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Abstract. Linear arithmetic over reals (LRA) underlies a wide range
of SMT-based modeling approaches, and, strengthened with Craig in-
terpolation using Farkas’ lemma, is a central tool for efficient over-
approximation. Recent advances in LRA interpolation have resulted in
a range of promising interpolation algorithms with so far poorly under-
stood properties. In this work we study the Farkas-based algorithms with
respect to tree interpolation, a practically important approach where a
set of interpolants is constructed following a given tree structure. We
classify the algorithms based on whether they guarantee the tree in-
terpolation property, and present how to lift a recently introduced ap-
proach producing conjunctive LRA interpolants to tree interpolation in
the quantifier-free LRA fragment of first-order logic. Our experiments
show that the standard interpolation and the approach using conjunc-
tive interpolants are complementary in tree interpolation, and suggest
that their combination would be very powerful in practice.

Keywords: Craig interpolation · Tree interpolation property · LRA
interpolation systems · SMT Solving · Symbolic model checking.

1 Introduction

Given an unsatisfiable first-order formula φ partitioned into two sets A and B,
a (binary) Craig interpolant [9] is a formula I that is implied by A, unsatisfiable
with B, and defined on the shared symbols of A and B. For certain applications
it is useful to consider sets of related interpolants obtained by partitioning φ in
different ways into A,B. Often these applications require further properties to
hold for the computed interpolants. For example, consider the following scenario
from upgrade checking of software [15]: a program with function calls is modeled
together with safety properties as an unsatisfiable formula. Once a programmer
introduces changes to the functions, it is often important to know whether the
same properties are satisfied by the new program. The key insight in the use of
? This work was supported by Swiss National Science Foundation grant 200021 185031
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Table 1: Validity of the tree interpolation property (TI) for the studied interpolation
algorithms. The signs X and × indicate, respectively, that the property holds and fails.

Interpolation algorithm TI Theorem

Farkas ItpF X 1, 2
Dual Farkas ItpF × 7
Decomposing Farkas ItpD X 3, 4, 5
Dual Decomposing Farkas ItpD × Corollary 2
Flexible Farkas Itp(α) × 6

interpolants in this scenario is as follows. If each function is over-approximated
by an interpolant, it is sufficient, under certain conditions, to check whether each
new function is contained in the corresponding old function’s interpolant in the
logical sense. Such a check might be significantly lighter than re-verification of
the whole program. However, if several functions were changed simultaneously,
the resulting interpolants need to guarantee that no matter how the functions
were changed, as long as the changes stay within the over-approximations, the
program is correct. This requirement places restrictions on interpolants and ul-
timately on the interpolation algorithms.

It turns out that these conditions are guaranteed to hold if the interpolation
algorithm satisfies the tree interpolation property (TI) (see Sec. 2). The property
is useful not only in the above scenario, but also in many other applications,
including solving constrained Horn clauses [16,27], and synthesis [13].

Many modeling approaches used in verification rely heavily on the use of
linear algebra either by directly encoding arithmetic operations, or as part of an
algorithm for more general arithmetic. As a result, over-approximation in linear
real arithmetic (LRA) through interpolation is an active research area. Farkas
interpolation [23] is a central class of algorithms for LRA interpolation and is
widely used in verification tools. The idea underlying these algorithms is to first
show a linear system unsatisfiable with a decision version of the Simplex algo-
rithm. The Farkas coefficients computed as a side product can then be restricted
to the linear system belonging to the A-part to obtain the interpolant.

Having different algorithms for interpolation is of great practical interest
since the choice of a good interpolation algorithm may well determine whether
an application terminates quickly or diverges. Up to now there have been few
interpolation algorithms that guarantee TI in LRA, and we believe that this
has severely limited their use in practical applications. In this work, we identify
five variants of the Farkas interpolation algorithms and show that only two of
them can be used as a basis for tree interpolation algorithms. Our results are
summarized in Table 1.4

The algorithm ItpF , introduced in [23], produces a single inequality, whereas
ItpD [6] is a more recent algorithm based on decomposing the Farkas interpolants
4 The Farkas interpolation algorithm ItpF guarantees TI (see, e.g., [7]). We show this

for a stronger notion of tree interpolants.
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into conjunctions. Applying ItpF in tree interpolation is relatively straightfor-
ward. However, for ItpD, it is important to take the tree structure of the inter-
polation problem into consideration when constructing the decomposition. We
show how the global tree structure can be brought to the binary interpolation
problems through the use of decomposition strategies. A carefully designed strat-
egy guarantees TI while still providing a rich variety of LRA inequalities in the
resulting interpolants.

This work opens the possibility of using efficient proof-based interpolation
portfolios in applications requiring TI. While a thorough study on the use of an
interpolation portfolio in such applications is out of the scope for this theoretical
paper, we verify experimentally that the resulting interpolants can differ in ways
that have practical implications in their use in such applications. We show this
by using two measures that we believe to be practical indicators of semantic
difference on a set of quantifier-free first-order formulas obtained from software
model checking.

Related work. The binary Craig interpolation has been extensively studied (see,
e.g., [11,23,25,28,30]), and its practical success has motivated a line of research
on tree interpolation [5,18,24,27] which we extend here. In particular, we identify
five binary Farkas-based LRA interpolation systems from [1,6,23], classify them
based on whether they can guarantee TI, and describe in detail a novel, non-
trivial approach of adjusting the binary approach from [6] for tree interpolation.
We believe that our approach can be applied in the analysis of other conjunctive
binary interpolation approaches for LRA, such as the one in [8]. Similarly to
us, [7] studies tree interpolation in LRA. Compared to [7], we extend the study
by considering four other algorithms and strengthening the existing result. We
base the propositional part of our results on the studies in [17,26,29], where tree
interpolation is discussed in a purely propositional setting.

We mention here some applications that we believe to be relevant to our
current work. In [13] the authors synthesize winning strategies by exploiting
tree interpolants computed by the Z3 SMT solver [24]. The state-of-the-art Horn
solver Eldarica [19] uses tree interpolation to refine abstraction: it maps each
(spurious) counterexample DAG to a tree interpolation problem. Finally, tree
interpolants are also used in regression verification of evolving software. See,
for example, [2,29], that use tree interpolants to over-approximate functions for
incremental verification of program versions.

The paper is organized as follows. We first introduce in Sec. 2 the necessary
background on tree interpolation and then, in Sec. 3, provide our main result that
the decomposed interpolants guarantee TI. We prove the three smaller, negative
results in Sec. 4. In Sec. 5 we show experimentally that the approach produces
a range of interpolants not available through existing means, and finally offer
conclusions in Sec. 6.
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2 Background

Our context is that of SMT (Satisfiability Modulo Theories [3,10]) on quantifier-
free formulas in the theory of linear arithmetic over the reals, LRA. A term in
LRA is either a constant, a variable, or the application of a function symbol in
LRA. An LRA atom is of the form t < c or t ≤ c, where t is a term and c is a
constant. Given an LRA atom At, we denote by symb(At) the set of variables
in At. A literal is either an atom At or its negation At. A clause cl is a finite
disjunction of literals, and a formula in conjunctive normal form (CNF) is a
conjunction of clauses. We interchangeably interpret a clause as a set of literals
and a CNF formula as a set of clauses. We denote by Fla the set of all formulas
in CNF. For a formula φ, we denote by ¬φ its negation. We extend the notation
symb to CNF formulas, writing symb(φ) for the set of atoms in φ.

A CNF formula φ is satisfiable if there exists an assignment to its variables so
that each clause in φ contains a true literal. A resolution refutation (or refutation)
of a CNF formula φ is a tree labeled with clauses. The root of the tree has the
empty clause ⊥, and the leaves have either source clauses appearing directly in
φ, or theory clauses that are tautologies in LRA learned through an unsatisfiable
conjunctive query to the LRA solver. The inner nodes are clauses derived by the
resolution rule

C1 ∨ p C2 ∨ p
C1 ∨ C2

where C1 ∨ p and C2 ∨ p are the antecedents, C1 ∨C2 the resolvent, p is the pivot
of the resolution step.

The notion of interpolant goes back to Craig’s interpolation theorem for
first-order logic [9]. In this work we consider approaches where interpolants are
constructed from proofs of unsatisfiability.

Definition 1 (binary interpolation). Given an unsatisfiable CNF formula φ
partitioned into two disjoint formulas A and B, we denote a binary interpolation
instance by (A |B). An interpolation algorithm Itp is a procedure that maps an
interpolation instance to a formula I = Itp(A |B) such that (i) A =⇒ I, (ii)
I =⇒ ¬B, and (iii) symb(I) ⊆ symb(A) ∩ symb(B).

If I is an interpolant for (A |B), then ¬I is an interpolant for (B |A). This
interpolant is called dual interpolant of (B |A).

Part of our discussion combines Craig interpolation in propositional logic
and LRA. For the propositional part, we use the Pudlák’s interpolation algo-
rithm [25], which we treat as an instance of D’Silva et al.’s labeling interpolation
system [11]. The approach first constructs the refutation using standard SMT
methods. The interpolation works then by labeling each clause with an inter-
polant starting from the leaf clauses towards the empty clause. The leaf theory
clauses are labeled using an LRA interpolation after which the propositional la-
beling can be applied in a standard way. For lack of space, we refer the reader
to Appendix A for details.

We in particular concentrate on tree interpolants, generalizations of binary
interpolants, obtained from a single refutation.
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Definition 2 (weak tree-interpolation property5). Let X1 ∧ . . . ∧ Xn ∧
Y ∧ Z =⇒ ⊥. Let IX1 , . . . , IXn

and IX1...XnY be interpolants for interpolation
instances (X1 | X2 ∧ . . .∧Xn ∧Y ∧Z), . . ., (Xn | X1 ∧ . . .∧Xn−1 ∧Y ∧Z), and
(X1∧ . . .∧Xn∧Y | Z), respectively. The n+ 2-tuple (IX1 , . . . , IXn , Y, IX1...XnY )
has the weak tree-interpolation property iff IX1 ∧ . . . ∧ IXn

∧ Y =⇒ IX1...XnY .

We are now ready to define an instance of the tree interpolation problem.

Definition 3 (tree interpolation instance). Let φ be an unsatisfiable SMT
formula in CNF, (V,E) a directed tree with vertices V containing a unique root
vr ∈ V , and directed edges E ⊆ V ×V . Let furthermore F be a labeling function
F : V −→ Fla that maps vertices V to sets of clauses of φ such that

∧
v∈V F (v) =

φ and F (v)∩F (w) = ∅ whenever v 6= w. We call 〈(V,E), F 〉 a tree interpolation
instance.

Let E∗ denote the reflexive transitive closure of E. We denote the nodes
in the subtree rooted at a node v by subtree(v) = {w | (w, v) ∈ E∗} and the
complement of the subtree as subtree(v) = V \ subtree(v). We also extend the
function F to sets of nodes as F (U) =

∧
v∈U F (v). With this notation we can

define the tree interpolant for a problem 〈(V,E), F 〉 as follows.

Definition 4 (tree interpolant). A tree interpolant for a tree interpolation
instance 〈(V,E), F 〉 is a labeling function τι : V −→ Fla that assigns a formula
to every vertex in V satisfying the following conditions:

1. τι(vr) = ⊥,
2. for all v ∈ V with children c1, . . . , cn, the (n + 2)-tuple (τι(c1), . . . , τ ι(cn),

F (v), τ ι(v)) has the weak tree-interpolation property, i.e.,
∧n
i=1 τι(ci)∧F (v) =⇒

τι(v),
3. τι(v) uses only the common language of subtree(v) and subtree(v), i.e.,

symb(τι(v)) ⊆ symb(F (subtree(v))) ∩ symb(F (subtree(v))).

A tree interpolation algorithm TItp is a procedure that maps any tree interpola-
tion instance to a tree interpolant τι = TItp(〈(V,E), F 〉).

We make the following observation that will be central in our discussion in
Sec. 3:

Remark 1. Given a binary interpolation algorithm Itp, we can construct an al-
gorithm TItpItp that computes the labels of nodes v by iteratively applying Itp
on a single resolution refutation for different binary partitionings as

τι(v) = Itp(F (subtree(v)) |F (subtree(v)))

If Itp guarantees that for each node v and its children c1, . . . , cn the tu-
ple (τι(c1), . . . , τ ι(cn), F (v), τ ι(v)) satisfies the weak tree-interpolation property,
then the algorithm TItpItp is guaranteed to produce a tree interpolant, that is,
TItpItp is a tree interpolation algorithm. As a subtle, important consequence,
5 For example in [7] this is called the tree interpolation property.

5



a certain interpolation algorithm class, called decomposing Farkas interpolation
algorithms and discussed in Sec. 3.3, needs to be instantiated into actual al-
gorithms using decomposition strategies that make the algorithms aware of the
tree structure before they can be used as a component of a tree interpolation
algorithm.

2.1 Linear Systems

The problem domain in this work is R, the set of real numbers. The (column)
vector of n elements is denoted by v = (v1, . . . , vn)ᵀ. The vector of all zeroes is
denoted by 0.

A linear system S is a conjunction of m inequalities which we treat as a set
S = {li | i = 1, . . . ,m} involving the set of n variables X = {x1, . . . , xn} such
that each li is of the form

∑
j cijxj 1 bi, where 1∈ {≤, <}, c11, c12, . . . , cmn are

the coefficients of the system, and b1, . . . , bm are constants. We often fix an order
for the system and denote it with the matrix notation Cx 1 b, where C is the
m× n matrix of coefficients cij , x = (x1, . . . , xn)ᵀ, and b = (b1, . . . , bm)ᵀ.

For the rest of the paper we use just ≤ instead of 1. This does not affect
the correctness of the proofs presented in this paper but greatly simplifies the
presentation. Throughout the paper by system S we refer to a finite set of linear
inequalities in the form of

l1 ≡ c11x1 + c12x2 + · · ·+ c1nxn ≤ b1

...
lm ≡ cm1x1 + cm2x2 + · · ·+ cmnxn ≤ bm

Finally for the matrix C and constants b of system S, and a sub-system
S′ ⊆ S we use the notations CS′ and bS′ to denote the matrix and constants
of the sub-system S′. Intuitively CS′ and bS′ denote the restrictions of C and
b where only the coordinates corresponding to the subsystem S′ are kept. More
formally, let S := Cx ≤ b be a system of m linear inequalities, and S′ :=
((Ci1), . . . , (Cik ))ᵀx ≤ (bi1 , . . . , bik )ᵀ be a subsystem of S with k ≤ m linear
inequalities, where Cij is the ijth row of C, bij the ijth element of b, and ij < ij+1
for all 1 ≤ j ≤ k − 1. We denote by CS′ the matrix ((Ci1), . . . , (Cik ))ᵀ and by
bS′ the vector (bi1 , . . . , bik )ᵀ.

3 Tree Interpolation for Linear Real Arithmetic

In this section we show our main result, that the decomposing Farkas interpola-
tion algorithm ItpD guarantees the tree interpolation property. We first introduce
a stronger version of tree interpolation property than Def. 2 that will be useful
in the proofs and discussion.
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Definition 5 (strong tree-interpolation property6). Let X1 ∧ . . . ∧Xn ∧
Z =⇒ ⊥. Let IX1 , . . . , IXn

and IX1...Xn
be interpolants for interpolation

instances (X1 | X2 ∧ . . . ∧ Xn ∧ Z), . . ., (Xn | X1 ∧ . . . ∧ Xn−1 ∧ Z), and
(X1 ∧ . . .∧Xn | Z), respectively. The n+ 1-tuple (IX1 , . . . , IXn , IX1...Xn) has the
strong tree-interpolation property iff (IX1 ∧ . . . ∧ IXn

) =⇒ IX1...Xn
.

It is easy to show that if a binary interpolation algorithm guarantees the
strong tree-interpolation property, it also guarantees the weak tree-interpolation
property because Y =⇒ IY . We use the term tree interpolation property without
qualifiers when we refer to both its weak and strong versions.

Algorithms for solving linear systems in SMT solvers make use of the Simplex
algorithm [12] and are based on the Farkas’ lemma.

Lemma 1 (Farkas’ lemma). Let C ∈ Rm×n. Cx ≤ b is unsatisfiable if and
only if there exists a vector f ≥ 0 such that fᵀC = 0 and fᵀb < 0.

We refer to the vector f as the vector of Farkas coefficients. Given this vector it
is possible to immediately compute two interpolants:
Definition 6 (Farkas and dual Farkas interpolants in LRA [23]). Given
an interpolation instance (A |B) over a linear system S = Cx ≤ b and its Farkas
coefficients f , the Farkas interpolant for (A |B) is the inequality

IF := fᵀA(CAx− bA) ≤ 0,

and the dual Farkas interpolant for (A |B) is a negation of the Farkas interpolant
for (B |A):

IF := ¬ (fᵀB(CBx− bB) ≤ 0),
where fA and fB are the restrictions of f to the subsystems A and B, respectively.

Recently [6] introduced an algorithm to gain more control over the strength
of LRA interpolants. The underlying idea is to not directly sum the inequalities
in A-part, but instead split the sum into sub-sums. This yields an interpolant
that is a conjunction (decomposition) of possibly more than one component
of the Farkas interpolant. In the following, we formally define what type of
decomposition is suitable for interpolation instances.

Definition 7 (proper decomposition for interpolation [6]). Let S =
Cx ≤ b be a system of linear inequalities over a set of variables X = {x1, . . . ,xm}
and let L ⊆ X. Let w ≥ 0 be a vector such that all variables from L are elimi-
nated in wᵀCx. We say that a set of vectors Dec(wᵀCx, L) is a proper decom-
position for interpolation if it forms a decomposition of w, i.e.,

w =
∑

v∈Dec(wᵀCx,L)

v;

and for all v ∈ Dec(wᵀCx, L), (i) v ≥ 0 and (ii) all variables from L are
eliminated in vᵀCx.
6 This property appears in the literature under names generalized simultaneous ab-

straction [17] and symmetric interpolation [21].
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Definition 8 (decomposed interpolants and their duals [6]). Let (A |B)
be an interpolation instance in LRA, LA the local variables of A (those not
appearing in B), and f the vector of Farkas coefficients of the system. Let
{f1, . . . , fk} = Dec(fA

ᵀCAx, LA) be a proper decomposition. Then

ID =
k∧
i=1

fiᵀ(CAx− bA) ≤ 0

is a decomposed interpolant of size k for (A |B).
Similarly, for subsystem B with its local variables LB, if {f ′1, . . . , f ′m} =

Dec(fB
ᵀCBx, LB) then the dual decomposed interpolant for (A |B) is the nega-

tion of the decomposed interpolant for (B |A):

ID ≡ ¬

 m∧
j=1

f ′j
ᵀ(CBx− bB) ≤ 0


When the set of local variables is clear from the context we omit the second
argument of Dec. Note that trivial proper decomposition of size 1 always exists:
it is the Farkas interpolant.

Next, we illustrate the key difference between Farkas (IF) and decomposed
Farkas (ID) interpolants by an example that will serve as our running example.

Example 1. Consider S as the unsatisfiable conjunction of linear inequalities:

x1 + x2 ≤ 0
−x1 + x3 ≤ 0

}
X1

x1 + x4 ≤ 0
−x1 + x5 ≤ 0

}
X2

−x2 − x5 + x6 ≤ 0
}
Y

−x3 − x4 − x6 ≤ −1
}
Z,

where we will denote the inequalities by l1, . . . , l6, respectively. Consider the
following disjoint sets X1 = {l1, l2}, X2 = {l3, l4}, Y = {l5}, and Z = {l6} as
shown above. The unsatisfiability of S is witnessed by the Farkas coefficients
fᵀ = (1, 1, 1, 1, 1, 1). Let ItpF be the Farkas interpolation algorithm. Consider
interpolation instance (X1 ∧ X2 ∧ Y |Z), with fᵀXY = (1, 1, 1, 1, 1) that elim-
inate x1, x2, x5, the local variables of X1 ∧ X2 ∧ Y with respect to the rest
of S. The interpolant ItpF (X1 ∧ X2 ∧ Y |Z) is IF

XY = x3 + x4 + x6 ≤ 0.
Let ItpD be the decomposing Farkas interpolation algorithm. The interpola-
tion instance (X1 ∧ X2 ∧ Y |Z) admits a decomposition of fᵀXYCXY x as D =
{(1, 0, 0, 1, 1)ᵀ, (0, 1, 1, 0, 0)ᵀ} that eliminates the local variables x1, x2, x5. The
interpolant ItpD(X1 ∧ X2 ∧ Y |Z) = ID

XY = x6 ≤ 0 ∧ x3 + x4 ≤ 0 computed
with respect to this decomposition contains two conjuncts and differs from the
Farkas interpolant.
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3.1 Proper Labeling

We rely on resolution refutation that incorporates theory lemmas that are cre-
ated by the theory solver and get propagated to the SAT solver. As theory solver
provides a separate proof for each theory clause, we can compute an LRA in-
terpolant for the negation of each theory clause. Once these are obtained, the
final interpolant is computed using Pudlák’s propositional interpolation algo-
rithm [25].

The binary interpolation algorithms for linear real arithmetic discussed above
require that the theory atoms be placed into exactly one partition. The origin
of the partition is, however, the CNF partition, where it is common that atoms
(as opposed to clauses) belong to several partitions. This can lead to subtle
problems in the definitions and eventually implementations. We first illustrate
the problem with an example before defining proper labeling in Def. 9 that we
will use for resolving the problem.

Example 2. Consider the sets of clauses X = {a ≤ b, (a ≤ c) ∨ x}, Y = {b ≤ c,
(a ≤ c)∨y}, and Z = {x∨y}, and the theory clause cl := (a ≤ b)∨(b ≤ c)∨a ≤ c
required for the refutation of X ∧ Y ∧ Z. The atom a ≤ c can be considered a
part of both partitions X and Y when computing an interpolant for some binary
partitioning of the theory clause cl. However, the strong TI is not guaranteed if
we change the partition of a ≤ c between different binary interpolation instances.
For example, placing a ≤ c in Y while interpolating (X | Y ∧Z) for cl yields the
Farkas theory interpolant IF

X = a ≤ b. Placing a ≤ c in X while interpolating
(Y | X ∧ Z) and (X ∧ Y | Z) for cl gives IF

Y = b ≤ c, and IF
XY = ⊥. Clearly

using these interpolants violates the strong TI since a ≤ b ∧ b ≤ c 6=⇒ ⊥.

We define a general version of this proper labeling of the theory clauses and
argue that a fixed proper labeling must be used for a sequence of binary inter-
polation problems if tree interpolation property is to be guaranteed.

Definition 9 (proper labeling). Let X1, . . . , Xn be sets of clauses. We say
that X1 ∧ . . . ∧Xn is a partitioned CNF formula F and we say that a function
from atoms of F to partitions PL : Atoms(F)→ {1, . . . , n} is a proper labeling
if for each atom At it holds that PL(At) = i implies that there is a clause in Xi

containing At (or its negation).

Proper labeling is used in a resolution refutation of a partitioned CNF for-
mula to determine the partitioning of theory clauses and consequently the input
for theory interpolation algorithms. In the rest of the text we are going to as-
sume that a refutation of a partitioned CNF formula always comes with some
fixed proper labeling and we say that the refutation is properly labeled.

3.2 Tree Interpolation Property in Farkas Interpolation Algorithm

For the Farkas interpolation algorithm we first state and prove a simplified ver-
sion of Def. 5 limited to three partitions and then generalize the result for an
arbitrary number of partitions by an iterative application of Theorem 1.
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Theorem 1 (strong TI in Farkas interpolation). Let X ∧ Y ∧ Z be an
unsatisfiable partitioned CNF formula in LRA and let P be its properly labeled
resolution refutation. Let ItpP+F denote the interpolation algorithm that uses
Pudlák’s algorithm for the propositional part and Farkas algorithm for the theory
clauses. Let IX , IY , and IXY be the binary interpolants ItpP+F (X |Y ∧ Z),
ItpP+F (Y |X ∧ Z), and ItpP+F (X ∧ Y |Z), respectively. Then (IX ∧ IY ) =⇒
IXY .

Proof. We show using structural induction that for any clause cl in the refutation
P and for all possible partial interpolants, property (IX ∧ IY ) =⇒ IXY holds.

Since a leaf in P could either be a source clause or a theory clause, we study
each case separately. The proof has two steps: base case, and inductive step. The
base case itself consists of two steps, depending on the nature of leaf clauses.
Both the inductive step and the base case for source clauses are shown in [29]
and are therefore given here as a sketch. Their full proofs are in Appendix A.
Base case (source clause, sketch) We can show one-by-one for the three cases
cl ∈ X, cl ∈ Y , and cl ∈ Z that the strong tree-interpolation property holds. See
proof of Lemma 2 in Appendix A.
Base case (theory clause). Let cl ≡ ¯̀1 ∨ · · · ∨ ¯̀

n from P be a theory clause in
LRA, S the system of linear inequalities corresponding to ¬cl, and f the vector
of Farkas coefficients witnessing the unsatisfiability of S.

As refutation P is properly labeled (Def. 9), each literal `i is uniquely assigned
to either X, Y or Z. The LRA interpolants for the theory clause computed for
the binary interpolation instances (X |Y ∧ Z), (Y |X ∧ Z), and (X ∧ Y |Z) are
thus IF

X = fᵀX(CXx−bX) ≤ 0, IF
Y = fᵀY (CY x−bY ) ≤ 0, and IF

XY = fᵀXY (CXY x−
bXY ) ≤ 0, respectively, where we denote by XY the subsystem corresponding
to X ∧ Y . By construction, we have fᵀXY (CXY x − bXY ) = fᵀX(CXx − bX) +
fᵀY (CY x − bY ). It follows that if fᵀX(CXx − bX) ≤ 0 and fᵀY (CY x − bY ) ≤
0, then also fᵀXY (CXY x − bXY ) ≤ 0, which is exactly the desired result that
IF
X ∧ IF

Y =⇒ IF
XY .

Inductive step (inner node, sketch). By case analysis on the different binary
interpolations in the nodes of the refutation P it is possible to show that each
partial interpolant associated with the resolvent has TI (see proof of Lemma 3
in Appendix A). ut

The result of Theorem 1 can be generalized to prove that ItpP+F guarantees
strong (and consequently weak) TI.

Theorem 2 (generalizing strong TI in Farkas interpolation). Let X1 ∧
. . .∧Xn∧Z, n ≥ 2, be an unsatisfiable partitioned CNF formula in LRA and let P
be its properly labeled resolution refutation. Let ItpP+F denote the interpolation
algorithm that uses Pudlák’s algorithm for the propositional part and Farkas
algorithm for the theory clauses. Let IX1 , . . ., IXn

, and IX1...Xn
be the binary

interpolants ItpP+F (X1 |X2∧ . . .∧Xn∧Z), . . ., ItpP+F (Xn |X1∧ . . .∧Xn−1∧Z)
and ItpP+F (X1∧ . . .∧Xn |Z), respectively. Then (IX1 ∧ . . .∧IXn

) =⇒ IX1...Xn
,

i.e., the tuple (IX1 , . . . , IXn , IX1...Xn) has the strong tree-interpolation property.
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Proof. We prove the theorem by induction. For the base case with n = 2 we
may apply Theorem 1. Assume now that n ≥ 3, and the theorem holds for n−1.
Using the induction hypothesis for the tuple (X1, . . . , Xn−1, Xn∧Z) we get that

IX1 ∧ . . . ∧ IXn−1 =⇒ IX1...Xn−1 .

By applying Theorem 1 again for (X1 ∧ . . . ∧Xn−1, Xn, Z) we obtain

IX1...Xn−1 ∧ IXn
=⇒ IX1...Xn

.

Combining these two implications yields the desired result IX1 ∧ . . . ∧ IXn
=⇒

IX1...Xn
. ut

By Theorem 2, the interpolation algorithm ItpP+F guarantees the strong TI.
We can use the technique described in Remark 1 to obtain a tree interpolation
algorithm TItpItpP +F for computation of tree interpolants.

Corollary 1. TItpItpP +F is a tree interpolation algorithm, that is, it computes
tree interpolants.

Note that while the result that TItpItpP +F is a tree interpolation algorithm is
known from [7], our result that ItpP+F guarantees the strong TI is new to the
best of our knowledge.

3.3 A Tree interpolation Algorithm based on Decomposing Farkas
Interpolation

In this section we consider the decomposing Farkas interpolation algorithm of [6],
and show that if the decompositions satisfy a certain property, then the algorithm
guarantees the tree interpolation property. We also show that if the condition is
not satisfied, the tree interpolation property is not guaranteed.

A central difference between decomposing Farkas interpolation algorithm and
Farkas interpolation algorithm is that the former is a template rather than a
concrete algorithm. In practice this means that the algorithm is parameterized
by the decomposition of the (restricted) vector of Farkas coefficients and can
yield different interpolants for different decompositions. For tree interpolation
one wants to relate interpolants computed by multiple binary interpolation in-
stances over the same proof. Therefore also the decompositions need to respect
this relation for the binary interpolation instances. We first show that tree inter-
polation property is not guaranteed in general for the decomposed interpolants,
and then define a constraint on the decompositions that guarantees the tree
interpolation property.

Example 3. Consider our running example of Ex. 1 and let X := X1∧X2. Using
the decomposing Farkas interpolation algorithm ItpD, the interpolation instance
(X |Y ∧Z) admits different non-trivial decompositions of the restricted vector of
Farkas coefficients fᵀX = (1, 1, 1, 1), for example D1 = {(1, 0, 0, 1)ᵀ, (0, 1, 1, 0)ᵀ}
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and D2 = {(1, 1, 0, 0)ᵀ, (0, 0, 1, 1)ᵀ}. Both D1 and D2 successfully eliminate the
single X-local variable x1, as required. The outcome of ItpD(X |Y ∧Z) using D1
is I1

X = x2 + x5 ≤ 0 ∧ x3 + x4 ≤ 0. When using D2, the resulting interpolant is
I2
X = x2 + x3 ≤ 0 ∧ x4 + x5 ≤ 0. Consider (X ∧ Y |Z) that admits only a single

non-trivial decomposition of fᵀXY = (1, 1, 1, 1, 1) that eliminates XY -local vari-
ables x1, x2, x5: D3 = {(1, 0, 0, 1, 1)ᵀ, (0, 1, 1, 0, 0)ᵀ}. The interpolant computed
with respect to this decomposition is ItpD(X∧Y |Z) = IXY = x6 ≤ 0∧x3+x4 ≤
0. Consider (Y |X ∧ Z) where there is no opportunity for decomposition since
its first part consists of the single inequality l5. The computed interpolant is
ItpD(Y |X ∧ Z) = IY = −x2 − x5 + x6 ≤ 0. We can easily see that the strong
tree-interpolation property (Def. 5) is satisfied for I1

X : I1
X ∧ IY =⇒ IXY . How-

ever, the property is not satisfied for I2
X , since I2

X ∧ IY 6=⇒ IXY . Since in
this example IY = Y , the same is true for the weak tree-interpolation property
(Def. 2).

Intuitively, the tree interpolation property might not hold when the subsys-
tem’s decomposition (D2) does not agree with its supersystem’s decomposition
(D3) (when restricted to the subsystem). More generally, the inequalities re-
sulting from (the restriction of) supersystem’s decomposition must be logically
covered by the inequalities of subsystem’s decomposition. The following mono-
tonicity condition captures this formally.

Definition 10 (monotonic decompositions). Let S = Cx ≤ b be an un-
satisfiable system of linear inequalities and let (A1 |B1), . . . , (An |Bn) be a set of
binary interpolation problems over S. Let ItpD denote the decomposing Farkas
interpolation algorithm (Def. 8). We say that ItpD uses monotonic decomposi-
tions if whenever Ai ⊆ Aj, then for all vectors w ∈ Dec(fᵀAj

CAj
x, LAj

) there
exists U ⊆ Dec(fᵀAi

CAi
x, LAi

) such that
∑

u∈U uᵀ(CAi
x − bAi

) ≤ 0 =⇒
wᵀ
Ai

(CAi
x− bAi

) ≤ 0, where wAi
is the restriction of w to the subsystem Ai.

Now we can proceed to prove that ItpD can guarantee the tree interpolation
property.

Theorem 3 (strong TI in decomposing Farkas interpolation). Let X ∧
Y ∧ Z be an unsatisfiable partitioned CNF formula in LRA and let P be its
properly labeled resolution refutation. Let ItpP+D denote the interpolation algo-
rithm that uses Pudlák’s algorithm for the propositional part and decomposing
Farkas algorithm for the theory clauses. Let IX , IY , and IXY be the binary
interpolants ItpP+D(X |Y ∧Z), ItpP+D(Y |X ∧Z), and ItpP+D(X ∧Y |Z), re-
spectively. If ItpD uses monotonic decompositions for every theory clause in P
then (IX ∧ IY ) =⇒ IXY .

Proof (by structural induction). We only show the proof of the implication for
a leaf with a theory clause. In the remaining cases the proof is the same as that
of Theorem 1.

Let cl be a theory clause in LRA and let S = Cx ≤ b be the system of
linear inequalities corresponding to ¬cl. Let f denote the Farkas coefficients
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witnessing the unsatisfiability of S. Note that the proper labeling of P (recall
Def. 9) partitions cl into three disjoint sets of literals X,Y, Z. Let DecX , DecY
and DecXY denote the decompositions Dec(fᵀXCXx, LX), Dec(fᵀY CY x, LY ), and
Dec(fᵀXYCXY x, LXY ), where XY denotes the subsystem X ∧ Y . We need to
prove that( ∧

p∈DecX

pᵀ(CXx− bX) ≤ 0
)
∧

( ∧
q∈DecY

qᵀ(CY x− bY ) ≤ 0
)

=⇒

( ∧
r∈DecXY

rᵀ(CXY x− bXY ) ≤ 0
)

It is enough to fix r ∈ DecXY and prove that rᵀ(CXY x−bXY ) ≤ 0 is implied
by the antecedent. As the subsystem XY consists of two disjoint subsystems X
and Y , it holds that rᵀ = (rᵀX rᵀY ), bᵀ

XY = (bᵀ
X bᵀ

Y ) , Cᵀ
XY = (Cᵀ

X Cᵀ
Y ) and

rᵀX(CXx−bX)+rᵀY (CY x−bY ) = rᵀ(CXY x−bXY ). Consequently, it is enough
to prove that ∧

p∈DecX

pᵀ(CXx− bX) ≤ 0 =⇒ rᵀX(CXx− bX) ≤ 0

and ∧
q∈DecY

qᵀ(CY x− bY ) ≤ 0 =⇒ rᵀY (CY x− bY ) ≤ 0

We only show how to prove the first implication, the second one is analogous.
According to our assumption, ItpD uses monotonic decompositions. Hence for
r ∈ DecXY there exists U ⊆ DecX such that

∑
u∈U uᵀ(CXx − bX) ≤ 0 =⇒

rᵀX(CXx− bX) ≤ 0. This is exactly what we need to finish the proof since∧
p∈DecX

pᵀ(CXx− bX) ≤ 0 =⇒
∧

u∈U
uᵀ(CXx− bX) ≤ 0 =⇒

∑
u∈U

uᵀ(CXx− bX) ≤ 0

=⇒ rᵀX(CXx− bX) ≤ 0.

ut

We first generalize the result of Theorem 3 to an arbitrary number of parti-
tions, then discuss how monotonic decompositions can be achieved, and finally
show that tree interpolants can be computed using the decomposing Farkas in-
terpolation algorithm.

Theorem 4 (generalizing strong TI in decomposing Farkas interpo-
lation). Let X1 ∧ . . . ∧ Xn ∧ Z, n ≥ 2, be an unsatisfiable partitioned CNF
formula in LRA and let P be its properly labeled refutation. Let ItpP+D denote
the interpolation algorithm that uses Pudlák’s algorithm for the propositional
part and decomposing Farkas algorithm for the theory clauses. Let IX1 , . . .,
IXn , and IX1...Xn be the binary interpolants ItpP+D(X1 |X2 ∧ . . . ∧ Xn ∧ Z),
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. . ., ItpP+D(Xn |X1 ∧ . . . ∧ Xn−1 ∧ Z) and ItpP+D(X1 ∧ . . . ∧ Xn |Z), respec-
tively. If ItpD uses monotonic decompositions for every theory clause in P, then
(IX1 ∧ . . . ∧ IXn) =⇒ IX1...Xn , i.e., the tuple (IX1 , . . . , IXn , IX1...Xn) has the
strong tree-interpolation property.

Proof. The proof is done by induction, the same way as the proof of Theorem 2,
here relying on Theorem 3. ut

To show how monotonic decompositions can be achieved, we first introduce
a notion of decomposition strategy that determines the decompositions used for
the related interpolation instances.

Definition 11 (decomposition strategy). Let S be an unsatisfiable set of
inequalities, f its witnessing vector of Farkas coefficients, and 〈(V,E), F 〉 the re-
lated tree interpolation instance. The tree interpolation instance defines a set of
binary interpolation instances (F (subtree(v)) |F (subtree(v))) for each v ∈ V .
A decomposition strategy σ assigns to each vertex v ∈ V some decomposi-
tion Dec(fᵀSv

CSv
x, LSv

), where Sv = F (subtree(v)). We denote the decomposing
Farkas interpolation algorithm using strategy σ as ItpD(σ).

An example of a decomposition strategy that guarantees monotonic decom-
positions is a gradual decomposition. The idea is to first decompose the larger
subsystem and then, instead of computing independent decompositions for its
subsystems, to decompose only elements of the decomposition of the larger sys-
tem.

Definition 12 (gradual decomposition). Given an unsatisfiable set of in-
equalities S, its witnessing vector of Farkas coefficients f , and a tree interpolation
instance 〈(V,E), F 〉, a gradual decomposition GDec is a decomposition strategy
defined inductively on 〈(V,E), F 〉 from root to leaves as

1. GDec(vr) = {f} for root vr,
2. otherwise

GDec(v) =
⋃

w∈GDec(par(v))

Dec(wᵀ
Sv
CSv

x, L(Sv)),

where par(v) is the (unique) parent of v, and Sv = F (subtree(v)).

Intuitively, the gradual decomposition in a given node v decomposes each ele-
ment w of the v’s parent’s decomposition separately, instead of independently
decomposing fSv

, the restriction of the Farkas coefficients to the subsystem of
v’s subtree. Figure 1 compares the gradual decomposition and independent de-
composition on the system from Ex. 3. It shows the tree structure of the three
partitions X, Y , Z, and possible decompositions of the vector of Farkas coeffi-
cients for the corresponding binary interpolation problems (X |Y ∧Z), (X∧Y |Z)
and (X∧Y ∧Z | >). The solid gray arrows labeled with a subsystem represent the
restriction to that subsystem and the dashed arrows represent decomposition.
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Z
GDec(Z) = {(1, 1, 1, 1, 1, 1)|} = D0

f| = (1, 1, 1, 1, 1, 1)

(1, 1, 1, 1, 1)|

Y GDec(Y ) = {(1, 0, 0, 1, 1)|, (0, 1, 1, 0, 0)|} = D3

(1, 0, 0, 1)| (0, 1, 1, 0)|

X GDec(X) = {(1, 0, 0, 1)|, (0, 1, 1, 0)|} = D1

X

XY

X

Restriction

Decomposition

Z
f| = (1, 1, 1, 1, 1, 1)

{(1, 1, 1, 1, 1, 1)|} = D0

f|XY = (1, 1, 1, 1, 1)

Y {(1, 0, 0, 1, 1)|, (0, 1, 1, 0, 0)|} = D3

f|X = (1, 1, 1, 1)

X {(1, 1, 0, 0)|, (0, 0, 1, 1)|} = D2

XY

X

Fig. 1: A gradual decomposition (left) versus an independent decomposition (right).

The decompositions corresponding to vertices Z and Y (D0 and D3) are the
same in both cases. The difference manifests when computing the decomposi-
tion corresponding to vertex X. On the left, gradual decomposition ensures that
the decomposition D1 agrees with D3 by trying to decompose each (restricted)
element of D3 separately. In this case no further decomposition is possible, thus
D1 is equal to D3 restricted to the subsystem X. On the right, if gradual decom-
position is not used, then the decomposition corresponding to vertex X does
not take into account what happens at X’s parent Y and independently de-
composes the restricted vector of Farkas coefficients fX . This can result in a
different decomposition D2 which, however, violates the monotonicity condition
from Def. 10 with respect to the decomposition D3.
Theorem 5. The algorithm TItpItpP +D(GDec), where decomposing Farkas inter-
polation algorithm uses gradual decomposition, is a tree interpolation algorithm,
that is, it computes tree interpolants.

Proof. Using the idea described in Remark 1, given a tree interpolation instance
from Def. 3 and a properly labeled refutation P of

∧
v∈V F (V ), we define

τι(v) := ItpP+D(GDec)(F (subtree(v)) |F (subtree(v))).

Note that the proper labeling of P recreates the tree-structured partitioning
of every theory clause in P, which is required by the definition of the gradual
decomposition.

The first and third conditions of tree interpolant automatically follow from
our definition of τι. The second condition follows from Theorem 4 since gradual
decomposition GDec ensures that the decompositions are monotonic. To see this,
recall from the definition of monotonic decomposition (Def. 10) that for each
v ∈ V , its parent p, and for each w ∈ GDec(p), there must exist U ⊆ GDec(v)
such that

∑
u∈U uᵀ(CSv

x − bSv
) ≤ 0 =⇒ wᵀ

Sv
(CSv

x − bSv
) ≤ 0. From the

definition of GDec it follows that U = Dec(wᵀ
Sv
CSv

x, L(Sv)) is the witnessing
subset of GDec(v). ut
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Note that gradual decomposition is not a concrete strategy, but rather a
strategy scheme. It leaves freedom for choosing a decomposition in a particular
vertex as long as the decomposition respects the parent’s decomposition. One
particular instance of a gradual decomposition is trivial gradual decomposition
Triv that always uses the trivial decomposition of size 1. Since trivial decomposi-
tions result in Farkas interpolants, it follows that TItpItpP +D(Triv) ≡ TItpItpP +F .

4 Negative Results for the Algorithms for Flexible, Dual
Farkas and Dual Decomposed Interpolation

We prove three smaller, negative results on binary interpolation algorithms that
cannot be used as a basis of a tree interpolation algorithm. In particular, we
show that the binary interpolation algorithms ItpF and ItpD discussed in Sec. 3,
and an algorithm from [1] that we denote by Itp(α), do not guarantee TI.

We first formally define the flexible interpolants from [1] in our notation.
Definition 13 (flexible Farkas interpolant [1]). Let (A |B) be an interpo-
lation instance from a system Cx ≤ b. Then the interpolants IF and IF are,
respectively, fᵀA(CAx − bA) ≤ 0 and fᵀB(CBx − bB) > 0. The flexible Farkas
interpolant I(α) is defined as fᵀACAx + fᵀBbB − αfᵀABbAB ≤ 0 where 0 < α ≤ 1.

Flexible interpolants are useful in practice as they provide a more fine-grained
approach than the Farkas and dual Farkas algorithms.7 However, they cannot
be used in general as a basis for a tree interpolation algorithm:
Theorem 6. The flexible Farkas interpolation algorithm Itp(α) for 0 < α < 1
does not guarantee the strong nor the weak tree-interpolation property.

Proof. Consider our running example from Ex. 1 and four binary interpolation
instances (X1 |X2 ∧Y ∧Z), (X2 |X1 ∧Y ∧Z), (Y |X1 ∧X2 ∧Z), and (X1 ∧X2 ∧
Y |Z). Let IX1 , IX2 , IY , and IXY denote the interpolants from these interpolation
instances. The strong tree-interpolation property is formulated as

IX1 ∧ IX2 ∧ IY =⇒ IXY (1)

and the weak tree-interpolation property is formulated as

IX1 ∧ IX2 ∧ Y =⇒ IXY (2)

.
The flexible Farkas interpolants for the interpolation instance are

I
(α)
X1

= (x2 + x3 ≤ 1− α) I
(α)
X2

= (x4 + x5 ≤ 1− α)
I

(α)
Y = (−x2 − x5 + x6 ≤ 1− α) I

(α)
XY = (x3 + x4 + x6 ≤ 1− α)

The implications of Eq. (1) and Eq. (2) are both falsified with assignment
x2 7→ 0, x3 7→ 1− α, x4 7→ 1− α, x5 7→ 0, x6 7→ 0 for any 0 < α < 1. ut
7 Farkas interpolation algorithm can be seen as the special case Itp(1), but dual Farkas

interpolation algorithm is not a special case of the flexible interpolation algorithm.
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We next show that also the dual Farkas interpolation algorithm cannot be
used as a basis for a tree interpolation algorithm.

Theorem 7. The dual Farkas interpolation algorithm does not guarantee the
strong nor the weak tree-interpolation property.

Proof. Again in Ex. 1, the dual Farkas interpolants are computed as

IF
X1 = (x2 + x3 < 1) IF

X2 = (x4 + x5 < 1)
IF

Y = (−x2 − x5 + x6 < 1) IF
XY = (x3 + x4 + x6 < 1)

The implications of Eq. (1) and Eq. (2) are both falsified with assignment x2 7→
0, x3 7→ 0.5, x4 7→ 0.5, x5 7→ 0, x6 7→ 0. ut

From Theorem 7 we immediately get the following result.

Corollary 2. The dual decomposing Farkas interpolation algorithm ItpDdoes
not have the strong nor the weak tree-interpolation property.

Proof. The interpolants computed by dual Farkas interpolation algorithm ItpF are
special cases of dual decomposed interpolants using trivial decompositions. Since
Eq. (1) and Eq. (2) are not valid for ItpF , they are also invalid for ItpD. ut

5 Experimental Evaluation

This section provides experimental evidence on the usefulness of the decom-
posed Farkas tree interpolants obtained using the gradual decomposition algo-
rithm from Sec. 3.3. In the experiments we use the SMT solver OpenSMT [20]
for solving and interpolation. The solver implements a wide range of interpo-
lation algorithms, including in particular both Farkas and decomposing Farkas
algorithms [6]. These implementations allowed us to manually perform the re-
quired experiments also for gradual decomposition. In the following, for conve-
nience, we use ID and IF for the tree interpolant resulting from the algorithm
TItpItpP +D(GDec) and TItpItpP +F , respectively.

To obtain benchmarks we used the tool FreqHorn [14] to create bounded
model checking (BMC) [4] formulas from the Horn clauses available at https:
//github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts. We then
applied both TItpItpP +D(GDec) and TItpItpP +F to the entire BMC formulas. In
total the benchmarks consist of 514 LRA UNSAT formulas. We chose these
benchmarks since they provide a natural tree structure that can be used by the
gradual decomposition, the interpolants often have many non-trivial decompo-
sitions (up to 965), and are relatively big (up to 12k LoC).

Our goal in the experiments is to study whether the ID are genuinely differ-
ent from the IF . We chose two example measures for difference of interpolants:
(i) the number of top-level conjuncts, and (ii) the number of distinct LRA atoms.
In (i), the number of top-level conjuncts is a measure of generalizability of the
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Fig. 2: Comparing decomposed Farkas and Farkas tree interpolants w.r.t the number
of conjuncts (left) and theory atoms (right) in the interpolants.

interpolant. In some applications (see, for example, [14, 22]) it is useful to fur-
ther abstract an over-approximation, and in case the interpolant has several
conjuncts, an easy way to achieve this is by dropping some of them. More tech-
nically, for formula f , we define this measure as N∧(f), where N∧(f) := 1 if
f is not a conjunction at the top-level, and N∧(f) := n if f is of the form
A1∧ . . .∧An. In (ii), the number of distinct theory atoms indicates the complex-
ity of the interpolant in the sense that an instance with more atoms represents a
larger Boolean search space. Technically, we define this as the size of the largest
subset of Atoms(f) containing only theory atoms.

Fig. 2 (left) shows the number of top-level conjuncts for IF and ID as a scatter
plot. In 53% of the benchmarks ID have strictly more conjuncts in comparison
to IF . Excluding the cases where the number of top-level conjuncts is the same
in IF and ID, 91% of benchmarks (270 vs. 25) have strictly more conjuncts in
ID. While a non-negligible number of instances (219) have the same number of
conjuncts in IF and ID, the majority of the instances are different.

Fig. 2 (right) compares the number of unique LRA atoms in IF and ID. In
almost one-third of the cases ID contains fewer atoms, suggesting that the de-
compositions identify semantic structure that is shared between the LRA inter-
polation queries. We want to emphasize that this is, to the best or our knowledge,
a new result that we expect to have practical impact. Based on the numerical
results, and contrary to what the figure suggests, there are typically more atoms
in ID. Concretely, out of 514 benchmarks, 63% have fewer theory atoms in IF .
This is in particular because in 57 benchmarks there are two atoms in ID and
one atom in IF , all represented by the single point (2,1) in the plot. This is
somewhat expected, since on a single LRA interpolation query ItpD is guaran-
teed to give at least as many atoms as ItpF . In addition, in no case the number
of theory atoms is the same in IF and ID, giving a strong indication that the
interpolation algorithms differ in practice.

In conclusion, the results imply that a portfolio of the interpolation algo-
rithms TItpItpP +D(GDec) and TItpItpP +F provides a range of interpolants that
are substantially different from those available using only TItpItpP +F .
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6 Conclusion

We identified five classes of interpolation systems for LRA based on Farkas’
lemma, and investigated whether and under what conditions they can be used
for tree interpolation. In addition to strengthening a known positive result for
the Farkas algorithm, we showed that also the binary decomposing Farkas inter-
polation algorithm can be used as a basis for tree interpolation by using a novel
method called gradual decomposition. We also showed that TI is not guaranteed
by the dual Farkas, the dual decomposing Farkas, and a flexible variant of the
Farkas interpolation algorithms.

We showed experimentally, based on two different measures, that Farkas and
decomposed Farkas interpolants are often different. In addition, interestingly,
it is not uncommon that the decomposed interpolants have fewer theory atoms
than the Farkas interpolants, and that it is more common that the decomposed
interpolants have more conjuncts also at the top-level of the formulas compared
to Farkas interpolants. The existence of the decomposing Farkas interpolation
algorithm for tree interpolation enables a liberty in the interpolant choice previ-
ously unavailable in the field. We are hopeful that the decomposed interpolants
will become a powerful component of interpolation portfolios resulting in more
scalable and general solving. In a future work we plan to implement the gradual
decomposition in a more automatic way and experiment with the implementa-
tion in a more applied setting.
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Appendix A

In this appendix we give auxiliary material for more formal treatment of the
connection between propositional and theory interpolation. The propositional
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resolution rule state that an assignment satisfying the clauses cl+∨p and cl−∨p
also satisfies cl+ ∨ cl−.

Our propositional interpolation works on a refutation of a formula A ∧ B.
We denote atoms of A and B as Atoms(A,B). Note that each At ∈ Atoms(A,B)
may appear only in A, only in B, or in both conjuncts; Similarly to the notation
in [11], we assign a color among {a, b, ab} independently to each At, depending
on whether At occurs only in A, only in B, or in both, respectively.

Table 2 describes the Pudlák interpolation algorithm, where the notation p:ε
indicates that a literal p has color ε.

Table 2: Pudlák’s interpolation algorithm

Source clause: C [I]

I =
{
⊥ if C ∈ A
> if C ∈ B

Inner node: cl+ ∨ p:ε [I+] cl− ∨ p:ε [I−]
cl+ ∨ cl− [I]

I =

 I+ ∨ I− if ε = a
I+ ∧ I− if ε = b
(I+ ∨ p) ∧ (I− ∨ p) if ε = ab

Lemma 2 (source clause, base case). The strong tree-interpolation property
holds for Pudlák’s interpolation algorithm ItpP for source clauses.

Proof. Let cl be a source clause. There are three cases: cl ∈ X, cl ∈ Y , or
cl ∈ Z. We consider the three interpolation instances (X |Y ∧ Z), (Y |X ∧ Z),
and (X ∧ Y |Z), and check whether TI holds, i.e., whether

ItpP (X |Y ∧ Z) ∧ ItpP (Y |X ∧ Z) =⇒ ItpP (X ∧ Y |Z). (3)

The relevant part in the algorithm is shown in Table 2 (left).

– cl ∈ X: When cl ∈ X, using Pudlák’s interpolation algorithm and substitut-
ing the interpolants in Eq. (3), we have (⊥ ∧>) =⇒ ⊥, which is valid.

– cl ∈ Y : The case cl ∈ Y is symmetric to the case when cl ∈ X, and thus
valid.

– cl ∈ Z: When cl ∈ Z, we have again by substiting in Eq. (3) (>∧>) =⇒ >,
which is valid.

ut

Lemma 3 (inner node). Let p be a variable. In refutation P, if partial inter-
polants for nodes cl+∨p and cl−∨ p̂ satisfy the strong tree-interpolation property,
then the partial interpolant for cl+∨cl− satisfy the strong tree-interpolation prop-
erty.

Proof. We show that for all resolvents in refutation P, the implication (IX ∧
IY ) =⇒ IXY holds, where IX = (X |Y ∧ Z), IY = (Y |X ∧ Z), and IXY =
(XY |Z).
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we consider a node cl+ ∨ cl− representing resolution over a variable p with
parent nodes p∨cl+ and p̄∨cl−. From the inductive hypotheses, we have partial
interpolants I+

X , I+
Y , and I+

XY for the node p∨cl+ so that (I+
X∧I

+
Y ) =⇒ I+

XY and
partial interpolants I−X , I−Y , and I−XY for the node p̄∨ cl− so that (I−X ∧ I

−
Y ) =⇒

I−XY .
We consider different cases of coloring of p. Depending on presence of p in the

three partitions, i.e., X, Y , and Z, and also depending on interpolation instances
(X |Y ∧ Z), (Y |X ∧ Z), and (X ∧ Y |Z), p is colored a, b, or ab (Table 3).

Table 3: Coloring of variable p for each partial interpolant.

appearance
of p

class of p for each partial interpolant
IX IY IXY

X a b a
Y b a a
Z b b b

X ∩ Y ab ab a
X ∩ Z ab b ab
Y ∩ Z b ab ab

X ∩ Y ∩ Z ab ab ab

In case of p ∈ X, based on Pudlák’s algorithm 2, IX ≡ I+
X ∨ I

−
X , IY ≡

I+
Y ∧ I

−
Y , IXY ≡ I+

XY ∨ I
−
XY .

Using the inductive hypothesis, we have ((I+
X ∨ I

−
X) ∧ I+

Y ∧ I
−
Y ) =⇒ (I+

XY ∨
I−XY ), which is the required claim (IX ∧ IY ) =⇒ IXY . The case p ∈ Y is
symmetric.

In case of p ∈ Z, we have IX ≡ I+
X∧I

−
X , IY ≡ I+

Y ∧I
−
Y , IXY ≡ I+

XY ∧I
−
XY .

Using the inductive hypothesis, we have (I+
X ∧ I

−
X ∧ I

+
Y ∧ I

−
Y ) =⇒ (I+

XY ∧ I
−
XY ),

which is the required claim (IX ∧ IY ) =⇒ IXY .
In case of p ∈ X ∩Y ∩Z, using sel(p, P,Q) as a shortcut for (p∨P )∧ (p̄∨Q),

we get: IX = sel(p, I+
X , I

−
X), IY = sel(p, I+

Y , I
−
Y ), IXY = sel(p, I+

XY , I
−
XY ).

Using the inductive hypothesis and considering both possible values of p, we
have (sel(p, I+

X , I
−
X)∧ sel(p, I+

Y , I
−
Y )) =⇒ sel(p, I+

XY , I
−
XY ), which is the desired

claim (IX ∧ IY ) =⇒ IXY . The other cases where p ∈ X ∩ Y or p ∈ X ∩ Z or
p ∈ Y ∩Z are subsumed by this case as (P ∧Q) =⇒ sel(p, P,Q) =⇒ (P ∨Q).

ut
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