in the body is represented by a hyperedge,
i.e., an edge with multiple source nodes. If the CHC system is linear (each clause has at most
one predicate in the body), then all edges are standard directed edges, with one source node
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true

multA multB

false

X ′A = 0∧ Z ′A = 0 X ′B = 0∧ Z ′B = 0

X ′A = XA+ 1

∧ Y ′A = YA

∧ Z ′A = ZA+ 1

X ′B = XB + 1

∧ Y ′B = YB

∧ Z ′B = ZB + 1

XA = XB

∧ YA = YB

∧ ZA ̸= ZB

Figure 5.1. Graph representation of the CHC system from Example 5.1

and one target node. In a standard graph (not hypergraph), we denote a directed edge e
as an ordered pair (s, t) where s is the source node of e and t is its target node. We also
use helper functions src and tgt where src(e) = s and tgt(e) = t. For a node v we denote
in(v) = {e | tgt(e) = v} the set of v’s incoming edges and out(v) = {e | src(e) = v} the set of
v’s outgoing edges. For an edge e, we denote its label, the constraint of the corresponding
clause, as L(e).

Example 5.1. To illustrate the graph representation, consider the normalized version of the
CHC system from Example 2.2 in Section 2.4.

true∧ X ′A = 0∧ Z ′A = 0 =⇒ multA(X ′A, Y ′A, Z ′A)

multA(XA, YA, ZA)∧ X ′A = XA+ 1∧ Z ′A = ZA+ YA∧ Y ′A = YA =⇒ multA(X ′A, Y ′A, Z ′A)

true∧ X ′B = 0∧ Z ′B = 0 =⇒ multB(X ′B, Y ′B, Z ′B)

multB(XB, YB, ZB)∧ X ′B = XB + 1∧ Z ′B = ZB + YB ∧ Y ′B = YB =⇒ multB(X ′B, Y ′B, Z ′B)

multA(XA, YA, ZA)∧multB(XB, YB, ZB)∧ XA = XB ∧ YA = YB ∧ ZA ̸= ZB =⇒ false

Compared to the original system, we assigned unique variables to each predicate and rewrote
the clauses with predicates in the heads using the primed (next-state) versions of the variables.
This rewriting is similar to what GOLEM uses internally.3 We also explicitly added the predicate
true to the facts of the system.

The graph representation of this system is depicted in Figure 5.1. The single incoming edge of
false is a hyperedge because it has two source nodes, multA and multB. Its label is the constraint
of the corresponding clause, i.e., XA = XB ∧ YA = YB ∧ ZA ̸= ZB.

3The real representation in GOLEM is more complicated because it needs to take into account possibly multiple
occurrences of the same predicate in the body of the same clause.
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Interpreter Preprocessor IMPACT SPACER

TPA

BMC KIND

Engines

.smt2

SAT
+

model

UNSAT
+

proof

OpenSMT

Figure 5.2. High-level architecture of GOLEM

As described in Section 2.5, the safety of transition systems can be encoded into a CHC
representation of a particular form. In the graph representation of a transition system, there is
a single node v, beside the special nodes true and false. Moreover, there are only three edges:
from true to v, from v to false and a self-loop on v. Self-loop on v represents the transition
relation, the incoming edge defines the initial states, and the outgoing edge defines the error
states. If this CHC system is satisfiable, the interpretation of v’s uninterpreted predicate
represents a safe inductive invariant of the transition system.

5.2 Architecture

The flow of data inside GOLEM is depicted in Figure 5.2. The system of constrained Horn
clauses (CHCs) is read from .smt2 file, a script in an extension of the language of SMT-LIB.
Interpreter is responsible for interpreting the SMT-LIB script and building the internal
representation of the system of CHCs. In GOLEM, CHCs are first normalized, and then the
system is turned into the graph representation described in Section 5.1. Normalization
ensures that unique variables are used to obtain a canonical representation of each predicate.
With the canonical representation, clauses are rewritten such that predicates contain only
variables (no complex terms) as arguments.

The graph representation of the system is then passed to the Preprocessor, which applies
various graph transformations. The goal of these transformations is to simplify the graph and
make it easier to solve by the chosen back-end engine. The transformations implemented in
GOLEM are described in detail in Section 5.4.

After the preprocessing phase, the transformed graph is sent to the chosen back-end



77 5.3 Witness Format

engine. Engines in GOLEM implement various algorithms for solving the CHC satisfiability
problem. GOLEM contains the implementation of our TPA-based algorithms (Chapter 4), but
also re-implementation of state-of-the-art algorithms BMC [29], KIND [186], IMPACT [157],
and SPACER [137]. Users pick the engine to run using a command-line option --engine.
A detailed description of the engines is given in Section 5.5.

Each engine in GOLEM implements an SMT-based algorithm; thus, they all rely on an
SMT solver for answering SMT queries and providing models and interpolants. GOLEM relies
entirely on OPENSMT [122] for these tasks. Additionally, GOLEM re-uses the data structures
of OPENSMT for representing and manipulating terms.

If an engine solves the CHC system, it reports the satisfiability result. If required, it also
reports the witness for its answer: a model for the uninterpreted predicates or a proof of unsat-
isfiability. Note, however, that this would be a witness for the transformed graph, the result of
the preprocessing run. Thus, to obtain an accurate witness for the input system, Preprocessor
must be able to backtranslate the witness through the transformations applied to the graph.4

Only after this backtranslation the answer and the witness are reported to the user.

5.3 Witness Format

Witness for the satisfiability of a CHC system is a model—an interpretation for each uninter-
preted predicate that makes all clauses valid. Internally, GOLEM represents the interpretations
as formulas in the background theory, using only the variables of the (normalized) unin-
terpreted predicate. All interpretations are kept in a single map that maps uninterpreted
predicate symbols to their interpretations.5 The model is presented to the user in the format
defined by SMT-LIB [16]: a sequence of SMT-LIB’s define-fun commands, one for each
uninterpreted predicate.

Witness for unsatisfiability of a CHC system is a derivation of false. As it stands now, th
research community has yet to agree on the exact output format for UNSAT witnesses. Due
to its simplicity, GOLEM follows the trace format used by the ELDARICA solver. Internally,
GOLEM stores the derivation as a sequence of derivation steps. Every derivation step is a
ground instance of some clause from the system. The ground instances of predicates from
the body form the premises of the step, and the ground instance of the head’s predicate forms
the conclusion of the step. For the derivation to be valid, the premises of each step must have
been derived earlier, i.e., each premise must be a conclusion of some derivation step earlier
in the sequence. To the user, the proof is presented as a sequence of derivations of ground
instances of the predicates, where each step is annotated with the indices of its premises.

Example 5.2. Consider the following simple CHC system and the proof of its unsatisfiability.

4As the graph is translated moving forward through transformation passes, the witness must be translated
moving backwards through the same sequence of transformations.

5This corresponds to the relation symbol assignment for syntactic solvability of [176].
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x > 0 =⇒ L1(x)

x ′ = x + 1 =⇒ D(x , x ′)

L1(x)∧ D(x , x ′) =⇒ L2(x ′)

L2(x)∧ x ≤ 2 =⇒ false

1. L1(1)

2. D(1,2)

3. L2(2) ; 1, 2

4. false ; 3

The derivation of false consists of four derivation steps. Step 1 instantiates the first clause for
x := 1. Step 2 instantiates the second clause for x := 1 and x ′ := 2. Step 3 applies resolution to
the instance of the third clause for x := 1 and x ′ := 2 and facts derived in steps 1 and 2. Finally,
step 4 applies resolution to the instance of the fourth clause for x := 2 and the fact derived in
step 3.

5.4 Preprocessing of CHC Systems

Transformations of CHC systems play an important role in the performance of Horn solvers;
for example, both ELDARICA and Z3 apply many powerful transformations in the preprocessing
phase. The goal of transformations is typically to simplify the problem before it is passed
to the actual solving algorithm. Some solving techniques apply only to CHC systems of
a particular form, and transformations are applied to make the technique applicable. In
state-of-the-art Horn solvers, transformations are applied mainly as preprocessing, but they
can constitute a solving method on their own. An overview of CHC transformations can be
found in [32]. Here we describe only the transformations implemented in GOLEM, together
with the backtranslations for models (witnesses of satisfiability) and proofs (witnesses of
unsatisfiability).

Simple-chain summarization

The goal of this transformation is to simplify the CHC graph by replacing a (possibly long)
path with a single edge, eliminating the intermediate nodes in the process. A simple chain
in the CHC graph is a path between two nodes containing only normal (not hyper) edges
such that each intermediate node does not have any other edges except the one incoming
and the one outgoing edge present in this path. Each simple chain is replaced by a single
edge from the first to the last node. The label of the new edge is a conjunction of all the
constraints on the path after an appropriate renaming of the variables. After the addition of
the summarizing edge, all the intermediate nodes are removed.

To avoid quantifiers when backtranslating a model, GOLEM relies on interpolation. Sup-
pose that the transformation replaced a path with source node s, target node t and n inter-
mediate nodes i1, . . . , in with a new edge (s, t). Let M denote the model for the transformed
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system. Then the following formula is unsatisfiable:

M(s)∧L(s, i1)∧
n−1
∧

j=1

L(i j , i j+1)∧L(in, t)∧¬M(t)

The unsatisfiability follows from the definition of the model and the fact that Ls, t ≡ L(s, i1)∧
∧n−1

j=1 L(i j , i j+1) ∧ L(in, t). The interpretation for the intermediate nodes i1, . . . , in can be
obtained by computing a path interpolant for the formula. To perform the backtranslation
efficiently, GOLEM utilizes the abilities of OPENSMT to compute path interpolants from a
single proof of unsatisfiability.

The backtranslation of a witness of unsatisfiability is also possible. A single derivation
step corresponding to the summarizing edge is replaced by a sequence of steps corresponding
to the original chain. The values for the ground instances of the intermediate nodes can
be computed from the model of the path constraints, where the values for the source and
target variables are taken from the ground instances of the derived fact and the premise of
the derivation step.

Merging multiple edges with the same source and target

This relatively simple transformation aims to simplify the graph by reducing the number of
edges. It combines multiple edges with the same source and target nodes into a single edge.
The constraint on the new edge is a disjunction of the replaced edges’ constraints. After
adding the new edge, the previous edges are removed from the graph. We are effectively
shifting work from the reachability algorithm to the underlying SMT solver by applying this
transformation. Instead of the reachability algorithm trying to figure out which edge can
extend a feasible path, only a single edge is possible. However, the SMT solver needs to
determine which disjuncts (if any) can be used. This transformation is currently implemented
only for edges with a single source node, i.e., not proper hyperedges.

The backtranslation of a model does not require any change in the model. The backtrans-
lation of an unsatisfiability proof requires only changes in the bookkeeping information, not
in the derived facts. For the derivation step that uses the new edge, it needs to choose one of
the original edges that also enables the derivation. The right edge can be found by checking
which disjunct is satisfied in the satisfiable assignment of the edge constraint using source
and target values from the ground facts of the derivation step.

Contracting nodes

The goal of this transformation is to reduce the number of nodes in the graph and extend the
applicability of engines that operate on transition systems. This transformation is currently
limited to nodes that do not participate in hyperedges and do not have a self-looping edge.
Contraction means that a node v and all its edges are removed from the graph, and a new
edge is added to the graph for every pair of edges (s, v) and (v, t). That is, every source of
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some v’s incoming edge is now connected to every target of some v’s outgoing edge. The label
of the new edge is a conjunction of the labels of the two edges it replaces, with appropriate
renaming of the variables. In the terminology of the underlying Horn clauses represented by
the graph, this corresponds to the exhaustive application of the resolution rule on clauses
where the node’s predicate appears in the head and clauses where it appears in the body.
Afterwards, all clauses containing the predicate are removed from the system. Note that while
this transformation reduces the number of nodes in the graph, it replaces n incoming and m
outgoing edges with n×m new edges. To avoid blowup in the number of edges, contraction
can be limited to the case when either n or m is 1.

Summarization of a simple chain, described earlier, is a more efficient variant of gradual
contraction of every intermediate node on a simple chain. Similarly to the summarization
of simple chains, interpolation can be used for the backtranslation of a model when node
contraction has been applied. Let v be the contracted node in the original graph. Given a
model M for the transformed graph, we denote

A=
∨

e∈in(v)

M(src(e))∧L(e) and B =
∨

e∈out(v)

L(e)∧¬M(tgt(e)).

Since M is a model for the transformed graph, it follows that A∧B is unsatisfiable. Extending
the model M with an interpolant I = Itp(A, B) as the interpretation for v’s predicate yields a
valid model for the original graph.

The backtranslation of a proof consists of replacing the derivation step corresponding
to one of the new edges with two derivation steps corresponding to the original incoming-
outgoing pair of edges. The missing ground instance of the predicate of the removed node is
obtained in the same way as in the summarization of simple chains.

5.5 Back-end Engines of Golem

The core components of GOLEM that solve the problem of satisfiability of a CHC system are
referred to as back-end engines, or just engines. The engines of GOLEM implement various
algorithms from model checking and software verification that treat the problem of solving a
CHC system as a reachability problem in the graph representation. There are currently five
engines in GOLEM:

• BMC - Bounded Model Checking [29]

• KIND - k-induction [186]

• LAWI - Lazy Abstraction with Interpolants/IMPACT [157]

• SPACER [137]

• TPA/SPLIT-TPA - Transition Power Abstraction (Chapter 4)

Below, we describe each of the engines separately.
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5.5.1 Bounded Model Checking

BMC engine in GOLEM works only over graphs that represent transition systems. The engine
reconstructs the transition system’s initial states, transition relation, and error states from the
graph representation and then applies the basic bounded model checking algorithm [29]. It
checks the existence of a path of gradually increasing lengths between the initial and error
states. Formally, it checks the satisfiability of the formula

Init(x (0))∧
n−1
∧

i=0

Tr(x (i), x (i+1))∧ Bad(x (n))

for increasing value of n. If this formula is satisfiable for some value of n, a counterexample
path of length n has been found. To speed up the satisfiability checks, it uses incremental
SMT solving capabilities of OPENSMT.

By definition, BMC is capable of detecting the presence of a counterexample path (unsat-
isfiability of the corresponding CHC system), but not its absence.6 The unsatisfiability proof
of the CHC system is easily reconstructed from the model of the BMC formula, which gives
the values of the variables at each step along the path.

5.5.2 k-induction

The KIND engine in GOLEM implements k-induction [186], a widespread technique in hard-
ware and software verification. It was the first technique to extend the idea from BMC—the
possibility to check the existence of a counterexample path with a satisfiability solver—to
also prove the absence of counterexample paths. The basic idea of k-induction has been later
refined [73] and adopted for software verification [21, 22, 43, 79].

The implementation in GOLEM follows the basic version of the algorithm from [186]
and, as such, requires the input in the form of a transition system. The computation of
the unsatisfiability witness proceeds the same way as in the BMC engine. On the other
hand, the computation of the satisfiability witness is more complicated. This algorithm,
by definition, computes k-inductive invariant of the transition system. However, to honor
the semantics of the CHC system, 1-inductive invariant is required. GOLEM implements
a procedure that first computes quantified 1-inductive invariant from the k-inductive one
and then applies quantifier elimination (which is feasible for linear arithmetic) to obtain
quantifier-free inductive invariant.

5.5.3 Lazy Abstractions with Interpolants

Lazy Abstractions with Interpolants (LAWI) is an algorithm introduced by McMillan for verifi-
cation of software [157]. It is sometimes known as the IMPACT algorithm, as that was the
first tool where the algorithm was implemented. Later, it was also implemented in software
verification tools WOLVERINE [143] and CPACHECKER [22, 28].

6Unless the initial states or the bad states are empty sets, i.e., already the formula Init or Bad is unsatisfiable.
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The LAWI engine in GOLEM is a re-implementation of the original algorithm, as described
in [157]. The original LAWI algorithm was designed for sequential programs. It operates on a
program representation that maps straightforwardly to the graph representation of linear CHC
systems in GOLEM. It analyzes possible paths through the graph, looking for a feasible path
from true to false. It uses interpolation to learn from infeasible paths and compute invariants
for individual nodes in the graph. The implementation in GOLEM leverages OPENSMT’s ability
to compute path interpolants from a single refutation proof of infeasibility for fast interpolant
computation. As a faithful implementation of the original algorithm, the LAWI engine in
GOLEM works on any graph without hyperedges, i.e., any linear, but not nonlinear, CHC
systems.

5.5.4 Spacer

SPACER engine in GOLEM implements the algorithm originally named RECMC which was
introduced in [136, 137] and implemented in the tool SPACER. Original SPACER is now the
default fixed-point engine and Horn solver in Z3 [72]. SPACER in Z3, which we will refer to
as Z3-SPACER, has been extended several times with various optimizations and support for
theories beyond arithmetic since the original publication [135, 190, 191, 192].

The implementation in GOLEM follows the description from the journal publication [137].
SPACER algorithm heavily relies on efficient approximations for quantifier elimination. Typi-
cally, Craig interpolation is used to over-approximate quantifier elimination and model-based
projection (MBP) [137] is used to under-approximate it. GOLEM relies on OPENSMT for inter-
polation but implements its own MBP procedure for integer and real linear arithmetic, based
on the description from [33].

The advantage of the SPACER algorithm is that it works over any CHC system, even
nonlinear ones. Nonlinear CHC systems can model programs with summaries, and in this
setting, SPACER computes both under-approximating and over-approximating summaries of
the procedures to achieve modular analysis of programs. SPACER is currently the only engine
in GOLEM capable of solving nonlinear CHC systems.

5.5.5 Transition Power Abstraction

The TPA engine in GOLEM implements the algorithms introduced in Chapter 4. It can work in
two modes: The first implements the basic TPA algorithm; the second implements the SPLIT-
TPA algorithm. The implementation in GOLEM follows the algorithms faithfully. However,
by default, the implementation uses model-based projection, not full quantifier elimination.
Additionally, it uses incremental capabilities of OPENSMT to speed up the satisfiability queries.
Consider the queries posed by Algorithm 4.2 on line 2. During its run, the algorithm makes a
lot of these queries. For a single level n, the source and target states change, but the transition
part ATr≤n(X , X ′) ∧ ATr≤n(X ′, X ′′) is only ever refined, i.e., new conjuncts are added, but
existing ones are not removed. Thus, these queries can be incremental when a separate
solver is used for each level. Using incremental solving in this context significantly improved
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the algorithm’s performance. However, as the internal implementation of incrementality in
OPENSMT uses frame literals to track pushed and popped frames, these eventually clutter the
solver. Thus, these solvers are torn down and rebuilt after a fixed number of incremental
queries.

TPA engine can find counterexample paths for transition systems, which easily translate
to unsatisfiability proofs for the corresponding CHC systems. For safe transition systems, it
can discover safe k-inductive transition invariants. If a model for the corresponding CHC
system is required, the engine first computes a quantified inductive invariant and then applies
quantifier elimination to produce a quantifier-free inductive invariant.

The algorithms, as described in Chapter 4, work on transition systems. However, the
engine in GOLEM already supports a more general class of graphs. Namely, it can analyze
chains of transition systems. The graph representing a chain of transition systems is a sequence
of nodes true, v0, v1, . . . , vn, false where each node vi has a self-loop and is connected to its
predecessor and successor with a single edge. In the software domain, this represents a
sequence of consecutive loops in a program. The idea is that each node represents a transition
system and maintains its own TPA sequence for that system. Then, information flows along
the chain. In the current implementation, nodes propagate reachable states forward (from
true to false) and safe states backward. The direction of the flow could also be reversed,
corresponding to the direction of information flow in the SPACER algorithm. In such a scenario,
transition systems on the chain are asked various reachability queries for different initial and
error states. However, their transition relations always remain the same. Thus, focusing on
transitions rather than states is an advantage of the TPA algorithms. They learn information
about transitions in the underlying system that is not invalidated when the initial or error
states change. This information can be re-used across multiple reachability queries for the
same transition relation.

5.6 OpenSMT for Golem: Integration and Improvements

Constrained Horn clauses, by design, require manipulation of logical terms and all ap-
proaches to CHC solving use an SMT solver as a sub-procedure in some way. GOLEM relies on
OPENSMT [122] for term representation, term manipulation, SMT solving and interpolation.
As part of the research on this thesis and the development of GOLEM, several contributions to
OPENSMT were made to streamline the integration with GOLEM and improve the performance.
The following are the changes most relevant for GOLEM.

The theory solver for linear arithmetic (LA) follows the simplex-based algorithm described
in [84]. To support integer reasoning, OPENSMT initially implemented only the basic branch-
and-bound algorithm [181], which introduces new branches only on variables from the
original problem. Now, the LA solver also implements a basic version of the cuts-from-proofs
algorithm [78] that computes branches on general terms. This addition significantly improved
OPENSMT’s performance on integer problems and substantially decreased the number of
benchmarks where OPENSMT exhibits diverging behaviour.
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The optimizations, which contributed the most to the performance improvement of
OPENSMT’s LA solver, are theory suggestions for deciding the polarity of a theory atom in the
SAT solver and quasi-basic variables in the tableau implementation.

• Theory suggestions: During the search for a satisfying assignment, a SAT solver makes
decisions: picks an unassigned atom and sets it either to true or false. When choosing
the atom’s polarity (whether to assign it to true or false), OPENSMT originally defaulted
to positive polarity. Now, for the atoms of the theory of linear arithmetic, it picks the
polarity that is consistent with the current assignment maintained by Simplex. The
intuition is that choosing a polarity which yields a constraint that is not consistent
with the current assignment in Simplex requires unnecessary work: an update to the
assignment and potentially many pivoting operations over the tableau to make the
assignment consistent again. Choosing a consistent assignment avoids unnecessary
work and leads to significant performance improvement.

• Quasi-basic variables: In the typical implementation of the incremental Simplex algo-
rithm in SMT solvers, all linear expressions from the original problem participate in
the creation of the tableau. As constraints are asserted and retracted during the SAT
solver search, bounds on the linear expressions are activated and deactivated. New
bounds may violate the current satisfying assignment maintained by Simplex, leading
to an update of variables’ values and pivoting operations over the tableau. Originally,
OPENSMT was updating all affected rows during a pivot operation. However, if no
bound has been asserted yet for a row, it cannot participate in a conflict, and its update
can be delayed. Moreover, if backtracking is triggered before the execution of the
update, the update can be avoided altogether. This idea to delay certain updates in
the tableau has already been implemented in Z3, which referred to the basic variables
without an asserted bound as quasi-basic variables. While in Z3, to the best of our
knowledge, quasi-basic variables are not used by default, in OPENSMT, they led to
a significant performance improvement of the Simplex algorithm.

Two architectural changes were necessary for streamlined integration and efficient use of
OPENSMT in the infrastructure of GOLEM. First, a clear separation between the term manager
and core solver has been made. The separation allowed multiple solver instances to share a
single term manager. GOLEM uses a single instance of the term manager across the whole
architecture: for representation of the CHC system, for term rewriting in the preprocessing,
and for all solver instances in the back-end engine. TPA algorithms especially take advantage
of this feature as they maintain multiple solvers at the same time.

The second change was improved interpolation support, especially making interpolation
a runtime option instead of a compile-time option. Moreover, the interpolation module of
OPENSMT was extended to work in the context of incremental SMT solving. Previously,
OPENSMT had support for incremental solving and interpolation but not the combination of
both features. Interpolation for incremental SMT solving is used mainly in the TPA algorithms,
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which rely heavily on interpolation. However, it can utilize incremental solving to maximize
efficiency and avoid repeating redundant work.

Overall, OPENSMT was the key to quickly developing an efficient Horn solver. Relying on
the existing data structures of OPENSMT for term representation facilitated the work on the
solving algorithms. The term rewriting capabilities, decision procedures and interpolation
algorithms available in OPENSMT enabled rapid prototyping of the back-end engines. In
the other direction, GOLEM stresses various parts of OPENSMT, e.g., efficient term rewriting,
solving both a small number of complex queries and a large number of easy queries, efficient
incremental solving and interpolation. Heavy use of OPENSMT uncovered several performance
bottlenecks in the solver. Uncovering and fixing these issues improved OPENSMT not only for
GOLEM but also for other applications.

5.7 Experiments

This section presents several experiments related to GOLEM and its engines. First, we discuss
the experiments and results related to the implementation of the TPA and SPLIT-TPA algorithms
from Chapter 4 in the TPA engine of GOLEM. Then we compare individual engines of GOLEM

among themselves and with the state-of-the-art tools. All experiments were conducted on a
machine with an AMD EPYC 7452 32-core processor and 8x32 GiB of memory.

5.7.1 Evaluation of the TPA algorithms

The first set of experiments uses only the TPA algorithm and focuses on detecting deep
counterexamples. The second set additionally evaluates the SPLIT-TPA algorithm and its
ability to prove safety of transition systems. Experiment setup and the presentation follow
the respective publications on TPA and SPLIT-TPA [35, 36].

Detecting Deep Counterexamples with TPA

In the first set of experiments, we evaluate the ability of TPA to detect long counterex-
amples and compare its performance with state-of-the-art tools Eldarica 2.0.6 [117], IC3-
IA 20.04.1 [59] and Z3 4.8.12 [72] (using both its BMC [29] and Spacer [137] engines).
These were the top competitors in CHC-COMP 2020 and 2021 [95, 174]. We use two versions
of the TPA algorithm in the experiments. One uses full quantifier elimination as is denoted as
TPA-QE. The other under-approximates quantifier elimination with model-based projection
and is denoted as TPA-MBP. All benchmarks are encoded as CHC satisfiability problems
using the format of CHC-COMP. Since IC3-IA’s input format differs, all CHC benchmarks were
translated to VMT format using the automated tool packaged with IC3-IA.7

First, we investigated the scalability of the algorithms with respect to the length of the
counterexample. For this purpose, we used the parametrized transition system from our

7Artifact for these experiments is available at https://doi.org/10.5281/zenodo.5815911

https://doi.org/10.5281/zenodo.5815911
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Figure 5.3. Runtime for motivating example for N from 1 to 511 (log y-axis)

motivating example in Section 4.2. The counterexample in this system has length 2N , and we
ran the tools on instances for N ranging from 1 to 511. The timeout was set to 300 seconds.
Figure 5.3 shows the runtime of the tools for the given value of N .

TPA-MBP was able to report all instances as unsafe, requiring less than two seconds for
each instance. Eldarica, IC3-IA and Z3-BMC exhibit relatively stable pattern where the
performance decreases rapidly with increasing N . Z3-SPACER, on the other hand, exhibits a
curious behaviour where it can solve most of the instances (even though it is slower than
TPA-MBP by at least an order of magnitude), but on a relatively large number of instances, it
times out.8 Finally, TPA-QE performed significantly worse than TPA-MBP, which benefited
from the fact that the reason why shorter counterexamples do not exist can be summarized
relatively easily.

Continuing this line of experiments, we considered a second set of benchmarks represent-
ing instances of challenging safety properties of multi-phase loops [185], which are known to
be difficult to analyze by state-of-the-art techniques. We took 54 safe multi-phase benchmarks
from CHC-COMP repository9 and then, for each benchmark, created its unsafe version with a
minor modification of the safety property.10 In most cases, this was done by negating one
of the conjuncts of the property. In a few cases, this resulted in a simple benchmark with a
very short CEX (< 10 steps), but in most cases, the minimal counterexample is much larger,
ranging from hundreds to tens of thousands of steps. There are even a few extremes where
the minimal counterexample requires hundreds of thousands or even millions of steps. With

8The authors of Z3-SPACER confirmed this behaviour. It seems the root cause is an interpolant which can
either help the SPACER algorithm converge quickly or hinder its progress significantly, depending on which of the
possible interpolants is computed by Z3.

9https://github.com/chc-comp/aeval-benchmarks
10Benchmarks available at https://github.com/blishko/chc-benchmarks.

https://github.com/chc-comp/aeval-benchmarks
https://github.com/blishko/chc-benchmarks
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Figure 5.4. Results on 54 multi-phase unsafe benchmarks

the timeout of 300 seconds, out of 54 benchmarks, TPA-QE solved 20 and TPA-MBP solved
35 benchmarks, beating the other tools, among which Z3-SPACER performed the best, solving
20 benchmarks. The results are summarized in Figure 5.4, where the number of solved
benchmarks by each tool is plotted against the time needed for their solving.

Overall, TPA-MBP solved 15 benchmarks that none of the other tools was able to solve
and, in general, could be one or two orders of magnitude faster. There were two noticeable
exceptions: benchmark 24 was uniquely solved by Z3-SPACER, and IC3-IA uniquely solved
benchmark 39. In the latter case, our tool suffered from incompleteness in the decision proce-
dure of OpenSMT for integer arithmetic, while in the former case, the interpolation was not
producing good abstractions, and TPA-MBP suffered from the need for frequent refinements.
We also examined the solved benchmarks for the length of the minimal counterexample they
admit. The results are in line with the observations from our first experiments: Other tools
could only solve benchmarks with a counterexample of up to a thousand steps (1001 steps
in benchmark 17 solved by Z3-Spacer). TPA-QE matched this performance (1001 steps in
benchmark 27), but TPA-MBP managed to solve benchmarks with a counterexample of more
than ten thousand steps (17650 in benchmark 42). Thus, our technique significantly improves
upon state-of-the-art with respect to the length of the counterexample it can detect.

Proving Safety with split-TPA

In the next set of experiments, we focused on evaluating the implementation of SPLIT-TPA
for its ability to prove systems safe. However, as SPLIT-TPA implements a more complex
procedure for answering bounded reachability queries, we also ran experiments on the unsafe
version of the problems. Note that compared to the previous set of experiments, these are
more recent and, as such, use later versions of the tools. In particular, here we compared
GOLEM 0.1.0 using OPENSMT 2.3.2, ELDARICA 2.0.8 [117], Z3-SPACER [137] implemented in
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Benchmark suite SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

multi-phase safe 19 (7) 12 (0) 6 (0) 24 (3) 26 (4)
multi-phase unsafe 37 (3) 35 (2) 20 (0) 17 (0) 17 (0)

Table 5.1. Summary of the experiments on multi-phase benchmarks: Solved (unique)
instances out of 54 benchmarks.

Z3 4.8.17 [72], and GSPACER [190] a more recent version of SPACER enriched with global
guidance.11

For the evaluation, we used the same set of benchmarks representing multi-phase loops
as in the previous experiment, both safe and unsafe versions. The results are summarized in
Table 5.1, and times for each tool/benchmark pair are given in Table 5.2.

Regarding safety, Table 5.1 shows that SPLIT-TPA overall solved seven more benchmarks
than TPA, but still less than GSPACER or ELDARICA. However, it solved seven benchmarks
uniquely (the other competitors did not solve them). This indicates that SPLIT-TPA is quite
orthogonal to the existing techniques for proving safety.

The results on unsafe benchmarks show that SPLIT-TPA not only preserves the capability
of TPA to detect deep counterexample, but it was even able to outperform it by solving two
more benchmarks overall.

5.7.2 Evaluation on CHC-COMP Benchmarks

The benchmark collections of CHC-COMP represent a rich source of problems from various
domains.12 We evaluate the performance of GOLEM and its engines on different categories of
these benchmarks. For these experiments, GOLEM 0.3.1 was used, which is a more recent
version than in the experiments of the previous section. The timeout for all experiments was
set to 300 seconds.

Category LRA-TS

The first category of benchmarks considered is the LRA-TS category of CHC-COMP. It consists
of problems that model the safety of transition systems using linear real arithmetic as the
background theory. There are 498 unique benchmarks in this category, and all were used in
the 2021 and 2022 editions of CHC-COMP. All engines of GOLEM can solve benchmarks in
this category. The results for this benchmark set are presented in Figure 5.5 and Table 5.3.

Figure 5.5 plots, for each engine, the number of solved benchmarks (x-axis) within the
given time limit (y-axis, log scale). The results are split into satisfiable and unsatisfiable
problems. As the BMC engine does not make any attempt beyond trivial cases to solve
satisfiable instances, it did not solve any satisfiable benchmark in this experiment and is

11Artifact for these experiments is available at https://doi.org/10.5281/zenodo.6988735
12https://github.com/orgs/chc-comp/repositories

https://doi.org/10.5281/zenodo.6988735
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Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 26.28 TO TO TO TO
02 TO TO 133.28 <1 TO
03 TO TO TO TO 1.33
04 TO TO TO <1 3.70
05 <1 <1 <1 <1 1.19
06 TO TO TO TO 3.95
07 TO TO TO <1 1.32
08 TO TO TO TO TO
09 TO TO TO TO TO
10 TO TO TO TO TO
11 TO TO TO 5.68 TO
12 TO TO TO TO 1.62
13 <1 <1 ERR <1 1.16
14 53.94 TO TO TO 118.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 <1 37.50 TO <1 7.53
18 <1 <1 TO <1 3.66
19 TO TO <1 <1 1.22
20 TO TO TO TO TO
21 <1 10.39 TO <1 15.45
22 TO TO TO TO TO
23 <1 <1 ERR <1 1.79
24 TO TO TO TO TO
25 TO 45.93 TO TO 9.33
26 2.60 1.55 TO <1 TO
27 TO TO TO TO TO
28 <1 TO TO TO 1.61
29 3.94 TO TO 118.98 34.22
30 TO TO TO TO 20.48
31 TO TO TO <1 1.60
32 TO TO TO 11.49 TO
33 TO TO TO TO TO
34 TO TO TO <1 5.86
35 TO TO TO <1 1.80
36 <1 <1 TO <1 1.92
37 <1 <1 <1 <1 14.33
38 TO <1 TO <1 1.36
39 TO TO 67.41 58.73 2.48
40 109.05 TO TO TO ERR
41 TO TO TO TO TO
42 TO TO TO <1 4.37
43 TO TO TO 5.20 TO
44 TO TO TO TO TO
45 TO TO TO TO TO
46 TO 288.20 13.07 <1 1.28
47 TO TO TO TO TO
48 47.00 TO TO TO TO
49 122.96 TO TO TO TO
50 TO TO TO TO TO
51 TO TO TO TO TO
52 235.24 TO TO TO TO
53 147.28 TO TO TO TO
54 133.63 TO TO TO TO

Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 14.53 10.12 TO TO TO
02 <1 <1 1.25 TO TO
03 <1 <1 <1 <1 1.16
04 TO TO TO TO TO
05 <1 <1 <1 <1 1.18
06 TO TO TO TO TO
07 TO TO TO TO TO
08 TO TO TO TO TO
09 TO TO TO TO TO
10 20.40 233.78 TO TO TO
11 152.28 TO TO TO TO
12 TO TO TO TO TO
13 <1 <1 <1 <1 1.13
14 <1 <1 <1 8.91 89.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 14.84 15.81 181.59 TO TO
18 <1 <1 <1 <1 1.57
19 <1 <1 <1 <1 20.74
20 TO TO TO TO TO
21 <1 <1 <1 <1 10.63
22 TO TO TO TO TO
23 <1 <1 <1 <1 1.17
24 <1 TO 96.64 TO TO
25 <1 <1 <1 <1 1.19
26 2.01 1.46 TO TO TO
27 <1 <1 TO TO TO
28 <1 <1 TO TO 162.43
29 <1 <1 2.76 32.56 45.75
30 <1 <1 <1 <1 10.22
31 TO TO TO TO TO
32 <1 <1 <1 <1 7.17
33 <1 <1 <1 <1 1.21
34 <1 <1 <1 <1 1.15
35 <1 <1 <1 <1 1.20
36 16.68 14.45 TO TO TO
37 <1 <1 <1 <1 13.37
38 262.18 TO TO TO TO
39 TO TO TO ERR TO
40 <1 <1 <1 133.07 ERR
41 TO 4.60 TO TO TO
42 18.31 40.39 TO TO TO
43 TO TO TO TO TO
44 34.18 TO TO TO TO
45 TO TO TO TO TO
46 TO 239.05 TO TO TO
47 5.71 6.79 TO TO TO
48 17.52 12.10 TO TO TO
49 32.59 12.49 TO TO TO
50 TO TO TO TO TO
51 6.71 11.57 TO TO TO
52 70.83 82.43 TO TO TO
53 57.42 33.00 TO TO TO
54 40.74 15.15 TO TO TO

Table 5.2. Full results on safe (left) and unsafe benchmarks (right). TO: timeout;
ERR: memory out or other inconclusive answer.

omitted from the corresponding plot. Table 5.3 summarizes the results with the total number
of benchmarks solved for each engine.

For the unsatisfiable problems, the performance is similar across all engines, with the
BMC engine performing the best. This is expected as the BMC algorithm does not make any
extra effort to discover invariants and focuses purely on the search for a counterexample
trace in the transition system. However, the extra check for k-inductive invariants on top
of the BMC-style search for counterexamples, as implemented in the KIND engine, incurs a
relatively small overhead in unsatisfiable problems compared to the impressive success in
solving satisfiable problems.



90 5.7 Experiments

0.01

0.1

1

10

100

0 50 100 150 200 250 300

ru
nt

im
e

(s
)

# solved problems

GOLEM-KIND

GOLEM-LAWI

GOLEM-Spacer

GOLEM-SPLIT-TPA

GOLEM-TPA

(a) SAT problems

0.01

0.1

1

10

100

0 20 40 60 80 100

ru
nt

im
e

(s
)

# solved problems

GOLEM-BMC

GOLEM-KIND

GOLEM-LAWI

GOLEM-Spacer

GOLEM-SPLIT-TPA

GOLEM-TPA

(b) UNSAT problems

Figure 5.5. Performance of GOLEM on the 498 benchmarks of the LRA-TS track

BMC KIND LAWI SPACER SPLIT-TPA TPA

SAT 0 260 279 190 127 66
UNSAT 86 84 76 69 72 67

Table 5.3. Number of solved benchmarks from LRA-TS track for each engine of GOLEM

For the satisfiable problems, the performance varies widely across the different engines.
With the timeout of 300 seconds, the LAWI engine solved the largest number of satisfiable
problems, followed closely by the KIND engine. The SPACER engine solved significantly fewer
benchmarks than LAWI and KIND but still outperformed both algorithms of the TPA engine.

We make the following observations regarding the performance of the two TPA-based
algorithms. Firstly, the results show the superiority of SPLIT-TPA over the basic TPA algorithm
for satisfiable problems, with comparable performance on unsatisfiable problems. This is in
line with the results on problems representing multi-phase loops. Secondly, the performance
of TPA-based algorithms lacks behind the other engines. The nature of the benchmarks in
the LRA-TS category partially explains this underperformance. These benchmarks come from
relatively few sources (see [95]) and often contain many boolean variables and a transition
relation with complex boolean structure. These factors complicate the discovery of useful
summaries for multiple transition steps in the TPA-based algorithms. However, there is
a benchmark set in LIA-Lin category where SPLIT-TPA outperforms other engines of GOLEM.

Category LIA-Lin

The next category of benchmarks is the LIA-Lin category of CHC-COMP. These are linear
systems of CHCs with linear integer arithmetic as the background theory. There are many
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GOLEM-TPA GOLEM-SPLIT-TPA GOLEM-LAWI GOLEM-SPACER Z3-SPACER ELDARICA

11 22 12 18 16 36

Table 5.4. Number of solved benchmarks from extra-small-lia subcategory

GOLEM-LAWI GOLEM-SPACER Z3-SPACER ELDARICA

SAT 131 184 211 183
UNSAT 77 82 96 60

Table 5.5. Number of solved benchmarks from LIA-Lin track of CHC-COMP 2022.

benchmarks in this category, and for the evaluation at the competition, a subset of benchmarks
is selected (see [71, 95] for the selection process). We evaluate the LAWI and SPACER engines
of GOLEM (the engines capable of solving general linear CHC systems) on the benchmarks
selected at CHC-COMP 2022 and compare their performance with Z3-SPACER (Z3 4.11.2)
and ELDARICA 2.0.8. However, we first examine a specific subcategory of LIA-lin, namely
extra-small-lia13. The benchmarks in this subcategory are also solvable by GOLEM’s TPA
engine, with compelling results.

The benchmarks in extra-small-lia subcategory are syntactically relatively simple,
and all are satisfiable. Semantically, they represent one or more loops that exercise various
properties of linear integer arithmetic and often require invariants that are hard to find even
by state-of-the-art algorithms. Overall there are 55 benchmarks in this subcategory, and the
performance of the considered tools is summarized in Table 5.4. The SPLIT-TPA engine of
GOLEM solves 22 benchmarks in this subcategory, more than its LAWI and SPACER engines. It
solved more benchmarks than Z3-SPACER, lacking only behind ELDARICA, which solved 36 of
these benchmarks.

For the whole LIA-Lin category, 499 benchmarks were selected in the 2022 edition of
CHC-COMP [71]. The performance of the LAWI and SPACER engines of GOLEM, Z3-SPACER

and ELDARICA on this selection is summarized in Table 5.5. In this category, the SPACER

engine of GOLEM significantly outperforms the LAWI engine. Moreover, it also outperforms
ELDARICA due to the much better performance on unsatisfiable instances. However, there is
still a significant performance gap compared to Z3-SPACER.

Category LIA-Nonlin

Finally, we consider the LIA-Nonlin category of benchmarks of CHC-COMP, which consists of
nonlinear systems of CHCs with linear integer arithmetic as the background theory. Similarly
to LIA-Lin, there is a large number of benchmarks in this category collected in various
repositories of CHC-COMP. For the competition, a subset of the benchmarks is selected
(see [71, 95] for the selection process). For the 2022 edition of CHC-COMP, 456 benchmarks

13https://github.com/chc-comp/extra-small-lia

https://github.com/chc-comp/extra-small-lia
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GOLEM-SPACER Z3-SPACER ELDARICA

SAT 239 (4) 248 (13) 221 (6)
UNSAT 124 (2) 139 (5) 122 (0)

Table 5.6. Number of solved benchmarks from LIA-Nonlin track of CHC-COMP 2022.
Number of uniquely solved benchmarks in parenthesis.
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Figure 5.6. Comparison of GOLEM against state-of-the-art tools on LIA-Nonlin track on SAT
(×) and UNSAT (⊡) instances.

were selected. SPACER is the only engine in GOLEM capable of solving nonlinear CHC systems;
thus, we focus on a more detailed comparison of its performance against Z3-SPACER and
ELDARICA. The results of the experiments are summarized in Table 5.6 and Figure 5.6.

The summary results are in line with the results from CHC-COMP 2022 [71], even though
we used a smaller timeout and ran the experiments in a different environment. Overall, GOLEM

solved fewer problems than Z3-SPACER but more than ELDARICA. A detailed comparison is
depicted in Figure 5.6. For each benchmark, its data point on the plot reflects the runtime
of GOLEM (x-axis) and the runtime of the competitor (y-axis). The plots suggest that the
performance of GOLEM is often orthogonal to ELDARICA,14 but highly correlated with the
performance of Z3-SPACER. This is not surprising as the SPACER engine in GOLEM is built on
the same core algorithm. Even though GOLEM is often an order of magnitude slower than
Z3-SPACER, there is a non-trivial amount of benchmarks on which Z3-SPACER times out, but
which GOLEM solves fairly quickly.

14The requirement of the Java Virtual Machine runtime environment adds approximately one second overhead
to each run of ELDARICA.
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5.8 Future Work

There are multiple possible directions for GOLEM’s future development. Some require mostly
engineering effort, while others could lead to interesting new research topics.

At the front end, support for more input formats can be added. For example, Z3’s Datalog
input format represents systems of Horn clauses more compactly than the standard format
used in CHC-COMP. A front end for VMT input format [62] would allow GOLEM to access new
benchmark sets. It would also be the first step towards extending GOLEM solving capabilities
beyond safety properties.

In the preprocessing phase, GOLEM could apply more transformation passes, such as
cone-of-influence reduction and constant propagation. Moreover, some of the already imple-
mented transformation passes do not support nonlinear clauses (hyperedges in the graph
representation), which limits their applicability for nonlinear CHC systems. Improving this
support would improve the performance of GOLEM on nonlinear problems.

In the back end, more engines could be added, and the existing ones could be improved.
Natural candidates for new engines are PD-KIND algorithm [129] and algorithms based on
(implicit) predicate abstraction, such as those implemented in the tools ELDARICA [117]
and IC3-IA [59]. Regarding the existing engines, the performance of SPACER engine could
be improved by adding missing optimizations and global guidance [190]. The TPA engine
could be extended to handle more general CHC systems. Investigating the combination of
the TPA-style analysis of loops with SPACER-like search can yield an efficient algorithm for
modular analysis of complex nonlinear CHC systems. Such an algorithm would work as an
unbounded SPACER-like traversal of the hypergraph. While the traversal in SPACER is bounded,
with gradually increasing bound, combination with TPA would allow it to handle self-loop
nodes directly. Similarly, the LAWI engine could be extended to support nonlinear CHC
systems, following the approach implemented in the tool DUALITY [159, 160].

Extending the support for SMT theories in GOLEM beyond linear arithmetic would open
up more opportunities for further research in tailored decision and interpolation procedures.
With support for arrays, GOLEM could be used for a much broader set of problems from
software verification, while with support for bit-vectors, it could also be used for word-level
hardware model checking. GOLEM can already be used as the back end of C verifier KORN [87].
With support for more complex SMT theories, it could also serve as the back end, for example,
for SolCMC [5].

5.9 Related Work

There is a fair amount of Horn solvers, model checkers, and software verifiers from both
academia and industry. We discuss only the ones closely related to GOLEM.

According to the results of the last couple of editions of CHC-COMP, the most prominent
Horn solvers are ELDARICA [117] and SPACER [137]. GOLEM follows the trend of tigher
integration with the underlying SMT solver outlined by these two Horn solvers, but offers
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more choices for the back-end solving algorithm.
ELDARICA has been developed since 2013. It implements many sophisticated transfor-

mation passes to simplify the input CHC system. The preprocessing phase in ELDARICA is
followed by its main reasoning engine, which combines Predicate Abstraction [100] with
Counterexample-Guided Abstraction Refinement (CEGAR) [63] to solve the resulting system.
The algorithm is described in detail in [176]. ELDARICA relies on Craig interpolation [68]
to compute predicates for predicate abstraction. Moreover, it controls the form of the inter-
polants with interpolation abstraction [146, 177]. Besides the standard input format used in
CHC-COMP, ELDARICA accepts Horn clause systems written in Prolog style. Additionally, it ac-
cepts as input Numerical Transition Systems [116], programs in a fragment of the C language
and networks of timed-automata in a C-like language [118]. ELDARICA uses PRINCESS [173]
for SMT solving and Craig interpolation. It supports multiple SMT theories, including in-
tegers, bit-vectors, arrays and algebraic data types. ELDARICA is used as a back-end solver
for several verification tools, e.g., TRICERA [88], SolCMC [5], KORN [87], COCOSIM [65],
JAYHORN [132], VAC [96].

SPACER is likely the most-known Horn solver at the moment. The updates since its
beginning [136, 137] include global guidance [191] and improved support for the theory
of arrays [135], bit-vectors [190], algebraic data types and recursive functions [192]. It
now lives as the default fixed-point engine in Z3 [72]. The terminology of “fixed point”
comes from Datalog [1], which was the original front end supported by Z3 for this class of
problems.15 Like ELDARICA, Z3 implements several preprocessing passes over the system of
Horn clauses. They simplify the input system before it is passed to SPACER. Unfortunately,
not all transformations have a corresponding backtranslation, so some transformations need
to be disabled to obtain full proof of unsatisfiability, for example, clause inlining. SPACER is
used as the back-end solver for several verification tools, e.g., SEAHORN [107], SolCMC [5],
KORN [87], RUSTHORN [154], COCOSIM [65], SOLTYPE [187]. Recently, it was also used in a
new reduction approach for reasoning about data structures with CHCs [89].

Besides ELDARICA and SPACER, there exist several other Horn solvers: HOICE [52] imple-
ments a machine-learning-based technique for solving CHC systems, adapted from the ICE
framework originally developed for discovering inductive invariants of transition systems [51].
FREQHORN [92, 93] implements an algorithm based on Syntax-Guided Synthesis (SyGuS) [9]
to discover the interpretations of the unknown predicates. It combines the basic SyGuS ap-
proach with data derived from unrollings of the CHC system. ULTIMATE TREEAUTOMIZER [75]
implements automata-based approaches to CHC solving [130, 195]. PCSAT [189] is a solver
for a general class of second-order constraints on predicate and function variables. CHC
satisfiability problem is just a subset of this general class.

Many model checkers and software verifiers implement similar algorithms as Horn solvers
in general and as GOLEM in particular. While model checkers typically verify safety properties
of transition systems, there are approaches for dealing with more complex CHC systems.
Linear systems of Horn clauses can be encoded as transition systems [47]; this approach

15Datalog programs are written as a set of Horn clauses.



95 5.10 Conclusion

has been successfully applied for the model checker IC3-IA [59, 69]. An approach to solve
nonlinear CHC systems using a solver for linear CHCs has also been proposed [131], but it
does not appear to be competitive so far. Model checker PONO [149] is a highly configurable
and extensible tool that implements several model-checking algorithms as the back-end
reasoning engines, similar to GOLEM. Besides the standard algorithms such as BMC [29]
and k-induction [186], it also offers an implementation of McMillan’s interpolation-based
model checking [155] and an impressive list of IC3-based algorithms. Although all its engines
operate over transition systems, PONO could be used to solve more general CHC systems
with the help of the reduction techniques mentioned above. Compared to PONO, GOLEM can
solve nonlinear CHC systems directly. This is crucial for domains such as software verification
where programs with functions are naturally modeled with nonlinear CHC systems.

In software verification, software verifiers implement many algorithms that originated
in the context of model checking. Moreover, almost all verifiers now implement more than
one technique, as described in the 2022 report from Software Verification Competition
(SV-COMP) [19]. As an example, CPACHECKER [25] uses a framework of Configurable
Program Analysis (CPA) [23] to implement a group of algorithms similar to GOLEM engines:
BMC, k-induction, IMPACT, McMillan’s original interpolation-based model checking algorithm,
and IC3/PDR [20, 21, 22, 26, 28]. However, traditional software verifiers use SMT solvers
as black boxes. The tight coupling of GOLEM with its underlying SMT solver provides full
control over their interaction. It allows GOLEM to detect and resolve (or at least avoid) many
of the pitfalls and bottlenecks in the SMT solver.

5.10 Conclusion

In this chapter, we presented GOLEM, an efficient Horn solver with multiple back-end engines
and tight integration with the underlying SMT solver OPENSMT. In our work, GOLEM was
instrumental in prototyping the TPA algorithms described in Chapter 4; however, there is
much more potential for further applications.

The common framework makes it easy to compare different algorithms for model checking
and CHC solving directly. It eliminates unrelated differences when comparing algorithms
in different tools, for example, a different SMT solver, which plays a significant role in the
efficiency of these algorithms. Moreover, using the existing infrastructure of GOLEM, new
back-end engines can be added easily. This possibility facilitates the reproduction of results for
novel algorithms, which increases trust in the original results and validates the contributions
of such novel algorithms.

There are a lot of possible applications of GOLEM than can build on the current foundations.
We have outlined several directions in Section 5.8. In the short term, we plan to improve
and extend GOLEM to serve as the back end for software verifiers, such as KORN [87] and
SolCMC [5]. In the longer term, GOLEM can further improve the tool support for CHC
solving and help academia and industry deal with complex tasks from verification and other
domains by leveraging the powerful framework of constrained Horn clauses. Additionally,
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it can serve as a research tool for experimenting with novel techniques in SMT solving and
interpolation. One such project, which evaluates the benefits of lookahead-based SMT solving
for interpolation and model checking, is currently underway.



Chapter 6

Cooperative Parallelization Approach
for Property-directed k-induction

A sequential approach to model checking has inherent limitations due to the undecidable
nature of the problem. Different model-checking algorithms are better suited for different
types of problems. Moreover, even within a single algorithm, many parameters and strategies
can be adjusted. Such tuning is known to affect dramatically not only the algorithm run
time but also its convergence. The variety of algorithms and heuristics naturally leads to the
parallelization of model-checking algorithms. Recent results [50, 150, 162] show that even
a simple algorithm portfolio leads to substantial improvements in performance. However, the
key to a truly scalable solution is the sharing of information among the solvers of the portfolio
(see, e.g., [150]), a usually much more complicated task than constructing a portfolio.

This chapter describes an abstract framework IcE/FiRE that generalizes the concepts
from a recently introduced class of model-checking algorithms that combine the strength of
k-induction with IC3-style search for safe inductive invariants [106, 129]. The framework
consists of two components, the induction-checking engine and the finite reachability engine.
We show that the components are general enough to enable not only internal learning but also
external learning. While internal learning happens as part of the execution of the sequential
algorithm, external learning happens in the parallel setting where multiple instances share
information discovered about the system under analysis. We describe how to arrive at
a parallel version of an efficient model checking algorithm PD-KIND, implement it in SMTS
framework for parallel solving [152], and show with a robust experimental analysis that
PD-KIND and related algorithms can profit significantly from this type of parallelization already
in a multi-core environment.

Internally, PD-KIND relies on interpolation for learning facts about reachability in the
analyzed system; thus, the results of Chapter 3 provide a possibility to compute different
interpolants and consequently learn different facts about the system. As part of the experi-
ments, we evaluate the benefit of applying decomposed Farkas interpolants in this setting.
The results show that computing diverse reachability facts by means of different interpolation
algorithms significantly contributes to the performance improvement of parallel PD-KIND.
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6.1 Preliminaries

In this chapter we use the terminology related to transition systems as given in Section 2.5.
Given a transition system S = 〈I , T 〉, a state formula P and a set of state formulas F , we say
that P is F k-inductive if

k−1
∧

i=0

((F(X i)∧ P(X i))∧ T (X i , X i+1)) =⇒ P(Xk) (6.1)

If F = {P} and P is a (k − 1)-invariant, then P is a k-inductive invariant of S, meaning it
is valid in all reachable states of S. When P is not F k-inductive, the negation of (6.1) is
satisfiable and each satisfying assignment defines a trace 〈s0, . . . , sk〉 of k+1 states called
a counterexample to (k-)induction (CTI). We say that a CTI is reachable in S when s0 is
reachable. A central task of the algorithm presented in this paper is to check if elements of F
are F k-inductive. Checking this for an element P of F and placing P to another set G if P is
F k-inductive is referred to as pushing P to G.

6.2 The IcE/FiRE Framework

induction-checking
engine

finite
reachability

engine

bounded
invariants

bounded reachability queries

traces/bounded invariants

(I , T, P)

SAFE UNSAFE

Figure 6.1. The IcE/FiRE framework for solving safety of transition systems

This section formalizes a general approach for checking the safety of symbolically repre-
sented transition systems in a way that allows us to present our parallelization techniques
naturally. The approach splits the reasoning about safety into two separate components
(Figure 6.1). The main component is an induction-checking engine (IcE), also referred to
shortly as an induction engine. The goal of the induction engine is to decide the safety
problem. It searches for a k-inductive strengthening of the property P being checked. If it
finds such a strengthening, it reports the system as safe. During the search, it may discover
that no such strengthening exists since the negation of the property is reachable from the
initial states. In this case, it reports the system as unsafe. To make progress in its search,
to remove spurious counterexamples to induction, and to confirm real ones, IcE relies on
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the services of the second component, finite reachability engine (FiRE). The role of FiRE is to
answer bounded reachability queries issued by IcE. Given a state formula s and a number n,
a bounded reachability query asks if any s-state is reachable from initial states in exactly n
steps. The finite reachability engine answers these queries and provides a reason for the
answer. In the case of reachability, the reason is a trace of n+ 1 states leading from an initial
state to an s-state. In the case of unreachability, the reason is an n-invariant blocking s.

The cooperation of these two engines is depicted in Figure 6.1. During the run, FiRE
accumulates knowledge about the system in the form of bounded invariants. This knowledge
helps it to answer subsequent queries faster. The progress of IcE during its run is modelled
using a set of rules that capture and evolve the state of IcE. We discuss these rules in the next
section.

The idea of separate components for inductive and bounded reachability reasoning
is present already in [129]. However, our formalization enables us to easily extend the
framework to the parallel setting with information sharing and reason about its correctness.
In addition, thanks to its abstract nature, it covers not only PD-KIND [129] but also other
algorithms, such as KIC3 [106]. In Section 6.3, we present PD-KIND as an instance of this
framework in details.

6.2.1 Induction-Checking Engine

Given a safety problem for a transition system (I , T, P) the induction-checking engine (IcE)
searches for k-inductive strengthening of P. It maintains two distinct sets of state formulas:
a base frame F and a successor frame G. In addition, it maintains information about its
current level n. Intuitively, if IcE is currently working on level n, it already knows that the
system is safe up to level n, i.e., ¬P is not reachable in n steps or less. The base frame F
serves both as a witness that ¬P is not reachable, as well as a candidate for the inductive
strengthening of P. IcE maintains an invariant that on level n every element of F is an
n-invariant. Moreover, P is always an element of F . The successor frame G collects those
elements of F that are F k-inductive for some fixed k ≤ n+1. Since

∧

F is an n-invariant,
this means that all elements of G are at least (n+1)-invariants. When all elements of the
base frame are checked and either successfully pushed to G or dropped, and no termination
condition has been hit, G becomes the new base frame and the successor frame is emptied. If
at any point F = G then F is a k-inductive strengthening of P, proving that P holds in the
system (as shown later in Lemma 6.1). In addition to the two frames IcE maintains a queue
Q. The queue contains the elements of F that still need to be processed at the current level.
We also refer to the elements of Q as obligations.

We now formalize the workings of the induction engine as a set of rules that work on
and modify the current state of IcE. The current state of IcE is a 5-tuple 〈F ,G, n, k,Q〉 with
F being the base frame, G the successor frame, n the current level, Q the current queue of
obligations, and k defining the current depth of induction. We refer to the state of IcE as
configuration. For brevity we also sometimes refer to the elements of F as lemmas instead
of bounded invariants. The initial configuration of IcE is 〈{P},;, 0, 1, {P}〉 and IcE makes
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progress by applying the following rules. Note that the rules Safe and Unsafe are special,
terminating rules.

Safe:
〈F ,G, n, k,;〉

SAF E
if
�

F = G

Unsafe:
〈F ,G, n, k,Q〉

UNSAF E
if
�

¬P is reachable in [n+ 1, n+ k] steps.

Next-Level:
〈F ,G, n, k,;〉
〈G,;, n′, k′,G〉

if















F ̸= G
n′ > n
∧

G is n′-invariant
1≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}〉
〈F ,G ∪ {l}, n, k,Q〉

if
�

l is F k-inductive

Add-Lemma:
〈F ,G, n, k,Q〉

〈F ∪ {l},G, n, k,Q ∪ {l}〉
if
�

l is an n-invariant

Drop-Lemma:
〈F ,G, n, k,Q ∪ {l}〉
〈F ,G, n, k,Q〉

if
�

l ̸= P

The rules of IcE, namely Add-Lemma and Drop-Lemma, are abstract in the sense that we
do not prescribe when or how are the new lemmas learnt, nor when they should be dropped.
In sequential setting, new lemmas are typically learnt from FiRE when a counterexample to
induction of some obligation is showed to be unreachable by FiRE. We discuss this in detail
in Section 6.3 when we instantiate the abstract IcE for a concrete algorithm.

One specific thing that we would like to point out is that Add-Lemma is general enough
to cover not only the internal learning, but also external learning. By internal learning we
mean the learning of lemmas from FiRE. The external learning means that the lemmas can
come from any other source. This is important for parallelization as it enables incorporating
bounded invariants discovered by other instances working on the same problem.
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Correctness of the induction-checking engine.

The abstract nature of the rules of IcE allows us to easily prove it correctness. That is, if the
engine terminates by applying the rule Safe (Unsafe) then the system really is safe (unsafe).

Given our assumption that I =⇒ P, the following invariants are valid for the initial con-
figuration and are maintained by every rule (excluding the terminating rules Safe, Unsafe):

1. P ∈ F

2. For each l ∈ F ∪ G ∪Q at level n, l is an n-invariant of S.

3. For each l ∈ G, l is F k-inductive.

It is easy to verify that all invariants are valid for the initial configuration. The first
invariant is trivially preserved by all rules except Next-Level as F either stays the same or
grows. When Next-Level is applied that it must hold that P ∈ G since it is put in Q at the
beginning of each level and can never be dropped. Since Q is empty when Next-Level is
being applied, P must have been successfully pushed to G using Push-Lemma.

The second invariant is preserved by the rules Next-Level, Push-Lemma and Drop-
Lemma since the set of formulas in consideration stays the same or becomes smaller. The
invariant is also preserved by Add-Lemma because of the condition of the rule.

The third invariant trivially holds after applying Next-Level as the successor frame is
empty at that moment. For the other rules, let us use G′ to denote the successor frame after a
rule has been applied. The invariant is also preserved by rules Add-Lemma and Drop-Lemma
since G′ = G. Finally, the invariant is preserved by Push-Lemma because of the condition of
the rule.

Lemma 6.1. When the algorithm terminates by applying Safe, the system satisfies the property
P and
∧

F is a safe k-inductive invariant. When the algorithm terminates by applying Unsafe,
the system can reach a state where P does not hold.

Proof. The first part follows from the invariants. When Safe is applied, then it must be
the case that F = G. This means that F is F k-inductive and consists of n-invariants of the
system with k ≤ n+ 1. It follows that

∧

F is a k-inductive invariant of the system. Moreover,
P ∈ F , so P is an invariant. The second part follows trivially from the condition of the rule
Unsafe.

6.2.2 Finite Reachability Engine

The finite reachability engine (FiRE) is responsible for answering bounded reachability queries
issued by IcE. A bounded reachability query for a system S is simply a pair 〈s, i〉 where s is a
state formula and i is a natural number. It represents a question if any s-state is reachable in
S by exactly i steps. This is naturally generalized to queries of the form 〈s, [i, j]〉, meaning
reachability in at least i and at most j steps. An answer to a bounded reachability query 〈s, i〉
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Figure 6.2. Multiple instances of IcE/FiRE framework sharing information

is either an i-invariant l such that l =⇒ ¬s in case of unreachability, or a trace of i+ 1 states
starting from an initial state and ending in an s-state in case of reachability.

We do not prescribe how FiRE should be implemented, but we note two known instances:
bounded model checking [29] and IC3/PDR [41]. An interesting observation [129] is that
when IC3/PDR only needs to answer bounded reachability queries then the requirements on
the frames it maintains can be relaxed. The frames do not need to be inductive nor form a
monotone sequence.

From the parallelization perspective the advantage of FiRE based on bounded invariants is
two-fold. First, the correctness of FiRE is maintained when bounded invariants are exchanged
between different instances. Second, there is freedom in generalizing the bounded invariants
computed as certificates of unreachability and this freedom can be exploited for portfolio
approach to discover a variety of interesting bounded invariants across multiple instances.

6.2.3 Cooperation of Multiple Instance

We base our parallelization on the portfolio approach running multiple instances of the same
algorithm with different parameters on a single problem. However, we aim to go beyond
that. We want the instances to cooperate and to share information they discover about the
problem they are solving. Our approach to cooperation of multiple instances of IcE/FiRE
framework is depicted in Figure 6.2.
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In our approach, several instances of IcE/FiRE framework (see Figure 6.1) work on the
same problem and share information among themselves. However, the communication is
split to that between the finite reachability engines and to that between induction-checking
engines.

Cooperation of FiREs. Each reachability engine is gradually building and refining its repre-
sentation of the state space by discovering and accumulating bounded invariants of the system.
Since all instances work on the same transition system, a bounded invariant discovered by
one instance is valid for other instances as well. Thus, multiple reachability engines can
share their information through a global database of bounded invariants. Additionally, in
this setting each FiRE has a filter which controls which invariants are sent and received. The
filter can be set to send and receive all or none invariants, or it can implement a heuristic.
For example, it might be beneficial to send out only sufficiently small invariants to avoid
burdening the other instances too much.

Cooperation of IcEs. Unlike FiREs, it is not immediately obvious what information IcEs could
share between themselves. Natural candidates are elements of the base frame or the successor
frame. However, one needs to be careful since different IcEs could be working on different
levels and thus directly including lemmas from other instance might violate the invariants of
these frames. Our solution is to accept external information in a way that can be modelled
using the rule Add-Lemma and thus guarantee to preserve the correctness of the engine.
Each engine sends out elements of the successor frame G. When an engine is working on a
level n and a lemma is pushed to G, it is guaranteed to be at least (n+1)-invariant. Moreover,
it is an interesting bounded invariant in the sense that this engine so far believes it should
be part of the inductive strengthening. The engine sends such lemma to the global pool for
other instances to see. When another engine receives this (n+1)-invariant, it checks if it can
apply Add-Lemma to add it to its base frame. If the engine’s current working level is higher
than n+1, such bounded invariant cannot be added. Moreover, our preliminary experiments
showed that it is better to have additional checks in the filter for incoming lemmas in order not
to spend too much time processing useless external lemmas. We discuss our implementation
and the experimental results with different settings of sharing information in Section 6.4.

6.3 PD-KIND as an Instance of IcE/FiRE

In this section, we reformulate the original description of PD-KIND [129] in terms of our
IcE/FiRE framework. This reformulation enables us to identify the freedom in the algorithm
that can be utilized for the portfolio approach to parallelization. Additionally, the techniques
mentioned in Section 6.2 for sharing information between cooperating instances will become
directly applicable for PD-KIND. On top of that, it allows us to prove the correctness of the
parallel version of the algorithm.
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6.3.1 Induction-Checking Engine of PD-KIND

The induction-checking engine of PD-KIND uses an extended configuration 〈F ,G, n, k,Q, nCTI〉,
where nCTI remembers the number of steps needed to reach a non-F state from an F state.
This helps to determine n′ > n such that all elements of G are n′-invariants when applying
Next-Level.

Additionally, IcE of PD-KIND maintains a mapping CEX of elements of F to potential
counterexamples they block. Formally, CEX is a function from F to state formulas such that
for each l ∈ F , l =⇒ ¬CEX(l) and every CEX(l)-state can reach a ¬P-state. Maintaining
the potential counterexamples in addition to the bounded invariants allows for the earlier
discovery of genuine counterexamples. It also provides a possible fallback in case the bounded
invariant is too strong to be inductive.

The initial configuration of IcE is 〈{P},;, 0, 1, {P}, 1〉, with CEX(P) = ¬P. The engine
makes progress using the following set of rules.

Safe:
〈F ,G, n, k,;, nCTI〉

SAF E

if
�

F = G

Next-Level:
〈F ,G, n, k,;, nCTI〉
〈G,;, n′, k′,G, n′ + k′〉

if







F ̸= G
n′ = n+ nCTI
1≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI〉
〈F ,G ∪ {l}, n, k,Q, nCTI〉

if
�

l is F k-inductive

Unsafe:
〈F ,G, n, k,Q ∪ {l}, nCTI〉

UNSAF E

if
�

CEX(l) is reachable in [n+1, n+k] steps

Add-Lemma:
〈F ,G, n, k,Q, nCTI〉

〈F ∪ {l ′},G, n, k,Q ∪ {l ′}, nCTI〉
if































∃l ∈Q s.t.
¬CEX(l) is not F k-inductive
with c′ being its CTI
Unsafe is not applicable
l ′ is n-invariant that blocks c′

CEX(l ′) = c′

Bad-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI〉

〈F ∪ {l ′},G ∪ {l ′}, n, k,Q, n′CTI)〉
if























N ∈ [n+1, n+k]
¬l reachable in N steps
l ′ = ¬CEX(l)
¬CEX(l) is F k-inductive
n′C T I = min(N , nC T I)
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Strengthen-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI〉

〈F ∪ {l ′},G, n, k,Q ∪ {l ′}, nCTI〉
if







































¬CEX(l) is F k-inductive
l is not F k-inductive
with c′ being CTI
Bad-Lemma is not applicable
l ′ is n-lemma s.t.
l ′ =⇒ l ∧¬c′

CEX(l ′) = CEX(l)

A run of the engine starts from the initial configuration and applies the rules until Safe
or Unsafe is applicable (which is generally not guaranteed to happen). The engine can be
viewed as operating on a certain level, defined by the parameter n. At each level, the engine
attempts to prove that the n-invariants from F are F k-inductive, strengthening the frame in
the process if necessary or giving up on n-invariants that do not hold for higher levels. Two
cases can happen when all elements of the (refined) frame F have been processed. Either
the whole frame F has been pushed, in which case the engine can terminate using Safe, or
some element could not be pushed, and thus Next-Level is applied.

If all elements have not been pushed yet, that is, Q is not empty, then an n-invariant l
from Q is picked and processed in the following way: When l is F k-inductive then l, and
consequently ¬CEX(l), is in fact at least (n+1)-invariant. In this case, Push-Lemma is applied,
and l is removed from Q.

If Push-Lemma is not applicable and ¬CEX(l) is not F k-inductive, then there exists a
CTI witnessing this. This CTI can be either real (reachable in S) or spurious (not reachable
in S). A bounded reachability query is issued to FiRE to determine the status. If it is real,
the system S is unsafe because CEX(l) is reachable, and ¬P is reachable from CEX(l). In this
case, the algorithm terminates by applying Unsafe. If CTI is spurious, then a new lemma
blocking it is returned from FiRE and added to F by applying Add-Lemma.

The last possibility is that l is not F k-inductive, but ¬CEX(l) is F k-inductive. Now the
reachability query regarding the CTI for l is issued to FiRE. If it is not reachable, then l is
strengthened using the reason of unreachability returned by FiRE – Strengthen-Lemma is
applied. If it is reachable, then l is not an invariant of the system and must be discarded.
Bad-Lemma is applied and l is replaced by ¬CEX(l). Since we already know that ¬CEX(l) is
F k-inductive, it can be immediately pushed to the next frame.

This formalization of PD-KIND allows us to prove its correctness, building on the correctness
of the abstract induction-checking engine (see Lemma 6.1). We extend the proof for the
parallel version in Section 6.3.3.

Lemma 6.2. If PD-KIND terminates using the rule Safe (Unsafe), the transition system is safe
(unsafe).

Proof. For Safe, notice that PD-KIND’s run can be viewed as a run of the abstract engine, as
described in Section 6.2.1. To avoid name clashes, we use a prime to denote the PD-KIND’s
rules in this proof. All four rules Safe’, Push-Lemma’, Next-Level’ and Add-Lemma’ directly
map to their abstract counterpart. Bad-Lemma is just Drop-Lemma applied on l followed by
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Add-Lemma and Push-Lemma on ¬CEX(l). Finally, Strengthen-Lemma is Drop-Lemma
applied on l, followed by Add-Lemma applied on l ′. Consequently, each PD-KIND’s run
terminating with Safe’ is mapped to the abstract engine’s run terminating with Safe. By
Lemma 6.1, the system is safe.

For Unsafe, we show that the following invariant is preserved throughout the run: For
each l in F∪G∪Q, CEX(l) can reach ¬P. The invariant holds for the initial configuration since
F ∪ G ∪Q = {P} and CEX(P) = ¬P. Add-Lemma preserves the invariant since for the only
new lemma l ′, CEX(l ′) can reach CEX(l), which can reach ¬P by the induction hypothesis.
The invariant is also preserved by Bad-Lemma and Strengthen-Lemma as CEX(l ′) = CEX(l)
for the only new lemma l ′ and the old lemma l. As the other rules do not change the set
F ∪G ∪Q, we can conclude that the invariant is always preserved. Thus, when the algorithm
terminates by rule Unsafe, ¬P is reachable, and the system is unsafe.

6.3.2 Finite Reachability Engine of PD-KIND

The finite reachability engine used in PD-KIND [129] can be described as an IC3-like algorithm.
It answers bounded reachability queries using a sequence of reachability frames and local
reasoning only, i.e., it does not unroll the transition relation. A reachability frame at level
n, Rn, is a set of n-invariants. Consequently, the set of Rn-states over-approximates the
set of states reachable in n steps or less. Unlike IC3, there is no further condition on the
reachability frames. They do not need to be monotone nor form an inductive sequence. Like
IC3, when FiRE receives a query 〈s, i〉, it checks if it is reachable in one step from Ri−1 using
a simple satisfiability query Ri−1 ∧ T ∧ s′. In the negative case, FiRE generalizes the reason
for unreachability using Craig interpolation and reports the answer together with the reason.
In the positive case, FiRE computes a predecessor t of s and recursively calls itself with query
〈t, i−1〉. If this predecessor turns out to be unreachable, the (i−1)-invariant witnessing the
unreachability is used to refine Ri−1 and s is rechecked. If the recursive sequence of calls
ever reaches an initial state, then FiRE reports the query as reachable and returns the trace
of the predecessors.

Note that the only requirement for the reachability frame Rn is that it contains only
n-invariants. In the sequential setting, FiRE learns new bounded invariants on its own as
it processes more and more reachability queries. However, in a parallel setting, it can also
receive bounded invariants from an external source. More specifically, it can receive bounded
invariants discovered by other instances of the same engine working in parallel on the same
problem. Additionally, different interpolation algorithms can be used in different instances,
thus allowing the engines to spread the search for useful bounded invariants.

6.3.3 Parallel PD-KIND

Since PD-KIND is an instantiation of the IcE/FiRE framework, it can be readily plugged into
the abstract parallel framework with information sharing described in Section 6.2.3.
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The bounded reachability information is stored in reachability frames consisting of
bounded invariants. Whenever FiRE learns a new bounded invariant as a response to a
bounded reachability query made by IcE, it can send it to the other instances. It can also
periodically query the shared pool for new bounded invariants, and when it receives an
external i-invariant, it can directly add it to its reachability frame Ri .

Similarly, IcE sends out bounded invariants when it manages to push them to the successor
frame. When it receives an external bounded invariant, it must check the necessary condition
for adding it to the base frame. If the condition is not met, it simply drops the lemma.
Otherwise, it uses a heuristic to determine the usefulness of the lemma. PD-KIND assumes that
each base frame element is associated with a potential counterexample through the mapping
CEX. Therefore, each bounded invariant l sent out by IcE must also be accompanied by its
companion CEX(l).

It is important for the success of a parallel approach to diversify the search for the solution.
It was not possible to discuss this for the abstract framework as it requires the concrete
algorithm with its concrete settings that drive the behaviour of the algorithm. Here we
identify the key points where the behaviour of PD-KIND can be adjusted and finally give an
algorithm capturing PD-KIND as an instance of IcE/FiRE framework in the parallel setting.

Choosing the depth of induction. When the induction engine moves to the next level n by
applying Next-Level, there is freedom to choose a new value k of the induction depth from
the interval [1, n+1]. The behaviour of the algorithm can be greatly influenced by the value
of the induction depth it uses. For example, choosing large k requires a large unwinding
of the transition relation when SAT/SMT solver is used and the inductive checks become
slower. On the other hand, preferring larger k can lead to faster exploration of the search
space. Moreover an obligation might be F k-inductive, and thus successfully pushed, but not
F k′ -inductive for k′ < k. We denote the strategy to choose the new value of induction depth
whenever Next-Level is applied as κ.

Obligation processing strategy. Several rules might be applicable given a configuration
with a nonempty queue of obligations Q. However, once the obligation to be processed is
chosen, there is no more freedom. The conditions of the rules are mutually exclusive for a
fixed obligation l ∈ Q. Which rule applies for a particular obligation l is determined by its
properties and the properties of CEX(l). Therefore, the behaviour of the algorithm can be
controlled through the strategy for picking the next obligation from the queue Q. We denote
this strategy as ω.

Learning strategy. The finite reachability engine computes bounded invariants as certificates
of unreachability. Theoretically, the certificate of unreachability for a query 〈s, i〉 could be
¬s. However, this leads to terrible performance in practice as it excludes only s and nothing
else. Therefore, FiRE uses more sophisticated techniques to compute bounded invariants that
are stronger and exclude more unreachable states. FiRE of PD-KIND uses Craig interpolation
to compute bounded invariants. However, an interpolant for a given problem is generally not
unique, and there exist techniques for computing different interpolants in propositional logic
and theories of first-order logic. The use of different interpolation algorithms leads to different
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bounded invariants, which can significantly influence the performance of the whole algorithm
(see Section 6.4). We denote the strategy for computing the bounded invariants as σ.

Procedure Run(S,κ,ω,σ):
1 C = 〈F ,G, n, k,Q, nCTI〉 ← 〈{P},;, 0, 1, {P}, 1〉 // Initial configuration

2 while TRUE do
3 if Q = ; then
4 if F= G then return SAFE // Terminate using rule Safe

5 else
6 Apply Next-Level on C with κ
7 continue
8 FIRE.SENDRECEIVE() // FiRE sends and receives bounded invariants

9 C ← ICE.RECEIVE(C) // IcE receives bounded invariants

10 l ←ω(Q) // Pick obligation to process

11 c← CEX(l)
12 switch 〈l, c〉 // Pick rule based on properties of l, c
13 case l is F k-inductive
14 Apply Push-Lemma for l on C
15 ICE.SEND(〈l, c, n+1〉) // IcE sends pushed bounded invariant

16 case c is reachable in [n+1, n+k] steps
17 return UNSAFE // Terminate using rule Unsafe

18 case ¬c is not F k-inductive
19 Apply Add-Lemma with σ on C
20 case ¬l is reachable in [n+1, n+k] steps
21 Apply Bad-Lemma for l
22 otherwise
23 Apply Strengthen-Lemma with σ on C for l

Algorithm 6.1. PD-KIND in the parallel setting of IcE/FiRE

The run of a single instantiation of IcE/FiRE as PD-KIND in a parallel setting with informa-
tion sharing is presented in pseudocode as Algorithm 6.1. The input is a triple S = 〈I , T, P〉
representing the transition system and the property together with the three strategies κ,ω,σ
that determine the behaviour of the algorithm at the previously identified non-deterministic
steps.

Lemma 6.3. The parallel version of PD-KIND with information exchange is correct. If it reports
SAFE (UNSAFE), the system is safe (unsafe).

Proof. The correctness of exchanging the bounded invariants between reachability engines
has already been discussed in Section 6.2.3. The only new step IcE does, is incorporating an
external lemma l from another PD-KIND instance, together with a potential counterexample
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that it blocks. An external lemma is learnt only if the condition of the abstract rule Add-
Lemma is satisfied, and thus the invariants ensuring the correctness of the SAFE answer are
preserved. Moreover, the invariant from the proof of Lemma 6.2 is preserved, and thus the
UNSAFE answer is also correct.

6.4 Implementation and Experiments

Our implementation of the parallel PD-KIND algorithm is based on the open-source model
checker SALLY [129] and uses the SMTS framework [152] for parallelization and information
exchange. We have extended SALLY with API for sending and receiving information. In our
experiments SALLY was using YICES [83] for checking satisfiability and OPENSMT [122] for
the interpolation queries.1

The benchmarks were taken from the transition systems category of CHC COMP 20192,
where the problem is encoded using the theory of linear real arithmetic. Out of 244 bench-
marks, seven problematic ones were excluded due to the presence of a non-linear operation.
All experiments were run on a single multi-core machine with 16 Intel® Xeon® X5687 @ 3.6
GHz CPUs and 180 GB of RAM. The resources were restricted to 1000 seconds of timeout
and 6GB of memory per one instance of SALLY. This means that configurations with more
instances are effectively granted more memory and CPU time. This choice is in line with our
goal of improving the solver’s wall clock time.

All instances use the default strategy of SALLY when they are choosing the depth of
induction (κ from Algorithm 6.1). The obligation processing strategy ω is a priority queue
based on a score assigned to obligations, randomized to diversify the behaviour of different
instances. The learning strategy σ is diversified primarily by using different interpolation
algorithms in OPENSMT and secondary by using different random seeds for the SMT search.
Three different LRA interpolation algorithms were used: Farkas interpolation algorithm [156],
dual Farkas, and an interpolation algorithm based on decomposing Farkas interpolants [37].
We denote these as PF, DF and PD, respectively.

In the experiments, we seek answers to the following questions:

1. How does the system compare to the state-of-the-art?

2. How important is the sharing of information between various instances?

3. How does the approach scale when the number of instances is increased?

4. How do different interpolation algorithms contribute to the overall performance?

Comparison to the state-of-the-art. The main result of the experiments is summarized in
Figure 6.3 that compares the performance of the winner of the transition systems category of

1All benchmarks, tools and results are bundled together in an artifact available at https://doi.org/10.
5281/zenodo.3484097

2https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

https://doi.org/10.5281/zenodo.3484097
https://doi.org/10.5281/zenodo.3484097
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts
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Figure 6.3. Best parallel configuration against the winner of LRA-TS category of CHC COMP
2019

CHC COMP 2019 (sequential SALLY using PD interpolation algorithm in OPENSMT) with our
parallel implementation with nine instances sharing information between IcEs and between
FiREs. The parallel implementation achieves a 4-fold speedup on many instances and solves
224 instances compared to 197 instances solved by the sequential version.

We also compared our parallel implementation to P3 [150], the parallel implementation
of SPACER [137] that also allows sharing information between solver instances. We also add
the comparison with the sequential SPACER, the default Horn clause engine in Z3 [72].3 The
results are summarized in Figure 6.4. Our framework significantly outperforms SPACER on
safe instances. Interestingly, SPACER fares better on unsafe instances.
Information sharing. Figure 6.5 summarizes the performance of 4 configurations: no
information sharing (sno), sharing between FiREs only (sreach), sharing between IcEs only
(sind), and all sharing enabled (sall). In these configurations, six instances ran in parallel (two
for each interpolation algorithm PF, DF and PD). For comparison, the figure includes results
of sequential versions with different interpolation algorithms. Note that the runtimes of the
parallel implementation were rounded to whole seconds, creating an effect of "stairs" for the
low runtimes in cactus plots with a logarithmic scale. There is also a significant number of
instances solved almost instantly; for this reason, the axes start at 1-second runtime and 50
instances solved.

A clear gap is visible between the best sequential version and the parallel versions, indi-
cating that the parallel approach yields a significant improvement even without information
sharing. Sharing information between FiREs is helpful, but the effect is not that significant
compared to sharing information between IcEs, which is crucial for improving performance

3Results for Z3-4.8.5 with default settings.
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Figure 6.4. Comparison of parallel sally and parallel Spacer using 6 communicating instances
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Figure 6.5. The effect of sharing information

on many benchmarks. Configurations with sharing reachability information disabled (p6-
sally-sno, p6-sally-sind) do not profit much from enabling it (p6-sally-sreach, p6-sally-sall).
However, some hard benchmarks could only be solved by sharing reachability information.
On the other hand, sharing the induction information boosts performance significantly. We
conclude that the best performance was achieved by enabling sharing information between
both IcEs and FiREs.
Scalability. We compared the performance of one, two, six and nine instances with all
information sharing enabled. The results, summarized in Figure 6.6, show that adding
more instances improves the performance, both decreasing the runtime and solving more
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Figure 6.6. Scalability experiments

benchmarks with the configurations solving 197, 213, 221 and 224 instances, respectively.

The effect of interpolation. The large jump when moving from sequential solving to two
instances running in parallel can be in part attributed to different interpolation algorithms. We
investigate this further in Figure 6.7. We compared configurations using six instances when
the interpolation algorithm varies (p6-sally-sall), when the interpolation algorithm is fixed to
PF for all instances (p6-sally-sall-PF), and when it is fixed to PD (p6-sally-sall-PD). We also
added a configuration of just two instances (one with PF and one with PD). The results show
that varying the interpolation algorithm is very important as the performance of p2-sally-sall
is comparable to that of p6-sally-sall-PD and p6-sally-sall-PF while p6-sally-sall performs
significantly better.

The experiments show that our parallel algorithm performs substantially better than
its sequential version. Its success can be attributed to more than one factor: The use of
different interpolation algorithms helps to solve more benchmarks compared to a single
interpolation algorithm used by all instances. Sharing information between solver instances
can significantly reduce the runtime and thus solve more instances within the time limit.
The major part of this can be attributed to the sharing of induction information, but sharing
reachability information does help as well. The scalability experiments show continuing
improvement up to nine instances. Additionally, our algorithm compares favorably with
the state-of-the-art parallel implementation of SPACER, outperforming it significantly on the
safe instances. Since SPACER is performing better on unsafe instances, the integration of the
two algorithms within the SMTS framework to get the best of both tools is an interesting
possibility for future work.
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Figure 6.7. The effect of using different interpolation algorithms

6.5 Related Work

Parallelization is a natural way of improving scalability of model-checking algorithms, for
example, when facing the complexity of real-world problems. Below, we review the work
that we deem most relevant to our results.

In [150], the authors presented the P3 system for parallelizing the IC3-inspired algorithm
IC3/PDR for computing clusters using a portfolio of lemma-sharing solvers and search-space
partitioning. The current work differs from that in several important aspects. First, we study
a different class of algorithms, based on a combination of IC3 and k-induction. Second, in the
implementation our emphasis in this work is on multicore environments instead of computing
clusters. We also target a different application domain, studying transition systems instead of
general constrained Horn clauses. Finally, in comparing the current system against P3 we
measure a significant improvement on the set of instances that both tools can solve, providing
practical evidence on the importance of the contribution.

Approaches for parallel IC3 were suggested, for example, in the original publication [41],
and more recently in [50]. The current system differs from both, in addition to basing on
k-induction, by allowing constraints expressible in first-order logic through an SMT encoding
instead of purely propositional encoding, therefore being more readily applicable in software
model checking.

The Tarmo system [198] allows SAT-based bounded model checkers to share learned
clauses between queries of different execution bounds. The approach could be applied at
least in the FiRE systems underlying our bounded reachability queries by allowing the SMT
solvers to share clauses as in [123, 151]. However, we leave the study of the performance
effects of such a technique for future work.
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A system presented in [168] follows a different approach to determining the feasibility
of symbolic execution paths in parallel. Our approach is more symbolic in the sense that it
does not require the explicit enumeration of, in general, an exponential number of paths
done in [168]. Algorithms for parallel LTL model checking are presented in [13]. The
general approach relies on an automata-theoretic formulation of reducing model checking
to determining the emptiness of Büchi automata. The parallelization idea focuses on using
algorithms based on DFS and BFS for this purpose. We consider this approach orthogonal
to ours and leave it for future work to study the possible synergies. In [133], the authors
use three processes to parallelize a standard k-induction algorithm enriched with invariants
generated from predefined templates. This approach was generalized in [21] where program
analysis with dynamic precision refinement generates continuously-refined invariants for
the k-induction. Our parallelization approach is based on a more general framework, and
allows scalability to arbitrary number of cores. In [162], the authors present a more general
approach of parallelizing model checking by running several model checkers in parallel.
However, the paper does not address the problem of sharing information between the solvers,
a topic central to our work.

Finally, our approach is greatly inspired by the sequential approaches combining k-
induction with IC3, in particular the PD-KIND algorithm [129] but also the KIC3 frame-
work [106]. The aim of IcE/FiRE is to capture the class of these algorithms from the point of
view of information sharing between different solvers, and apply these results to parallelize
these algorithms.

A recent work [20] presents another approach of combining k-induction and IC3/PDR.
It extends the framework of [21] and employs IC3/PDR (not only) for the generation of
auxiliary invariants for k-induction.

Combining and unifying different approaches to software verification, such as IC3/PDR [41,
85], k-induction [186] and BMC [29], is becoming increasingly popular [21, 22, 43, 106, 129].
Both combination and parallelization techniques benefit from relentless continuous improve-
ments [31, 58, 113, 144, 193] of the original algorithms.

6.6 Conclusions and Future Work

In this chapter, we contributed IcE/FiRE framework, which generalizes the concepts from a
recently developed class of algorithms combining IC3 and k-induction, with PD-KIND being
the prominent representative. The architecture consists of separate components for inductive
reasoning and bounded reachability, which is particularly suitable for exchanging learnt
information in a parallel setting.

Using the setting of IcE/FiRE framework, we have derived a parallel version of PD-
KIND algorithm and implemented it in SMTS framework for distributed solving. We show
experimentally that this approach provides a good speed-up in multi-core environments; the
parallel solver surpasses the current state-of-the-art in proving safety of transitions systems
both in speed and the number of instances solved.
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As a future direction, an interesting line of research would be to incorporate techniques
for search space partitioning and study closer possible heuristics for sharing lemmas between
the solvers. It remains an open question how to extend the framework to capture not only
algorithms that learn information about states, but also algorithms that learn information
about transitions, such as the TPA algorithm from Chapter 4.
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Chapter 7

Conclusions

This thesis studied the problem of automated formal verification, a task to automatically
prove, in the mathematical sense, that a system satisfies its specification, or find a behaviour
of the system that violates the specification. We chose to study the task in the modelling
framework of constrained Horn clauses (CHC) and its particular fragment represented by
symbolic transition systems. The logical representation of this modelling language enables
simpler formal reasoning about the problem and proposed solving techniques, as well as
direct integration with powerful SMT solvers as the underlying reasoning engines.

The main message of this thesis is that formal verification is a complex task consisting of
more than one layer, and a successful approach to solving this task requires deep knowledge
of the whole stack. We divide the task into foundational, verification, and cooperative layers,
which correspond to decision and interpolation procedures implemented in SMT solvers, SMT-
based model checking algorithms and multi-agent parallel solving, respectively. Although SMT
solvers can be used as black boxes in model checking and software verification algorithms,
we argue that true efficiency is obtained only with tight integration of the verifier with the
underlying SMT solver as the foundational component. An efficient integration requires
full utilization of the strengths of the SMT solver and avoidance of its weaknesses, which
is possible only with an understanding of its inner workings. Similarly, designing a parallel
solving algorithm in a multi-agent setting requires intimate knowledge of the single solver
instance, including its foundational component. Awareness of the essential parameters, such
as an interpolation algorithm, and how to tune them can significantly affect the performance
already in a simple parallel portfolio. However, cooperation in the form of information
exchange between agents is required to achieve truly scalable performance. The decisions of
what information can be exchanged and how the sequential agent can integrate the external
information require an understanding of the underlying model-checking algorithm.

In Chapter 3, we proposed a way to decompose Farkas interpolants using techniques from
linear algebra. If such decomposition is possible, this yields a logically stronger interpolant
in the form of a conjunction of inequalities. In the SMT setting where interpolants are
computed from proofs of unsatisfiability, logically stronger interpolants for theory conflicts
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yield a logically stronger interpolant for the overall SMT problem. This novel interpolation
algorithm is successfully applied in the rest of our work. In the multi-agent setting in
Chapter 6, using multiple interpolation algorithms results in more diverse behaviour across
a group of agents and leads to better performance of our implementation of the parallel
PD-KIND algorithm. The TPA algorithm given in Chapter 4 heavily relies on interpolants, and
decomposed Farkas interpolants are used in our implementation, as adding them improved
performance.

In Chapter 4 we focused on the verification layer and scalability problem of existing
model checking techniques on systems with faulty behaviour that requires a long time to
manifest. In the language of model checking, these are transition systems with only a
very long counterexample path. Based on our experience with existing techniques and
their weaknesses, we developed a concept of transition power abstraction sequence and a
model-checking algorithm based on this concept. This algorithm is relatively simple yet
powerful, as we have experimentally demonstrated on problems representing challenging
multi-phase loops. Additionally, we showed that TPA sequence can also be used to prove
safety by discovering safe inductive transition invariant. Since the original algorithm was not
sufficiently effective in proving safety, we developed the concept further and introduced SPLIT-
TPA. SPLIT-TPA is based on the idea of splitting the original TPA sequence into two components.
The splitting introduced more candidates for transition invariants and enabled the application
of efficient k-inductive reasoning. The experimental evaluation confirmed that SPLIT-TPA
dominates TPA in proving safety while retaining the ability to detect deep counterexamples.
Additionally, it can prove safe some problems not solvable by other state-of-the-art techniques,
demonstrating the usefulness of transition invariants as a proof rule.

In Chapter 5 we described the Horn solver GOLEM that we developed as part of our
research. GOLEM has been developed to implement and study interpolation-based (and
other SMT-based) model-checking algorithms, providing infrastructure and efficiency by tight
integration with the underlying SMT solver OPENSMT. The comparison with other Horn
solvers in the latest edition of CHC-COMP1 shows that GOLEM has great potential to join
the ranks of SPACER and ELDARICA as the go-to back-end solver for the growing number
of applications that model their problems using the language of constrained Horn clauses
and rely on off-the-shelf Horn solvers for solving. Besides the use as the back-end solver
for domain-specific tools, GOLEM can also drive the research at the foundational layer, as
different engines of GOLEM stress various aspects of SMT solving and related procedures of
interpolation and model-based projection. This leads to new challenges, especially for richer
SMT theories, including arrays, bit-vectors and algebraic data types.

In Chapter 6, we proposed the IcE/FiRE framework, which abstracts concepts from a re-
cently developed class of algorithms based on a combination of IC3 and k-induction. IcE/FiRE
was explicitly designed with the application in a multi-agent setting with information exchange
in mind. Instantiating the parallel IcE/FiRE framework with PD-KIND algorithm [129], we

1GOLEM outperformed all other solvers except SPACER in LRA-TS, LIA-lin and LIA-nonlin tracks, which were
all the tracks where GOLEM participated.
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obtained a parallel PD-KIND solver that showed substantial improvements over the sequential
version, as well as over another parallel model checker P3 [150].

In conclusion, this thesis presents our work that successfully advanced the state-of-the-art
in automated verification. By taking a layered approach to the general verification problem, we
made contributions to the foundational techniques with a new interpolation algorithm for LRA;
to model checking with the concept of transition power abstraction sequence and algorithms
TPA and SPLIT-TPA; to the application of parallel multi-agent solving in model checking with
IcE/FiRE framework and parallel PD-KIND that instantiates this framework; and to the tool sup-
port with our Horn solver GOLEM. We hope our work encourages more researchers to pursue
deeper knowledge of the components they work with rather than treating them as black boxes.
Deep knowledge is especially powerful for using SMT solvers in verification, but also for using
Horn solvers in domain-specific verification tools and in multi-agent settings. The awareness
of the strengths and weaknesses of the underlying solvers should guide the modelling part of
the verification task. Often there are multiple ways of encoding a domain-specific verification
task, and the chosen approach can significantly help or hinder the underlying solver.

Future work

Several directions for future research can build on the work presented in this thesis. Regarding
interpolation-based model-checking algorithms, where interpolant computation is a procedure
invoked frequently, choosing the best interpolation procedure for each interpolation task
remains an open question.

Parallelization and multi-agent approaches to verification represent a research direction on
their own. While applying a portfolio approach is typically straightforward, more sophisticated
techniques like partitioning and information exchange are much more challenging. While
partitioning techniques in the context of CHC can be general, information exchange depends
on the particular back-end algorithm. In the context of parallel PD-KIND, we investigated
the exchange of positive information, i.e., bounded invariants of the system that are likely to
participate in the final invariant. However, it might be beneficial to exchange also negative
information. For example, the information that certain bounded invariant has been proven
not to be unbounded and thus cannot participate in the final inductive invariant.

We believe the concept of transition power abstraction offers many opportunities for
further study. The algorithms TPA and SPLIT-TPA utilize this concept for detecting deep
counterexamples and discovering safe transition invariants. However, we see much more
potential here. There are variants of the algorithms that could be more efficient, more
suitable for a particular class of problems, or more suitable for generalization to nonlinear
Horn-clause systems. The possibility of connecting the TPA approach with SPACER-like search
is especially intriguing. Additionally, the automatic discovery of transition invariants in TPA
could find new applications in the analysis of liveness properties and analysis of termination
or non-termination. Another exciting possibility is to investigate if TPA can discover deep
counterexamples in the hardware model checking domain, with systems modelled at the word
level, using the SMT theory of bit-vectors.
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GOLEM also offers many different possibilities, as we outlined in Section 5.8, and we
plan to continue developing the tool. To make GOLEM more attractive for domain-specific
verification tools, the support of more background theories, including arrays, bit-vectors
and algebraic data types, is desired. This requires mainly the support of the theories in
OPENSMT, but also offers research opportunities regarding new procedures for interpolation
and model-based projection. Implementing additional preprocessing transformations and
extending the set of back-end engines will also make GOLEM more powerful. Implementing
existing (and potentially new) algorithms in the same tool facilitates their understanding and
comparison. This is important for new research ideas that address the weaknesses of existing
techniques while drawing inspiration from their strengths.
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[116] Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V. and Rümmer, P. [2012]. A
verification toolkit for numerical transition systems, in D. Giannakopoulou and D. Méry
(eds), FM 2012: Formal Methods, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 247–
251.

[117] Hojjat, H. and Rümmer, P. [2018]. The ELDARICA Horn solver, FMCAD, IEEE, pp. 158–
164.



131 Bibliography

[118] Hojjat, H., Rümmer, P., Subotic, P. and Yi, W. [2014]. Horn clauses for communicating
timed systems, Electronic Proceedings in Theoretical Computer Science 169: 39–52.

[119] Horbach, M., Voigt, M. and Weidenbach, C. [2017]. The universal fragment of
Presburger arithmetic with unary uninterpreted predicates is undecidable, CoRR
abs/1703.01212.
URL: http://arxiv.org/abs/1703.01212

[120] Huang, G. [1995]. Constructing Craig interpolation formulas, in D.-Z. Du and M. Li
(eds), Computing and Combinatorics, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 181–190.

[121] Huberman, B. A., Lukose, R. M. and Hogg, T. [1997]. An economics approach to hard
computational problems, Science 275(5296): 51–54.

[122] Hyvärinen, A. E. J., Marescotti, M., Alt, L. and Sharygina, N. [2016]. OpenSMT2:
An SMT solver for multi-core and cloud computing, in N. Creignou and D. Le Berre
(eds), Theory and Applications of Satisfiability Testing – SAT 2016, Springer International
Publishing, Cham, pp. 547–553.

[123] Hyvärinen, A. E. J., Marescotti, M. and Sharygina, N. [2015]. Search-space partitioning
for parallelizing SMT solvers, in M. Heule and S. Weaver (eds), Theory and Applications of
Satisfiability Testing – SAT 2015, Springer International Publishing, Cham, pp. 369–386.
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