
PINCETTE – Validating Changes and Upgrades in Networked Software

Hana Chockler

IBM, Haifa
Giovanni Denaro

University of Milano-Bicocca
Meijia Ling

University of Oxford
Grigory Fedyukovich

USI, Lugano
Antti E. J. Hyvrinen

USI, Lugano

Leonardo Mariani

University of Milano-Bicocca
Ali Muhammad

VTT
Manuel Oriol

ABB Zürich
Ajitha Rajan

University of Oxford
Ondrej Sery

USI, Lugano
Natasha Sharygina

USI, Lugano

Michael Tautschnig

University of Oxford

Abstract—Networked control systems ensure today’s depend-
ability of essential infrastructure such as water, electricity and
transportation. Over a life cycle of tens of years, maintenance
upgrades of the software running these control systems must
not introduce new software errors or otherwise break existing
functionality. The EU FP7 project PINCETTE addresses this
challenge by employing a combination of static and dynamic
software verification tools. The changes between versions are
used both as guidance for improving efficiency of software
verification, and also to define new notions of correctness. We
report on current progress and initial validation results by our
industrial partners.

Keywords-Software validation and verification; software test-
ing; change impact analysis; run-time monitoring; model
checking; incremental software development

I. INTRODUCTION

In an increasingly technology-dependent world, the re-

liability of networked systems in complex infrastructures

such as water, electricity, transport and communication is

vital. These networked systems, which monitor and control

complex processes, require upgrades for maintenance and

software enhancement. However, upgrades can introduce

software errors, lead to the loss of certain existing function-

alities and create incompatibilities between the older and

newer versions. Detecting errors using test suites is time

consuming, expensive, and unreliable. Yet in safety-critical

applications such as aerospace, nuclear reactors and medical

devices etc., introduction of errors may be fatal.
Currently, the procedure for handling software changes

and upgrades in industrial settings requires an expensive

revalidation of the whole system. Consequently, the cost

of this validation dominates the maintenance costs of the

software – with an estimate of 40% to 70% of the life-

cycle costs [1]. In some cases, this means that changes are

not checked thoroughly because of the high cost of full

revalidation, hence potentially introducing new errors into

the system design. A typical answer of a software provider

on the process of understanding the impact of changes

is “Normally [we] understand the impact of changes by

difference between code releases or simply based on the ex-

perience of the engineer managing the code.” This situation

arises because the state-of-the-art testing and validation tools

are not optimized to validate system changes and upgrades,

but instead focus on a single program version only. The

risks and cost associated with upgrades leads to conservative

attitudes towards technological advancements, resulting in

systems performing below acceptable levels.

The goal of PINCETTE is to produce an automated

system of localised verification via a combination of static

and dynamic techniques. We aim at automatically detecting,

localising and repairing program bugs, resulting in improve-

ments in software reliability and reduction in maintenance

costs. The demand of such a solution for validating upgrades

is increasing as the scale and complexity of networked

systems increase. Improvements in the reliability and cost-

effectiveness of software upgrades would allow large-scale

infrastructures such as the national grid and other mission-

critical software [2] to confidently apply upgrades and

explore the potential of innovations.

II. METHODOLOGY

PINCETTE uses a combination of methodologies—static,

dynamic and hybrid—and associated technologies to identify

the impact of changes.

There are many static analysis and formal verification

based tools for verification of software (see [3] for a full

survey on automated formal software verification). The most

relevant technique to PINCETTE is Counterexample Guided

Abstraction Refinement (CEGAR) [4]. In CEGAR, an initial

coarse abstraction of the system is iteratively refined, based

on invalid counterexamples seen in prior model checking

runs. Eventually either an abstraction proves the correctness

of the system or a valid counterexample is found. CEGAR is

implemented in software model checkers such as SLAM [5],

BLAST [6], ComFoRT [7], or SATABS [8]. It proved to be

successful in detecting errors in industrial software.

Dynamic analysis is the analysis of the properties of

a running program [9]. Dynamic analysis techniques have

been used since the early seventies, initially mostly for

performance analysis and debugging, and later for analyzing

various properties for different purposes.

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.72

461

�������		
��
��
�������	�������

��	
��������	������ 	��

!�
����������	��"�	�#��

!$ ������		
��
�		
����	��% �����

&$'��#��		
��
�(�)��#$ ������		
���	��

% �������	�'� �#�*��������

�
�������	��"�	�#�

���� ���� +���

(�,������ ���
-�	������������+����

Figure 1. Overview of collaboration and tools

The combination of static and dynamic analysis tech-

niques is an interesting field not fully explored yet. So

far, static and dynamic analyses have developed as separate

research domains: static analysis analyzes all possible pro-

gram executions; dynamic analysis instruments the program

and collects information about its executions as it runs.

Traditionally, static analysis sacrifices precision to maintain

soundness by overapproximating the set of real behaviours,

whereas dynamic analysis is precise because it operates

on real executions, however the results may not hold for

all executions. Thus, static and dynamic analyses have

complementary strengths and weaknesses [10].

Early work inspired by duality between dynamic and static

analysis was dynamic invariant detection [11]. It led to a

work that integrated dynamic detection and static verifica-

tion [12]. The two papers demonstrated duality and synergy

of static and dynamic analysis in program verification. In

PINCETTE, we use this synergistic technique to construct

automatic regression testing suites, where the previous ver-

sion is used as a reference model. While there has been

other work combining these two complementary approaches

to system analysis, e.g., Direct Automated Random Testing

(DART) [13], to the best of our knowledge, there has been

no prior work which uses a combination of these techniques

for verification of software upgrades.

Another unique aspect of the PINCETTE approach for

upgrade validation is as follows: we do not revalidate the

new version of the system in its entirety, instead we only

verify the safety of the portion of the system affected by the

upgrade and the impact of the upgrade on the new version.

This is done by utilising the knowledge that the behaviour

of the existing version of the system is safe. This will

drastically reduce the time and effort required to revalidate

the new version and result in cost savings.

III. ACHIEVEMENTS AND OUTCOMES

In the following we sketch the tools and methods de-

veloped by the partners of PINCETTE. They are linked

together and evaluated as summarised in Figure 1.

A. Static Analysis of Software Upgrades

The static analysis technology from IBM, ExpliSAT [14],

is adapted to focus on verification of changes while ignoring

the rest of the system. The premise is that the rest of

the system was known to work in production for a long

time already, hence we only need to verify the behaviours

of the system affected by the changes. This is done by

performing an analysis of the control flow graph of the

system and verifying only the paths that pass changed nodes.

Experimental results on the validation cases show dramatic

improvements over re-validation of the whole system.

In PINCETTE, static analysis based on symbolic model

checking is addressed with eVolCheck, a function summary

based upgrade checker [15], [16], [17]. The key idea in

eVolCheck is to automatically summarize the behaviour of

functions critical with respect to the correctness, by means

of Craig interpolants [18]. These summaries are then used

to localize the check of any new version and thus speed up

the incremental analysis of upgrades.

The University of Oxford has developed Deltacheck,

which implements a BDD-based dataflow analysis with a

custom predicate abstraction engine. The key idea is that

change is a dataflow predicate. DeltaCheck is designed for

scalability and addresses large-scale validation cases. For

instance, we successfully ran DeltaCheck on the Linux

Kernel with 13.9 million LOC. Properties we can currently

verify are checks for array bounds, pointer validity, division

by zero, NaN on float and signed integer overflow.

B. Dynamic Analysis of Software Upgrades

The dynamic analysis technology developed in the project

automatically generates models that represent the behaviour

of a program version. These models are used to assess the

impact and the correctness of upgrades [19]. Validation has

taken place both on Linux and internal ABB code. Dynamic

analysis includes and in turn exploits concolic testing to

automatically generate test cases to sample the upgrade-

relevant part of the state space of a program under test [20].

C. Development of Hybrid Analysis Technique

In PINCETTE we integrate dynamic and static analyses

to build stronger approaches. In particular, slicing is used to

restrict the scope of dynamic analysis and concolic testing

to the code affected by the upgrade under consideration.

Dynamic models are used as program properties that can

be verified with static analysis tools. We believe this com-

bination vastly extends the applicability of the PINCETTE

approach especially when dynamic analysis is either difficult

462

or impossible, e.g., when the analyzed code cannot be

executed outside an embedded target platform.

The static component in this combination is the slicer

developed by University of Oxford. The slicer reduces the

size of the program by identifying portions of the program

relevant to changes. Relevant portions are identified through

control and data dependency analysis. The reduced program,

referred to as a slice, is extended to an executable program.

The slice is then given to a dynamic analysis tool from

UniMiB for monitoring and validating changes.

D. Generation and Prioritization of Test Cases

The University of Milan (UNiMiB) together with VTT

developed a tool for the generation and prioritization of

test cases that target controller applications implemented in

LabVIEW, which is first of a kind. The current version

of the tool can be used to validate stateless components

and provides extensive control over the numeric inputs and

outputs. The main directions of future work are extending

the approach to stateful components, enriching the technique

with more test case generation strategies and heuristics for

test case selection and prioritization, and validating the

approach with industrial case studies. The goal is to build a

framework for regression testing of controller applications.

E. Validation of Results

The project results are currently undergoing validation

w.r.t. industrial requirements in large-scale applications

provided by our industrial partners ABB, VTT and IAI:

• Europe’s power grid, the operational reliability of

which is controlled by ABB’s networked C/C++ code;

• VTT’s real-time multi-process networked software for

maintaining the thermonuclear reactor of ITER;

• real-time networked software developed by IAI for op-

erating payloads on autonomous aircrafts for environ-

mental monitoring, namely, the Multi-sensor Stabilized

Electro-Optic System (MSEOS), widely used in Europe

for detecting forest fires and locating missing people.

These wide-ranging applications demonstrate the broad ap-

plicability of PINCETTE.

IV. PROJECT DETAILS

PINCETTE1 is three year STREP project under the EU

7th Framework Programme (FP7/2007-2003) ICT-2009.1.4

– Trustworthy ICT. It runs from July 2010 to June 2013

(36 months) with an EU contribution of e 2.8 million. The

consortium consists of a balanced combination of academic

and industrial partners from various European countries:

• IBM Israel: Dr Hana Chockler

• University of Oxford: Prof Daniel Kroening

• Università della Svizzera Italiana: Prof Natasha Shary-

gina

1http://www.pincette-project.eu

• Università degli Studi di Milano-Bicocca: Dr Leonardo

Mariani

• Technical Research Centre of Finland (VTT)

• Israeli Aerospace Industries (IAI)

• ABB, Switzerland

The academic partners and IBM act as technology providers,

while ABB, IAI and VTT are validators.

V. RELATED WORK

A. Static Analysis and Formal Verification
The application of software model checking tools to ana-

lyze software upgrades is a novel, and consequently, there is

limited prior work. An earlier work was conducted by one

of the project partners [21]. The results include a system

upgrade checking technique to detect problems caused by

a wide range of changes that could occur during system

evolution, such as bug fixes, product upgrades (underlying

platforms, third-party components, etc.), and changing re-

quirements during the design process. The technique relies

on learning regular sets [22] to automate this process,

which is done in iterations and is based on the CEGAR

framework. In parallel with PINCETTE, Microsoft Research

developed SymDiff (Static semantic Difference) [23]. This

infrastructure leverages and extends program verification

to reason about program changes. SymDiff builds up on

recent advances on program equivalence checking using

SMT solvers and mostly focuses on the problem of inferring

the conditions under which two programs are equivalent.

B. Dynamic Analysis
Several projects employed dynamic analysis techniques

for checking compatibility of system upgrades [24], [25].

The most relevant technique for PINCETTE is described by

Ernst et al. [25], who suggest a technique for checking com-

patibility of multi-component upgrades. They use dynamic

monitoring to extract system models, which are subsequently

evaluated using a compatibility test. Consequently, the mod-

els are restricted to input/output behaviours of the system

and the actual internal component behaviours are ignored.

C. Combination of Static and Dynamic Analyses
Currently there are three industrial projects combining

static and dynamic analyses, all led by Microsoft Research.

These implement variants and extensions of a directed

search: (1) SAGE (Scalable, Automated, Guided Execution)

is a tool that uses instruction-level tracing for white-box

fuzzing of Windows applications [26]. SAGE implements a

directed search algorithm that maximizes the number of new

inputs generated from each symbolic execution. (2) PEX

(Program Exploration) is a tool that helps developers to write

parametrised unit tests [27]. For each unit test, PEX uses

dynamic test generation techniques to compute input values

that exercise all statements and assertions in the program. (3)

Yogi is a tool that combines testing and static analysis (as

in [28] to check properties of Windows device drivers [29]).

463

D. Related EU Projects

SecureChange works on security of evolving systems.

It focuses on potential security problems caused by soft-

ware changes. However, it does not address problems of

functional correctness and concurrency issues of networked

systems and its techniques only apply to the abstract models

of software, while PINCETTE supports reasoning also at the

source level (C, C++) of networked software.

VI. CONCLUSION

The PINCETTE project provides significant advances in

the field of verification and validation of evolving systems.

The techniques developed in the course of this project first

increase the confidence in software upgrades by employing

automated formal verification techniques. Second, the cost

of software maintenance is further reduced as these methods

are built to scale to large industrial code bases by being

guided by the actual changes.

REFERENCES

[1] P. A. Grubb and A. A. Takang, Software maintenance –
concepts and practice (2. ed.). World Scientific, 2003.

[2] P. Farries and A. Rajan, “Pincette – validating changes and
upgrades in networked software,” ERCIM News, vol. 2012,
no. 88, 2012.

[3] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of
automated techniques for formal software verification,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1165–1178, 2008.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV,
2000, pp. 154–169.

[5] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani,
“Automatic predicate abstraction of C programs,” in PLDI,
2001, pp. 203–213.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre,
“Software verification with BLAST,” in SPIN, 2003, pp. 235–
239.

[7] S. Chaki, J. Ivers, N. Sharygina, and K. C. Wallnau, “The
comfort reasoning framework,” in CAV, 2005, pp. 164–169.

[8] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav,
“SATABS: Sat-based predicate abstraction for ANSI-C,” in
TACAS, 2005, pp. 570–574.

[9] T. Ball, “The concept of dynamic analysis,” in ESEC /
SIGSOFT FSE, 1999, pp. 216–234.

[10] M. D. Ernst, “Invited talk static and dynamic analysis: syn-
ergy and duality,” in PASTE, 2004, p. 35.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” IEEE Trans. Software Eng., vol. 27,
no. 2, pp. 99–123, 2001.

[12] J. W. Nimmer and M. D. Ernst, “Static verification of
dynamically detected program invariants: Integrating Daikon
and ESC/Java,” ENTCS, vol. 55, no. 2, pp. 255–276, 2001.

[13] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed
automated random testing,” in PLDI, 2005, pp. 213–223.

[14] H. Chockler and S. Ruah, “Verification of software changes
with ExpliSAT,” in HotSWUp, 2012, pp. 31–35.

[15] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-
based function summaries in bounded model checking,” in
HVC, 2012, pp. 160–175.

[16] ——, “Incremental upgrade checking by means of
interpolation-based function summaries,” in FMCAD,
2012, to appear.

[17] G. Fedyukovich, O. Sery, and N. Sharygina, “Function sum-
maries in software upgrade checking,” in HVC, 2012, pp.
257–258.

[18] W. Craig, “Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory,” Journal of Symbolic
Logic, vol. 22, no. 3, pp. 269–285, 1957.

[19] F. Pastore, L. Mariani, A. Goffi, M. Oriol, and M. Wahler,
“Dynamic analysis of upgrades in C/C++ software,” in ISSRE,
2012, to appear.

[20] M. Baluda, P. Braione, G. Denaro, , and M. Pezzé, “Enhan-
cing structural software coverage by incrementally computing
branch executability,” Software Quality Journal, vol. 19, no. 4,
2011.

[21] N. Sharygina, S. Chaki, E. M. Clarke, and N. Sinha, “Dy-
namic component substitutability analysis,” in FM, 2005, pp.
512–528.

[22] D. Angluin, “Learning regular sets from queries and counter-
examples,” Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[23] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo,
“Symdiff: A language-agnostic semantic diff tool for imper-
ative programs,” in CAV, 2012, pp. 712–717.

[24] S. McCamant and M. D. Ernst, “Early identification of
incompatibilities in multi-component upgrades,” in ECOOP,
2004, pp. 440–464.

[25] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” in ICSE, 1999, pp. 213–224.

[26] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Active property
checking,” in EMSOFT, 2008, pp. 207–216.

[27] N. Tillmann and W. Schulte, “Parameterized unit tests,” in
ESEC/SIGSOFT FSE, 2005, pp. 253–262.

[28] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J.
Simmons, “Proofs from tests,” in ISSTA, 2008, pp. 3–14.

[29] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur, “The
Yogi project: Software property checking via static analysis
and testing,” in TACAS, 2009, pp. 178–181.

464

