
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

SolCMC: Solidity Compiler’s Model Checker⋆

Leonardo Alt1, Martin Blicha2,3,
Antti E. J. Hyvärinen2, and Natasha Sharygina2

1 Ethereum Foundation
2 Università della Svizzera italiana, Lugano, Switzerland

3 Charles University, Prague, Czech Republic
leo@ethereum.org

{martin.blicha,antti.hyvaerinen,natasha.sharygina}@usi.ch

Abstract. Formally verifying smart contracts is important due to their
immutable nature, usual open source licenses, and high financial incentives
for exploits. Since 2019 the Ethereum Foundation’s Solidity compiler ships
with a model checker. The checker, called SolCMC, has two different
reasoning engines and tracks closely the development of the Solidity
language. We describe SolCMC’s architecture and use from the perspective
of developers of both smart contracts and tools for software verification,
and show how to analyze nontrivial properties of real life contracts in a
fully automated manner.

Keywords: Ethereum · Solidity · Symbolic Model Checking · Con-
strained Horn Clauses · Satisfiability Modulo Theories

1 Introduction

The Ethereum Foundation’s compiler for Ethereum platform’s most used lan-
guage Solidity had almost 4 million downloads (3,957,195) over the last 60 days
(at the time of submission). Since 2019, this compiler ships with a robust, builtin,
easy-to-use, symbolic model checker SolCMC [16], formerly called SMTChecker.
SolCMC models a smart contract, that is, a program for the Ethereum platform,
and its properties as a system of constrained Horn clauses (CHCs) amenable to
IC3-style model checking [34]. Since its deployment, SolCMC has increasingly
served a dual purpose. On the one hand, smart contract programmers have
through it a very visible and easy access to formal verification techniques. On the
other hand, perhaps more subtly but no less importantly, the tool serves as
a sounding board for developers of Horn solvers. Currently the system interfaces
with Spacer [31] and Eldarica [30], making the related techniques available to
a large user base. We expect to integrate in SolCMC many other techniques
through a similar mechanism. For instance, the tool has a bounded model check-
ing engine for finding bugs by issuing SMT queries to solvers such as z3 [35] and
cvc5 [23].

⋆ This work was partially supported by Swiss National Science Foundation grant
200021 185031 and by Czech Science Foundation grant 20-07487S.

https://doi.org/10.1109/5.771073


2 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

Smart contracts running on the Ethereum platform hold and control billions
of dollars through their immutable logic, and therefore bugs can lead to massive
losses. There are many recent sophisticated tools that increase the security of the
Ethereum contract ecosystem by detecting smart contract bugs before they are
deployed. However, new and emerging applications from the diverse user base
are driving Solidity development at a fast pace and it is difficult to keep tools
synchronized with the language. We believe that in the long run, the best way to
ensure that a model checker for Solidity is sustainable is by integrating it directly
into the compiler distribution, or the main repository of the related language
tools, as we have done for SolCMC.

The direct integration of the model checker into the compiler has two main ad-
vantages. Firstly, we can model precisely and robustly features that are somewhat
specific to Solidity and its applications, such as modeling reentrancy callbacks,
and the handling of global storage. This makes the model checker capable of
synthesizing new contracts that serve as counterexamples for correctness, and
computing inductive invariants for the cases where properties hold. Secondly, the
short pipeline between the source code and the model allows the presentation
of both counterexamples and invariants as compiler warnings and annotations
using a vocabulary that is meaningful for the developer.

The goal of SolCMC is to verify properties of programs with minimal user
input. Our system supports writing properties as assert statements and can in
addition automatically check other structural properties such as popping from an
empty array and array accesses that are out of bounds, and the lack of underflows,
overflows, divisions by zero, and transfers with insufficient balance. Moreover,
common Solidity vulnerabilities such as reentrancy mutability and selfdestruct
reachability can be verified using test harnesses that make the assertion-based
approach more expressive. Thus, the expressiveness of SolCMC allows efficiently
obtaining meaningful results for real life contracts in a way that is in practice
fully automated. To demonstrate this we analyze the Beacon Chain Deposit
Contract that is the base for Ethereum’s proof of stake consensus layer, and the
OpenZeppelin implementation of the ERC777 token standard.

An extended version of this tool paper including appendices showing detailed
experimental results and other analysis is available online in the accompanying
artifact, at https://doi.org/10.5281/zenodo.6512173.

Related work. Proving correctness and finding bugs in smart contracts is useful
in different abstraction targets. The technical details of how smart contracts are
encoded by SolCMC are presented in [34]. In this tool paper the emphasis is on
orthogonal topics: the usage of options, generation of counterexamples in Solidity-
like syntax, interfacing with different Horn solvers, and how contract invariants
can be obtained. We also demonstrate the tool’s capabilities by analysing two
important and complex contracts: the Deposit contract and ERC777.

Most current tools either analyse the Solidity high level language, similar to
SolCMC, or work directly on Ethereum Virtual Machine (EVM) bytecode.

The tools Solc-verify [28] and Verisol [38] verify Solidity properties in an
automated way allowing models with unbounded number of transactions by

https://doi.org/10.5281/zenodo.6512173


SolCMC: Solidity Compiler’s Model Checker 3

AST
generation

Type
checking

Analysis

Model checker

Engines

BMC

CHC

Expression
encoder

Solvers

cvc5 z3/Spacer

Eldarica

Bytecode
generation

User
reports

Solidity
compiler

Solidity
smart

contracts

Model
checker
options

Compiled
bytecode

Errors,
warnings,
CEXs,

invariants

Fig. 1. The Solidity compiler stack with the integrated model checker (in green)

translating Solidity to Boogie [33]. This gives the tools an advantage in engineering
resources, but, compared to SolCMC’s direct encoding as CHCs, makes producing
counterexamples to the user more difficult. Neither of the two tools produce
counterexamples or inductive invariants, and the most recent language versions
are not supported. SmartACE [39] relies on translation from Solidity to LLVM-IR.
This allows for employing multiple analysis tools, but unlike in SolCMC where
we use a direct encoding and tighet solver integration, the tools are mostly
used as black boxes. EThor [37] also uses Horn clauses but it encodes EVM
bytecode, and focuses on specific properties such as reentrancy. The Certora [24]
tool relies on invariants to verify EVM bytecode. It is a commercial tool used
for smart contract audits and is not publicly available. The K framework [10] is
an assisted theorem prover that provides EVM semantics [29] to analyze EVM
bytecode. It is generally able to prove more statements than automated tools, but
requires considerable user interaction. HEVM [22] is an implementation of EVM
in Haskell that also has a symbolic executor for EVM bytecode. It can prove
functional properties but, unlike SolCMC, does not support inductive properties
over multiple transactions and loops. HEVM and Echidna [4] also provide fuzzing
techniques that help determining whether a candidate assertion is a contract
invariant. Slither [14] is a powerful static analyzer that does not provide formal
guarantees but can detect many vulnerabilities and dangerous patterns. Act [1]
is a declarative specification language for smart contracts that supports three
backends: bytecode verification via HEVM, SMT theorems for contract invariants,
and a Coq backend that exports Coq definitions of contract state transitions.
Finally, the Scribble specification language [13] allows annotating Solidity code
and can generate runtime checks for given properties.

2 Solidity Model Checking

The high level overview of the compilation process is depicted in Fig. 1, with
the model checker module emphasized. When enabled, Solidity model checking
becomes another pass over the source code in the normal compilation process
that starts after parsing and Abstract Syntax Tree (AST) generation. If there



4 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

Table 1. SolCMC verification targets

Arithmetic Structural

arithmetic underflow/overflow, division by
zero, insufficient transfer balance

assertions, popping empty array, out of
bounds index access

were no errors, the compiler produces the optimized bytecode together with any
warnings, such as counterexamples found by the model checker.

This paper concentrates on SolCMC’s unbounded model checker based on
CHCs. The tool also has a BMC engine that generates SMT queries and links
against cvc5 [23] and z3 [35].

2.1 The CHC Verification Engine

SolCMC encodes a smart contract as a system of constrained Horn clauses, based
on [34]. The checker supports loops, multi-transaction computation paths, contract
invariants, tracking contract balances throughout their lifetimes, and precise
multi-contract calls. If the analyzed contract calls external functions unsafely,
the model checker also synthesizes malicious external actors and represents them
as reentrant calls.

The Horn queries are dispatched to a Horn solver. The encoding requires the
solver to support nonlinear Horn clauses and at least the SMT theories for Linear
Integer Arithmetic (LIA), Arrays, and the tuples subset of Algebraic Datatypes
(ADT). Furthermore, nonlinear integer arithmetic and bitwise operations, if
present, are encoded in the respective theories NIA and BV. To the best of
our knowledge only Spacer [31] and Eldarica [30] satisfy those requirements.
SolCMC has a tight integration with Spacer via its C++ API, whereas Eldarica
is integrated using the compiler’s SMT callback [21], and is currently accessible
via solc-js [15], the JavaScript wrapper of the compiler’s WebAssembly binary.

The model checker generates verification targets automatically for the con-
ditions listed in Table 1. In particular a smart contract developer can combine
assertions with test harnesses (see, e.g., Sec. 4) to specify complex behavior. The
Solidity language has the statements require and assert, which SolCMC uses
to capture developer intent: Conditions inside require statements are considered
assumptions, and assert statements should be true for every execution. The
model checker then treats every assert as a verification target and attempts to
either prove it by finding an invariant, or give a counterexample for its correctness.

2.2 Horn Encoding

SolCMC’s CHC encoding is based on the imperative encoding of [25], and
is presented in detail in [34]. Horn logic is a popular formalism for expressing
reachability problems. It is equivalent to the existential positive fix-point logic [26],
and provides a convenient syntax for the use of existentially quantified predicates
that in our encoding represent reachable states and effects of transactions. The



SolCMC: Solidity Compiler’s Model Checker 5

Solidity AST first gets transformed into a Control Flow Graph (CFG). CFG
nodes have corresponding CHC predicates, and edges are encoded as Horn rules
with constraints created from the Single Static Assignment (SSA) form of the
statements and expressions of the CFG block. Below we give an overview of the
encoding that highlights the critical parts.

The encoding consists of three types of predicates that represent reachable
states or possible transitions: function bodies (Bf ) and summaries (Sf ) represent
the effect of function calls to f ; interfaces (IC) represent the states a contract C
can reach after initialization and each transaction; and nondeterministic interfaces
(NC) encode the effects the environment may have to a contract C. We use the
following variables in the encoding: e, an integer error flag. Each verification target
has a positive unique error id; 0 is reserved for no errors. a, the contract address.
abi, a tuple of Solidity’s ABI functions. cr, a tuple of Solidity’s cryptographic
functions: keccak256, sha256, ripemd160, and ecrecover. Both abi and cr are
constant in the encoding. They are passed through the rules to ensure consistency
everywhere. tx, a tuple of the transaction data, e.g., message sender, data, block
number, etc. st, the blockchain state, a tuple containing the balances and storage
for every contract. Balances are represented by an array mapping addresses to
their balances. Each contract has a storage tuple that contains the state variables
of that contract. x, the program state, input, output and local variables in the
scope of that node. When necessary, we refer to the state variables as s. For x
and st we use primes to denote the effect of rules on these variables.

Function bodies encode constructors, deployment procedures, and function sum-
maries. For example, the contract contract Acc { uint8 x = 0; function
acc(uint8 y) external { x += y; } } gets encoded into the rules

e = 0 ∧ st = st′ ∧ x = x′ ∧ y = y′ ∧ 0 ≤ y′ ≤ 255 ∧ 0 ≤ x′ ≤ 255

=⇒ Bacc(e, a,abi, cr, tx, st, x, y, st
′, x′, y′)

stating that the function can always be called, its execution starts with no error,
the initial variables have the current values, and the program variables’ types
are constrained;

Bacc(e, a,abi, cr, tx, st, x, y, st
′, x′, y′) ∧ (x′ + y′ > 255)

=⇒ Sacc(1, a,abi, cr, tx, st, x, y, st
′, x′, y′)

stating that an overflow in summation is an error, with label 1; and

Bacc(e, a,abi, cr, tx, st, x, y, st
′, x′, y′) ∧ (x′′ = x′ + y) ∧ (x′′ ≤ 255)

=⇒ Sacc(e, a,abi, cr, tx, st, x, y, st
′, x′′, y),

which exits the function with no error and updates the contract state variable x.

Interface rules. The interface CFG node is an artificial node that represents
the idle state of a contract. This node is crucial to the encoding when mod-
elling transactions, querying error flags, committing state changes, generating



6 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

counterexamples, and translating inductive contract invariants. It is reachable
at the beginning and end of every transaction. Transactions may revert due to
invalid inputs or program logic, in which case all state changes are rolled back.
The interface node may contain state changes if the transaction did not revert.
Each contract C has a predicate IC, whose parameters are a, abi, cr, st and
the state variables s of the contract. The rules only change e, st and s, and for
better readability we use ellipsis (. . .) to denote the unchanged parameters. One
rule is added per contract linking the deployment procedure to the interface:
DC(. . .) =⇒ IC(. . .). For each external function f in the contract C, we add the
query rule and the update rule

IC(. . . , st, s, . . .) ∧ Sf(e, . . . , st, s, . . . , st
′, s′, . . .) ∧ e > 0 =⇒ Errf(e)

IC(. . . , st, s, . . .) ∧ Sf(e, . . . , st, s, . . . , st
′, s′, . . .) ∧ e = 0 =⇒ IC(. . . , st

′, s′, . . .).

The Horn query given to the solver then asks whether Errf(e) is reachable, for
each error label e. In this modelling, if the property is safe, inductive invariants
chosen by the solver as an interpretation for the predicates IC represent the
invariants for contracts C.

Nondeterministic interface rules. The nondeterministic interface CFG node
is an artificial node that represents every possible behavior of the contract
from an external point of view, in an unbounded number of transactions. This
node is essential to model calls that the contract makes to external unknown
contracts, as well as reentrancy if present. The predicate that represents this
node has the same parameters as the interface predicate, but with the error
flag and an extra set of program variables and blockchain state, in order to
model possible errors and state changes. For every contract C the encoding adds
the base case rule NC(0, . . . , st, s, st, s) which performs no state changes. Then
for every external function f in the contract the encoding adds the inductive
rule N(0, . . . , st, s, st′, s′) ∧ Sf(e, . . . , st

′, s′, st′′, s′′) =⇒ N(e, . . . , st, s, st′′, s′′).
These rules allow us to encode an external call to unknown code using a single
constraint N(e, . . . , st, s, st′, s′) which models every reachable state change in
the contract, in any unbounded number of transactions. If a property is unsafe,
these rules force the solver to synthesize the behavior of the adversarial contract.
Otherwise, the interpretation of such predicate gives us inductive reentrancy
properties that are true for every external call to unknown code in the contract.

3 User Features

As SolCMC is shipped inside the Solidity compiler, it is available for the users
whenever and wherever they interact with the compiler. There are currently
three major ways the compiler is used: 1. Interfacing with the WebAssembly
release through official JavaScript bindings; 2. Interfacing with a binary release on
command line; 3. Using web based IDEs, such as Remix [12]. Option 3 is the most
accessible, but currently allows only limited configuration of the model checker



SolCMC: Solidity Compiler’s Model Checker 7

through pragma statements in source code. Options 1 and 2 both allow extensive
configuration, but in addition 1 enables the SMT callback feature needed, e.g.,
for Eldarica. In 2 the options can be provided either on the command line or in
JSON [19], whereas 1 accepts only JSON using the JavaScript wrapper [15].

In 1 and 2 several parameters are available to the user for better control
when trying to prove complex properties. We list here some examples, using the
command line options (without the leading --). The JSON descriptions are named
similarly. The model checking engine — BMC, CHC or both — is selected with
the option model-checker-engine. Individual verification targets can be chosen
with model-checker-targets, and a per-target verification timeout (in ms)
can be set with model-checker-timeout. By default, all unproved verification
targets are given in a single message after execution. More details are available by
specifying model-checker-show-unproved. Option model-checker-contracts

provides a way to choose the contracts to verify. Typically the user specifies only
the contract they wish to deploy. Inherited and library contracts are included
automatically, avoiding verifying every contract as the main one. Some options
affect the encoding. For example, integer division and modulo operations can
be encoded with the SMT function symbols div and mod or by SolCMC’s own
encoding using linear arithmetic and slack variables. Depending on the backend
one is often preferred to the other. The default is the latter, the former is set by
model-checker-div-mod-no-slacks.

Solidity provides the NatSpec [20] format for rich documentation. An annota-
tion /// @custom:smtchecker abstract-function-nondet instructs SolCMC
to abstract a function nondeterministically. Abstracting functions as an Uninter-
preted Function [32] is under development.

Counterexamples and inductive invariants. When a verification target is disproved,
SolCMC provides a readable counterexample describing how to reach the bug.
In addition to the line of code where the verification target is breached, the
counterexample states the trace of transactions and function calls leading to the
failure along with concrete values substituted for the arguments, and the values
of the state variables at the point of failure. When necessary, the trace includes
also synthesized reentrant calls that trigger the failure.

Similarly, when SolCMC proves a verification target, the user may instrument
the checker to provide safe inductive invariants. The invariants can, for instance,
be used as an additional proof that the verification target holds. Technically
the invariants are interpretations for the predicates in the CHC system and are
presented in a human readable Solidity-like syntax. Similarly to counterexamples,
the invariants are given also for predicates guaranteeing correctness under reen-
trancy. The extended version of this paper contains a short example illustrating
the counterexamples and inductive invariants. It also presents more complex
examples of both features, which were obtained from our experiments with the
ERC777 token standard.



8 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

4 Real World Experiments

In this section we analyse two real world smart contract systems using SolCMC.
Both contracts are massively important and highly nontrivial for automated tools
due to their use of complex features, loops, and the need to produce nontrivial
inductive invariants. While only the main results are stated in this section,
we want to emphasize that the results were achieved after an extensive, albeit
mechanical, experimentation on the two backend solvers (Spacer and Eldarica)
and a range of parameters. To us the fact that they were successfully analysed
using an automatic method is a strong proof of the combined power of our
encoding approach and the backend solvers.

4.1 CHC solver options

The options we pass to the underlying CHC solvers Spacer and Eldarica may
make the difference between a quick solving and divergences. For Spacer, we use
the options rewriter.pull cheap ite=true which pulls if-then-else terms to
the top level when it can be done cheaply, fp.spacer.q3.use qgen=true which
enables the quantified lemma generalizer, fp.spacer.mbqi=false which disables
the model-based quantifier instantiation, and fp.spacer.ground pobs=false

which grounds proof obligations using values from a model. For Eldarica, we have
found the adjustment of the predicate abstraction to be useful: -abstract:off
disables abstraction, -abstract:term uses term abstraction, and -abstract:oct

uses the octal abstraction.

4.2 Deposit Contract

The Ethereum 2.0 (Eth2) [9] Deposit Contract [3,2] is a smart contract that runs
on Ethereum 1.0 collecting deposits from accounts that wish to be validators on
Eth2. By the time of submission of this paper more than 9,100,194 ETH were held
by the Deposit Contract, the equivalent of tens of billions USD in recent rates.
Besides the financial incentive, this contract’s functionality is essential to the
progress of the protocol. The contract was formally verified before deployment [36]
and further proved safe [27] with considerable amount of manual work. Despite
having relatively few lines of code (less than 200), the contract remains a challenge
for automated tools, because of its use of many complex constructs at the same
time, such as ABI encoding functions, loops, dynamic types, and hash functions.

As part of the logic of the deposit function, a new entry is created in a
Merkle tree for the caller. The contract asserts that such an entry can always be
found, expressed as an assert(false) in a program location reachable only if
such an entry is not found (line 162 in [2]). Using SolCMC this problem can be
encoded into a 1.4MB Horn logic file containing 127 rules, which uses the SMT
theories for Arrays, ADTs, NIA, and BV. After a syntactical change, Eldarica
can show the property safe automatically in 22.4 seconds, while Spacer times
out after 1 hour (see the extended version for details). The change is necessary
to avoid bit-vector reasoning and consists of replacing the test if ((size & 1)



SolCMC: Solidity Compiler’s Model Checker 9

== 1) with a semantically equivalent form if ((size % 2) == 1) on lines 88
and 153 in [2].

4.3 ERC777

ERC777 [6] is a token standard that offers extra features compared to the
ERC20 [5] standard. Besides the usual transfer and allowance features, ERC777
mainly adds account operators and transfer hooks which allow smart contracts
to react to sending and receiving tokens. This is similar to the native feature
of reacting to receiving Ether. In this experiment we analyze the OpenZeppelin
implementation [11] of ERC777. This contract is an interesting benchmark for
automated tools not only because of its importance, but also because it is a
rather large smart contract system with 1200 lines of Solidity code, in 8 files, and
it uses complex high level constructs such as assembly blocks, heavy inheritance,
strings, arrays, nested mappings, loops, hash functions, and makes external calls
to unknown code. The implementation follows the specification precisely, and
does not guarantee a basic safety property related to tokens: The total supply of
tokens should not change during a transfer.

Compared to the usual ERC20 token transfer that simply decreases and
increases the balances of the two accounts involved in the transfer, the ERC777
transfer function may call unknown contracts to notify them that they are
sending/receiving tokens. The logic in these external contracts is completely
arbitrary and unknown to the token contract. For example, they could make
a reentrant call to one of the nine ERC777 token mutable functions from its
external interface.

Since the analyzed ERC777 implementation is agnostic on how tokens are
initially allocated, no tokens are distributed in the base implementation at de-
ployment. Therefore, to study the property, we write the following test harness [7]
that uses the ERC777 token implemented by OpenZeppelin.

import "<path >/ ERC777.sol";

contract Harness is ERC777 {
constructor(

address [] memory defOps_ ,
uint amt_

) ERC777("ERC777", "E7", defOps_ ){
_mint(msg.sender , amt_ , "", "");

}

function transfer(address r, uint a)
public override returns (bool) {
uint prev = totalSupply ();
bool res = ERC777.transfer(r, a);
uint post = totalSupply ();
assert(prev == post);
return res;

}
}

First, we allocate amt tokens to the creator of the contract, in order to
have tokens circulating. Then, we override the transfer function, where our
transfer function simply wraps the one from the ERC777 contract, asserting
that the property we want to verify is true after the original transfer.

The resulting Horn encoding is 15 MB large and contains 545 rules. The
property can be shown unsafe by Eldarica in all its configurations, the quickest
taking slightly less than 3 minutes, including generating the counterexample (see
the extended version for details). All Spacer’s configurations time out after 1
hour. Since the property is unsafe, SolCMC also provides the full transaction



10 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

ERC777 SenderRecipient

transfer

callTokensToSend

tokensToSend

move

callToTokensReceived

tokensReceived

operatorBurn

Fig. 2. Transaction trace that violates the safety property in transfer

trace required to reach the assertion failure. The transaction trace is visualized
in Fig 2 in the form of a sequence diagram, where solid arrows represent function
calls and dashed arrows represent the return of the execution control. The full
output of the tool can be found in the extended version.

The diagram shows the transaction trace from the call to transfer of ERC777
(after our wrapper contract has been created and its transfer was called).
transfer performs 3 internal function calls (in orange): 1) callTokensToSend

performs the external call to notify the sender; 2) move moves the tokens from
the sender to the recipient; 3) callTokensReceived notifies the recipient. The
external calls to unknown code are shown in red. The transaction trace also
contains the synthesized behaviour for the recipient (in purple). It is a reentrant
call to operatorBurn in the ERC777 token contract itself, where some of the
tokens of the recipient contract will be burned. At the end of the execution of
transfer, the assertion is no longer true. The total supply of tokens after the
call is not the same as the total supply before the call, as some tokens were
burned during the transaction.

Given the number of mutable external functions of ERC777 and their complex-
ity, we consider the discovery of the counterexample to be quite an achievement.
We ascribe the success to the combined power of the CHC encoding and the
Horn solver.

One way to guarantee that our property holds is to disallow reentrancy
throughout the contract using a mutex. After changing the ERC777 library [8], we
ran the tool again on our test harness. Spacer timed out, but Eldarica was able
to prove that the restricted system is safe in all its configurations, the fastest one
finishing in 26.2 seconds, including the generation of the inductive invariants for
every predicate. SolCMC now reports back the reentrancy property <errorCode>

= 0 given as part of the proof (the property is presented here in a simplified
manner, see the extended version for details). The inductive property states that
no external call performed by the analyzed contract can lead to an error. This
shows that the reentrant path can no longer be taken.



SolCMC: Solidity Compiler’s Model Checker 11

4.4 Discussion

While producing the above analysis of the real life contracts, we experimented
with two backend solvers Spacer and Eldarica, and a range of parameters for
them. This phase (documented in the extended version of this paper) was critical
in producing the results, because Eldarica and Spacer excel in different domains
and parameter selection has a major impact on both verification success and
run time. In both cases above Eldarica performed clearly better than Spacer.
This seems to be because Eldarica handles abstract data types better than
Spacer. This conclusion is backed by experimental evidence. We ran SolCMC
using both Spacer and Eldarica on the SolCMC regression test suite consisting
of 1098 solidity files [17] and 3688 Horn queries [18]. The experiment shows that
while the solvers give overall similar results, in two categories that make heavy
use of ADTs, Eldarica is consistently able to solve more benchmarks than Spacer.
For lack of space, the detailed analysis is given in the extended version.

Our encoding uses tuples to encode data that makes sense to be bundled
together. Moreover, arrays of tuples are used to emulate Uninterpreted Functions
(UFs) to abstract injective functions such as cryptographic primitives. This is
necessary due to UFs not being syntactically allowed in predicates of Horn
instances. While this increases the complexity of the problem, we have chosen
this path to reduce encoding complexity, considering that a pre processing step
may be available in the future to flatten such tuples and arrays.

5 Conclusions and Future Work

This paper presents the model checker SolCMC that ships with the Ethereum
Foundation’s compiler for the Solidity language. We believe that the automated
and usable tool has the potential to link a high volume of Solidity developers with
the community working on tools for formal verification. The tool is stable, and,
having been integrated into the compiler, tracks closely the quickly developing
language.

We advocate for a direct encoding approach where the same AST gets compiled
both into EVM bytecode and into a verification model in SMT-LIB2 or the format
used in the CHC competition. In our experience this makes it more natural to
model features specific to Solidity and Ethereum smart contracts as well as for
generating usable counterexamples and inductive invariants in comparison to
producing first a language-agnostic intermediate verification representation that
is then processed for reasoning engines.

We argue for the ease of use of the tool by showing nontrivial properties of
real life contracts. The experiments also identify interesting future development
opportunities in the current CHC formalism. We show how the formalism’s
limitations can be worked around using abstract data types, and discuss their
impact on tool efficiency.



12 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina

References

1. Act 0.1 released. https://fv.ethereum.org/2021/08/31/act-0.1/, accessed:
2022-01-21

2. Deposit Contract deployed on Ethereum mainnet. https://etherscan.io/

address/0x00000000219ab540356cbb839cbe05303d7705fa#code, accessed: 2022-
01-21

3. Deposit Contract specification and source code. https://github.com/ethereum/
consensus-specs/blob/master/specs/phase0/deposit-contract.md, accessed:
2022-01-21

4. Echidna source code and documentation. https://github.com/crytic/echidna/,
accessed: 2022-01-21

5. ERC20 documentation. https://eips.ethereum.org/EIPS/eip-20, accessed:
2022-01-21

6. ERC777 documentation. https://eips.ethereum.org/EIPS/eip-777, accessed:
2022-01-21

7. ERC777 Property Wrapper contract. https://github.com/leonardoalt/

openzeppelin-contracts/blob/master/contracts/token/ERC777/

ERC777PropertyUnsafe.sol, accessed: 2022-01-21
8. ERC777 using a mutex to prevent reentrancy.. https://github.com/leonardoalt/

openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777Mutex.

sol, accessed: 2022-01-21
9. Ethereum Consensus Layer specification. https://github.com/ethereum/

consensus-specs, accessed: 2022-01-21
10. K framework. https://kframework.org, accessed: 2022-01-21
11. Openzeppelin Solidity implementation of the ERC777 standard.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/

contracts/token/ERC777/ERC777.sol, accessed: 2022-01-21
12. Remix IDE. https://remix.ethereum.org, acessed: 2022-01-13
13. Scribble documentation. https://docs.scribble.codes/language/introduction,

accessed: 2022-01-21
14. Slither source code and documentation. https://github.com/crytic/slither,

accessed: 2022-01-21
15. solc-js documentation. https://github.com/ethereum/solc-js, accessed: 2022-

01-21
16. SolCMC documentation. https://docs.soliditylang.org/en/latest/

smtchecker.html, accessed: 2022-01-21
17. SolCMC tests. https://github.com/ethereum/solidity/tree/develop/test/

libsolidity/smtCheckerTests, accessed: 2022-01-21
18. SolCMC tests’ Horn queries. https://github.com/leonardoalt/chc_benchmarks_

solidity, accessed: 2022-01-21
19. Solidity compiler input and output JSON description. https:

//docs.soliditylang.org/en/v0.8.11/using-the-compiler.html#

compiler-input-and-output-json-description, accessed: 2022-01-21
20. Solidity NatSpec Format. https://docs.soliditylang.org/en/v0.8.11/

natspec-format.html, accessed: 2022-01-21
21. Solidity’s SMT callback documentation. https://github.com/ethereum/solc-js#

example-usage-with-smtsolver-callback, accessed: 2022-01-21
22. Symbolic execution for hevm. https://fv.ethereum.org/2020/07/28/

symbolic-hevm-release/, accessed: 2022-01-21

https://fv.ethereum.org/2021/08/31/act-0.1/
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://github.com/ethereum/consensus-specs/blob/master/specs/phase0/deposit-contract.md
https://github.com/ethereum/consensus-specs/blob/master/specs/phase0/deposit-contract.md
https://github.com/crytic/echidna/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-777
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777PropertyUnsafe.sol
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777PropertyUnsafe.sol
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777PropertyUnsafe.sol
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777Mutex.sol
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777Mutex.sol
https://github.com/leonardoalt/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777Mutex.sol
https://github.com/ethereum/consensus-specs
https://github.com/ethereum/consensus-specs
https://kframework.org
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777.sol
https://remix.ethereum.org
https://docs.scribble.codes/language/introduction
https://github.com/crytic/slither
https://github.com/ethereum/solc-js
https://docs.soliditylang.org/en/latest/smtchecker.html
https://docs.soliditylang.org/en/latest/smtchecker.html
https://github.com/ethereum/solidity/tree/develop/test/libsolidity/smtCheckerTests
https://github.com/ethereum/solidity/tree/develop/test/libsolidity/smtCheckerTests
https://github.com/leonardoalt/chc_benchmarks_solidity
https://github.com/leonardoalt/chc_benchmarks_solidity
https://docs.soliditylang.org/en/v0.8.11/using-the-compiler.html#compiler-input-and-output-json-description
https://docs.soliditylang.org/en/v0.8.11/using-the-compiler.html#compiler-input-and-output-json-description
https://docs.soliditylang.org/en/v0.8.11/using-the-compiler.html#compiler-input-and-output-json-description
https://docs.soliditylang.org/en/v0.8.11/natspec-format.html
https://docs.soliditylang.org/en/v0.8.11/natspec-format.html
https://github.com/ethereum/solc-js#example-usage-with-smtsolver-callback
https://github.com/ethereum/solc-js#example-usage-with-smtsolver-callback
https://fv.ethereum.org/2020/07/28/symbolic-hevm-release/
https://fv.ethereum.org/2020/07/28/symbolic-hevm-release/


SolCMC: Solidity Compiler’s Model Checker 13

23. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Proc. TACAS 2022. LNCS, vol. 13243, pp. 415–442.
Springer (2022)

24. Bernardi, T.P., Dor, N., Fedotov, A.N., Grossman, S., Immerman, N., Jackson,
D., Nutz, A., Oppenheim, L., Pistiner, O., Rinetzky, N., Sagiv, M., Taube, M.,
Toman, J., Wilcox, J.R.: WIP: Finding bugs automatically in smart contracts with
parameterized invariants (2020), https://www.certora.com/pubs/sbc2020.pdf,
accessed: 2022-01-21

25. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51.
Springer (2015)

26. Blass, A., Gurevich, Y.: Existential fixed-point logic. In: Computation Theory and
Logic, In Memory of Dieter Rödding. LNCS, vol. 270, pp. 20–36. Springer (1987)

27. Cassez, F.: Verification of the incremental Merkle tree algorithm with Dafny. In:
Proc. FM 2021. LNCS, vol. 13047, pp. 445–462. Springer (2021)

28. Hajdu, Á., Jovanović, D.: solc-verify: A modular verifier for solidity smart contracts.
In: Proc. VSTTE 2019. LNCS, vol. 12031, pp. 161–179. Springer (2019)

29. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A Complete Formal
Semantics of the Ethereum Virtual Machine. In: Proc. CSF 2018. pp. 204–217.
IEEE Computer Society (2018)

30. Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: Proc. FMCAD 2018.
pp. 1–7. IEEE (2018)

31. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (2016)

32. Kroening, D., Strichman, O.: Equality logic and uninterpreted functions. In: Decision
Procedures: An Algorithmic Point of View, pp. 77–95. Springer, Berlin, Heidelberg
(2016)

33. Leino, K.R.M.: This is Boogie 2 (june 2008), https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

34. Marescotti, M., Otoni, R., Alt, L., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.:
Accurate smart contract verification through direct modelling. In: Proc. ISoLA
2020. vol. 12478, pp. 178–194. Springer (2020)

35. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS 2008.
LNCS, vol. 4963, pp. 337–340. Springer (2008)

36. Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of ethereum 2.0 deposit
smart contract. In: Proc. CAV 2020. LNCS, vol. 12224, pp. 151–164. Springer (2020)

37. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: EThor: Practical and
Provably Sound Static Analysis of Ethereum Smart Contracts, p. 621–640. ACM
(2020)

38. Wang, Y., Lahiri, S., Chen, S., Pan, R., Dillig, I., Born, C., Naseer, I., Ferles, K.:
Formal verification of workflow policies for smart contracts in Azure blockchain. In:
Proc. VSTTE 2019. LNCS, vol. 12031, pp. 87–106. Springer (2019)

39. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
Verifying solidity smart contracts via communication abstraction in SmartACE. In:
Proc. VMCAI 2022. LNCS, vol. 13182, pp. 425–449. Springer (2022)

https://www.certora.com/pubs/sbc2020.pdf
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

	SolCMC: Solidity Compiler's Model Checker

