
Parallelization and modelling techniques
for scalable SMT-based verification

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Matteo Marescotti

under the supervision of

Natasha Sharygina

December 2020

Dissertation Committee

Walter Binder Università della Svizzera Italiana, Lugano, Switzerland
Nikolaj Bjørner Microsoft Research, Redmond, USA
Evanthia Papadopoulou Università della Svizzera Italiana, Lugano, Switzerland
Roberto Sebastiani Università di Trento, Italy

Dissertation accepted on 1 December 2020

Research Advisor PhD Program Director

Natasha Sharygina The PhD program Director pro tempore

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Matteo Marescotti
Lugano, 1 December 2020

ii

Abstract

Software systems are increasingly involved in our daily life tasks, making their
failures potentially damaging both in economic and human terms. As a result,
proving the correctness of software is widely thought to be one of the most cen-
tral challenges for computer science. Model checking is an award-winning (Tur-
ing award, 2007) technique for formally and automatically verifying systems,
often capable to guarantee the correctness of non-trivial and practical programs.
However, model checking is undecidable in the general case. Even when prop-
erly restricted to the decidable fragment, the algorithms face strong scalability
issues preventing them to converge to the solution.

The goal of this thesis is to address such scalability issues in two orthogonal
ways. First, the design of parallel solving techniques that exploit the massive
amount of computational power offered by distributed computing environments.
Second, the design of a modelling technique for effective verification of the new
emergent technology of smart contracts running on blockchain systems.

The parallel solving research efforts consider both bounded and induction-
based unbounded model checking, respectively achieved by instantiating multi-
agent solving for the T -DPLL and IC3 algorithms. Multi-agent techniques lever-
age on the diversification and cooperation among sequential solvers executed in
parallel. Diversification is achieved with different parallel search heuristics, and
cooperation is performed with the exchange of information both during solv-
ing time and via upfront agreements. The effectivenesses of various multi-agent
settings are empirically evaluated using the purpose-built framework SMTS.

Verification approaches for emerging technologies tend to either reuse tools
for existing languages that often result in inefficient and even unsound mod-
els, or to apply generic techniques which typically require human intervention to
succeed. This thesis provides a new direct modelling approach using constrained
Horn clauses for the emerging technology of smart contracts. Such approach al-
lows automatic solving exploiting the proposed efforts in improving inductive
solvers scalability, and guarantees soundness for the safety proofs. Addition-
ally, the smart-contracts-specific task of measuring the amount of computation

iii

iv

needed to execute a transaction, i.e. gas consumption, is considered in this the-
sis proposing an algorithmic solution. The effectiveness of the modelling tech-
nique is empirically evaluated over smart contracts deployed in the ETHEREUM

blockchain using an implementation inside the official compiler for the smart
contracts language Solidity that relies on the IC3 algorithm.

Acknowledgements

During my Ph.D. I have had the unique opportunity to meet and collaborate
with brilliant people that inspired me to keep improving both professionally and
personally. This thesis exists thanks to such interactions, and I am grateful for
all of them. Such a fantastic journey started thanks to my advisor, Prof. Natasha
Sharygina. I am grateful for her trust in me as a candidate, and for her generous
and bold guidance that was essential throughout the years.

I thank the committee of this thesis, Prof. Evanthia Papadopoulou, Prof. Wal-
ter Binder, Dr. Nikolaj Bjørner, and Prof. Roberto Sebastiani for their efforts to
thoroughly review this thesis and provide valuable comments. In particular, I
thank Dr. Nikolaj Bjørner and Prof. Roberto Sebastiani for the enlightening dis-
cussions that sparked my curiosity and motivation. I thank Dr. Antti Hyvärinen
for sharing with me bright insights and his vast experience across several topics.
I thank Prof. Arie Gurfinkel for giving me the fantastic opportunity of visiting
him in Waterloo, for his patience, and for sharing his sharp engineering skills.

Finally, I thank all my colleagues for being supportive and inclusive, I am
grateful for the wonderful time spent in Lugano. I thank USI and the faculty staff
for their quick and helpful assistance, and the Swiss National Science Foundation
for the financial support received (projects 185031, 166288 and 153402).

v

vi

Contents

Contents vii

1 Introduction 1
1.1 Automated Formal Verification . 2
1.2 Verification challenges addressed in the thesis 4
1.3 Contributions . 7

1.3.1 Parallel SMT Solving . 7
1.3.2 Parallel Unbounded Model Checking 9
1.3.3 Modelling Smart Contracts . 10

1.4 Summary of Contributions . 11

2 Background 13
2.1 Satisfiability . 13
2.2 Safety for Transition Systems . 15
2.3 The IcE/FiRE framework . 16
2.4 Smart Contracts . 20

3 Multi-agent SMT Solving 23
3.1 Background . 24

3.1.1 T -DPLL Algorithm . 24
3.1.2 Parallelization Approaches for SMT 25
3.1.3 Search-Space Partitioning . 27
3.1.4 Clause sharing . 28

3.2 The Parallelization Tree Framework 28
3.3 Partition Distributions . 30

3.3.1 Linear Real Arithmetic . 30
3.3.2 Equivalence Logic with Uninterpreted Functions 35
3.3.3 Partition Heuristics . 38
3.3.4 Repeated Partitioning . 39

3.4 Evaluation of the Parallelization Tree Framework 40

vii

viii Contents

3.4.1 Logic of Equality and Uninterpreted Functions 40
3.4.2 Logic of Linear Real Arithmetic 42

3.5 Clause Sharing . 43
3.5.1 The Effect of Clause Sharing 43
3.5.2 The Clause Sharing Heuristics 44
3.5.3 Comparison to Other Solvers 45

3.6 Related Work . 46
3.7 Conclusions and Future Work . 48

4 Multi-agent Solving by Induction 51
4.1 Background . 52
4.2 The P3 Algorithm . 55

4.2.1 Portfolio . 55
4.2.2 Partitioning . 56
4.2.3 Lemma sharing . 56
4.2.4 Parallelly Performed IC3 . 57

4.3 Experiments . 58
4.3.1 Experimental setup . 59
4.3.2 Comparing Parallel Techniques 60
4.3.3 Scalability . 64
4.3.4 Comparison Against SALLY . 67

4.4 Related work . 68
4.5 Conclusions and Future Work . 69

5 SMTS: multi-agent cooperative constraints solving 73
5.1 SMTS Architecture . 74

5.1.1 Application Program Interface 75
5.1.2 Graphical User Interface . 75
5.1.3 SMT Formula Visualization . 79

5.2 Multi-agent IcE/FiRE . 79
5.2.1 Experiments . 82

5.3 Related work . 86
5.4 Conclusions and Future Work . 86

6 Accurate Smart Contract Verification through Direct Modelling 89
6.1 Background . 90
6.2 The Model . 92

6.2.1 Model of a Contract Function 93
6.2.2 Function Calls . 94

ix Contents

6.2.3 Contract’s External Behaviour 95
6.2.4 Checking Contract Safety . 96
6.2.5 Counterexample Generation 97

6.3 Example . 98
6.4 Implementation . 101
6.5 Experiments . 103

6.5.1 Counterexample Generation 104
6.5.2 Comparative Analysis . 105

6.6 Related Work . 106
6.7 Conclusions and Future Work . 107

7 Bounded Gas Analysis for Smart Contracts 109
7.1 Preliminaries . 110
7.2 Gas Consumption Path Enumeration 112
7.3 Function-Oriented GCP Enumeration 116
7.4 Example . 121

7.4.1 Function-Oriented GCP Enumeration 121
7.4.2 Symbolical GCP enumeration 123

7.5 Related work . 123
7.6 Conclusions and Future Work . 124

8 Conclusions 125

Bibliography 129

x Contents

Chapter 1

Introduction

Computer systems are a central piece of modern society: our daily lives involve
plenty of tasks entrusted to software executing on various hardware systems.
Crucial issues like people safety and proper enforcement of legal and mone-
tary operations highly rely on correctly working software and hardware. Fur-
thermore, industry safety, security, reliability, cost-efficiency and environmen-
tal friendliness critically depend on correctly working systems. Such relevance
of computer systems is continuously increasing and makes the consequences of
faults being potentially catastrophic.

The most robust way to prevent such unfortunate eventualities is to formally
verify the systems, that is to check that systems behave correctly in any possi-
ble circumstances during the execution, therefore proving correctness. However,
real-world systems present vast functionalities that prevent such check to be per-
formed trivially. For these reasons, proving the correctness of computer systems
is widely thought to be one of the most central challenges for computer science.
Formal methods address the verification problem proving correctness in a mathe-
matical sense, showing with an inferential argument that the system behaviours
logically guarantee correctness. Formal verification is automated when no hu-
man intervention occurs in the complex process of devising a proof. Automation
excludes human errors from altering the overall result at the price of increasing
even more the complexity of the verification task, that needs to account for the
reasoning independently and thoroughly. Therefore, automation opens several
challenges in devising efficient reasoning methods.

This thesis focuses on improving the reasoning capabilities of automated ver-
ification techniques for software systems, contributing in two orthogonal ways to
this highly challenging task. First, it is achieved by exploiting the high computa-
tional power offered by distributed computing systems. Second, it is suggested

1

2 1.1 Automated Formal Verification

to address the problem by designing modelling techniques necessary to correctly
verify the new emerging technology of smart contracts running on blockchain
systems. Additionally, this thesis studies the problem of finding the worst-case
gas consumption of smart contracts transactions, presenting a solution specific
for this emerging context. The introduction of this thesis provides an overview
over the state of the affairs of automated formal verification, showing in sec-
tion 1.1 the various different directions that aim to cope with the problem. Then,
section 1.2 states open challenges, and finally section 1.3 presents an overview
of the proposed solutions.

1.1 Automated Formal Verification

The aim of hardware and software verification is to check the correctness of a
given input system by detecting the presence or the absence of behaviours that
violate the specification. Verification can be addressed dynamically with testing,
or statically with formal verification. Testing is performed by executing the system
either entirely or partially on predefined test inputs which values are based on
the expected production settings. All testing algorithms suffer from needle-in-
haystack problem: there is no general way to detect and test the set of inputs
that would trigger undesired behaviours. For this reason testing is considered an
incomplete technique: it can produce only proofs of incorrectness. The only way
to prove the absence of bad behaviours is by testing the correctness of all possible
inputs, i.e. the proof by exhaustion, that unfortunately is only feasible in very
restricted circumstances, leaving testing incomplete over real world problems.
This thesis focuses on complete techniques, thus complementing testing with
exhaustive verification solutions.

The aim of formal verification is to prove that the input system complies the
given specifications in a mathematical way. The proof ensures that no possible
violation of the specification can happen anytime during any possible execution.
Despite the fact that the general approach is undecidable, research is moving
forward to find more and more restricted scopes in which it is decidable and
works thoroughly. Formal verification approaches can be distinguished between
interactive and automatic verification. Interactive verification is a user driven
procedure involving the discharging of mathematical statements using theorem
provers. Interactive verification approaches require human interaction, resulting
in two important side effects. First, they require experienced manual effort that
increases the time and cost of verification processes. Second, human intervention
could accidentally introduce bugs also in the verification process, making the

3 1.1 Automated Formal Verification

outcome less reliable. For these reasons, interactive techniques are of limited
use by developers and audit communities.

Automated formal verification techniques perform a fully automatic and static
analysis of the system, that is without human intervention and without executing
the system, respectively. A successful automated formal verification approach is
model checking [CE81, QS82, CGP01]. Model checking constructs a model that
formally represents the input system as a transition system over internal states.
The model expresses both internal initial states and state transitions with respect
of external inputs. The properties are built from the requirements of the system
and are formalized using temporal logic [CGP01]. An important class of temporal
logic is safety. Safety properties describe bad behaviours as a set of finite-length
executions that the system must never produce in order to be safe. Safety prop-
erties are particularly important in verification since they can be expressed as a
reachability problem, thus making the check relatively efficient. Model checking
algorithms perform the exhaustive search of property violations in every state of
the model in a fully automatic way. Therefore, a positive result with respect of
safety ensures that the properties hold in any circumstances during execution.
Conversely, a negative result provides a counterexample, that is, the state where
the violation is found together with the reachability trace of states traversed dur-
ing the search from the initial states. The counterexample is a convenient way
for developers to understand the problem and design a solution.

An important downside of model checking is the combinatorial blow up in
the number of states of the system, commonly known as state space explosion.
Although hardware systems are finite state systems, software does not have such
restriction in general, therefore state space explosion on software model checking
could cause the model to become infinitely large. This issue must be addressed
in most real-world problems which would be not tractable otherwise.

Symbolic model checking [CGP01] is an active area of research that faces state
space explosion by modelling the state and the transition relation of the system
respectively with a set of variables and logical formulas over such variables. A
symbolic value expresses any possible concrete value which can be assigned to
a given variable in any possible execution. The model of the transition relation
models how variables are manipulated during execution. The property is also
modelled as a formula describing all unsafe executions. Thus, the conjunction of
the model and the property is a formula which satisfiability directly depends on
whether the system can produce property violations. In this way, symbolic model
checking reduces the problem of exhaustively checking reachability of violations
to determining the satisfiability of logical formulas.

Model checking is bounded [BCCZ99] (BMC) when the verification algorithm

4 1.2 Verification challenges addressed in the thesis

preprocesses the source code by unwinding the program loops up to a fixed
bound. BMC checks programs exhaustively and automatically over the states
reachable in up to a certain number of loop iterations. As a result, bounded
safety proofs are partial because they consider a possible subset of the reachable
states. However, BMC is a successful approach for finding bugs in real world
programs, especially if bugs can manifest in a limited number of loop iterations.
Model checking is unbounded when the produced safety proofs are not bounded
by the number of loop iterations, i.e. they consider all possible reachable states
of the system. Unbounded model checking techniques aim to find an invariant
that proves safety, i.e. a formula that is valid in every reachable state and implies
the property.

Both bounded and unbounded model checkers build propositional or first-
order logic models, and rely on satisfiability oracles for proving or refuting safety.
For this purpose, model checkers use automatic reasoning engines such as SAT
and SMT (Satisfiability Modulo Theories) [DNS05] solvers as oracles. SAT solvers
are tools designed to find whether a boolean formula given as input in conjunc-
tive normal form (CNF) is satisfiable, i.e. there exists an assignment of each
boolean variable that makes the formula true. The SMT problem consists of de-
termining whether a propositional formula is satisfiable, given that some of the
propositional atoms have an interpretation in first-order logic. Both SAT and SMT
solvers are highly engineered tools having strong automatic reasoning power that
can address this challenge.

In this way, coping with the high complexity of verification is entirely en-
trusted to the algorithms underlying the solving task, posing several challenges
in devising efficient model checking techniques.

1.2 Verification challenges addressed in the thesis

In the last decades symbolic model checking has increasingly gained attention
from both academia and industry, resulting in major efforts for improving both
modelling techniques and solving capabilities. However, despite the promising
positive trend, often symbolic model checking still fails to face real-word ver-
ification tasks. The causes that prevent scaling to real-world problems can be
found both in the solving task and the modelling. This thesis studies solutions
for improvement on both sides.

The solving task relies on automated reasoning tools such SAT or SMT solvers.
This step is the bottleneck in symbolic model checking techniques, as the un-
derlying decision problems are intrinsically computationally hard. As a result,

5 1.2 Verification challenges addressed in the thesis

algorithms used for solving are conceptually challenging, often complicated to
implement and limited in reasoning capabilities. Abstraction is a central tech-
nique used by automated reasoning to face the state-space explosion problem
and address verification of infinite-state systems. Abstraction involves removing
details expected to not be needed for proving the desired property. In predicate
abstraction [GS97] concrete states that satisfy a given predicate are clustered
in abstract states. Infinite-state systems can be represented by a finite-state ab-
stracted system, guaranteed to over-approximate the reachable states of the orig-
inal system, thus preventing state-space explosion and maintaining soundness.
The crucial challenge for abstraction is to devise heuristics that correctly decide
which details are important and which can be abstracted out. The amount of
information removed defines the level of abstraction. The problem of finding the
best level of abstraction for a given verification task is still an active research area.
A considerable improvement on this front is the counterexample-guided abstrac-
tion refinement (CEGAR) [CGJ+00] framework. The idea is to iteratively refine
the abstraction by adjusting the level based on the counterexample returned by
the check. Similarly, BMC implements abstraction techniques for simplifying the
program into an easier one that behaves in the same way with respect to the
property being checked. Craig interpolation [Cra57] is a widely used approach
for constructing a mathematical formula that over-approximates (i.e. is implied
by) the original formula representing the input program. Interpolation is also
used intensively in unbounded model checking to devise an inductive invariant.

Such techniques designed to deal with the state-space explosion problem to
improve scalability are heuristics-based and sequential, therefore intrinsically
limited by the high complexity. Being the problem undecidable entails that an
heuristic performing the best on every kind of verification task does not exist.
Rather, some heuristics perform well on some tasks while being inefficient on
others. For this reason, improving a particular heuristic is often very complicated
and the result might provide limited benefits. This is the ideal picture where par-
allel computing has potentials for being highly beneficial: distributed computing
clusters offer massive amounts of computing power and sequential heuristics are
intrinsically imprecise and often make mistakes. The aim of parallel techniques
is to use concurrent computation to avoid such imprecision to waste precious
wall-clock time.

Multi-agent solving is the parallel execution of a collection of solvers, the
agents, that cooperate in some ways for solving the same problem. Possible co-
operation techniques among agents are the exchange of learnt information per-
formed during solving, or the agreement performed upfront to divide the solving
task in a way that the final solution is the result of the independent collabora-

6 1.2 Verification challenges addressed in the thesis

tion. Diversity in the agents search heuristics is a key property to maximize the
search-space coverage and thus the likelihood to find a solution. From this line
of work several new challenges arise. First, how to properly combine the coop-
eration and diversification techniques to improve scalability is highly nontrivial.
Second, the information exchanged by the solvers need heuristics to filter useless
or redundant data that might burden the individual sequential algorithms, and
must be proved to not break soundness. Finally, the parallel system might easily
become hard to control and debug, therefore needing visual tools to understand
and interact with the multi-agent system. The multi-agent techniques proposed
in this thesis focus on the challenges (as described above) arising for parallelizing
both bounded and unbounded model checking.

The other research problem addressed in this thesis is the issue of appro-
priate formal modelling. The modelling task presents a trade-off between ease
of modelling and effectiveness of adapting to the solving task. It is of crucial
importance for choosing the modelling technique to consider both the input sys-
tem and which and how automated reasoning tools are in charge of solving the
models. Modelling techniques failing this goal might cause strong inefficiency
or even unsound results on the solving side. Circumstances under which such
trade-off arises are, for instance, when dealing with new systems: reusing exist-
ing modelling tools often eases the verification design with the risk of worsening
the verification performances.

This thesis addresses this challenge by looking at the emergent field of smart
contracts. Smart contracts is a technique to manage and enforce contract trans-
actions without relying on trusted parties but instead exploiting the blockchain
technology to distribute trust among peers. The safety of smart contracts is in-
creasingly important, making formal methods a urgent need in this area. In fact,
in the past years millions of US Dollars were lost due to bugs [the20, par17],
while currently the smart contracts deployed in the widely used ETHEREUM plat-
form control billions of dollars of wealth. This need is even more pronounced
because once deployed in the blockchain and made publicly available, the pro-
gram code of smart contracts is immutable, complicating the approach used in
more traditional software development of fixing errors with new releases.

The most popular languages for writing smart contracts are Turing-complete,
and therefore deciding their correctness with respect to non-trivial semantic prop-
erties is undecidable. Current automated verification solutions exploit generic
symbolic execution techniques used for traditional software verification. How-
ever, the reuse of such existing frameworks in order to profit from their stability
and speed can introduce problems. In particular, existing verification languages
do not support the specific semantics of smart contracts directly, and it is very

7 1.3 Contributions

difficult to capture these semantics with the existing abstractions. This is often
solved by allowing imprecise models for the verification. For example, the smart
contract model checker ZEUS [KGDS18] uses the C-based LLVM bit-code [LA03]
as an intermediate representation for Solidity contracts. However, this intro-
duces behaviours not present in the original smart contract, for example arising
from the C-memory model.

The obvious solution (as also presented in this thesis) to this problem is to
develop smart contract-specific techniques. Examples of such projects include
K-FRAMEWORK [RS10] and SECURIFY [TDDC+18]. K-FRAMEWORK is a special-
purpose theorem prover which relies on user input, making its use time-consuming
and difficult for non-experts. SECURIFY uses an incomplete method based on
searching patterns focusing on data. However, in this approach some properties
cannot be modelled as data patterns, but instead require a more precise analysis
of the flow of program control. As a results, the system can produce spurious
results that can confuse developers.

This overview over current smart contracts verification techniques motivates
the need for a modelling technique that excludes imprecise results while being
able to target automatic checking algorithms.

1.3 Contributions

This section presents the contributions of this thesis to face the challenges previ-
ously discussed. The contributions are grouped in three sections. Section 1.3.1
presents the contribution related to multi-agent SMT and BMC, Section 1.3.2 fo-
cuses on multi-agent unbounded model checking, finally Section 1.3.3 presents
the solutions regarding smart contracts challenges.

1.3.1 Parallel SMT Solving

The SMT problem of determining the satisfiability of a first-order formula is in
general undecidable. However, the SMT approach to first-order formula solving
aims at being very practical by focusing on the needs of specific user communi-
ties. This focus on user communities allows the development of algorithms that
are often highly efficient in the decidable fragments of first-order theories re-
quired by users’ applications. The studies reported in this thesis focus on the
Davis–Putnam–Logemann–Loveland algorithm incorporating reasoning about a
theory T (T -DPLL) [Tin02, NOT06]. T -DPLL is the most successful and current
state-of-the-art algorithm for SMT solving. T -DPLL solvers consist of a Conflict-

8 1.3 Contributions

Driven Clause Learning (CDCL) SAT solver as the underlying search engine for
the pure propositional boolean part, enhanced with theory-specific decision pro-
cedures for determining the consistency of theory atoms with respect to the the-
ories. The specialized solvers, in case of unsatisfiability, return propositional
clauses that explain the unsatisfiability and are tautologies in the first-order the-
ory. In the formal verification domain, SMT solvers gained success quickly be-
cause they enabled effective reasoning of code behaviours without expressing
every possible bit-level state as needed by SAT solvers. This extension makes
formal verification scalable on many more real world problems.

Diversification in multi-agent SMT solving is provided by the SMT portfo-
lio [HJS09], the concurrent and independent execution of several solvers pro-
vided with the same input formula. Portfolio takes advantage from the highly
non-deterministic (or seed-based) heuristics that drive the search by executing
several solvers concurrently. Cooperation among portfolio solvers is performed
with clause sharing. Both SAT and SMT solvers learn a new clause on every con-
flict encountered during solving, both at the propositional and at the theory level.
Learnt clauses are important because they represent information regarding pre-
vious decisions that were after discovered being wrong. Thus, the exchange of
learnt clauses instructs solvers to not take such decisions, avoiding them to ex-
plore parts of the search-space where there is no solution. Finally, search-space
partitioning of SMT instances [HJN10] involve the construction of a fixed num-
ber of partitions in such a way that they do not share any model, and whose
disjunction is equisatisfiable to the given input formula. The partitions can be
solved independently and each partition can be potentially partitioned again,
implementing in this way iterative partitioning.

Chapter 3 focuses on how parallelism, and in particular distributed comput-
ing, can make T -DPLL-style solvers to scale to increasingly hard problems. When
used in isolation, portfolio, clause sharing and partitioning suffer from scalability
issues. The optimal tuning highly depends both on the right combination with
other techniques and on the instance being solved. The challenges in this context
center around the design of effective heuristics for making parallel SMT solving
scalable, investigating ways to exploit each technique strengths for achieving ef-
fective performances. The central concept introduced in chapter 3 for allowing
flexible tuning of multi-agent SMT solving is the algorithmic framework called
parallelization tree [HMS15]. The framework allows combining the three paral-
lelization approaches algorithm portfolios, partitioning, and clause sharing. The
key idea of the framework is that both solving and partitioning the search space
can be done with a portfolio while sharing clauses among the solvers.

9 1.3 Contributions

1.3.2 Parallel Unbounded Model Checking

The goal of unbounded model checking techniques is to ensure that every finite-
length execution of hardware and software systems respects the given properties.
This task is equivalent to solving the reachability problem in a model represented
as a transition system over system states. Given a set of initial states, a transition
relation and a set of target states, the reachability problem consists of finding
whether there exists a path from the initial states to the target states by taking
any finite-length path of transition relation steps. In order to prove unbounded
safety, the target states consist of all states violating the properties (error states).
A proof that no such paths exist for any length involves finding an inductive
invariant of the transition system that excludes the error states. The reachability
problem is in general undecidable.

The IC3 (Incremental Construction of Inductive Clauses for Indubitable Cor-
rectness, a.k.a. PDR, Property Directed Reachability) [Bra11] algorithm is a
recent specific technique to solve the reachability problem. It gained success
quickly because of its efficiency of flexibility. IC3 proceeds by iteratively proving
or disproving reachability of proof obligations, i.e. states that are guaranteed to
reach an error state. The search proceeds backward from the error states, which
constitute the first proof obligation. Then, IC3 iteratively selects a proof obli-
gation and tries to prove its reachability from the initial states. The procedure
computes the set of states leading in one transition step to the proof obligations,
which becomes a new proof obligation to be selected later. When a proof obli-
gation is proven not reachable, IC3 learns an IC3-lemma that by construction
over-approximates the reachable states of the system. The iteration continues
until the conjunction of all the learnt IC3-lemmas is a formula strong enough to
block any other proof obligation inductively, making it a safe inductive invariant.

Chapter 4 studies and evaluates several combination of multi-agent tech-
niques for IC3. Heuristics play a crucial role in IC3 both for deciding which path
to take next and which proof obligations need priority, because of the underlying
nature of the undecidability of the problem, exclude the existence of a general
optimal heuristic. One of the goals of this thesis is to study how to combine the
key principles of diversification and cooperation in multi-agent solving in order to
achieve good performance and scalability when solving the reachability problem
using IC3. Diversification is provided with a IC3 portfolio: the concurrent and
independent execution on several IC3 heuristics on the same transition system.
The IC3-lemmas are the results of reasoning efforts made by a specific heuristic,
and can be gathered and used by all the solvers to soundly refine their reachabil-
ity representation. The similarities with SMT suggest that the same principles for

10 1.3 Contributions

parallelization can also be adapted to fit the IC3 context. An important improve-
ment to IC3 portfolio is sharing IC3-lemmas among the parallel solving agents in
order to achieve cooperation by exchanging information. Partitioning the solvers’
search space can be done by having each solver focused on a subset of the proof
obligations. Soundness is guaranteed when all proof obligations are considered
by at least one IC3 execution.

1.3.3 Modelling Smart Contracts

Smart contracts are programs designed to manage and enforce contracts with-
out relying on trusted parties, exploiting the blockchain technology to achieve
distributed consensus among peers. The safety of smart contracts is increasingly
important: in the past years millions of US Dollars were lost due to bugs [the20,
par17], and currently the smart contracts deployed in the widely used ETHEREUM

platform control increasing amounts of wealth in the order of billions of dollars.
This issue is even more pronounced because once deployed in the blockchain, the
source code of smart contracts is immutable, complicating the task of fixing errors
with new releases. ETHEREUM [Eth18a] nowadays is the most popular smart con-
tracts platform. Smart contracts in ETHEREUM are written in high-level languages
such as Solidity [sol20] and Vyper [vyp20], that are compiled to the low-level
EVM (ETHEREUM virtual machine) bytecode deployed in the blockchain.

Notably, in the ETHEREUM settings, the corresponding smart contract imple-
mentations have distinct features which set them apart from traditional software
and introduce challenges on the modelling design. The most pronounced smart-
contract-specific features are as follows: (1) the transactional nature of function
calls – in case of error a function execution reverts the system state as if the
function had not been called, (2) the re-entrancy feature – the control return-
ing back to the original contract after a transactional call to a possible unknown
external contract, and (3) gas consumption – contract transactions consumes a
quantity of gas that depends on the amount of computation needed to perform
the execution and on the storage usage. In addition to the listed above specifics,
contract invariants, i.e. formulas that hold after any possible transactions, are of
paramount importance for ensuring properties of smart contracts (e.g., double
spending or the correctness of account balances).

Solidity and EVM are Turing-complete languages, therefore deciding con-
tract correctness with respect to non-trivial properties is undecidable. Many
highly optimized frameworks already exist for software verification, exploiting
generic symbolic execution techniques to address undecidability. While such ex-
isting frameworks are often stable and efficient, adapting them to smart con-

11 1.4 Summary of Contributions

tracts can introduce problems, as existing verification languages do not provide
direct support for the smart contract-specific features. This semantic gap is of-
ten solved by allowing ‘imprecise modeling’. For example, ZEUS [KGDS18] and
SAFEVM [ACG+19] use verifiers for the C language that rely on the very different
memory model of C, possibly causing imprecise results. An orthogonal approach
is followed by K-FRAMEWORK [RS10] and SECURIFY [TDDC+18]. Although their
modelling is specific for smart contracts, both approaches suffer from impor-
tant downsides that limit precision and therefore wide adoption, as the former
requires the interaction of highly experienced users and the latter relies on an in-
complete method based on data patterns that limits modelling capabilities of e.g.
the control flow. Chapter 6 considers the specific traits (1) and (2) from above to
design a modelling technique that enables automatic verification of safety prop-
erties for smart contracts. The produced models reflect smart contracts semantics
in an accurate way and allows automatic verification, in order to encourage users
without deep expertise in formal methods to verify smart contracts. The mod-
elling technique produces a first-order formula using constrained Horn clauses
(CHC) [BGMR15], allowing modularity for the solving side. In fact, any solver
supporting inductive reasoning, such IC3 and PD-KIND can perform the auto-
matic check. The produced safe inductive invariants returned by the solver in
case of safety is a contract invariant that ensures the developer about proper-
ties of contract’s state. The produced interpretation of first-order relations in
case on unsafe smart contracts is directly mapped to a list of transactions that
the developer can use as a counterexample to reproduce and tackle the issue.
Furthermore, the chapter evaluates the performance of the modelling technique
over thousands on Solidity contracts deployed in the ETHEREUM blockchain us-
ing an implementation developed inside the official Solidity compiler [Eth18b],
and compares with all the publicly available tools at the time of writing.

Another issue studies in this thesis is the problems related to estimating how
the gas consumption of a transaction changes over the lifetime of a contract is a
non-trivial task of extreme importance, since early-stage gas analysis can prevent
contracts from becoming useless due to unforeseen increase in the necessary
amount of gas needed. Chapter 7 focuses on the specific trait (3) to propose
two bounded analysis techniques to calculate the worst-case gas consumption of
contract functions.

1.4 Summary of Contributions

In summary, this thesis provides the following contributions.

12 1.4 Summary of Contributions

• Chapter 3 focuses on the parallelization of the T -DPLL algorithm to achieve
multi-agent cooperative SMT solving and shows empirical evidence of the
beneficial effects. These results are published in [MHS16, HMS15].

• Chapter 4 focuses on the parallelization of the IC3 algorithm to achieve
multi-agent cooperative inductive-based unbounded model checking and
reports experimental results of the positive effects of several combination
of techniques. Results for this contribution are published in [MGHS17].

• Chapter 5 focuses on the details of the framework called SMTS, developed
to support the techniques presented in chapters 3 and 4, and designed
to facilitate the implementation of multi-agent cooperative solvers over
distributed computing environments based on existing sequential solvers.
SMTS is used in chapters 3 and 4 to assess experimental evidence. Addi-
tionally, this chapter reports an external project that witness SMTS high
flexibility in a related project. The results for this contribution are pub-
lished in [MHS18].

• Chapter 6 focuses on an modelling technique for the emerging technology
of smart contracts that considers its semantics in an accurate way, allows
unbounded automatic reasoning for safety properties, and reports experi-
mental results and comparison with related tools. These results are pub-
lished in [MOA+20].

• Chapter 7 proposes a bounded technique to calculate the worst-case amount
of gas needed to perform contract transactions. The results for this contri-
bution are published in [MBH+18].

In addition to the list of publications above, two journal versions, each ex-
tending the contributions of chapters Chapters 3 and 4, are currently submitted
to JSAT (http://jsatjournal.org) waiting response.

• Matteo Marescotti, Antti Hyvärinen and Natasha Sharygina. Designing Par-
allel SMT Solvers. Submitted in Feb. 2019.

• Matteo Marescotti, Antti Hyvärinen, Arie Gurfinkel and Natasha Sharygina.
Designing Parallel IC3. Submitted in Oct. 2019.

http://jsatjournal.org

Chapter 2

Background

This chapter introduces the background concepts and terminology necessary to
support the contributions presented in this thesis.

2.1 Satisfiability

Given a set of variables and a set of function symbols F each associated with an
arity n≥ 0, a term is either a variable or a function symbol with arity n applied to
n terms. A function with arity 0 is a constant. LetP be a set of predicate symbols,
each associated with an arity n ≥ 0. The set P always contains the symbols >
and ⊥ of arity 0, and = of arity 2. An application of a predicate symbol p with
arity n on n terms is called an atom.

Given a finite set of atoms B, a literal is an atom or a negated atoms x ,¬x ,
x ∈ B, and a clause is a disjunction of literals. When negating literals the equation
¬¬x = x holds. A propositional formula in conjunctive normal form (CNF) is a
conjunction of clauses. A clause is also referred to as a set of literals, and a CNF
clause as a set of clauses. A cube is a conjunction of unit clauses referred to as
a set of literals when this cannot be confused with a disjunction. A sequence of
literals is denoted with l1 . . . ln, and, when the order plays no role, equate the
sequence with the corresponding set {l1, . . . , ln}.

Definition 1 (Assignment) An assignment σ ⊆ {x ,¬x | x ∈ B} is a set of literals
such that for no atom x, both x ∈ σ and ¬x ∈ σ.

An assignment is called total if for all atoms x ∈ B either x ∈ σ or ¬x ∈ σ. An
atom x is assigned if either x ∈ σ or ¬x ∈ σ. An assignment σ satisfies a clause
c when σ ∩ c 6= ;. An assignment satisfies a CNF formula if all its clauses are
satisfied.

13

14 2.1 Satisfiability

Let U be a possibly infinite set of elements containing at least the truth values
true and false. Given two elements a, b of U , a ≡ b holds if and only if a and
b are the same element. A modelM assigns to each constant a unique element
from U , to each function symbol of arity n a total function Un → U , to each
predicate symbol of arity zero a truth value true or false, and to each predicate
symbol of arity n ≥ 1 a total function Un → {true, false}. An interpretation
A is an extension of M to terms such that tA ≡ tM when t is a constant or
predicate symbol of arity zero, and tA ≡ f M (tA1 , . . . , tAn) if t is an application of
the function symbol or predicate symbol f of arity n≥ 1 to terms t1, . . . , tn. The
interpretations of >A is true and the interpretation of ⊥A is false, and t1 =A t2

to be true if and only if both tA1 and tA2 denote the same element of U (i.e.,
tA1 ≡ tA2).

A theory T is a non-empty set of models. A formula F is T-satisfiable if there
exists a satisfying total assignment σ for F and an interpretation A that is an
extension of a model M ∈ T such that for each l ∈ σ, lA ≡ true if, for some
atom x of F , l is of the form x; and lA ≡ false if l is of the form ¬x . In particular,
given a formula F and an assignment σ that is total (with respect to F), σ |=T F
if σ is such an assignment. In addition F ′ |=p F if all assignments that satisfy
F ′ also satisfy F propositionally. For a formula, clause, literal, or assignment ξ,
At(ξ) is the set of atoms appearing in ξ.

In the theory of linear real arithmetic (LRA), the universe consists of real
numbers, the function symbols are ∗ and + of arity two restricted to expressing
only linear terms, and the predicate symbol ≤; all three with their usual inter-
pretations. The theory of uninterpreted functions with equality (EUF) places no
restrictions on the interpretations of constants, functions, or predicates (apart
from the inherent ones defined above for equality, >, and ⊥).

Visual representation of CNF Formulas. The variable interaction graph [Sin07]
of a given CNF formula shows the Boolean structure by having each node repre-
senting a Boolean variable. Two variables a and b are connected with an edge
(a, b) if there exists a clause c such that both a and b appear as literals in the
clause. This representation is used for visualizing SAT instances up to thousands
of variables in [Sin07]. In SMT, some of the Boolean variables have an interpreta-
tion with respect to the background theories. Such Boolean variables in general
contain variables from the respective theory. Thus, Boolean variables that ap-
pear isolated with respect to the propositional CNF structure (i.e., do not appear
in the same clause), might still be related at the theory level, sharing common
theory variables. Therefore, variable interaction graphs for SMT instances of-

15 2.2 Safety for Transition Systems

ten are poorly connected when considering only Boolean variables, and highly
connected when considering theory-related literals with new edges.

2.2 Safety for Transition Systems

For a set of variables X , X ′ = {x ′ | x ∈ X } is the set of fresh primed variables.
The notation is extended to formulas, and write ϕ′ for a formula obtained from
ϕ by replacing all variables in ϕ with the corresponding primed variables. Fur-
thermore X [i] is the set of variables obtained by adding i primes to each x ∈ X .

A program can be expressed as a transition system 〈Init, Tr〉 over variables
X : the formula Init(X) describes the program’s initial states and the formula
Tr(X , X ′) describes the program’s transition relation. Given a transition system
over variables X , a safety property is the formula ¬Bad(X). A set of states de-
scribed by a formula ϕ(X) is safe if ϕ(X)∧ Bad(X) is unsatisfiable. To keep the
notation compact, when clear from the context this thesis refers to the formula
ϕ(X) and the transition relation Tr(X , X ′) with simply ϕ and Tr respectively.

Definition 2 (Safety) A transition system 〈Init, Tr〉 satisfies the safety property
¬Bad, i.e., the system is safe with respect to Bad, if all the states reachable from
initial states Init with the transition relation Tr are safe.

The transition system is safe up to k steps if its states reachable by i applications
of the transition relation, for all 0 ≤ i ≤ k, are safe. An instance of the safety
problem is expressed as a triple S = 〈Init, Tr, Bad〉. For simplicity, it is assumed
that Init =⇒ ¬Bad. Otherwise, S is unsafe and the counterexample is a trivial
model over X that satisfies Init∧ Bad.

Definition 3 (Post Image) Given a transition relation Tr and a set of states rep-
resented by F, the predicate postn

Tr(F) is the set of states reachable from any state
in F after taking exactly n transitions of Tr. It is defined as follows:

postn
Tr(F) =

¨

F if n= 0,

∃X ′ · postn−1
Tr (F)(X

′)∧ Tr(X ′, X) if n≥ 1.

post∗Tr(F) is the transitive closure of Tr:

post∗Tr(F) =
∨

n≥0

postn
Tr(F)

16 2.3 The IcE/FiRE framework

The set of reachable states for a program S is post∗Tr(Init). The IC3 algo-
rithm constructs an approximation of the reachable states by computing modu-
larly overapproximations of states reachable by S in a certain number of steps.
The algorithm represents these over-approximations with IC3-lemmas. An IC3-
lemma is a formula over variables X describing reachability information learned
by IC3 execution.

Definition 4 (Relatively Inductive and Invariant Lemmas) Given initial states
represented by Init, transition relation Tr and a set of IC3-lemmas F, an IC3-lemma
ϕ is inductive relative to F if and only if

Init =⇒ ϕ and ϕ ∧ F ∧ Tr =⇒ ϕ′

The formula ϕ is an inductive lemma when it is inductive relative to true. A
IC3-lemma ϕ is an invariant lemma if it is true in all the reachable states, i.e.,
post∗Tr(F) =⇒ ϕ. Every inductive IC3-lemma is invariant, but the converse is not
true in general.

An instance S is safe if there exists a safe inductive invariant Inv such that
Inv =⇒ ¬Bad. S is unsafe if there exists an n ∈ N such that postn

Tr(Init)∧ Bad
is satisfiable. For an unsafe S , a satisfying assignment for

Init(X [0])∧ Bad(X [n])∧
n−1
∧

i=0

Tr(X [i], X [i+1])

is called a feasible counterexample. The satisfying assignment corresponds to a se-
quence of states where the first state satisfies Init, each consecutive pair of states
satisfies Tr, and the final state satisfies Bad, and can, therefore, be considered as
an evidence for a programming error.

2.3 The IcE/FiRE framework
The parallelization techniques proposed in this thesis are evaluated in many con-
texts. One of them is within a joint work published in [BHMS20] with other
colleagues at USI. This section provides the necessary background and notation
specific for this related context.

Given a safety problem S = 〈Init, Tr, Bad〉, IcE/FiRE algorithms [BHMS20]
work on an over-approximation F of the states of S reachable in n steps or less
for some n ≥ 1. The idea is to maintain the invariant that the predicate F does
not intersect with Bad, while trying to prove that F is (k-)inductive. When F

17 2.3 The IcE/FiRE framework

induction-checking
engine

finite
reachability

engine

bounded reachability queries

traces/bounded invariants

bounded
invariants

(I , T, P)

SAFE UNSAFE

Figure 2.1. The IcE/FiRE framework for solving safety of transition systems

is represented symbolically as a set of formulas, individual elements of F can
be checked for inductiveness relative to F instead of checking F as a whole.
Successfully checked elements are collected in a new set G which represents an
over-approximation of the states of S reachable in m steps or less, for m > n.
When G =F , such an F (or G) has the properties of a safe inductive invariant
and therefore it is a solution for S .

IcE/FiRE splits the reasoning about the safety into two separate components,
as shown in fig. 2.1. The first, main, component is an induction-checking engine
(IcE), also referred to shortly as induction engine. The goal of the induction
engine is to decide the safety problem. It searches for a k-inductive strengthening
of the property ¬Bad being checked. If it finds such a strengthening it reports
the system as safe. During the search it may discover that no such strengthening
exists since the negation of the property is reachable from the initial states. In
this case it reports the system as unsafe. To make progress in its search, to remove
spurious counterexamples to induction, and to confirm real ones, IcE relies on the
services of the second component – finite reachability engine (FiRE). The role of
FiRE is to answer bounded reachability queries issued by IcE. Given a state formula
s and a number n, a bounded reachability query asks if any s-state is reachable
from initial states in exactly n steps. The finite reachability engine answers these
queries and provides a reason for the answer. In case of reachability, the reason
is a trace of n + 1 states leading from an initial state to an s-state. In case of
unreachability, the reason is an n-invariant blocking s.

The cooperation of these two engines is depicted on fig. 2.1. During the run,
FiRE accumulates knowledge about the system in the form of bounded invariants.
This knowledge helps it to answer the subsequent queries faster. The progress
of IcE during its run is modelled using a set of rules that capture and evolve the

18 2.3 The IcE/FiRE framework

state of IcE. The idea of separate components is introduced in [JD16] and allows
to easily extend the framework to the parallel settings with information sharing.
In addition, parallelization of IcE/FiRE covers not only PD-KIND [JD16], but also
other algorithms, such as KIC3 [GI17].

Induction-Checking Engine

Given a safety problem for a transition system S = 〈Init, Tr, Bad〉 the induction-
checking engine (IcE) searches for k-inductive strengthening of ¬Bad. It main-
tains two distinct sets of state formulas: a base frame F and a successor frame
G . In addition, it maintains information about its current level n. Intuitively, if
IcE is currently working on level n, it already knows that the system is safe up to
level n, i.e., Bad is not reachable in n steps or less. The base frameF serves both
as a witness that Bad is not reachable, as well as a candidate for the inductive
strengthening of ¬Bad. IcE maintains an invariant that on level n every element
of F is an n-invariant. Moreover, ¬Bad is always an element of F . The succes-
sor frame G collects those elements of F that are F k-inductive for some fixed
k ≤ n+1. Since

∧

F is an n-invariant, this means that all elements of G are
at least (n+1)-invariants. When all elements of the base frame are checked and
either successfully pushed to G or dropped, and no termination condition has
been hit, G becomes the new base frame and the successor frame is emptied. If
at any point F = G then F is a k-inductive strengthening of ¬Bad, proving that
Bad is unreachable in the system. In addition to the two frames IcE maintains a
queue Q. The queue contains the elements of F that still need to be processed
at the current level. The elements of Q are also referred to as obligations.

Following is a formalization of the induction engine as a set of rules that ma-
nipulate the current state of IcE. The state of IcE, or configuration, is the 5-tuple
〈F ,G , n, k,Q〉 with F being the base frame, G the successor frame, n the cur-
rent level, Q the queue of obligations, and k defining the depth of induction.
For brevity, elements of F are referred to as lemmas instead of bounded invari-
ants. The initial configuration of IcE is 〈{¬Bad},;, 0, 1, {¬Bad}〉 and IcE makes
progress by applying the following rules. Note that the rules Safe and Unsafe
are special, terminating rules.

Next-Level:
〈F ,G , n, k,;〉
〈G ,;, n′, k′,G〉

if

F 6= G
n′ > n
∧

G is n′-invariant
1≤ k′ ≤ n′ + 1

19 2.3 The IcE/FiRE framework

Push-Lemma:
〈F ,G , n, k,Q ∪ {l}〉
〈F ,G ∪ {l}, n, k,Q〉

if
�

l is F k-inductive

Add-Lemma:
〈F ,G , n, k,Q〉

〈F ∪ {l},G , n, k,Q ∪ {l}〉
if
�

l is an n-invariant

Drop-Lemma:
〈F ,G , n, k,Q ∪ {l}〉
〈F ,G , n, k,Q〉

if
�

l 6= P

Additionally, the rules Safe and Unsafe are special terminating rules.

Safe:
〈F ,G , n, k,;〉

SAF E
if
�

F = G

Unsafe:
〈F ,G , n, k,Q〉

UNSAF E
if
�

Bad is reachable in [n+ 1, n+ k] steps.

The rules of IcE, namely Add-Lemma and Drop-Lemma, are abstract in the
sense that it is neither specified when or how new lemmas learnt nor when they
should be dropped. In sequential setting, new lemmas are typically learnt from
FiRE when a counter-example to induction of some obligation is showed to be
unreachable by FiRE.

The rule Add-Lemma is general enough to cover not only the internal learn-
ing, but also external learning. Internal learning refers to the learning of lemmas
from FiRE, while external learning refers to the lemmas that come from any other
source. This is important for parallelization as it enables incorporating bounded
invariants discovered by other instances working on the same problem.

Finite Reachability Engine

The finite reachability engine (FiRE) is responsible for answering bounded reach-
ability queries issued by IcE. A bounded reachability query for a system S is sim-
ply a pair 〈s, i〉 where s is a state formula and i is a natural number. It represents
a question if any s-state is reachable in S by exactly i steps. This is naturally
generalized to queries of the form 〈s, [i, j]〉, meaning reachability in at least i
and at most j steps. An answer to a bounded reachability query 〈s, i〉 is either an

20 2.4 Smart Contracts

i-invariant l such that l =⇒ ¬s in case of unreachability, or a trace of i+1 states
starting from an initial state and ending in an s-state in case of reachability.

2.4 Smart Contracts

In ETHEREUM [Eth18a] smart contracts are conceptually similar to classes as in
object-oriented programming. A contract is constructed when deployed in the
blockchain, and it can be interfaced through function calls. Users and smart con-
tracts are identified by a unique ETHEREUM address and interact with each other
by submitting transactions to an address. The address that performs the trans-
action is called sender, while the address that receives the transaction is called
receiver. If the receiver is a user the result of the transaction is the transfer of
a specified amount of cryptocurrency. Otherwise, when the receiver is a smart
contract the transaction triggers the execution of a specified contract function.
During the computation, smart contracts can submit transactions to other ad-
dresses to transfer funds or recursively interact with other contracts.

The execution of the ETHEREUM platform is carried out by miners that mine
transactions for a fee. The fee is based on the cost of the transaction as specified
by the execution environment, in an abstract quantity called gas. The sender
specifies the price for a unit of gas, and provides an amount of money for the
transaction. The miner then keeps the price of the actual gas used in the transac-
tion from the amount as a compensation for mining the transaction and returns
the rest back to the sender.

Smart contracts consist of a storage and a set of functions. The storage is
a persistent memory space used to store variables whose values represent the
contract state. In ETHEREUM, the storage lives in the blockchain that guarantees
persistency and coherence. Functions are allowed to access the storage both
in read and write modes, and their behaviour is defined by the corresponding
ETHEREUM Virtual Machine (EVM) low-level instructions, stored persistently in a
separate memory residing within the blockchain. Each contract function is either
external or internal. Transactions to a contract can be performed by calling only
external functions. Internal functions can only be called from inside the contract
during an execution.

Smart contracts can be written in several languages that compile to EVM.
Solidity and Vyper are the most popular languages. Solidity is a Turing-Complete
language specifically designed for smart contracts targeting EVM. The syntax
is similar to C++. Solidity defines contracts as structures similar to classes in
object-oriented programming languages, and natively supports several data types

21 2.4 Smart Contracts

and structures, e.g. integer, Boolean, arrays, maps, strings and structs.
Each external function execution, called from either the same or another con-

tract, is identified by a separate transaction. During the execution, the entire sys-
tem can revert to the state prior to the beginning of the transaction, that is, as if
the call had not happened, before returning to the caller. Reverting is performed
as follows: Given a call to a function f at program counter value c, the current
state of all the variables in the scope of f , i.e. all the variables f is allowed to ac-
cess, is saved as σc

f . In case of invoking revert, the system recursively traverses
the executed call tree of f , i.e., all the functions called since the beginning of
the execution of f . The visit of the call tree of f is done anti-chronologically in
a depth first manner, and for each node visited representing the call to some f̂
with program counter value ĉ, the associated state σĉ

f̂
is restored. Finally, the

state σc
f is restored, and the execution resumes in the caller that is notified of

the occurrence of the reversion. If the call is initiated by a user, then f is at the
root of the executed call tree, the entire transaction is reverted, and the notifi-
cation is delivered to the user. Each individual external function call is therefore
an atomic transaction, i.e., it either executes without exceptions committing the
changes, or rolls back completely if an exception occurs, leaving the state un-
changed. Contrarily, in standard programming languages all the changes made
in the heap by a function prior to throwing an exception are preserved.

A control flow graph (CFG) is a graph representation of the execution paths of
a program, and it is commonly used for static analysis. A graph node represents
a basic block, that is, a sequence of program statements that do not change the
control flow of the program. Common programming language constructs that
modify the control flow are branching, loops, and function calls. Moving from
one block to another is a jump. Often jumps are conditional, i.e. they are labeled
with a Boolean expression that must be true for the jump to occur.

22 2.4 Smart Contracts

Chapter 3

Multi-agent SMT Solving

Determining the satisfiability of a first-order formula is in general undecidable.
However, the SMT approach to first-order formula solving aims at being very
practical by focusing on the needs of specific user communities. This focus on
user communities allows the development of algorithms that are often highly ef-
ficient in the decidable fragments of first-order theories required by users’ appli-
cations. Nevertheless, state-of-the-art SMT solvers still face strong performance
issues on real-world problems.

T -DPLL [Tin02, NOT06] is the standard algorithm for SMT solvers, and its
execution can be described as a sequence of operations that iteratively builds
a solution. Heuristics are in charge of choosing the next operation to perform
during the execution, therefore their ability to take the right choice is of utmost
importance. Small changes in heuristics reasoning induce a chain reaction that
can produce substantial differences with respect to the performance.

This chapter studies how parallelism, and in particular distributed comput-
ing with cooperating multi-agents, can help T -DPLL solvers to scale to increas-
ingly hard problems. There is a rich variety of first-order theories supported by
the SMT solving community. However, the T -DPLL solvers have only three cen-
tral algorithms that are employed in solving most theories: the conflict-driven
clause-learning algorithm (CDCL) [MSS99] for propositional satisfiability used
in the core SAT solver, the congruence closure algorithm for ground first-order
logic [DNS05], and a backtrackable Simplex algorithm for linear real arithmetic [DdM06].
In particular this chapter focuses on instances from the quantifier-free fragments
of equality logic with uninterpreted functions (EUF), and linear real arithmetic
(LRA). These theories are enough to produce empirical evidence regarding the
performance of all the three central algorithms while executed in a parallel co-
operating settings.

23

24 3.1 Background

3.1 Background

3.1.1 T -DPLL Algorithm

A T -DPLL [Tin02, NOT06] solver consists of a SAT solver determining the satisfi-
ability of a CNF formula F , and a theory solver that is capable of reasoning on a
conjunction of predicates over a theory T . In the pre-processing phase the input
SMT formula is converted into an equisatisfiable propositional formula F in CNF
while preserving the special T -interpretations of the atoms. The solving process
is driven by a SAT solver maintaining a set of clauses which initially consists of
the formula F . During the search the SAT solver maintains a state σ ‖ F , where
σ is an initially empty ordered assignment. The state is modified according to
the following rules, adapted from [BSST09]. In the following, the notation c L

and cE respectively refer to learned and explanation clauses. Rules not having
explicit labels match any clause.

Prop:
σ ‖ F ∧ (c ∨ l)
σl ‖ F ∧ (c ∨ l)

if

c is a clause
¬c ⊆ σ
l 6∈ σ and ¬l 6∈ σ

Decide:
σ ‖ F
σld ‖ F

if

�

l or ¬l appears in F
l 6∈ σ and ¬l 6∈ σ

Fail:
σ ‖ F ∧ c

Fail
if

�

¬c ⊆ σ
σ contains no decision literals

Restart:
σ ‖ F
; ‖ F

T-Prop:
σ ‖ F

σl ‖ F ∧ (c ∨ l)L
if

σ |=T l
l ∈ At(F) or ¬l ∈ At(F)
l 6∈ σ and ¬l 6∈ σ
c is a clause s.t. σ |=T ¬c

T-Explain:
σ ‖ F

σ ‖ F ∧ cE
if

�

each atom of c appears in σ ‖ F
σ |=T ¬c

25 3.1 Background

P-Explain:
σ ‖ F

σ ‖ F ∧ (c1 ∨ c2)E
if

c1 ∨ x ∈ F and c2 ∨¬x ∈ F
¬c1 ⊆ σ
¬c2 ⊆ σ

Forget:
σ ‖ F ∧ c L

σ ‖ F

Backjump:
σldσ′ ‖ F ∧ cE

σl ′ ‖ F ∧ (c′ ∨ l ′)L
if

¬c ⊆ σldσ′

There is a clause c′ ∨ l ′ s.t.
(1) F, c |=p c′ ∨ l ′ and ¬c′ ⊆ σ;
(2) l ′ 6∈ At(σ) and ¬l ′ 6∈ At(σ); and
(3) l ′ or ¬l ′ occurs in σldσ′ ‖ F ∧ c

A T -DPLL-based SMT solver works by applying the above rules with certain
restrictions: the rule Decide is never applied if the rule Prop is applicable, the
rule Backjump is always applied after either T-Explain or P-Explain is applied,
and if the rule Decide cannot be applied (i.e., all atoms are assigned) the solver
applies the rule T-Prop. The rule Decide adds to σ a literal ld , that is, l labeled
as decision literal.

The solver terminates by reaching a state σ ‖ F where either σ is a total
assignment proving F satisfiable, or the rule Fail is applicable proving F unsatisfi-
able. The solver always terminates if the rule Forget is applied with an increasing
interval [BSST09].

The clauses (c′∨ l ′)L resulting from the application of the rule Backjump are
learned clauses. The unit propagation closure UP(F,σ) is defined as the set σ′,
where given a solver state σ ‖ F , the rules Prop and T-Prop are applied until
neither one applies, resulting inσ′ ‖ F . Note that UP(F,σ) is unique, since truth
assignments are sets and therefore unordered.

3.1.2 Parallelization Approaches for SMT

Heuristics for guiding the search on a Boolean structure, and in particular the
choice of the literal ld in application of the rule Decide, play an important role in
T -DPLL solvers. During the search solvers typically maintain heuristic values for
the free atoms. As a natural consequence of the complexity of the SMT problem,
these values are inaccurate and small changes in them can result in significant
differences in run times. To discuss the run time of a solver S on an instance F
this chapter introduces the cumulative run time distribution qS

F(t) : R → [0, 1]
that gives the probability that the solver S solves the instance F in time less

26 3.1 Background

than or equal to t. We visualize such distributions in section 3.3. In some cases
the distributions are heavy-tailed [GSCK00], having a significant probability of
producing outliers, measurements that are far from the median. When such a
distribution is visualized in the x y-plane, it has long, nearly horizontal segments.
The randomness can be used to obtain speed-up in a parallel setting using a
portfolio of algorithms. The main challenge in parallelizing SMT solvers this way
is that portfolio-style solving seems to hit a scalability limit where adding more
CPUs does not provide more speed-up [HJN11, HM12, KSSS13]. The scalability
problem of the portfolio-style solving can be addressed by allowing the search
processes to share information such as the learned clauses obtained with the rule
Backjump. This chapter uses the simple portfolio obtained by forcing the rule
Decide to pick a random literal l, potentially against the heuristic value. This
approach was found to be efficient in SAT solving [HJN09] and was identified to
be the best-performing strategy for SMT solvers in [WHdM09].

The scalability limit is addressed in an orthogonal way by using a divide-and-
conquer approach where several solvers work in parallel on problem instances
that are constructed by partitioning the search-space of the original instance and
hence are different from each other. The solution to the original problem in-
stance can be obtained by combining the results from the partitioned instances.
This approach has an inherent problem that needs to be addressed to obtain
good results: If the original problem instance is unsatisfiable, the variance in
run time results in decreased performance. Instead of having to solve a single
instance the solver needs to solve several instances that, despite being usually
easier than the original, might still be challenging. While the variance in solver
run time makes the portfolio approach efficient, it degrades the performance of
the divide-and-conquer approach, effectively resulting in the solver having to
wait for the “unluckiest” instance to be solved. Under certain assumptions it can
be shown that for implementations based on pure divide-and-conquer it is pos-
sible to come up with a run-time behaviour that results in increased run time
when parallelized this way, and that a different organization of the search, based
on the parallelization tree abstract algorithmic framework discussed below, can
help to avoid this problem [HM12].

To present the approach, the idea of combining divide-and-conquer with port-
folio is formalized using the abstract parallelization algorithmic framework called
parallelization tree and give five concrete instantiations of the framework. In
addition to providing us with a convenient tool for discussing different paral-
lelization algorithms, the framework is also used as a tool for explaining the
performance results presented in section 3.5 .

In the following this section first discusses certain approaches for partitioning

27 3.1 Background

the search-space in SMT and then describe the parallelization tree framework.
Then the section concludes with concrete examples of the framework instantia-
tions.

3.1.3 Search-Space Partitioning

The basic approach for constructing partitions in SMT uses a partitioning func-
tion, denoted by partf n : F 7→ F1, . . . , Fn, to divide an SMT instance F into n
partitions F1, . . . , Fn. The function satisfies the conditions that F is satisfiable if
and only if F1 ∨ . . .∨ Fn is satisfiable and no two partitions Fi, F j, i 6= j, share a
total satisfying truth assignment. Partitions are constructed by conjoining to F
partitioning constraints P1, . . . , Pn, that are in general sets of clauses. This chapter
uses two types of partitioning constraints: the ones obtained with the scattering
approach [HJN11] and the ones obtained with guiding paths [BS96, ZBH96].

The scattering approach. The scattering approach is a technique for dividing
an instance into arbitrary number of partitions. Each partitioning constraint Pi is
obtained by heuristically selecting a set of scattering literals l i

1, . . . , l i
ki

and conjoin-
ing these literals with the clauses obtained by negations of the previous scattering
literals. More formally this can expressed as Pi := l i

1∧. . .∧l i
ki
∧(¬l i−1

1 ∨. . .∨¬l i−1
ki−1
)∧

. . .∧ (¬l1
1 ∨ . . .∨¬l1

k1
). The number of scattering literals ki is selected so that the

constructed partitions have approximately equally sized search space, under the
assumption that fixing a literal will reduce the search space by a constant factor.
If n is the number of partitions to be generated, it can be shown that the frac-
tion obtained by fixing the scattering literals l i

1, . . . , l i
ki

should be ri =
1

n−i+1 of the
previous instance Fi−1 [Hyv11]. It is assumed that fixing a literal will half the
search space, and this results in us choosing the number of scattering literals ki

that minimizes the difference |ri − 2−ki |.

The guiding paths. As an alternative to the scattering-based method for con-
structing the partitions, this paragraph presents a simple variant of the guiding
path approach [ZBH96] where a binary tree with literals as nodes represents the
n = 2k, k ≥ 1 partitions. The root of the tree consists of the true literal, and
the rest of the nodes are either leaves with no children or have exactly two chil-
dren labeled with v and ¬v, respectively, where v ∈ B. Each path of literals
true, l1, . . . , lk from the root to a leaf lk corresponds to a partitioning constraint
l1 ∧ . . .∧ lk.

28 3.2 The Parallelization Tree Framework

Both the scattering and the guiding path approach rely on a heuristic in or-
der to select the literals used for the partitioning. Two different heuristics have
been implemented: the VSIDS-based heuristic [MMZ+01] which scores higher
the atoms that are often involved in applying the rule Backjump, and the looka-
head heuristic [ZM88, Sim00, HvM09]which scores atoms according to the num-
ber of literals propagated with rules T-Prop and Prop. The VSIDS heuristic is
used together with the scattering approach for constructing partitions, while the
lookahead heuristic is used with the simplified guiding path approach. When us-
ing the VSIDS heuristic we dedicate a short amount of time to perform a search
on the instance so that the VSIDS heuristic gets reasonable scores for the atoms.

The lookahead heuristic starts with an assignment σ and computes for each
atom satisfying the condition of the rule Decide the sizes of the sets UP(F,σx)\σ
and UP(F,σ¬x) \σ. The highest score is assigned to the atom that maximizes
the minimum of the sizes of these two sets. As a result, the heuristic favors atoms
that lead to similar sized partitions having few free atoms.

3.1.4 Clause sharing

In clause sharing the clauses learned by an SMT solver while solving a formula F
are distributed among the solvers in the parallel portfolio. Since clause learning
plays an important part of the T -DPLL solving process, sharing them can signifi-
cantly speed up the parallel solving. Intuitively the shared clauses make it easier
to produce the required clauses in case of unsatisfiability, and reduce the number
of assignments the solver covers before finding a satisfying assignment.

3.2 The Parallelization Tree Framework

The key idea in obtaining well-performing parallel solvers where search-space
partitioning plays a role is to combine elements from both the search-space par-
titioning and the algorithm portfolio.

The parallelization tree abstract algorithmic framework provides a unified
way of presenting and comparing different parallelization algorithms. The par-
allelization tree consists of two types of nodes: p-nodes and r-nodes, where p
stands for partition and r for repeat. The root and the leaves of the paralleliza-
tion tree are p-nodes. Each p-node is associated with an SMT instance and, with
the possible exception of the root of the parallelization tree, with one or more
SMT solvers. The instance at the root of the parallelization tree is satisfiable if
any instance in the p-nodes is shown satisfiable. A subtree rooted at a p-node

29 3.2 The Parallelization Tree Framework

is unsatisfiable if one of its children is unsatisfiable or at least one of the solvers
associated with the p-node has shown the instance unsatisfiable. A tree rooted
at an r-node is unsatisfiable if every tree rooted at its children is unsatisfiable.

The partitioning operator splitk(n1, . . . , nk, F) is used to construct the paral-
lelization tree. The result of applying the operator splitk on a p-node F is a tree
rooted at the p-node F having k children o1, . . . , ok. Each child node oi is an
r-node and has as children the p-nodes ai

1, . . . , ai
ni

. Finally, each p-node ai
j is as-

sociated with the partition obtained by applying the (randomized) partitioning
function partf ni

on the formula F .
As instances of the parallelization tree, the following list identifies five par-

ticularly interesting parallelization algorithms.

• The plain partitioning approach plain(n, F) corresponds to the paralleliza-
tion tree split1(n, F) where each of the instances associated with the nodes
a1

1, . . . , a1
n is solved with a single SMT solver.

• The portfolio approach portf(k, F) corresponds to the parallelization tree
consisting of the root associated with the instance F and using k SMT
solvers to solve the instance.

• The safe partitioning approach safe(n, s, F) corresponds to the paralleliza-
tion tree split1(n, F) and solving each of the instances a1

1, . . . , a1
n with s SMT

solvers.

• The repeated partitioning approach rep(n, k, F) corresponds to the paral-
lelization tree splitk(n, . . . , n, F) where each instance associated with the
nodes a1

1, . . . , a1
n, . . . , ak

1, . . . , ak
n is solved with one SMT solver.

• The iterative partitioning approach iter(k, F) corresponds to the infinite
parallelization tree where every instance associated with a p-node is be-
ing solved with a single SMT solver and every p-node associated with an
instance Fa has the single r-child and p-grandchildren constructed by ap-
plying the operator split1(n, Fa).

Figure 3.1 illustrates the corresponding parallelization trees and the solver as-
signments. When clear from the context, the formula F is omitted as well as the
other parameters from the partitioning approach.

Concrete SMT instantiations of the parallelization tree include the CVC4 [BCD+11]
and Z3 [dMB08] SMT solvers which implement a portfolio, and PBOOLECTOR [Rei14]
which implements an iterative partitioning approach.

30 3.3 Partition Distributions

F

F1 F2

SS
S S

safe

F1

S
F2

S

F

plain

F1

S
F2

S

iter

FS

...
...

...
...

F ′
1

S
F ′
2

S
F ′′
1

S
F ′′
2

S

rep

portf

FS S

F

F 1
1 F 1

2 F 2
1

S S S
F 2
2

S

Figure 3.1. Example parallelization trees (clockwise from the top left):
portf(2, F), safe(2, 2, F), iter(2, F), plain(2, F), and rep(2,2, F). The p-nodes
are drawn with boxes, and the r-nodes with circles. The SMT solvers are
indicated with the symbol S .

3.3 Partition Distributions

This section analyses experimentally how partitioning affects the solving of SMT
instances over the theories of linear real arithmetic and uninterpreted functions.
The goal is to provide an insight in particular to the unexpected slow-downs and
super-linear speedups by measuring the run time distributions of the original
instance and the constructed partitions.

3.3.1 Linear Real Arithmetic

The benchmarks set consists of all instances from QF_LRA that are unsatisfiable
and solved between 100 and 1200 seconds by OPENSMT2 [HMAS16] on a sin-
gle, arbitrary run. This set results of 103 instances in the experiments. These
instances were partitioned into two parts with the approach plain using guiding
paths with the lookahead heuristic. The heuristic itself solved 15 of these in-
stances, which left us 88 unsolved instances. The resulting two partitions were
solved, and reported here is the higher of these two run times as the wall-clock
run time. The experiment corresponds to a simulation where partitioning is as-
sumed to take no time and there are no communication delays.

31 3.3 Partition Distributions

100

1000

100 1000

(a)(b)

(c)

(d)
(e)

(f)

(g)

p
la
in
(2
)

sequential

0.01

0.1

1

10

0.01 0.1 1 10

(a)

(b)

(c)

(d)

(e)

(f)
(g)

Figure 3.2. Comparison of OpenSMT2 and plain for QF_LRA benchmarks
(left), and relative run times of the partitions with respect to the original
instance (right). The dotted line represents linear two-fold speed-up, and the
labels (a) – (g) refer to instances that are analyzed in fig. 3.3 more in detail.

Figure 3.2 (left) reports the results. The majority of the problems, 59%, are
solved faster in this experiment with parallelization, and approximately 7% of the
instances show super-linear speed-up. However, there are at least five instances
which seem to show a significant slowdown with this approach.

Figure 3.2 (right) shows the run times of each of the two partitions relative to
the original instance solved sequentially. Each point corresponds to an instance
and has as coordinates the ratios between the solving time of the partition and
the original instance. Points having both coordinates less than one and less than
half (inside the solid and dashed squares, respectively) represent, respectively,
instances that are faster and superlinearly faster to solve with plain. In the case
of the serious slowdowns, both partitions were solved slower than the original
instance. The super-linear speedup of instance (e) shows a significant imbalance
between the partition hardness. In general the partitions seem to be relatively
balanced in difficulty: for example the cases where one partition is ten times
faster to solve than the original instance constitute roughly one third of the cases.

Distribution analysis. First, it is analysed the cases where plain takes more
time than the sequential solving, using as case studies three outliers in fig. 3.2:
instance (a), where the run time was almost 1600 seconds for plain but only
slightly more than 200 seconds for OPENSMT2; instance (b) where the run time
was slightly less than 1400 seconds for simulated partitioning and less than 400
seconds for simulated partitioning; and (c) where both partitions where solved
in more than twice the time needed by OPENSMT2. The experimental run time

32 3.3 Partition Distributions

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(a)

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(b)

0

0.2

0.4

0.6

0.8

1

100

p
ro
b
ab

il
it
y

time

(c)

Figure 3.3. Run time distributions of three instances (a) – (c) from fig. 3.2
that perform unexpectedly bad in partitioning.

distributions reported in fig. 3.3 were obtained by running the original instances
(a) – (c) and their respective two partitions 20 times seeding differently the ran-
domness of the solver. The figures show the probability q(t), on the vertical axis,
that an instance is solved within time t, running on the horizontal axis. Three
kinds of behavior can be observed.

• Figure 3.3 (a): Both partitions are roughly equal to the original instance.
The high run time is due to having to wait for the longest-running instance.

• Figure 3.3 (b): one of the partitions has a consistently lower probability
of being solved within time t compared to the original instance. The high
run time in fig. 3.2 can be explained by this harder partition.

• Figure 3.3 (c): the resulting distributions are consistently higher for the
two partitions than for the original instance, and the high run time in
fig. 3.2 is a result of "bad luck".

33 3.3 Partition Distributions

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

p
ro
b
ab

il
it
y

time

(b’)

0

0.2

0.4

0.6

0.8

1

10 100 1000

p
ro
b
ab

il
it
y

time

(b”)

Figure 3.4. Run time distributions of the instance (b) from fig. 3.2 when
partitioned into four (left) and eight (right).

Figure 3.4 (b’) and (b”) further shows run time distributions for the outlier (b)
when partitioned into four and eight parts. Figure 3.4 (b’) gives as reference the
hard distribution from (b) in purple. The partitioning resulted in three distribu-
tions that, while clearly closer to the original instance, are still somewhat harder,
in addition to an easy partition solvable in six seconds. Partitions seem to be
inherently harder than the original in this instance. When partitioning to eight
parts in fig. 3.4 (b”) all the partitions seem to already be easier than the original
instance in average.

Similar to the unexpected slow-downs, a super-linear speedups is observable
in fig. 3.2. In the experiments a total of six instances present super-linear speedup
where both partitions were solved in less than half the time required to solve
the original instance. Figure 3.5 analyses closer four representative examples,
marked in fig. 3.2 by labels (d) – (g).

• Figure 3.5 (d): One partition is clearly easier than the original instance.
The original instance has a heavy tail, which is made lighter in the other
partition. The speed-up could be said to be because of the lighter tail of
the other partition.

• Figure 3.5 (e): One partition is very easy and the other partition is essen-
tially the same as the original. The speed-up could be said to result from a
purely random behavior.

• Figure 3.5 (f): Both partitions are harder than the original, but the parti-
tions have heavy tails. Similar to (e), the speed-up could be said to result
from a purely random behavior.

34 3.3 Partition Distributions

0

0.2

0.4

0.6

0.8

1

100

p
ro
b
ab

il
it
y

time

(d)

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

p
ro
b
ab

il
it
y

time

(e)

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(f)

0

0.2

0.4

0.6

0.8

1

100

p
ro
b
ab

il
it
y

time

(g)

Figure 3.5. Run time distributions of four positive outliers from fig. 3.2.

• Figure 3.5 (g): Both partitions are easier than the original instance. Ob-
taining speed-up is therefore likely, but the super-linear behavior is random
behavior.

The conclusion is that both the super-linear speed-up and slow-down ef-
fects measured in partitioning-based parallel approaches result from rich inter-
action between partitioning and inherent randomness in solving instances from
QF_LRA. Luck often plays a major role in both slower-than-expected and faster-
than-expected instances. Perhaps the most surprising effect is the consistent
slow-down observed in partitions for instances (f) and (b), where the assumed
literal in some runs seems to distract the solver from finding proofs quickly. We
note the absence of cases where both partitions would be considerably harder
than the original instance. In all six cases of super-linear speed-ups and some of
the cases where slow-down is observed, the distributions exhibit long almost hor-
izontal phases indicative of heavy-tailed behavior. This common phenomenon in
constraint solving seems to play a major role in the unpredictability of the effi-
ciency of parallel solving based on partitioning.

35 3.3 Partition Distributions

100

1000

100 1000

(a) (b)

(c)

(d) (e)

p
la
in
(2
)

sequential

0.1

1

10

0.1 1 10

(a)

(b)

(c)

(d)

(e)

Figure 3.6. Comparison of OpenSMT2 and plain for QF_UF benchmarks (left),
and relative run times of the partitions with respect to the original instance
(right). The dotted line represents linear two-fold speed-up, and the labels (a)
– (d) refer to instances that are analyzed in fig. 3.7 more in detail. The in-
stance (e) is analyzed separately in fig. 3.8 (right).

3.3.2 Equivalence Logic with Uninterpreted Functions

Further, this thesis studies the run time distributions for instances from the cate-
gory QF_UF of SMT-LIB. The instances where OPENSMT2 was able to find a solu-
tion between 100 and 1000 seconds are partitioned into two. The benchmark set
obtained this way consists of 16 instances, which is too few to draw conclusive
results, but nevertheless allows us to study similar interesting behavior observed
for QF_LRA.

The comparison between the sequential OPENSMT2 and plain run times is
shown in fig. 3.6 (left), and fig. 3.6 (right) shows the relative hardness of the
partitions compared to the original instance. It is observable that in comparison
to QF_LRA, the algorithm plain performs poorly in QF_UF: only one third of the
instances shows a speedup and there are several outliers. Furhter, it is observable
that there are case where one partition is much harder and the other much easier
than the original instance. We note also one case of superlinear speed-up.

Distribution analysis. Considering the run-time distributions for the instances,
four different classes of instances can be identified based on the distributions.
Representative examples are marked with labels (a) – (d):

• Figure 3.7 (a): Both partitions are significantly more difficult than the orig-
inal instance;

36 3.3 Partition Distributions

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(a)

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(b)

0

0.2

0.4

0.6

0.8

1

1000

p
ro
b
ab

il
it
y

time

(c)

0

0.2

0.4

0.6

0.8

1

100

p
ro
b
ab

il
it
y

time

(d)

Figure 3.7. Run time distributions of four instances from fig. 3.6.

• Figure 3.7 (b): One partition is significantly more difficult than the original
instance, while the other is clearly easier;

• Figure 3.7 (c): Both partitions are significantly easier than the original
instance; and

• Figure 3.7 (d): One partition is significantly easier than the original in-
stance, and the other partition is only slightly easier.

The rest of the instances fell into one of these four categories. The two new
behaviors that were absent from the case for QF_LRA can be observed: a consis-
tent increase in difficulty for both partitions in the instance (a), and a consistent
super-linear speed-up for both partitions in the instance (c). For now a good
explanation for these anomalies is not available. The introduced unit clauses
are possibly confusing the heuristic to search for proofs in a redundant way, and
since the distributions are fairly resilient to randomness in comparison to linear
real arithmetic distributions, the bad behaviour is difficult to escape by increasing
randomness.

37 3.3 Partition Distributions

0

1000

2000

3000

4000

1 4 16 64 256 1024h
ar
d
es
t
p
ar
ti
ti
on

ru
n
ti
m
e

partitions

0

0.2

0.4

0.6

0.8

1

10 100

p
ro
b
ab

il
it
y

time (sec.)

original
with 6 not
with 5 not
with 4 not

with 3 not
with 2 not
with 1 not
with 0 not

Figure 3.8. Run time with respect to number of partitions for instance (a),
green line represent original instance runtime (left), and the cumulative runtime
distribution of the QF_UF benchmark (h) and its 64 partitions (right).

The instance (a) is studied further by splitting to two, four, eight, 16, 32, 64,
128, 256, 512, and 1024 partitions and report the results in fig. 3.8. The increase
in difficulty is consistent until it reaches a peak at 32 partitions after which the
instance gets easier to solve. However, considering all splitting from 2 up to 512
partitions, the hardest partition is still harder than the original instance. Such
behaviour seems to gradually recede and eventually reverse. Indeed all parti-
tions resulting splitting in 1024 are is easier than the original instance. In the
experiments, the proportion of partitions that are harder than the average run
time of the original instance decreases dramatically with the increase of parti-
tions. For example, the proportion at 32 partitions is close to 50%, for 128 it is
13%, for 256 partitions 7%, and for 512 partitions just over 1% of the partitions
are harder than the average.

Finally, fig. 3.8 (right) shows the cumulative runtime distributions of the
QF_UF benchmark instance (e) and its 64 partitions created using lookahead.
In this case the partitions constraint the original instance by adding all the com-
binations of true/false assignments to 6 atoms. The figure shows that in this case
there is a strong correlation between the number of false assignments in the par-
tition constraints and the runtime. The instance seems to get substantially easier
when atoms are asserted true. The speedup obtained by solving all 64 partitions
of fig. 3.8 (right) in parallel is 21%. Specifically, the average CPU time for solving
the original instance sequentially is 304 seconds, whereas the maximum average
runtime for all the partitions is 241 seconds. However, solving all 64 partitions

38 3.3 Partition Distributions

would require on average 3034 CPU seconds, which is roughly 10 times more
than the CPU time needed by the original instance to be solved sequentially.

As a conclusion, the algorithm plain performance depends in general on the
underlying SMT theory, and the strategy is prone to catastrophic failures where
partition gets significantly harder than the original instance. The following stud-
ies different approaches for overcoming these issues.

3.3.3 Partition Heuristics

Since the ability of the partitioning to construct easy instances plays such a critical
role in the overall success of the partitioning based parallelization algorithms, it
is interesting to study the effect of partitioning heuristics. Two different types of
heuristics are compared, the VSIDS [MMZ+01] scattering and lookahead [ZM88]
based on the guiding path implementation in [HMS+18].

The algorithm safe(8,8) and a superset of the previous experiments contain-
ing unsatisfiable QF_UF instances1 are used to illustrate the difference between
the two heuristics and report the results in fig. 3.9 (top). Excluding the time to
construct the partitions, the lookahead gives a 40% reduction in the run time of
the solver, the average speed-up being two. However, when the time required
to construct the partitions is included, the lookahead-based heuristic looses the
edge and becomes slightly worse compared to the VSIDS-based heuristic. This
results mainly from the implementation of the lookahead-heuristic. The current
implementation is not as optimized as the VSIDS implementation, but we believe
that the heuristic can be made more efficient.

To understand the impressive efficiency of the lookahead heuristic we study
closer two examples where the abstract parallelization algorithm safe(2,32) per-
forms well with the lookahead heuristic and with the VSIDS heuristic. The graphs
on the bottom of fig. 3.9 report the cumulative run-time distributions of the orig-
inal instance and the four partitions constructed with the two heuristics. In the
first example the lookahead heuristic finds a partitioning where the two partitions
have a very similar run time distribution, whereas the VSIDS heuristic results in a
very uneven distribution where one partition is significantly easier to solve than
the other. In the second case (lower right graph in fig. 3.9) the lookahead heuris-
tic performed on a single run worse than the VSIDS heuristic. In this case both
the heuristics resulted in very uneven partitions. However it would seem that
the cumulative run-time distribution of the VSIDS heuristic dominates on a wide
area the distribution of the lookahead-based heuristic. Interestingly there seems

1All satisfiable instances were easy and the results therefore not representative.

39 3.3 Partition Distributions

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000t/o
sa
fe
(8
,8
)
lo
ok
ah

ea
d

safe(8, 8) VSIDS

0

0.2

0.4

0.6

0.8

1

30 100 1000

p
ro
b
ab

il
it
y

time (s)

lookahead 1
lookahead 2

scatter 1
scatter 2

orig
0

0.2

0.4

0.6

0.8

1

200 1000

p
ro
b
ab

il
it
y

time (s)

lookahead 1
lookahead 2

scatter 1
scatter 2

orig

Figure 3.9. The lookahead heuristic compared to the VSIDS-based scattering
heuristic

to be a small probability that the lookahead-heuristic can solve the problem some-
what faster than the original problem, suggesting that the implementation with
load balancing should be capable of performing well on this instance also for the
lookahead heuristic.

3.3.4 Repeated Partitioning

Due to the heuristic nature of the partitioning it is natural to ask how a portfolio
of partitioning algorithms would work. Figure 3.10 provides a comparison be-
tween the algorithms plain(64) and rep(2,32) using instances from QF_UF. The
experiment set contains all instances having run time longer than one minute
with the default configuration of OPENSMT2. This set consists of 54 instances,
11 of which could not be solved within the 1000 seconds timeout and 4 GB
memory limit. All the instances solvable from this set turned out to be unsatis-
fiable, and therefore a randomly selected 100 easier satisfiable and unsatisfiable

40 3.4 Evaluation of the Parallelization Tree Framework

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000t/o
re
p
(2
,3
2)

plain(64)

Figure 3.10. The run times for the parallelization algorithms plain(64) and
rep(2,32) on 64 cores.

instances are added, resulting in total 254 benchmark instances. The run times
include the time required for the partitioning. Here, as well as in all other similar
graphs, satisfiable and unsatisfiable instances are denoted respectively by × and
by �, and timeouts are highlighted with a red color. The algorithm plain(64) is
almost always worse. A closer analysis reveals that when considering only the
instances that both approaches could solve the algorithm rep(2,32) solves the
full problem set 9 times faster than the algorithm plain(64).

3.4 Evaluation of the Parallelization Tree Framework

This section presents the results of some of the algorithms obtained from the
parallelization tree algorithmic framework of section 3.1.2 with scattering and
the VSIDS heuristic. The results are presented separately for instances from the
QF_UF and QF_LRA benchmarks. The reported times include also the time to
run the partitioning.

3.4.1 Logic of Equality and Uninterpreted Functions

Table 3.1 shows the results for the hardest instances in the QF_UF benchmark set.
The column OPENSMT2 represent the sequential run of the OPENSMT2 solver.
The best run time for a given instance is shown in boldface, and dashes indicate
timeouts.

While the parallelization algorithm portf works relatively well, it seems to
lose in the hard instances when compared to the approaches that combine el-

41 3.4 Evaluation of the Parallelization Tree Framework

Table 3.1. Instances solved with at least one of the approaches, but where the
portfolio approach required over 100 seconds with 64 CPUs. All the instances
are unsatisfiable.

Name OPENSMT2
portf
(64)

rep
(2,32)

safe
(2,32)

plain
(64)

rep
(8,8)

safe
(8,8)

PEQ003_size9 437 299 336 232 431 286 248
PEQ004_size8 124 117 109 110 125 108 115
PEQ011_size8 572 302 267 265 388 309 280
PEQ012_size6 — — 456 507 621 574 532
PEQ014_size11 737 338 482 564 — — 540
PEQ016_size6 223 181 158 168 188 158 176
PEQ018_size7 192 144 155 139 182 207 218
PEQ020_size6 511 409 379 314 405 401 371
SEQ005_size8 174 159 144 144 132 148 131
SEQ010_size8 244 190 123 166 196 157 155
SEQ026_size7 890 708 731 794 671 774 725
SEQ038_size8 — 826 903 751 751 745 792
NEQ006_size6 — — — — — — —
NEQ016_size8 774 616 682 575 — 625 419
NEQ023_size7 — — — — — — —
NEQ032_size6 — 830 407 373 — 836 865
NEQ048_size8 476 430 421 341 479 349 445
NEQ048_size9 — 815 759 804 849 832 833

Total solved 12 15 16 16 13 15 16

42 3.4 Evaluation of the Parallelization Tree Framework

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35

ru
n
ti
m
e
(s
ec
.)

solved instances

OpenSMT2
portf (64)
rep(2,32)
safe(2,32)

plain(64)
rep(8,8)
safe(8,8)

0
500
1000
1500
2000
2500
3000
3500
4000

0 5 10 15 20 25

ru
n
ti
m
e
(s
ec
.)

solved instances

Figure 3.11. Comparison of partition tree algorithms from satisfiable (left) and
unsatisfiable (right) benchmarks from QF_LRA.

ements from portfolio and search-space partitioning. In fact if the sequential
execution and the algorithm plain are not considered, other algorithms perform
better than this implementation of the portfolio. Despite the anomalies related
to partitioning reported in the previous section, it seems that through the algo-
rithms obtained from the partition tree framework it is possible to successfully
incorporate partitioning to parallel SMT solving.

3.4.2 Logic of Linear Real Arithmetic

Figure 3.11 reports a similar comparison on the partition tree algorithms on in-
stances from QF_LRA. The instances were selected so that their average run-time
on OPENSMT2 was over 100 seconds. In general the chosen partition tree algo-
rithms outperform the sequential solver, an observation that is not trivial from
the initial analysis of the distributions. The results suggest that the portfolio ap-
proach performs well for both satisfiable and unsatisfiable instances, while plain
is still slightly better on the unsatisfiable algorithms. The experimental data con-
firms that the approaches rep(2, 32) and safe(2, 32) that produce few partitions
do not perform as well as the other approaches.

As a conclusion, there is a difference in the behavior of the solver with re-
spect to parallel algorithms on the two studied logics: for QF_UF the winner on
the benchmark set is safe(2,32), while for QF_LRA the winner is plain(64) for
unsatisfiable, and portf(64) for satisfiable instances.

43 3.5 Clause Sharing

3.5 Clause Sharing

This section describes the experiments obtained with the parallelization tree ap-
proach using the SMTS framework [MHS18], in particular studying the effect of
clause sharing. The details of the framework can be found in chapter 5. The ex-
periments concentrate on four topics: Section 3.5.1 demonstrates how the clause
sharing works on portf and safe; Section 3.5.2 reports how the filtering heuristic
affects the performance of the parallel algorithms; and Section 3.5.3 compares
the cloud-based implementation against a sequential version of OPENSMT2 and
a widely used reference solver Z3 [dMB08].

The hardware configuration is kept the same in all experiments. The experi-
ments were run in a cluster where with eight compute nodes for the clients and
the head node for the server. Each compute node is equipped with two CPU
Quad-Core AMD Opteron 2384 and 16GB of RAM. During the experiments each
cluster node had eight client processes implementing the SMT solver OPENSMT2,
resulting in total of 64 solvers in the entire cluster. The memory available is
not explicitly limited in the solvers. The timeout is fixed everywhere to 1000
seconds. The search-space partitioning heuristic, when used, is the scattering
approach [HJN06].

This section reports on a fixed benchmark set obtained from the SMT-LIB
benchmarks repository [BdR+10] and the QF_LRA and QF_UF logics. The set
from QF_LRA was created by selecting the instances with an average sequential
execution time above 100 seconds (including those in timeout) using OPENSMT2;
the set consists of 106 instances in total. The benchmark set for the QF_UF is the
same used in section 3.4. x The figures report algorithm names from section 3.1.
The label CS indicates that clause sharing is used.

3.5.1 The Effect of Clause Sharing

The first experiments show how sharing clauses affects the solving time using
different partitioning methods for QF_LRA (fig. 3.12) and QF_UF (fig. 3.13).
For both figures the graph on the top shows that the parallelization algorithm
portf benefits most from clause sharing: with both theories it gives a 2.05 times
speedup, as well as one more QF_LRA instance and nine more QF_UF instances
solved within the timeout compared to not using clause sharing.

With both theories safe performs worse than portf : the speedup due to clause
sharing is 1.97 for safe(2, 32), and speedup of 1.67 for safe(8, 8).

To some extent these results are expected, since the number of learned clauses
available inside the clause database for a single portfolio is bigger when there are

44 3.5 Clause Sharing

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

portf (64)

10

100

1000

10 100 1000 t/o

sa
fe
(2
,3
2)

C
S

safe(2, 32)

10

100

1000

10 100 1000 t/o

sa
fe
(8
,8
)
C
S

safe(8, 8)

Figure 3.12. Using clause sharing against not using clause sharing with 1, 2,
and 8 partitions. Framework run with 64 solvers on the QF_LRA benchmark
set

more solvers running in the portfolios, and therefore also the quality of clauses
that the heuristic picks is higher.

3.5.2 The Clause Sharing Heuristics

Figure 3.14 shows that clause sharing heuristics are very important: the exper-
iment performed using a filtering heuristic that discards clauses with more that
30 literals results in clause sharing having 1.12 times greater run time compared
to the run without clause sharing. Interestingly the same heuristic is working
well for QF_LRA (used in fig. 3.12). To obtain good results for the benchmark
instances in QF_UF the heuristic needs to be more restrictive. Reducing the
threshold to 10 literals still leads to worse performance (results not shown), and
discarding clauses with five or more literals gives the results on fig. 3.13.

45 3.5 Clause Sharing

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

portf (64)

10

100

1000

10 100 1000 t/o

sa
fe
(2
,3
2)

C
S

safe(2, 32)

10

100

1000

10 100 1000 t/o

sa
fe
(8
,8
)
C
S

safe(8, 8)

Figure 3.13. Using clause sharing against not using clause sharing with 1, 2,
and 8 partitions. Framework run with 64 solver on the QF_UF benchmark set

3.5.3 Comparison to Other Solvers

Figure 3.15 compares the best known configuration of the framework against
the solvers OPENSMT2 and Z3 for QF_LRA (top) and for QF_UF (bottom). The
results are very promising when compared to OPENSMT2. For instances with
sequential run time higher than one second and for which neither the sequential
or the parallel solver timed out the average case speed-up is 4.78 for QF_LRA
and 4.01 for QF_UF. The implementation is not yet competitive against Z3 in the
majority of instances. This is due to the lack of optimizations in the underlying
solver. Based on the experimental evidence presented in this section it seems
reasonable that if either the optimizations available in Z3 were implemented in
OPENSMT2 or the approach presented in this work were implemented in Z3 the
results would be similarly promising in comparison to Z3.

46 3.6 Related Work

10

100

1000

10 100 1000 t/opo
rt
f
(6
4)

C
S
(fi
lt
er

>
30
)

portf (64)

Figure 3.14. Using clause sharing with a loose filtering heuristic against not
using clause sharing. Framework run with 64 solvers on the QF_UF benchmark
set.

3.6 Related Work

This chapter provides an orthogonal view to the more theoretical study pre-
sented in the Handbook of Parallel Constraint Reasoning in its chapter on SMT
solving [HW18] by offering a detailed experimental analysis both using con-
trolled experiments and a computing-cluster-based implementation. The portfo-
lio approach combined with clause sharing has been implemented using the SMT
solver Z3 [WHdM09]. The implementation provides an efficient clause sharing
strategy in a shared memory setup using lockless queues that hold references to
the lemmas that a solver core wants to export. The experimental evaluations
show that clause sharing leads to a substantial speedup on benchmarks from the
QF_IDL logic. In contrast to this work, the techniques presented in this chapter
support two SMT theories (QF_UF and QF_LRA), and exploit the advantages of
combining portfolio with clause sharing and search-space partitioning. More-
over this implementation is designed to run in distributed computing clusters in
addition to a single machine. Similarly to Z3, the SMT solver CVC4 [BCD+11]
supports a portfolio-style parallel solving. Unlike this approach, the approach
used in CVC4 is designed to run in a single computer and does not implement
clause sharing.

A divide-and-conquer approach for the quantifier-free bit-vector logic has
been implemented on top of the SMT solver Boolector [Rei14]. A portfolio par-
allelization approach for the logic of quantifier-free bit-vectors and bit-vector
arrays is presented in [PC13]. Compared to these, this chapter differs in the
supported theories and in that this work support cloud computing and are not

47 3.6 Related Work

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

OpenSMT2

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

Z3

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

OpenSMT2

10

100

1000

10 100 1000 t/o

po
rt
f
(6
4)

C
S

Z3

Figure 3.15. The best configuration against OpenSMT2 and Z3 for QF_LRA
(top) and QF_UF(bottom)

limited to pure divide-and-conquer or portfolio approach.

In some of the experiments, this work applies a heuristic technique known as
lookahead [ZM88] for identifying partitions that have small search space. The
lookahead implementation used in this chapter is an extension of the one re-
ported in [HMS+18]. Lookahead technique has previously been implemented
for SAT in [HJN10] and in [HKWB11], and has recently been implemented in
the SMT solver Z3. However, to the best of our knowledge the lookahead imple-
mentation is the first that is truly built into the T -DPLL framework and is aware
of general theory propagation as well as the search space reduction resulting
from learned clauses.

This work uses techniques similar to those used in parallel SAT solving. The
more elaborate problem descriptions of SMT constitute a significant theoreti-
cal and engineering challenge for parallelization. In addition the use of SMT
allows extending these techniques to a different domain. Given the close rela-
tion of the topics there is a significant amount of relevant research on parallel
SAT solving, overviewed for instance in [MML12]. In particular, the portfolio

48 3.7 Conclusions and Future Work

approach combined with clause sharing implemented in ManySAT [HJS09] and
HordeSAT [BSS15]. This work extends the results of [AHJP14] in combining
search-space partitioning and clause sharing in SMT.

3.7 Conclusions and Future Work

The results presented in this chapter have been published in [MHS16, HMS15].
SMT solving in distributed environments so far has received relatively little atten-
tion from the community developing and researching SMT solvers. This chapter
identifies key components of parallelization approaches and provides an exten-
sive evaluation on their effects on efficiency of multi-agent cooperative SMT solv-
ing. Specifically, the contributions reported in this chapter are: the paralleliza-
tion tree algorithmic framework that allows a flexible combination of portfolio,
partitioning and clause sharing; the analyses in the form of case studies of the
phenomena where partitioning produces harder instances; the evaluation of the
parallelization tree framework over the theories of uninterpreted functions and
linear real arithmetics; the effect of clause sharing with the parallelization tree
framework and different sharing schemes; the comparison with the state-of-the-
art SMT solver Z3. The empirical results reported show that SMT solving can
benefit significantly from parallelization, but especially QF_UF is sensitive to the
heuristic used for selecting clauses to be shared.

This work opens several avenues for future directions. The following list
provides three research challenges that arise directly from the results and the
empirical evaluations presented in this chapter. Theory-specific aspects are a
central point in all the challenges below. This underlines the particular interest
of devising theory-aware parallel techniques to improve reasoning capabilities.

• It is little understood why fixing atoms makes the partitions sometimes
harder for T -DPLL solvers, and whether and how such atoms could be
identified. Possible directions to shed light on this phenomena might in-
volve investigating the effects of partitioning with respect to the theory
structure. In particular, such theory-aware partitioning can be achieved by
studying how assuming a predicate changes the theory search-space, con-
sidering the domain-specific aspects of the theory. In this way, it would be
possible to rank predicates based on whether the resulting partitions are
balanced, or on how the complexity of the tasks reserved for the theory
solver varies having the new constraint. An example of theory-aware par-
titioning for LRA and LIA (linear integer arithmetics) involves reasoning

49 3.7 Conclusions and Future Work

on hyper-plane subspaces to reduce the dimensions of the search-space.
Particular attention is needed to perform such reduction is a balanced way.

• How to leverage clause sharing with (theory-aware) partitioning. This
chapter’s results show that the purely portfolio based approach portf per-
forms better than safe which applies partitioning as well, when clauses are
shared. This question centres on whether it is possible to combine parti-
tioning with clause learning effectively. Like the previous point, the theory-
aware direction seems potential. In particular, different sharing strategies
prioritazed by ranking learned lemmas based on whether they are purely
theory, mixed or propositional clauses might reveal their individual effect
over the current solving process in other solvers. This assumption is based
from the fact that theory-valid clauses are often the result of a substantial
amount of computation performed by the theory solver. Understanding
how to reuse such effort effectively is of great interest

• The experiments of this chapter focus on two fundamental algorithms un-
derlying modern T -DPLL solvers: the congruence closure algorithm for
QF_UF and the Simplex algorithm for QF_LRA. Both have very different
characteristics on how the parallelization should be done to obtain maxi-
mal performance. It is unclear how the approach works on the non-convex
SMT theories such as LIA, or combinations of different SMT theories. Such
hard theories would also allow the propositional-logic-based partitioning
heuristics to be made more theory-aware, as there is more interaction be-
tween the SMT theory and the propositional encoding.

50 3.7 Conclusions and Future Work

Chapter 4

Multi-agent Solving by Induction

Applying model checking to realistic, complex systems is highly non-trivial in part
due to the computational difficulty imposed by the underlying decision problems.
In particular, unbounded model checking algorithms search for violating execu-
tions within increasing finite bounds, while trying to generalize bounded safety
using induction. If the generalization succeeds then a bounded proof is guar-
anteed to prove unbounded safety. The solving task involves several operation
entrusted to different heuristics, each contributing to the overall performance.
As a result, algorithms are very sensible to small tweaks in the heuristics and
their performance is unpredictable.

This chapter concentrates on multi-agent cooperating techniques for the dis-
tributed execution of unbounded model checking algorithms inspired by IC3 [Bra11].
The IC3 algorithm is a relatively recent procedure that, given a transition system
and a safety property, computes a safe inductive invariant or finds a counterexam-
ple for the safety of the system. The safe inductive invariant is gradually devised
from the reachability lemmas learned during the search for bounded property
violations.

The P3 (Parallel IC3) algorithm introduced in this chapter allows the instan-
tiation of different parallel configurations to enhance diversification and coop-
eration among agents. Each configuration is evaluated thoroughly to discuss
positive and negative aspects using the massive amount of 7.6 CPU years of com-
putational power from a distributed computing environment. The P3 algorithm
implements diversification among agents in a portfolio of sequential IC3 imple-
mentations by different search strategies and by randomizing the search heuristic
of the underlying SMT solver. In this way, agents compute different reachability
frames by learning different reachability lemmas. Cooperation is achieved by
exchanging such reachability lemmas among the solvers. Finally, P3 implements

51

52 4.1 Background

the novel partitioning approach based on the transition function of the input sys-
tem and its pre-images, which are distributed among the agents as new safety
properties representing a sub-problem of the original instance. As a result, each
agent is focused on solving a particular sub-problem, and cooperation among all
the agents is allowed without any restrictions on the individual solving task.

4.1 Background

This section gives a high-level overview of IC3/PDR algorithm. Further details of
the original algorithm and its extensions to SMT can be found in [Bra11, EMB11,
HB12, GI15, KGC16].

Definition 5 (IC3 Trace) Given an instance S of the safety problem, an IC3 trace
for S is a sequence of framesF = 〈F0, F1, . . . , FN , . . .〉 such that each frame Fi ∈ F
is a set of IC3-lemma. Furthermore, the trace satisfies the following properties for
i ≥ 0:

F0 ≡ Init (4.1)

Fi ∧ Tr =⇒ F ′i+1 (4.2)

Fi =⇒ Fi+1 (4.3)

i < N =⇒ (Fi =⇒ ¬Bad) (4.4)

Intuitively, each frame Fi ∈ F over-approximates all the states reachable in at
most i steps of the transition relation Tr from Init. The index i is the level of Fi.
Moreover, the trace proves that S is safe up to N − 1 steps of Tr from Init.

IC3 uses the trace to compute an increasing bound of steps from Init up to
which S is safe. The algorithm works by iteratively adding an initially empty
frame FN at the end of the trace. IC3 then tries to either prove safety of FN by
strengthening it, or to find a feasible counterexample based on it.

Definition 6 (Proof Obligation) Given an instanceS of the safety problem and a
IC3 traceF for S , a proof obligation is the pair 〈σ, i〉 where σ is a conjunction of
predicates over state variables and i ≤ N. In addition, the proof obligation satisfies
the following:

• σ∧ Fi is satisfiable, and

• for all models m such that m |= σ, post∗Tr(m)∧ Bad is satisfiable.

53 4.1 Background

The conjunction σ represents a set of the states consistent with a frame Fi ∈ F ,
containing states that can reach Bad with a feasible path.

Given an instance S , IC3 computes a trace F of increasing length for S
until either a fixed point is found for Tr or the algorithm determines a feasi-
ble counterexample. In the process, IC3 constructs candidate counterexamples,
proof obligations, that are stored in an obligation queueQ. The proof obligations
〈σ, i〉 are propagated towards the initial state by computing a formula σ− such
that σ− ∧ Tr =⇒ σ′. The new proof obligation 〈σ−, i − 1〉 is then inserted to
Q. If a counterexample candidate is not feasible, a proof obligation will at some
point be blocked by a frame. This happens if for a proof obligation 〈σ, i〉 it holds
that Fi−1 ∧ Tr∧σ′ is unsatisfiable. A IC3-lemma ϕ, such that ϕ =⇒ ¬σ is then
inserted to Fi.

IC3 proves S safe if there exists i < N such that Fi+1 =⇒ Fi. This simplifies
Equation (4.2) to Fi ∧ Tr =⇒ F ′i . Thus together with Equations (4.1) and (4.4)
Fi is proved to be both a fixed point for Tr and a safe inductive invariant for
S . The way IC3 computes the fixed point leaves room for some flexibility in
how the lemmas are organized. In particular [GI15] suggests to separate the
inductive lemmas to a distinct frame F∞. Hence the frame F∞ is initially empty
and always consists of those lemmas ϕ ∈

⋃

Fi inductive relative to F∞. Thus, S
is safe when F∞ =⇒ ¬Bad.

IC3 proves S unsafe whenever a proof obligation 〈σ, 0〉 is added to the obli-
gations queue. By Definition 6, σ represents a set of states in Init (i.e. F0) from
which there is a feasible path leading to a state in Bad.

Definition 7 (IC3 Configurations) Given an instance S of the safety problem,
an IC3 configuration of S is the quadruple C = (N ,F , F∞,Q) where:

• N ∈ N,

• F = 〈F0, . . . , FN , . . .〉 is the IC3 trace of S ,

• F∞ is the inductive frame,

• Q = {〈σ, i〉, . . .} is the obligation queue, where i ≤ N.

The Initial IC3 configuration of S is C0 = (1, 〈Init,;, . . .〉,;,;)

Given a IC3 configuration C of a safety problem S , each of the following
rules performed on C updates its components resulting in a new configuration
C ′. The components of C not mentioned in the rule are not updated by the rule
application. The notation Fa...b ∪ {ϕ} is equivalent to Fi ∪ {ϕ} for all a ≤ i ≤ b.

54 4.1 Background

Candidate:
Q

Q ∪ {〈σ, N〉}
if

�

σ is a formula
σ =⇒ FN ∧ Bad

Predecessor:
Q

Q ∪ {〈δ, i − 1〉}
if

〈σ, i〉 ∈ Q
δ is a formula, m is a model
for all m |= δ, m∧ Tr |= σ′

Blocking:
Q ∪ {〈σ, i〉} | F
Q | F1...i ∪ {ϕ}

if

Predecessor is not applicable
ϕ is a IC3-lemma
Init =⇒ ϕ

ϕ =⇒ ¬σ
Fi−1 ∧ Tr =⇒ ϕ′

Unfold:
N

N + 1
if

�

Candidate is not applicable
Q = ;

Inductive:
F | F∞

F1...i ∪ {ϕ} | F∞ ∪ {ϕ}
if

ϕ is a conjunction of IC3-lemmas
ϕ ⊆ Fi, for some 0≤ i < N
ϕ ∧ F∞ ∧ Tr =⇒ ϕ′

In addition, IC3 has the following two rules that guarantee the termination
of the algorithm and are always taken when they are applicable:

Safe:
Safe

if
�

F∞ =⇒ ¬Bad

Unsafe:
Unsafe

if
�

〈σ, 0〉 ∈ Q

In IC3 with theories, and, therefore, in this implementation, the operation
Predecessor employs Model-Based Projection [KGC16] to ensure termination, while
Blocking uses interpolation [HB12] to build the lemma.

55 4.2 The P3 Algorithm

Definition 8 (IC3 Strategy) Given an instance S of the safety problem and a IC3
configuration C , a IC3 strategy TS is a function that maps C to one of the possible
IC3 rules applicable for C given S .

Given a IC3 strategyTS , IC3 execution is a sequence of configurations 〈C0,C1, . . . ,CT 〉
such that for every i ∈ {1, . . . , T}, Ci is the result of the operation TS (Ci−1)
on Ci−1, C0 is the initial IC3 configuration for S , i.e. (1, 〈Init,;, . . .〉,;,;), and
TS (CT) ∈ {Safe, Unsafe} .

4.2 The P3 Algorithm

This section introduces the P3 (Parallel IC3) algorithm for parallel model-checking
with IC3. P3 implements three parallelisation techniques for IC3: portfolio, par-
titioning, and lemma sharing. These techniques can be combined in order to
exploit the strengths of each other.

Portfolio uses different IC3 strategies while partitioning focuses the search by
constraining the problem. In general, partitioning means dividing a problem into
several sub-problems. The IC3 partitioning technique introduced in this section
partitions the problem by restricting the paths leading to the bad states.

Finally, lemma sharing provides each solver with useful information arising
from search diversification, possibly not derivable locally. The intuition is that
IC3-lemmas express what is learned by each IC3 execution. Since different ex-
ecutions employ different strategies, IC3-lemmas that are easily found by one
strategy can be difficult to find by another.

In the rest of the section, the concepts of portfolio, partitioning, and lemma
sharing strategies are formalized providing details of the P3 algorithm.

4.2.1 Portfolio

The most straightforward parallel technique is a portfolio – concurrent and in-
dependent execution of multiple sequential IC3 strategies on the same problem
instance. A portfolio terminates as soon as one of its instances terminates suc-
cessfully.

The notion of a distributed IC3 configuration is defined to model a IC3 port-
folio with any combination of lemma sharing and partitioning.

Definition 9 (Distributed IC3 Configuration) Given an instance S of the safety
problem, a distributed IC3 configuration of S is a set of tuples:

Dn = {
�

T i
S ,C i

�

}

56 4.2 The P3 Algorithm

where for each i ∈ {1, . . . , n}, n ∈ N :

• T i
S is a IC3 strategy for S from Definition 8,

• C i =
�

N i,F i = 〈F i
0, F i

1, . . . , F i
N i , . . . , 〉, F i

∞,Q i
�

is a IC3 configuration from
Definition 7.

A distributed IC3 configuration expresses a IC3 portfolio when for every i ∈
{1, . . . , |D|}, T i is a strategy for the input problem S . That is, every strategy
executes the corresponding IC3 configuration independently, performing asyn-
chronous and arbitrary choices.

A IC3 portfolio D terminates when there exists T i
S (C

i) ∈ {Safe, Unsafe} for
some 1 ≤ i ≤ |D|. Termination and soundness of this setting follows trivially
from IC3 because every execution is independent.

4.2.2 Partitioning

This section defines partitioning strategy and argue for its soundness.

Definition 10 Given a safety problem S , partition(S) is a set of instances of the
safety problem {Sp1

, . . . ,Spn
}, where each instance Spi

= 〈Init(X), Tr(X , X ′), pi(X)〉
is called a partition of S , and such that

n
∨

i=1

pi ⇐⇒ ∃X ′ · Tr(X , X ′)∧ Bad(X ′)

From Definition 10, it follows that S is safe if and only if all of its partitions
are safe. A distributed IC3 configuration D expresses partitioning if for each par-
tition Sp ∈ partition(S) there is a pair (T i

Sp
,C i) ∈ D. The result of a distributed

configuration with partitioning is Unsafe if there exists T i
Sp
(C i) = Unsafe, and

the result is Safe if for each Sp ∈ partition(S) there exist T i
Sp
(C i) = Safe.

The soundness is by construction: a counterexample for Sp is also valid for
S , while the safety of all Sp ensures the safety of S because every state leading
to Bad in one step is expressed in a partition.

4.2.3 Lemma sharing

This section gives the formal definition of lemma sharing and argue for its sound-
ness in a distributed portfolio setting.

57 4.2 The P3 Algorithm

Definition 11 ((k-)invariant) A IC3-lemma ψ is k-invariant if it is true in all the
states reachable in k steps or less, i.e., postk

Tr(Init) =⇒ ψ. If a IC3-lemma ϕ is
invariant, then it is k-invariant for any k ∈ N.

Following Definition 11, each frame Fk, k ∈ N, is a set of k-invariants for S ,
while F∞ is a set of invariants for S .

Theorem 1 (Lemma Sharing) Given a distributed IC3 configuration D for an in-
stance S of the safety problem, the IC3-lemma ψ ∈ F i

k, k ∈ N is a k-invariant for
S and the operation of adding ψ to any F j

l with i 6= j and l ≤ k keeps C j a valid
IC3 configuration for S .
The same holds for ϕ ∈ F i

∞ when added to any F j
∞, i 6= j.

Proof. The proof follows from Definition 4. Each ϕ ∈ F i
k is a k-invariant if

k ∈ N, or an invariant if k =∞ and can be used to soundly refine a different
abstraction of states reachable in up to k steps. Similarly, sharing invariants is
sound and makes every F i

∞ an invariant for S . Thus, S is safe whenever any
F i
∞ implies ¬Bad. �

4.2.4 Parallelly Performed IC3

The P3 algorithm is shown in Algorithm 1. P3 combines portfolio, lemma shar-
ing, and partitioning. The algorithm works as follows. While there are available
computing resources, the procedure Entrust at line 6 selects a partition not yet
solved, creates a new strategy and allocates the necessary resources in order to
run IC3. The procedure Exclude at line 12 is taken when the inductive frame of
a IC3 configuration proves a partition unreachable. In this case, such partition
is removed and all computing resources previously allocated are released. Af-
ter Exclude is taken, all the computing resources available might be reallocated
on other partitions by several Entrust calls. The procedure Lemma Sharing ex-
change IC3-lemmas between frames from different configuration having the same
level. The procedures Reachable and Unreachable are taken respectively when
a partition is proven reachable, and when all partitions are proven unreachable.
When partition(S) = {S } at line 1, then partitioning is disabled. When the pro-
cedure Lemma Sharing at line 5 is never taken then lemma sharing is disabled.
If both are disabled then the algorithm corresponds to a IC3 portfolio.

58 4.3 Experiments

Input : Safety problem S = 〈Init(X), Tr(X , X ′), Bad(X)〉.
Output : {Reachable, Unreachable}
Data : A distributed IC3 configuration D, a set of partitions P .
Initially: D ← ;, P ← ;.
Assume: Init∧ Bad is unsatisfiable.

1 P ← partition(S)
2 while True do
3 Reachable: if 〈σ, 0〉 ∈ Q i for some i ∈ {1, . . . , |D|}, return Reachable.
4 Unreachable: if P = ;, return Unreachable.
5 Lemma Sharing: copy a IC3-lemma ϕ ∈ F i

n to F j
n with:

i, j ∈ {0, . . . , |D|}, i 6= j and n ∈ N∪ {∞}
6 Entrust: if computing resources are available, then:
7 select a partition Sp ∈ P
8 create a new IC3 strategy TSp

9 create new C = (1, 〈Init,;, . . .〉,;,;)
10 set D ←D ∪ {(TSp

,C)}
11 allocate computing resources for IC3(TSp

,C)
12 Exclude: if there exists Sp ∈ P such that F i

∞ =⇒ ¬p for some
i ∈ {1, . . . , |D|}, then:

13 P ←P \ {p}
14 release computing resources used for each (TSp

,C) ∈ D
15 end

Algorithm 1: The P3 algorithm.

Soundness and Termination. Assuming |P | is finite, the procedure Exclude at
line 12 is taken exactly |P | times, once for each Sp ∈ P . Therefore, the algo-
rithm terminates if all IC3 instances executed by the procedure Entrust termi-
nate. The only procedure that can affect termination of the individual IC3 execu-
tions is Lemma Sharing. Following theorem 1, the procedure Lemma Sharing
provides each IC3 execution with valid IC3-lemmas that exclusively refine the
frames, leading the execution toward convergence. In fact, the lemma ϕ makes
the frame F j

n a stronger conjunction. It is not possible for any frame to get weaker
after Lemma Sharing is applied.

4.3 Experiments

This section presents an extensive experimental evaluation of the P3 algorithm
on instances from the Software Verification Competition. The CPU time required

59 4.3 Experiments

to run all the experiments is about 2775 CPU days, or 7.6 CPU years. The per-
formance of the algorithm is measured separately on instances known to be easy
and hard for the sequential model checker SPACER. The performance of combi-
nations of different lemma sharing heuristics is studied both in a portfolio and
by partitioning the input instance. Furthermore, this section compares different
degree of parallelism to assess algorithm scalability by varying the number of
solvers.

4.3.1 Experimental setup

All the reported experiments are run using SMTS [MHS18] in a cluster where
each computing node is equipped with 20 CPU cores provided by 2×Intel E5-
2650 v3 CPU, 64 GB of RAM and Intel 40Gbps Infiniband network adapter. For all
the experiments, each computing node runs 10 solvers, and the server is executed
in a separate node. In order to avoid memory management congestions, the
number of solvers varies in an experiment by allocating a different number of
nodes. The timeout is set to 1000 seconds wall-clock time.

The benchmark set used in this evaluations is constructed by SEAHORN [GKKN15],
a fully automated analysis framework for the C language. Given as input the
source file, SEAHORN constructs the triplet 〈Ini t(X), Tr(X , X ′), Bad(X)〉 expressed
in SMT-LIB v2 like language and representing the input safety problem instance.
The benchmark set is based on 1,802 C problems taken from the SV-COMP 2016
Device Drivers Linux 64-bit (LDV) categories available at https://github.com/
sosy-lab/sv-benchmarks/tree/master/c and preprocessed by SEAHORN.

First, the benchmarks are evaluated sequentially using the different strategies
available in SPACER: IC3, GPDR and DEF. These settings are referred to as sequen-
tial. Those benchmarks solved in less than one second are removed from the set,
experimenting over the remaining 562 benchmarks. Based on these evaluations,
two different benchmarks sets of easy and hard instances are defined respectively.

• less500: benchmarks solved in less than 500 seconds by at least one strat-
egy. In total 251 benchmarks.

• more500: benchmarks solved in more than 500 seconds or which timed
out for at least one strategy. In total 325 benchmarks.

These benchmark sets partially overlap by having 14 benchmarks in common.

https://github.com/sosy-lab/sv-benchmarks/tree/master/c
https://github.com/sosy-lab/sv-benchmarks/tree/master/c

60 4.3 Experiments

Table 4.1. Comparison between sequential (first three lines) and different par-
allel techniques using 60 solvers (following lines). The number of solved reach-
able, unreachable, and unknown instances are respectively labeled with #R,
#UR, and #UK

Technique
less500 more500

#R #UR #UK #R #UR #UK

SPACER(GPDR) 63 175 13 0 8 317
SPACER(IC3) 64 155 32 2 9 314
SPACER(DEF) 64 155 32 2 13 310

portfolio 66 185 0 8 40 277
∞-invariants 66 185 0 7 49 269
k-invariants 66 182 3 7 90 228
∗-invariants 66 185 0 7 90 228

partitioning 66 176 9 10 34 281
partitioning+∞-invariants 66 183 2 11 49 265
partitioning+k-invariants 66 182 3 11 115 199
partitioning+∗-invariants 66 185 0 16 98 211

virtual best 66 185 0 18 132 175

4.3.2 Comparing Parallel Techniques

This section presents a comparison among different combinations of parallel
techniques in order to assess the effect of each technique features. For these
experiments the number of solvers is fixed to 60, and portfolio and partitioning
are combined with the 4 lemma sharing strategies: k-invariants,∞-invariants,
∗-invariants, and none. The result is eight parallel techniques, each evaluated
against both less500 and more500 benchmarks set.

Performance

Table 4.1 shows an overall evaluation for the experiments. For each technique,
the table reports number of instances proven reachable, unreachable, and those
unsolved, for both the benchmarks sets. The table is partitioned into 4 parts.
Going from top to bottom: part 1 contains the results from sequential executions;
part 2 contains the result for lemma sharing strategies with pure portfolio; part 3
contains results with partitioning; and part 4 presents the results of the virtual
best solver that uses the best configuration for each problem. This virtual best is

61 4.3 Experiments

Table 4.2. Average speedup compared to sequential solving.

Sequential
strategy

less500 more500

60 CPU
virtual
best 60 CPU

virtual
best

SPACER(GPDR) 8× 10× 59× 91×
SPACER(IC3) 26× 32× 56× 88×
SPACER(DEF) 27× 33× 53× 83×

achievable by running in isolation a portfolio of the 8 combinations, therefore
using 8×60 CPUs.

Notably, every parallel technique outperforms sequential execution. For the
more500 set the partitioning-based techniques perform the best. For the less500
set, especially for reachable instances, portfolio-based technique is the best, match-
ing the virtual best solver.

Table 4.2 reports average time speedups between sequential executions and
the respective best parallel techniques for both sets, over benchmarks that did
not time out. The columns 60 CPU show the performance of the best technique:
∞-invariants for less500 and partitioning+k-invariants for more500.

Figure 4.1 present the overall evaluation for the 8 parallel techniques consid-
ered, the 3 sequential strategies (IC3, GPDR and DEF), and the virtual best, each
run on less500 (left), and more500 (right). Figure 4.1 (left) shows that sharing
∞-invariants over portfolio is the best technique for less500, already performing
similarly to the virtual best. In fact,∞-invariants solves all the benchmarks with
an average 30% slowdown with respect to the virtual best, and up to 27× faster
than sequential, as reported in Table 4.2.

Complementarity

Figure 4.1 (right) shows that considering more500, partitioning techniques are
the best choices. In fact, the best technique for this set are partitioning+k-
invariants, and partitioning+∗-invariants. Notably, 40 benchmarks are solved
by only one of these two techniques, making them complementary rather than
one being strictly better than the other. Such complementarity is clearly visi-
ble in the scatter plot in Figure 4.2 (right) that compares their runtime for each
instance in more500.

A possible way to address complementarity issues is by implementing a port-
folio of multiple isolated parallel techniques, giving priority to the complemen-

62 4.3 Experiments

0

200

400

600

800

1000

210 220 230 240 250
0

200

400

600

800

1000

0 50 100 150

ru
n
ti
m
e
(s
ec
.)

solved instances (out of 251)

Spacer(GPDR)
Spacer(IC3)

Spacer(DEF)
portfolio

partitioning
∞-invariants

partitioning+∞-invariants
k-invariants

partitioning+k-invariants
∗-invariants

partitioning+∗-invariants
virtual best

ru
n
ti
m
e
(s
ec
.)

solved instances (out of 251)

Figure 4.1. Comparison among all the considered techniques on the sets less500
(left) and more500 (right). k-invariants refers to sharing only lemmas from the
trace, ∞-invariants refers to sharing just F∞, while ∗-invariants implements
both. Finally, for each benchmark the virtual best runtime among all the tested
techniques is reported.

1

10

100

1000

1 10 100 1000 t/op
ar
ti
ti
on

in
g+

∞
-i
n
va
ri
an

ts

pure portfolio+∞-invariants

1

10

100

1000

1 10 100 1000 t/op
ar
ti
ti
on

in
g+

∗-
in
va
ri
an

ts

partitioning+k-invariants

Figure 4.2. On the left: the comparison between sharing invariant with and
without partitioning against less500. Compared to “best”, this combination
is overall 14% slower while using 75% less CPU. Moreover it is shown that
partitioning outperforms on reachable instances. On the right: the comparison
between sharing k-invariants and all lemmas with partitioning against more500.
The two techniques are complementary, considering 40 instances are solved by
only one of the two. The symbols × and � respectively represent reachable
and unreachable instances.

63 4.3 Experiments

Table 4.3. Lemma sharing statistics.

Parallel
technique

less500 more500
time #lemmas time #lemmas

portfolio +
∞-invariants 0.35% 141 0.41% 670
k-invariants 1.24% 252 1.00% 347
∗-invariants 1.55% 243 0.83% 348

partitioning +
∞-invariants 1.46% 170 0.87% 403
k-invariants 3.51% 140 4.55% 238
∗-invariants 3.27% 221 4.45% 320

tary ones. This approach is capable of gradually improving performance toward
the virtual best results, where the best performance is reached with the highest
CPU resource allocation.

A portfolio of partitioning+k-invariants and partitioning+∗-invariants for the
set more500 is capable of solving 140 instances, 10 less than the virtual best, and
with an average 15% slowdown. Then, by adding ∗-invariants and k-invariants
to such portfolio, it is possible to solve 148 instances with 5% slowdown and
half computing resources with respect to virtual best. The missing 2 instances are
only solved by partitioning+∞-invariants and∞-invariants. Regarding less500,
a similar setting can only increase CPU consumption without decreasing solving
time. This is because∞-invariants already solved all the benchmark. Figure 4.2
(left) shows the comparison between partitioning and portfolio with ∗-invariant
sharing are quite complementary techniques. In fact, a portfolio of these two
techniques is capable of solving the entire less500 set using one fourth the CPU
power and 14% slowdown compared to the virtual best. Another important re-
sult noticeable in Figure 4.2 (left) is that partitioning often outperforms pure
portfolio on reachable instances. This is because the first partition proven satis-
fiable also proves the entire problem satisfiability, and the focused search done
in each partition helps the solvers to converge quickly.

Lemma Sharing

Table 4.3 shows results about lemma sharing. The columns time show the aver-
age amount of time spent on lemma sharing push and pull, with respect to solving
time. The columns #lemmas show the average number of IC3-lemmas exchanged.

64 4.3 Experiments

The amount of time spent on IC3-lemmas push and pull is about 1% and 3% of
solving time, respectively, for portfolio based techniques and partitioning based
technique. The average amount of IC3-lemmas generated is significantly lower
than the amount of clauses produced in parallel SAT and SMT [HMS15, HJN09].
As a result, heuristics for limiting the amount of information exchanged to pre-
vent considerable network delays are less crucial in the context of this work.
Overall, the experimental evaluations show that parallel techniques are highly
beneficial. In particular, parallelization with portfolio combined with sharing
IC3-lemmas from F∞ is the best choice for easier instances, while partitioning
with sharing IC3-lemmas from the trace is the best choice for harder instances.
This demonstrate that regardless the limited throughput, the choice of the lemma
sharing strategy is important.

4.3.3 Scalability

This section evaluates scalability of the parallel techniques by experimenting dif-
ferent degrees of parallelism, i.e. by varying the number of solvers. Since each
solver is a potentially expensive investment in computational power, it is of re-
markable interest to assess the payoff of such investment in terms of solving time.
The previous section evaluated every technique by setting the number of solvers
to 60. For these experiments, the two best techniques for each benchmark set are
considered and executed in isolation three more times: using 10, 20, and 100
solvers. In particular, the selected techniques are portfolio without lemma shar-
ing and with∞-invariants sharing for less500, and partitioning with k-invariants
and ∗-invariants sharing for more500.

Figures 4.3 and 4.4 show, respectively for less500 and more500, the com-
parison of different degrees of parallelism for executing the selected techniques.
In both figures, the degree of parallelism ‘1’ is the sequential execution of the
IC3 strategy SPACER(GPDR), which is the one that solved most benchmarks (see
Table 4.1). The tables at the bottom of both figures report, for each evaluated
parallel technique, the speedup and the number of more instances solved with
respect to using 10 solvers. The speedup considers the sum of the solving times
of only those instances solved by all degrees of parallelism.

The techniques evaluated for less500 appear to scale well based on Figure 4.3.
In particular, increasing the number of solvers when sharing∞-invariants leads
to an initially higher speedup compared to portfolio. However, using 100 solvers
such speedup recedes, making portfolio a better solution. This interesting obser-
vation witnesses that ∞-invariants are crucial for converging faster, however,
too many solvers exchanging them can clutter the entire system and override

65 4.3 Experiments

0

100

200

300

400

500

600

700

210 220 230 240 250
0

100

200

300

400

500

600

700

210 220 230 240 250

ru
n
ti
m
e
(s
ec
.)

solved instances

1 10 20 60 100

ru
n
ti
m
e
(s
ec
.)

solved instances

1 10 20 60 100

Solvers
portfolio ∞-invariants

instances speedup instances speedup

20 +1 +19% +2 +23%
60 +2 +23% +3 +32%
100 +2 +38% +3 +36%

Figure 4.3. Comparison among different degrees of parallelism for portfolio
without lemma sharing (left), and portfolio with∞-invariants sharing (right)
on less500. The table on the bottom reports speedup and more instances solved
compared to 10 solvers.

66 4.3 Experiments

0
100
200
300
400
500
600
700
800
900
1000

0 10 20 30 40 50 60 70 80
0

100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80

ru
n
ti
m
e
(s
ec
.)

solved instances

1 10 20 60 100

ru
n
ti
m
e
(s
ec
.)

solved instances

1 10 20 60 100

Parallelism
degree

partitioning+k-invariants partitioning+∗-invariants
instances speedup instances speedup

20 +7 +33% +1 +14%
60 +12 +53% +2 -3%
100 +5 +31% +15 +35%

Figure 4.4. Comparison among different degrees of parallelism for partition-
ing with k-invariants sharing (left), and partitioning with ∗-invariants sharing
(right) on more500. The table on the bottom reports speedup and more in-
stances solved compared to 10 solvers.

their positive effect. The same phenomenon is not observed for portfolio because
there is no data exchanged during solving. As a result, it is statistically likely that
by incrementing the number of solvers, the performance either stays unchanged
or improves. However, such positive curve might hit a ceiling, meaning that no
solving strategy is able to do better alone.

A substantially different scenario is presented in Figure 4.4. Partitioning+k-
invariants performs very well considering the steep speedup increase reported
up to 60 solvers. However, it suffers from scalability issues with 100 solvers.
Conversely, partitioning+∗-invariants scalability is initially worse for 60 solvers,
but then improves and reaches the best performance with 100 solvers. In or-
der to study better this experimental result, fig. 4.5 reports, for both techniques,
a detailed comparison between the performances with 60 and 100 solvers perfor-
mances over every benchmark. The chart in Figure 4.5 left shows that partitioning+k-
invariants using 60 and 100 solvers are complementary, considering 21 bench-
marks are solved by using either 60 or 100 solvers, not both. The chart on the
right shows that 100 solvers clearly outperforms 60 for partitioning+∗-invariants.

67 4.3 Experiments

0.1

1

10

100

1000

0.1 1 10 100 1000 t/o

10
0

60

0.1

1

10

100

1000

0.1 1 10 100 1000 t/o

10
0

60

Figure 4.5. Comparison between degree of parallelism 60 and 100 on partition-
ing with k-invariants sharing (left), and partitioning with ∗-invariants sharing
(right) on more500. The symbols × and � respectively represent reachable and
unreachable instances.

This suggests us that lemmas, in particular∞-invariants which are excluded by
the latter technique, might play an important role in this opposed behaviour.

By considering only the subset of benchmarks solved by both techniques
and by both degrees of parallelism, an interesting correlation arises between
performance and lemmas exchanged per second. On average, the technique
partitioning+∗-invariants with 60 and 100 solvers, respectively produces 5.6 and
5.2 lemmas every second, thus decreasing lemmas by increasing solvers. Con-
trarily, the average production for partitioning+k-invariants are respectively 6.2
and 6.8 lemmas every second, therefore increasing lemmas by increasing solvers.
This suggests us a possible future research direction on analysing lemmas impact
on performance, considering also the overall lemma throughput of the system.

4.3.4 Comparison Against Sally

The parallel techniques performance are evaluated against the solver SALLY [JD16],
the winner of the CHC-COMP 2019 for the category transition systems (TS). SALLY

is designed for solving infinite-state transition systems, therefore the TS category
is a perfect match. Contrarily, SPACER is a generic CHC solver, and was ranked
third for TS. The comparison between parallel techniques using SPACER against
sequential SALLY for the TS category is of particular interest. The motivation
is to assess the trade-off between the available options to improve solving tar-
geting a specific domain. In particular, assessing how convenient it would be
to implement parallel techniques on top of an already existing solver, with re-
spect to design a specific solver from scratch. Considering the effort required in

68 4.4 Related work

0

200

400

600

800

1000

120 140 160 180 200

ru
n
ti
m
e
(s
ec
.)

solved instances

Sally
Spacer(GPDR)

portfolio
∞-invariants

0.1

1

10

100

1000

0.1 1 10 100 1000 t/o

∞
-i
n
va
ri
an

ts

Sally

Figure 4.6. On the left, the comparison between sequential Spacer(GPDR)
and Sally, and the parallel techniques portfolio and ∞-invariants using 60
solvers. On the right, the detailed comparison between sequential Sally and
∞-invariants.

implementing and maintaining a solver, the former option is easier to achieve.
However, the latter would likely produce better results.

Figure 4.6 left shows a comparison between sequential SPACER, sequential
SALLY, and the parallel techniques portfolio and∞-invariants on top of SPACER

using 60 solvers. Sequential SPACER solved 163 instances. Both parallel tech-
niques solved 27 more benchmarks, 190 in total. Sequential SALLY solved 8 more
instances than the parallel techniques, 198 in total, with an average speedup of
4.9× with respect to ∞-invariants. However, Figure 4.6 right shows that the
variance of such speedup is very high, considering in many cases∞-invariants
performs extremely better by solving up to 100× faster and 23 more instances
than sequential SALLY. Finally, sequential SALLY solved up to 10× faster and 31
more instances than∞-invariants.

4.4 Related work

The first attempt to parallelize IC3 is mentioned in the original IC3 paper [Bra11],
where the experimented parallel setting is based on sharing all the frames among
different computing threads on the same machine. This work is further improved
in [CK16] where they study different parallel approaches, all of them focused on
multi-threaded portfolios and IC3-lemma sharing, addressing propositional IC3.

Both [Bra11, CK16] are limited to propositional IC3, making them suitable
mainly for hardware verification. In contast to [Bra11, CK16], this work proposes
and thoroughly evaluate different lemma sharing strategies by differentiating be-

69 4.5 Conclusions and Future Work

tween k-invariants and∞-invariants inside the frames. This chapter introduces
the novel partitioning technique for IC3, together with a concise algorithm capa-
ble of combining all these techniques in a sound manner. Moreover this work’s
implementation is based on the more scalable distributed computing, thus ex-
ploiting the much bigger computational power offered by cloud-computing en-
vironments compared to single-machine threads.

A first investigation of IC3 in the setting of software verification is done
in [CG12]. A different approach based on CHC for software verification is im-
plemented in the tool SPACER [KGC16]. Individual improvements of SPACER al-
gorithms are QUIP [GI15] and QUIC3 [GSV18]. QUIP brings to SPACER a more
efficient way to produce system invariants and helps convergence. QUIC3 ex-
ploits the use of quantifiers in system invariants to progress the search faster.
This chapter extends this track of work with the aim of improving the current
state-of-the-art of software verification performed with parallel computation.

An algorithm combining IC3 and k-induction is presented in [JD16] and im-
plemented in the tool SALLY. The effectiveness of this parallel techniques is com-
pared with SALLY over infinite-state transition systems, where SALLY is shown
empirically to perform particularly well by a recent software verification compe-
tition.

There is a substantial amount of work on parallel SMT solving that can help
software verification model checking techniques in general. The paralleliza-
tion tree framework for combining divide-and-conquer and portfolio directly on
SMT formulas is introduced in [HMS15] and augmented with clause sharing in
[MHS16]. A parallel approach for model checking of concurrent programs is
given in [Hol16], while [RSMO15] presents a parallel symbolic execution in-
volving several sequential SMT solvers.

4.5 Conclusions and Future Work

This chapter presented the parallel approach for IC3-inspired algorithms for soft-
ware model checking published in [MGHS17]. The P3 algorithm is based on
combining in a IC3-specific way diversification through algorithm portfolios, and
cooperation through divide-and-conquer and exchange of information learned
during the IC3 execution. The algorithm and its parallel extensions are described
in a unified framework that allows both to reason about the correctness of the
implementation and to study the effect of each component in relative isolation.
The empirical evaluation is performed through an implementation of P3 on top
of the solver SPACER, providing execution on both distributed environments and

70 4.5 Conclusions and Future Work

multi-core through the SMTS [MHS18] framework. The experimental results
obtained over a representative set of software verification benchmarks from the
SV-COMP 2016 competition and CHC-COMP 2019 show that the parallel ap-
proach is vastly superior to sequential SPACER configurations, solving over hun-
dred more instances within our timeout and providing super-linear speed-ups on
average and good scalability when using up to one hundred CPUs. Furthermore,
the comparison between our parallel implementation and SALLY over transition
systems benchmarks witnesses that a general CHC solver, when parallelized, per-
forms similarly to a solver designed for a particular kind of benchmarks.

In summary, the contributions of this chapter are: the definitions of IC3 par-
titioning; the P3 algorithm with soundness and termination proofs; the imple-
mentation using the sequential solver SPACER [KGC16] as a basis; the thorough
experimental analysis processing 1802 instances from the software verification
competition 2016 (SV-COMP) to evaluate each parallel technique, combination
of techniques, and their scalability; the comparison agains the solver SALLY with
instances from the constrained Horn clauses competition (CHC-COMP) 2019.

The contributions presented in this chapter open several research directions
for the future. A promising future direction is to scale the system up to sup-
port thousands of solving agents. This direction introduces challenges on how
to efficiently exchange data among the agents. Possible engineering solutions
involve network broadcasting and multicasting. Alternatively, in order to limit
the amount of data being exchanged, an interesting solution involves sharing a
subset of the available IC3-lemmas to a subset of the available solving agents.
This would be achieved by performing a selection in each solving agent before
sending the IC3-lemmas over to the peer agents. How to perform such selection
effectively is highly non-trivial and requires further research. Furthermore, IC3
partitioning can be performed iteratively. In particular, each solving agent can
produce partitions of its entrusted partition. The task might be guided by heuris-
tics that attempt to produce partitions similarly hard to solve. Both directions can
be combined and performed at the same time, resulting in a substantial amount
of research efforts needed to devise solutions that can be scaled up effectively.

Finally, the techniques for parallelizing SMT solving presented in chapter 3
offer an opportunity to investigate their synergy when applied in the IC3 context.
For instance, SMT-specific information resulting from the individual solving tasks
during IC3 executions might be beneficial to other solvers when processing sim-
ilar SMT queries. Such information include theory lemmas that express valid
statements under specific theories. When exchanging such lemmas, it is highly
non-trivial to match the original statement (i.e. to express the same logical fact)
in the receiving solver given its internal state. However, considering the com-

71 4.5 Conclusions and Future Work

putational complexity of the theories involved, it is interesting to evaluate the
effects of exchanging SMT-specific information between individual queries dur-
ing IC3 executions.

72 4.5 Conclusions and Future Work

Chapter 5

SMTS: multi-agent cooperative
constraints solving

Mathematical formulations, i.e. constraints, are widely used for modelling sys-
tems in formal verification and optimization. The high complexity of the corre-
sponding solving problem limits however the scalability of this approach to face
more complex instances. Algorithm parallelization helps overcoming this limi-
tation by exploiting parallel hardware architectures, or even better, distributed
computing clusters. However, constraint techniques differ considerably between
different applications, and often each needs a tailored parallelization procedure.
An important challenge in constraint solving is therefore the design of parallel
techniques capable of scaling to high degrees of parallelism, and extendible by
domain-specialists to a wide range of different applications.

This chapter presents the tool SMT Service (SMTS), a framework for multi-
agent cooperative solving offering a flexible API to support many different solving
engines, specifically designed to relieve solvers developers from the burden of
correctly handling concurrency and protocol details for agents communication.
The contributions in this thesis on parallel solving show SMTS being general
enough to achieve multi-agent T -DPLL-based SMT solving in chapter 3, and IC3-
based CHC solving in chapter 4. This chapter focuses on the details of SMTS
API and architecture and reports results from the related publication [BHMS20]
witnessing SMTS usefulness to support parallelization of the class of PD-KIND
algorithms [JD16].

The non-deterministic behaviour caused by the interleaving of sequential ex-
ecutions in different machines could make identifying correctness and perfor-
mance problems an overwhelming task. To help understanding the complex
parallel executions, SMTS offers a GUI that allows users to inspect at a high

73

74 5.1 SMTS Architecture

level the executions both in real time and by browsing their history. In addition,
the GUI provides the SMT-specific CNF visualization as a variable interaction
graph [Sin07] enhanced with theory-specific features and learned clauses high-
light.

The rest of this chapter is organized as follows. Section 5.1 presents details
of the API and the GUI. Then, section 5.2 shows results from [BHMS20] on how
SMTS is used for parallelizing PD-KIND and provides experimental data. Finally,
sections 5.3 and 5.4 respectively presents related work and concludes the chapter.

5.1 SMTS Architecture

Main Node

...

Lemma DB

Configuration

Event DB

Manager

Parallelization tree

Control Socket

p-node / Parameters
Result / Statistics

Events
Requests

Web Server
User

GUI

Solver
API

Cluster
Solver

API

Solver
API

Figure 5.1. SMTS framework overview. Solid lines represent TCP/IP connec-
tions, while dashed lines represent disk I/O.

The SMTS architecture (fig. 5.1) consists of several components represent-
ing processes running on different computing nodes and communicating using
TCP/IP. The manager receives tasks from the user through the control socket,
which can be accessed either through the terminal interface, or through the GUI.
A configuration file provides both general settings (e.g. parallelization tree and
network configurations), and solver-specific parameters that will be forwarded
together with each p-node solving task. The Parallelization tree keeps track of the
mapping between solvers and p-nodes by distributing the instances of each un-
solved p-node among all the available solvers. Events such as solver failures and
additions occurring during the execution are managed soundly by the server. The
API layer each solver implements makes the underlying algorithms transparent
to the rest of the framework. The lemma database stores and provides lemmas to

75 5.1 SMTS Architecture

the solvers, filtering lemmas based on different heuristics. The history of events
related to the solving task is stored in the event database which can be inspected
using the GUI either live or once the solving has terminated.

5.1.1 Application Program Interface

The API takes care of handling communication between the solvers and both the
manager and lemma database. This includes scheduling incoming solving tasks,
reporting solving results and statistics, and importing and exporting lemmas.
The API consists of the methods of the C++ class solver, that provide the SMTS
functionalities to any given solver. The abstraction with the manager is provided
by five solver class methods: init() for initializing the solver, solve() for
solving a given instance, partition() for creating a given number of partitions
of the current solving instance, interrupt() for interrupting the solver, and
report() for reporting solving status and statistics.

The first four methods are only declared and must therefore be implemented
using the application specific solving engine code. The abstraction for exchang-
ing lemmas through the lemma database is provided by the two class methods
lemma_pull() and lemma_push(). From the perspective of the SMTS imple-
mentation, a lemma is an smtlib formula associated with the parallelization tree
node currently being solved by the solver. Lemmas complying with the smtlib
format specification make the cooperation between different solvers natively pos-
sible. Each solver is responsible for proper lemma marshaling and unmarshaling,
in particular for taking care of uniqueness and self-containedness.

SMTS API versatility is proven by implementing a parallel SMT solver based
on OPENSMT2 [HMAS16], and a parallel IC3 solver based on SPACER [KGC16].
Both OPENSMT2 and SPACER implementations share basic design principles: init()
initializes the required solver’s data structures by setting parameters as requested
by the manager (contained in the configuration file); solve() provides the given
instance to the underlying engine, and calls the solving function whose output
is then given as input to report(). Using just these SMTS features, a portfolio
of solvers can be easily obtained by properly initializing solver randomness in
init().

5.1.2 Graphical User Interface

One of the most prominent features of SMTS is its ability to visualize and guide
the problem solving. This section gives details on the functionalities provided by
the SMTS GUI.

76 5.1 SMTS Architecture

Figure 5.2. SMTS GUI visualizing an unsafe SMT instance.

77 5.1 SMTS Architecture

The web server acts as a key component in the visualization, gathering and
sending to the client web application information on the solving-related events
by querying an event database. If configured for live mode, the GUI is also con-
nected to the manager control socket, enabling the user to interact with the cur-
rent solving tasks.

The graphical user interface consists of two views: the main view showing
the parallelization tree, and the instance view, available only during live solving.
We describe both the views in this section.

The data relevant to the parallelization is received from the web server and
displayed through six views, allowing the user to analyze and guide the execu-
tion of SMTS. This includes in particular retrieving statistics, parameters and
past events of interest, but also initiating partitioning at will. Figure 5.2 shows
the SMT Viewer client web application with the six views. We provide a brief
explanation for each of the views.

Utilities. In the live mode, this view shows the name of the instance currently
being solved, and the time left until the solving times out. The user can upload
new instances, change the timeout or terminate solving. In the off-line mode,
the user can upload and analyze different databases.

Instances. This view contains a list of all the instances available in the con-
nected event database. After selecting a particular instance, all other views will
refer only to the selected instance. Instances are ordered by scheduling time with
the one at the bottom being the most recent.

Events. The view is composed of two interactive components: a table showing
all the events related to the selected instance, and a time-line displaying how
the events are distributed over time. A feature we found useful in this view is
that when the user selects either an event or a point in the time-line, all the
other views are updated to reflect the status at that time. This allows the user
to “rewind” the solving execution and better analyze the interesting events oc-
curred during solving. Browsing the past is the typical way of finding perfor-
mance problems and other anomalies. The selected tab allows the user to filter
events, showing only those related to the node currently selected in the tree view.

Tree. The parallelization tree is presented here as it was at the time of the se-
lected event. Each p-node is associated with an integer indicating the number of
solvers working on the associated instance. A single click on a node results in all

78 5.1 SMTS Architecture

Figure 5.3. SMTS GUI CNF visualization example on two different QF_LRA
instances. Green edges represents learned binary clauses.

the node-specific information being updated in the node view. The colour of the
nodes changes according to the type (p-nodes or r-nodes) and status (satisfiable,
unsatisfiable or unknown)

This view has special features in live mode. A double click on a p-node cur-
rently being solved triggers live partitioning of such node. If the tree belongs
to an instance currently being solved, the CNF tab becomes available and en-
ables displaying the CNF structure of the node together with the learned binary
clauses. Two examples of CNF visualization are given in fig. 5.3. Further details
about this visualization are given in the next section.

Solvers. This view shows each solver together with its assigned node at the
selected event time. The user can then analyze how many solvers were present
and to which node they were assigned at each phase of the solving process. The
selected tab allows the user to show only the solvers working on the currently
selected node in the tree view.

Node. This view reveals information about all the data related to the selected
tree node. If the node is solved, the view shows the statistics and the parameters
of the solver who solved the instance associated with the node.

79 5.2 Multi-agent IcE/FiRE

5.1.3 SMT Formula Visualization

The CNF visualization interface provides a variable interaction graph [Sin07]
based on the CNF structure of the instance, enhanced with SMT-specific visual-
ization features. The basic graph is drawn based on the CNF structure. However,
the interactive interface supports also visualization of the connections imposed
by the theory structure. An example of the SMT instance visualization is given
in Figure 5.3. In the GUI, clicking on a node the tool shows a menu listing the
theory variables appearing in the node. By enabling theory variables and the
Boolean selector function and or or, one can highlight with a colour the nodes
that contain either all or one of the selected theory variables.

The graph is drawn using the javascript library vis.js1 which computes
the placements for the nodes based on a physical model. The tool also supports
interactively moving the nodes, which we found useful in inspecting the connec-
tions of a node on a highly connected cluster.

Currently the CNF visualization feature provides support for viewing learnt
binary clauses as separate edges in the graph. We also experimented with visu-
alizing longer clauses. This resulted in our examples an overly connected graph,
and is therefore disabled in the released version.

One could think of alternative ways of representing the SMT instances which
would more closely show the SMT structure. However, we argue that the one
based on variable interaction graph is relevant for the SMT solvers since they
rely heavily on SAT instances in the solving process. We also experimented with
visualizing the factor graph [Sin07] of the instance. Even though SMT instances
are typically simpler in the CNF structure than the corresponding SAT instances,
the factor graph was excessively heavy for visual rendering for our instances.

5.2 Multi-agent IcE/FiRE

In multi-agent cooperative IcE/FiRE (presented in details in [BHMS20]), several
solving agents work on the same problem and exchange information. The com-
munication is divided between the finite reachability engines and the induction-
checking engines. An instance of the IcE/FiRE framework is shown in fig. 2.1.

Cooperation of FiREs. Each reachability engine is gradually building and refin-
ing its representation of the state space by discovering and accumulating bounded
invariants of the system. Since all instances work on the same transition system,

1https://visjs.org

https://visjs.org

80 5.2 Multi-agent IcE/FiRE

IcE

filter

FiRE

filter

IcE

filter

FiRE

filter

IcE

filter

FiRE

filter

IcE

filter

FiRE

filter

bounded invariants
for induction engines

bounded invariants
for reachability engines

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.4. Multiple instances of IcE/FiRE framework sharing information

a bounded invariant discovered by one instance is valid for other instances as
well. Thus, multiple reachability engines can share their information through
a global database of bounded invariants. Additionally, in this setting each FiRE
has a filter which controls which invariants are sent and received. The filter can
be set to send and receive all or none invariants, or it can implement a heuristic.
For example, it might be beneficial to send out only sufficiently small invariants
to avoid burdening the other instances too much.

Cooperation of IcEs. Unlike FiREs, it is not immediately obvious what infor-
mation IcEs could share between themselves. Natural candidates are elements
of the base frame or the successor frame. However, one needs to be careful since
different IcEs could be working on different levels and thus directly including
lemmas from other instance might violate the invariants of these frames. Our
solution is to accept external information in a way that can be modelled using
the rule Add-Lemma and thus guarantee to preserve the correctness of the en-
gine. Each engine sends out elements of the successor frame G . When an engine
is working on a level n and a lemma is pushed to G , it is guaranteed to be at
least (n+1)-invariant. Moreover, it is an interesting bounded invariant in the

81 5.2 Multi-agent IcE/FiRE

sense that this engine so far believes it should be part of the inductive strength-
ening. The engine sends such lemma to the global pool for other instances to see.
When another engine receives this (n+1)-invariant, it checks if it can apply Add-
Lemma to add it to its base frame. If the engine’s current working level is higher
than n+1, such bounded invariant cannot be added. Moreover, our preliminary
experiments showed that it is better to have additional checks in the filter for in-
coming lemmas in order not to spend too much time processing useless external
lemmas.

Parallel PD-KIND

Since PD-KIND is an instantiation of the IcE/FiRE framework (see details in [BHMS20,
JD16]), it can be readily plugged into the abstract parallel framework with in-
formation sharing described in section 2.3.

The bounded reachability information is stored in form of reachability frames
consisting of bounded invariants. Whenever FiRE learns new bounded invariant
as a response to bounded reachability query made by IcE, it can send it to the
other instances. It can also periodically query the common pool for new bounded
invariants and when it receives an external i-invariant, it can directly add it to
its reachability frame Ri.

Similarly, IcE sends out bounded invariants when it manages to push them
to the successor frame. When it receives an external bounded invariant, it must
check the necessary condition for adding it to the base frame. If the condition is
not met, it simply drops the lemma. Otherwise, it uses a heuristic to determine
usefulness of the lemma. Since PD-KIND assumes that each element of the base
frame is associated with a potential counter-example through the mapping CEX,
each bounded invariant l that is sent out by IcE must also be accompanied by its
companion CEX(l).

It is important for the success of a parallel approach to diversify the search
for the solution. Here are listed the key points for PD-KIND diversification.

Choosing the depth of induction. When the induction engine moves to the
next level n by applying Next-Level there is freedom to choose a new value k of
the induction depth from the interval [1, n+1]. The behaviour of the algorithm
can be greatly influenced by the value of the induction depth it uses. For exam-
ple, choosing large k requires large unwinding of the transition relation when
SAT/SMT solver is used and the inductive checks become slower. On the other
hand preferring larger k can lead to faster exploration of the search space. More-
over an obligation might be F k-inductive, and thus successfully pushed, but not

82 5.2 Multi-agent IcE/FiRE

F k′-inductive for k′ < k.

Obligation processing strategy. Several rules might be applicable given a con-
figuration with nonempty queue of obligations Q. However, once the obligation
to be processed is chosen, there is no more freedom. The conditions of the rules
are mutually exclusive for a fixed obligation l ∈Q. Which rule applies for a par-
ticular obligation l is determined by its properties and the properties of CEX(l).
Therefore, the behaviour of the algorithm can be controlled through the strategy
determining the obligation to pick from the queue.

Learning strategy. The finite reachability engine computes bounded invariants
as certificates of unreachability. Theoretically, the certificate of unreachability for
a query 〈s, i〉 could be ¬s. However, this leads to terrible performance in practice
as it excludes only s and nothing else. Therefore, FiRE uses more sophisticated
techniques to compute bounded invariants that are stronger and exclude more
unreachable states. FiRE of PD-KIND uses Craig interpolation for computation
of bounded invariants. However, Craig interpolant for a given problem is in gen-
eral not unique and there exist techniques for computing different interpolants
in propositional logic and in theories of first-order logic. The use of different
interpolation algorithms leads to different bounded invariants and this can have
a huge influence on the performance of the whole algorithm.

5.2.1 Experiments

The implementation of multi-agent cooperative PD-KIND algorithm is based on
the open-source model checker SALLY [JD16] and uses the SMTS framework for
parallelization and information exchange. SALLY is extended with APIs for send-
ing and receiving information through SMTS. For the experiments of this section,
SALLY uses YICES [Dut14] for checking satisfiability and OPENSMT2 [HMAS16]
for the interpolation queries.2

The benchmarks are taken from the transition systems category of CHC COMP
20193, where the problem is encoded using the theory of linear real arithmetic.
Out of 244 benchmarks, 7 problematic ones were excluded due to reasons such
as the presence of a non-linear operations. All experiments were run on a single
multi-core machine with 16 Intel® Xeon® X5687 @ 3.6 GHz CPUs and 180 GB

2All benchmarks, tools and results are bundled together in an artifact available at https:
//doi.org/10.5281/zenodo.3484097

3https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

https://doi.org/10.5281/zenodo.3484097
https://doi.org/10.5281/zenodo.3484097
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

83 5.2 Multi-agent IcE/FiRE

of RAM. The resources were restricted to 1000 seconds of timeout and 6GB of
memory for each SALLY solving agent.

All solving agents use the default strategy of SALLY when they are choosing
the depth of induction. The obligation processing strategy is a priority queue
based on a score assigned to obligations, randomized to diversify the behaviour
of different agents. The learning strategy is diversified primarily by using dif-
ferent interpolation algorithms in OPENSMT2 and secondary by using different
random seed for the SMT search. Three different LRA interpolation algorithms
were used: Farkas interpolation algorithm [McM05], dual Farkas, and an inter-
polation algorithm based on decomposing Farkas interpolants [BHKS19], respec-
tively denoted as PF, DF and PD.

1

10

100

1000

1 10 100 1000
t/o
m/o

S
M
T
S
-S
al
ly

(9
,s
al
l)

Sally (PD)

4-fold speedup

Figure 5.5. Best parallel configuration against the winner of LRA-TS category
of CHC COMP 2019

Comparison to the state-of-the-art. The result of the experiments is shown in
fig. 5.5 that compares the performance of the winner of the transition systems
category of CHC COMP 2019 (sequential SALLY using PD interpolation algorithm
in OPENSMT2) against the multi-agent SMTS-based SALLY with nine agents ex-
changing information between IcEs and between FiREs (9,sall). The parallel im-
plementation achieves 4-fold speedup on a significant number of instances and
solves 224 instances compared to 197 instances solved by the sequential version.

Cooperation by sharing information. Figure 5.6 summarizes the performance
of 4 configurations using six agents: no information sharing (6,sno), sharing be-
tween FiREs only (6,sreach), sharing between IcEs only (6,sind), and all sharing

84 5.2 Multi-agent IcE/FiRE

1

10

100

1000

60 80 100 120 140 160 180 200 220

ru
n
ti
m
e
(s
ec
.)

solved instances

SMTS-Sally (6,sall)
SMTS-Sally (6,sind)
SMTS-Sally (6,sno)
SMTS-Sally (6,sreach)
Sally (DF)
Sally (PD)
Sally (PF)

Figure 5.6. The effect of sharing information

enabled (6,sall). In all these configurations six agents were running, two for
each interpolation algorithm PF, DF and PD. For comparison, the figure includes
results of sequential versions with different interpolation algorithms. Note that
the runtimes of the parallel implementation were rounded to the whole seconds
and this creates an effect of "stairs" for the low runtimes in cactus plots with
logarithmic scale. There is also a significant number of instances solved almost
instantly and for this reason the axes start at 1 second runtime and 50 instances
solved.

A clear gap is visible between the best sequential version and the parallel
versions indicating that the parallel approach yields a significant improvement
even without information sharing. Sharing information between FiREs is help-
ful, but the effect is not that significant compared to sharing information between
IcEs, which is crucial for improving performance on many benchmarks. Config-
urations with sharing reachability information disabled (sno, sind) do not profit
much after enabling it (sreach, sall). However, some hard benchmarks could
only be solved by allowing reachability information to be shared. On the other
hand, enabling the sharing of induction information does boost the performance
significantly. We conclude that the best performance was achieved by enabling
sharing information between both IcEs and FiREs.

Scalability. We compared the performance of one, two, six and nine agents
with all information sharing enabled. For the experiment with two agents the in-
terpolation algorithms used are PF and PD. The results, summarized in Fig. 5.7,

85 5.2 Multi-agent IcE/FiRE

1

10

100

1000

60 80 100 120 140 160 180 200 220

ru
n
ti
m
e
(s
ec
.)

solved instances

SMTS-Sally (2,sall)
SMTS-Sally (6,sall)
SMTS-Sally (9,sall)
Sally (DF)
Sally (PD)
Sally (PF)

Figure 5.7. Scalability experiments

show that increasing the number of solving agents improves the performance,
both decreasing the runtime and solving more benchmarks. The number of in-
stances solved is 197, 213, 221 and 224, respectively for one, two, six and nine
agents.

Agents diversification. The large jump when moving from sequential solving to
two agents running in parallel can be in part contributed to different interpola-
tion algorithms. We investigate this further in Figure 5.8. We compared config-
urations using six agents with diverse interpolation algorithms (6,sall) and with
fixed interpolation algorithms PF and PD, respectively (6,sall,PF) and (6,sall,PF).
We also added the configuration (2,sall) of just two agents, one using PF, and one
using PD. The results show that varying the interpolation algorithm is very im-
portant as the performance of (2,sall) is comparable to that of (6,sall,PD) and
(6,sall,PF). On the other hand, (6,sall) performs significantly better.

The experiments show that multi-agent SALLY performs substantially better
than the sequential version. Its success can be contributed to more than one
factor: The use of diversification by means of different interpolation algorithms
helps to solve more benchmarks compared to a single interpolation algorithm.
Cooperation by sharing information between solving agents can significantly re-
duce the runtime and thus solve more instances within the time limit. The major
part of this can be contributed to the sharing of induction information, but shar-
ing reachability information does help as well. The scalability experiments show
continuing improvement up to nine solving agents.

86 5.3 Related work

1

10

100

1000

60 80 100 120 140 160 180 200 220

ru
n
ti
m
e
(s
ec
.)

solved instances

SMTS-Sally (2,sall)
SMTS-Sally (6,sall,PD)
SMTS-Sally (6,sall,PF)
SMTS-Sally (6,sall)

Figure 5.8. The effect of using different interpolation algorithms

5.3 Related work

The seminal paper on the model-checking algorithm IC3 [Bra11] already pro-
vides experimental evidence on the efficiency of parallelization. Parallelization
of IC3 is further investigated in [CK16], and by the authors in [MGHS17] in the
context of the parallelization tree formalism. Visualization of parallel executions
of constraint logic programs is studied in [CH00]. Similarly to SMTS, the tool
allows inspecting the execution at different time points, however without using
the general parallelization tree formalism. Finally, our tool contributes to visual-
izing the structure of constraint problems and the executions of related, sequen-
tial search algorithms. In this domain it is of particular interest the work [Sin07]
for SAT solving, [KS13] for answer set programming, and [KT11] for parallel
k-induction.

5.4 Conclusions and Future Work

This chapter presented SMTS, the tool introduced in [MHS18], and the results
obtained using SMTS in the related work [BHMS20]. In particular, this chap-
ter presents the APIs for parallelizing a given sequential solving engine, dis-
cusses the features offered by the built-in interactive graphical user interface
(GUI), and reports results of the usage of SMTS technology for parallelizing
PD-KIND [BHMS20]. SMTS targets in particular clusters and cloud computing
environments, which easily offer the computational power of hundreds of CPUs.

87 5.4 Conclusions and Future Work

The SMTS web-based GUI allows users to visualize resource allocation, interac-
tively guide problem solving by manually controlling the cluster resources usage,
and study the history of events and statistics from individual solving tasks.

In summary, the contributions of this chapter are: the SMTS APIs for par-
allelization of different sequential solving engines; the web-based SMTS GUI
for interaction and inspection of parallel executions, and SMT formulas visual-
ization; the results of SMTS used to parallelize PD-KIND that confirm the APIs
flexibility and usefulness.

Future directions in this context centre around improving the scalability and
the GUI. Scaling SMTS to support thousands of agents entails the design of effi-
cient techniques of message passing that comprise load balancing schemes. The
overall performance would still depend of the underlying solving engines and
their efforts to limit the amount of data to exchange. However, SMTS APIs could
provide clever structures to ease the task of limiting data exchange and assist the
solving engines with a feedback of the system performance in order to encourage
adaptation. The GIU can be enhanced with features specific to lemma sharing.
In fact, it currently lacks of any visualization for the data being exchanged by the
agents.

88 5.4 Conclusions and Future Work

Chapter 6

Accurate Smart Contract Verification
through Direct Modelling

Smart contracts challenge the existing, highly efficient techniques applied in sym-
bolic model checking of software by their unique traits not present in standard
programming models. Still, the majority of reported smart contract verification
projects either reuse off-the-shelf model checking tools resulting in inefficient and
even unsound models, or apply generic solutions that typically require highly-
trained human intervention.

This chapter presents a solution focused on the accurate modelling of the cen-
tral aspects of Solidity smart contracts based on their control-flow, enabling fully
automatic verification. In this context, the term accurate refers to the property
of the model to encode the semantic traits specific for smart contracts precisely,
as opposed to replace them with non-deterministic operations. Successfully solv-
ing the model results in two possible outcomes. A finite-length counterexample
consisting of a concrete list of transactions that produce a property violation,
or a contract invariant that proves unbounded safety by expressing conditions
over the contract variables that always hold after any possible transactions. The
model is based on constrained Horn clauses (CHCs) [BGMR15]. Therefore, the
multi-agent techniques presented in chapter 4 can be directly used to handle the
solving task, allowing smart contract verification to easily take advantage from
the scalability benefits offered by parallelization.

Besides the core contribution of the CHC modelling for smart contracts, this
chapter reports the results from the collaboration with Leonardo Alt – formal ver-
ification engineer at Ethereum Foundation, and Rodrigo Otoni – colleague PhD
student at USI Lugano. In particular, the collaboration resulted in the implemen-
tation of the CHC modelling technique inside the formal engine of the Solidity

89

90 6.1 Background

compiler [Eth18b] developed by the Ethereum Foundation, and in the extensive
experimentations and comparative analysis against related tools over thousands
of recently-deployed smart contracts. Solidity [sol20] is the most popular lan-
guage for developing ETHEREUM smart contracts [Eth18a].

The rest of this chapter is organized as follows. Section 6.1 introduces the
concept and notation of CHCs. Sections 6.2 and 6.3 respectively present the
modelling algorithm in details and provide an end-to-end example. Sections 6.4
and 6.5 respectively present details of the implementation and report experi-
mental data over real-world contracts. Section 6.6 focuses on related work and
section 6.7 concludes the chapter.

6.1 Background

In [BG87] the Existential Positive Least Fixed-Point logic (E+LFP) is proven to log-
ically match Hoare logic [Hoa69] and is therefore useful for determining partial
correctness of programs. Following [BGMR15], this chapter uses a specializa-
tion of E+LFP called constrained Horn clauses (CHC) due to the intuitive syntax
in representing transition systems with loops, and the efficient decision proce-
dures available for them. A characterisation of CHC is given based on first-order
logic and the fixed-point operator adapted from [BG87]. Let ψ be a first-order
formula over a theory T with free variables ~x , and a finite set {P1, . . . , Pn} be pred-
icates over ~x not appearing in ψ. The satisfiability of ψ(~x)∧ P1(~x)∧ . . .∧ Pn(~x)
in theory T when the interpretations of Pi are ∆Pi

is denoted by

n
⋃

i=1

{∆Pi
} |=T ψ(~x)∧ P1(~x)∧ . . .∧ Pn(~x).

Given a set of predicates P , a first-order theory T , and a set of variables V ,
a system of CHCs is a set S of clauses of form

H(~x)←∃~y .φ(~x , ~y)∧ P1(~y)∧ . . .∧ Pm(~y) for m≥ 0 (6.1)

where φ is a first-order formula over ~x , ~y ⊆ V with respect to the theory T ; ~x is
the tuple of distinct variables free in φ; H ∈ P a predicate with arity matching
~x; Pi ∈ P predicates with arities matching ~y; and no predicate in P appears in
φ. For a clause c, head(c) = H and body(c) = ∃~y .φ(~x , ~y)∧ P1(~y)∧ . . .∧ Pm(~y).

91 6.1 Background

For each predicate P ∈ P the transfinite sequence ∆αP is given by

∆0
P = ;
∆α+1

P =∆αP ∪ {~a |
⋃

Q∈P {∆
α
Q} |=T

∨

c∈S,head(c)=P body(c)[~a/~x]}
∆λP =

⋃

α<λ∆
α
P for limit ordinals λ.

Since the sequence∆αP is monotonic, there is a value for α such that∆αP =∆
α+1
P =

∆P .

In the context of modelling and verification, this chapter focuses of deter-
mining whether the ∆⊥ of the predicate ⊥ ∈ P is empty. In particular the CHC
solver used in this chapter guarantees that if ∆⊥ is nonempty then the model
of a program violates a safety property and the solver is able to map the con-
struction to an execution. Conversely, if ∆⊥ is empty, the solver either does not
terminate, or provides quantifier-free first-order formulas ψP(~x) in T for each
P ∈ P that serve as safe inductive invariants in the following sense. First, each
ψP over-approximate the interpretations ∆P , that is,

{∆P} |=T P(~x) =⇒ ψP(~x).

Second, for each clause c ∈ S of the form (6.1) where head(c) 6=⊥,

|=T φ(~x , ~y)∧ψP1
(~y)∧ . . .∧ψPm

(~y) =⇒ ψH(~x).

Third, if head(c) =⊥, then

|=T ¬
�

φ(~x , ~y)∧ψP1
(~y)∧ . . .∧ψPm

(~y)
�

.

The terminology from [BGMR15] is followed. A set of CHCs is satisfiable if ∆⊥
is empty, and unsatisfiable otherwise.

In presenting the clauses, some conventions are omitted in order to make
reading them easier. First, the existential quantifier is omitted since its scope is
clear from the arguments of the body for a given clause. Second, variables that
that do not appear in the formulas are not written. Third, superfluous equalities
are omitted: if an element yi of ~y is equated with an element x j of ~x in a top-
level conjunct of φ, the equality is not written and substituted yi for x j in the
head.

92 6.2 The Model

6.2 The Model

We define a contract C with the triplet 〈s , I(s), F〉, where s is the set of state
variables, I(s) is the initial state of s , and F is the set of all functions in the
contract. The disjoint subsets F+ and F− of F denote respectively the sets of ex-
ternal and internal functions of F . Given a function f (a)→ r ∈ F , where a is the
set of function arguments and r is the set of return variables, the control-flow
graph (CFG) of f is the tuple 〈G,α,ω,ρ〉. G = (V, E,λ,µ, S) is a node- and edge-
labeled directed graph, where V is the set of CFG blocks; E ⊆ V × V is the set of
control flow jumps; λv is the set that contains, for all v ∈ V , the set of instruc-
tions performed by v; µe is, for all e ∈ E, the condition under which the jump
e is performed; and S ⊆ V is the set of safety blocks, each representing a safety
property. During the execution of f only local variables are manipulated. There-
fore the labelings λ and µ, respectively, of each block and jump, are instructions
performed only over a set of local variables l of f . The CFG blocks α,ω ∈ V are
respectively the entry block and the exit block. The injection ρ : s ∪ a ∪ r → l
maps every state variable, function argument and return variable to a distinct
local variable accessed by the instructions in each block and jump. The function
notation is extended to sets in the natural way: for a given set of variables ~z,
ρ(~z) = {ρ(x) | x ∈ ~z}.

A safety property in the CFG is represented by a safety block. In Solidity,
safety properties are specified with the assert keyword. Safety properties failing
during the execution cause the function to revert and return immediately. To
achieve this behaviour, for every safety block b ∈ S there exists the jump e =
〈b,ω〉 where the condition µe is the negation of the property. This ensures a
direct jump to the exit block in case the safety property is violated. A jump to
the exit block ω from a safety block requires ω to revert by restoring the state
prior the function’s execution. In order to provide ω with the information that a
safety property has been broken, λb sets the special variable r̃ ∈ l to a value that
uniquely identifies the violated safety property.

Consider functions f and f ′ (which can be the same), represented by CFGs G
and G′ respectively. Function calls are performed by a block v in G whose labeling
λv contains the call instruction to G′. At runtime, the execution of the CFG block
v is performed by executing the CFG block α of G′. When ω of G′ is executed,
the transaction represented by the execution of G′ is finalized by committing any
changes to the state variables. The execution is then resumed from v, mapping
the return variables of f ′ to the expected local variables of f , and updating the
local variables of f representing state variables to match the new values resulting
from the commit just performed by the concluded transaction.

93 6.2 The Model

6.2.1 Model of a Contract Function

This section presents the rules for creating the CHC model of a function f (a) of
a contract having state variables s , returning variables r , and manipulating local
variables l.

The CHCs are constructed given the control flow graph 〈G,α,ω,ρ〉 of the
function f , where G = (V, E,λ,µ). For each CFG block v, the Static Single As-
signment (SSA) formula SSAλv

(l, l ′), where l ′ = {x ′ | x ∈ l}, models the behavior
of v by formalizing in logic the relation between x and x ′ for each x ∈ l, based
on the execution of the instructions in λv. The formula SSAµe

(l) of each jump
e is the logical condition under which e is taken. For each CFG block v ∈ V ,
P v

f (s , a, l) is a predicate symbol representing the states that are reachable in the
block v. The set of rules representing the execution of f is defined as follows.
For each jump e = 〈v, u〉 ∈ E, the jump rule of e is the CHC

P u
f (s , a, l ′)←P v

f (s , a, l)∧ SSAλv
(l, l ′)∧ SSAµe

(l). (Jump f ,e)

The entry rule sets the local variables equal to the corresponding current values
of state variables and passed arguments.

P α
f (s , a, l)←

∧

x∈s∪a

x = ρ(x)∧ρ(r̃) = 0. (Entry f)

The variables in s and a are symbolically assigned in (Entry f) and never changed
throughout the jump rules (Jump f ,e) of any e ∈ E. In case of reverting during ex-
ecution, these variables provide the necessary information to revert to the state
prior to the execution of f . A revert is caused a jump to ω setting the local vari-
able ρ(r̃) equal to the integer identifier of a safety property that failed. Initially,
ρ(r̃) is set to zero. Let S f (s , a, s ′, r) be the predicate symbol representing the
function summary of the execution of f . The function summary expresses the re-
lation between the input and the output of an execution of the function. In this
context the input is represented by the function arguments a and state variables
s prior execution, and the output is represented by the return values r and the
state variables s ′ after the execution. The summary rule of f is the CHC

S f (s , a, s ′, r)←P ω
f (s , a, l) ∧ (Sum f)

�

ρ(r̃) 6= 0 =⇒
∧

x∈s

x ′ = x
�

︸ ︷︷ ︸

revert

∧
�

ρ(r̃) = 0 =⇒
∧

x∈s

x ′ = ρ(x)
�

︸ ︷︷ ︸

commit

∧
∧

x∈r

x = ρ(x)
︸ ︷︷ ︸

returns

.

The revert constraints in (Sum f) ensures that an execution is reverted when ω

94 6.2 The Model

is reached having the local variable corresponding to r̃ set to the identifier of a
safety property. Conversely, the mutually exclusive commit constraints store the
local copy of the state in s ′, modeling a commit of the computed values. The
return constraints equate the return variables r with the corresponding local
variables.

Definition 12 Given a contract function f , the set of CHC Π f modeling f is the set
consisting of the jump rule of e (Jump f ,e) for each control flow jump e of f , and the
entry and summary rules from f (Entry f) and (Sum f).

6.2.2 Function Calls

Let e = 〈v, u〉 be a control flow jump where λv contains a function call to g(ag) re-
turning variables r g . The summary of g is used to synchronize the local variables
of f with the new state committed after g ’s execution terminates. Therefore,
SSAλv

(l, l ′) is defined as

Sg(s
′, ag , s ′′, r g) ∧ (Callg,ρcal l

)
∧

x∈ag∪r g

x = ρcal l(x)

︸ ︷︷ ︸

arguments and returns passing

∧
∧

x∈s

�

x ′ = ρ(x)∧ x ′′ = ρ(x)′
�

︸ ︷︷ ︸

state set and update

∧
∧

x∈l\l cal l

x ′ = x

︸ ︷︷ ︸

untouched locals

where ρcal l : ag → l, r g → l ′ is the mapping specific for this call that maps both
arguments of g to l according to how they are passed, and the return variables
of g to l ′ according to how they are assigned; l cal l = ρcal l(r g)∪ρ(s) is the set
of local variables that can be affected by the call. Arguments are assumed to be
passed by value. Therefore local variables ρcal l(ag) corresponding to the argu-
ments of g are not affected by the execution of the block. The argument and
return passing uses ρcal l to match arguments and return variables to the respec-
tive local variables of the caller. The state set and update conjunction makes sure
that the local variables in l ′ representing the state variables get updated accord-
ing to the execution of the just-ended transaction. For each local variable not
in l cal l , the untouched locals constraint equates its primed and non-primed ver-
sions, modeling that its value is not affected by the block execution, and there-
fore remains unchanged after the jump. Note that the primed version of the local
variables in l cal l are set in the former constraints according to the effects of the
call. This ensures that all variables in l ′, which are passed to the predicate P u

f ,
are constrained, modeling a deterministic execution. By applying (Jump f ,e), the
resulting CHC is non-linear because it contains the two predicates P v

f and Sg .

95 6.2 The Model

6.2.3 Contract’s External Behaviour

Given a contract C = 〈s , I(s), F〉, a contract transaction is the execution of a pub-
lic function. A single contract transaction is therefore modelled by the summaries
of every function f in F+, each proving the relation between state variables s , s ′

before and after a transaction performed by calling f . The external behaviour
of the contract is defined as the transitive closure of contract transactions, mod-
elling an arbitrary number of calls to any public function, in any order. The ex-
ternal behaviour provides the relation between state variables before and after
any possible interaction with the contract performed by an external contract.

The predicate EC(s , s ′) is defined to model the external behavior of C induc-
tively, where the base case is the CHC

EC(s , s)←>, (ExtBaseC)

and the inductive steps are, for each function f in F+, the CHCs

EC(s , s ′′)←EC(s , s ′)∧S f (s
′, a, s ′′, r). (ExtIndC , f)

The external behaviour of C can be used to model calls to a function of an
external contracts D which source code in unknown before runtime. In this way,
any possible transaction resulting from D interaction during runtime is consid-
ered. Every control flow jump 〈v, u〉 in C , where the block v contains a call
to a function that is unknown before runtime, is modelled using EC in place
of the called function summary. The resulting SSAλv

(l, l ′) is built similarly to
(Callg,ρcal l

), with the difference of omitting the argument and return passing con-
straints. The local variables in ρcal l are unconstrained in order to nondeterminis-
tically model any possible values returned by the unknown function. Specifically,
the resulting SSAλv

(l, l ′) is

EC(s
′, s ′′) ∧

∧

x∈s

�

x ′ = ρ(x)∧ x ′′ = ρ(x)′
�

︸ ︷︷ ︸

state set and update

∧
∧

x∈l\l cal l

x ′ = x

︸ ︷︷ ︸

untouched locals

. (ECallρcal l
)

If a safety proof for this model can be obtained, then it is not possible to
construct an external contract that can violate assertions in C by any sequence
of reentrant calls. A counterexample for such model implies that there exists a
contract that can be designed specifically for violating one or more assertions, by
calling one or more public functions in a particular order and returning specific
values.

96 6.2 The Model

Input : A contract C = 〈s , I(s), F〉.
Output : The set of CHC ΠC .
Initially: ΠC = {(InitC), (ExtBaseC)}.

1 foreach f = 〈G,α,ω,ε,ρ〉 ∈ F do
2 Let a, r , l respectively the arguments, returns and local variables of f .
3 Let Π f := {(Entry f), (Sum f)}
4 Let G = (V, E,λ,µ)
5 foreach e = 〈v, w〉 ∈ E do
6 if v contains a call to g(ag)→ r g then
7 Create ρcal l from λv

8 if (Sumg) is known then SSAλv
:= (Callg,ρcal l

);
9 else SSAλv

:= (ECallρcal l
);

10 else
11 SSAλv

(l, l ′) :=Model(λv)
12 end
13 SSAµe

:=Model(µe)
14 Π f := Π f ∪ {(Jump f ,e)}
15 end
16 ΠC := ΠC ∪Π f

17 if f ∈ F+ then
18 ΠC := ΠC ∪ {(ExtIndC , f), (RootTrC , f)}
19 end
20 end

Algorithm 2: The algorithm to construct ΠC .

6.2.4 Checking Contract Safety

LetC (s) be the predicate representing the reachable values for the contract. The
initial state is modeled by the CHC

C (s)← I(s). (InitC)

Every transition performed by a call to a public function is modeled by the root
transition rule. For each public function f ∈ F+,

C (s ′)←C (s)∧S f (s , a, s ′, r)∧ r̃ = 0. (RootTrC , f)

Definition 13 Given a contract C, the set of CHC ΠC modeling any possible behav-
ior of C is defined as the union of the initial rule (InitC), the external base case
rule (ExtBaseC), all the rules Π f of every function f ∈ F, and for each public func-
tion f ∈ F+ the root transition rule (RootTrC , f) and the external inductive rule

97 6.2 The Model

(ExtIndC , f).

Algorithm 2 gives an overall view of the modeling technique. Given as input a
smart contract C , the algorithm returns the set ΠC of CHCs modeling C . Initially,
ΠC consists only of the initial rule of C . Then, the loop from line 1 to 20 iterates
over each contract function f , gradually producing the respective set Π f that is
finally merged with ΠC in line 16. The internal loop from line 5 to 15 iterates
over every edge 〈v, w〉 of the CFG of f . The case where v is a block representing
a function call is handled in lines 6 to 9, using either the summary of the called
function or the external predicate. Otherwise, a formal model representing the
block execution is generated in line 10, and used in the jump rule.

Definition 14 (Safety Rule) The safety rule Σ f for the CHC model of a public
function f is ⊥←C (s)∧S f (s , a, s ′, r)∧ r̃ 6= 0. The safety rule of a contract C is
the set ΣC of the safety rules of every public function of C.

The safety rule ensures that a function f is safe, in the sense that every possible
transaction of f does not revert, i.e. produce assertion violations. A contract C
is safe if and only if the set ΠC ∪ΣC is satisfiable.

6.2.5 Counterexample Generation

The refutation, or proof of unsatisfiability, forΠC ∪ΣC proves that a specific safety
query in ΣC can not be satisfied, i.e.,∆⊥ is non-empty. While the presented solv-
ing methodology can show satisfiability over unbounded executions through the
use of over-approximation, it can only represent finite counterexamples. This, of
course, is not a practical limitation since in real programs the interest is in bugs
that manifest themselves after a finite number of steps. While the description of
how a counter-example is constructed in the solver is outside of the scope of this
chapter, this section gives a short overview of the refutations themselves.

A refutation is a tree-shaped structure obtained by an unwinding of clauses.
The nodes of the refutation are labeled with clauses. The root v0 of the tree is
labeled with a clause with⊥ as head. For each predicate P in the body of a clause
c, we create a child labeled with a unique clause c′ such that head(c′) = P. The
leaves of the tree are labeled with clauses with no predicates in the body. Let
v0, . . . , vk be a path from the root to a leaf, labeled with clauses c0, . . . , ck. Given
a clause c of form (6.1), let bodyφ(c) denote the constraint φ of c. Then in a
refutation for all such paths it must hold that

|=T bodyφ(c0)(~x0, ~x1)∧ bodyφ(c1)(~x1, ~x2)∧ . . .∧ bodyφ(ck)(~xk−1, ~xk). (6.2)

98 6.3 Example

1 contract Auction {

2 uint bid = 0;

3 uint cash = 0;

4 address payable winner = address(0);

5
6 function offer() public payable {

7 uint new_bid = msg.value - 5 finney;

8 require(bid < new_bid);

9 if (winner != address(0)){

10 assert(bid <= cash);

11 winner.transfer(bid);

12 cash = cash - bid;

13 }

14 bid = new_bid;

15 cash = cash + msg.value;

16 winner = msg.sender;

17 }

18 }

Figure 6.1. The auction contract used as example.

A counterexample corresponds then to a first-order structure satisfying (6.2) as
follows: The counterexample generation traverses the entire refutation tree and
considers only the nodes that refer to the initial state rule (InitC), the root trans-
action rule (RootTrC , f), or the safety rule. The breath-first search results in a list
of nodes that has the safety rule as first element (the root), a possibly empty list
of elements representing root transaction rules, and finally a leaf representing
an initial rule. The first-order structure satisfying eq. (6.2) is used to produce
a model of the initial state for the counterexample setup. Then, each following
node represents the result of a transaction whose children model (i) the con-
tract state prior the transaction, and (ii) a function call with given arguments
that results in a new state. The last transaction involves a call to the function f̂
that resulted in a revert. The arguments of each such function are then used to
produce a trace of function calls which serves as the counterexample.

6.3 Example

This section considers the contract shown in fig. 6.1. The contract Auction pro-
vides a realistic support for an auction, where the function offer is used to place
an offer by the users. Although in reality the contract would have other func-

99 6.3 Example

P α
o ← b = lb ∧ c = lc ∧w= lw ∧ s = ls ∧ v = lv ∧ l r̃ = 0 (Entryo)

P 9
o ←P

α
o ∧ lnb = lv − 5× 1015 ∧ lb < lnb (Jumpo,〈α,9〉)

P 10
o ←P

9
o ∧ lw 6= 0 (Jumpo,〈9,10〉)

P 14
o ←P

9
o ∧¬(lw 6= 0) (Jumpo,〈9,14〉)

P ω
o ←P

10
o ∧¬(lb ≤ lc)∧ l ′r̃ = 1 (Jumpo,〈10,ω〉)

P 14
o ←P

10
o ∧ lb ≤ lc ∧ l ′c = lc − lb (Jumpo,〈10,14〉)

P ω
o ←P

14
o ∧ l ′b = lnb ∧ l ′c = lc + lv ∧ l ′w = ls (Jumpo,〈14,ω〉)

So←P ω
o ∧ l r̃ 6= 0 =⇒ (b′ = b ∧ c′ = c ∧w′ = w)

︸ ︷︷ ︸

revert

∧

¬l r̃ = 0 =⇒ (b′ = lb ∧ c′ = lc ∧w′ = lw)
︸ ︷︷ ︸

commit

∧ r̃ = l r̃
︸ ︷︷ ︸

returns

(Sumo)

A ← b = 0∧ c = 0∧w= 0 (InitA)
A ←A ∧So ∧ r̃ = 0 (RootTrA ,o)

Figure 6.2. The set of CHCs ΠA that models the contract Auction shown in
fig. 6.1.

tions for implementing additional functionalities (e.g. auction end, payment to
the seller, ect.), for simplicity and to avoid unnecessary burden the focus is on
providing a model and a counterexample only for the function offer. The con-
tract state consists of three variables, bid, cash, and winner, which respectively
represent the current winning bid, the amount of money held by the contract,
and the address that made the current winning bid. Every new offerer pays a fee
of 5 finney, (0.005 Ether, or 5× 1015 wei) that is worth approximately 1 USD at
the time of writing. The fee is deducted upfront from the amount sent by user
when submitting the transaction (msg.value) on line 7, causing an underflow
if such amount is less than the fee. As a result of the underflow, the current bid
can potentially become a very large value, preventing other users to participate
to the action and causing a denial of service. The assertion on line 10 checks
that the contract has enough money to pay back a previous bidder if overcome
by an higher offer. In case a previous transaction caused an underflow, the bid
evaluated to a very large value and it is likely that the contract does not have
enough money to cover the refund, causing the assertion to fail.

The set ΠA modelling the contract Auction is shown if fig. 6.2. The signa-
ture of the predicates is intentionally not present in order to avoid cluttering the
notation. The signatures of the predicatesP α

o ,P 9
o ,P 10

o ,P 14
o andP ω

o represent-

100 6.3 Example

⊥,>
�

Σo

*

A ,
b = B1 ∧
c = 0 ∧
w= 0xA1

+

RootTrA ,o

*

A ,
b = 0 ∧
c = 0 ∧
w= 0

+

InitA

*

So ,

b′ = B1 ∧
c′ = 0 ∧
w′ = 0xA1 ∧
s = 0xA1 ∧
v = 0 ∧
r̃ = 0

+

Sumo

*

P ω
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
l r̃ = 0

+

Jumpo,〈14,ω〉

*

P 14
o ,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
l r̃ = 0

+

Jumpo,〈9,14〉

*

P 9
o ,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
l r̃ = 0

+

Jumpo,〈α,9〉

*

P α
o ,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
l r̃ = 0

+

Entryo

*

So ,

b′ = B1 ∧
c′ = 0 ∧
w′ = 0xA1 ∧
s = 0xA2 ∧
v = 1 ∧
r̃ = 1

+

Sumo

*

P ω
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
l r̃ = 1

+

Jumpo,〈10,ω〉

*

P 10
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
l r̃ = 0

+

Jumpo,〈9,10〉

*

P 9
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
l r̃ = 0

+

Jumpo,〈α,9〉

*

P α
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
l r̃ = 0

+

Entryo

Figure 6.3. A refutation tree for the set of CHCs shown in fig. 6.2 modelling
the contract Auction shown in fig. 6.1. Σo is the CHC A ∧So ∧ r̃ =⇒ ⊥.
B1 = 2256 − 5× 1015, and B2 = 2256 − 5× 1015 + 1. The values 0xA1 and 0xA2
represent two ETHEREUM addresses.

ing CFG blocks of the function offer is (b, c, w, s, v, lb, lc, lw, ls, lv, lnb, l r̃), where
b, c and w respectively represent the state variables bid, cash and winner, s
and v respectively represent the implicit function arguments msg.sender and
msg.value, for each x ∈ {b, c, w, s, v}, lx is the local copy of variable x , lnb rep-

101 6.4 Implementation

resents the local variable new_bid, and l r̃ represents the local copy of the revert
variable. The numbers in superscript for the predicates P 9

o ,P 10
o , and P 14

o refer
to the line numbers where the basic block that each predicate represents starts.
The predicate So represents the summary of function offer and has the signa-
ture (b, c, w, s, v, b′, c′, w′, r̃). The predicate A is the predicate representing the
state of the contract Auction and has the signature (b, c, w). When a primed
version of a variable appears in the body of a CHC, such variable is assumed to
be applied primed in the head predicate.

The safety rule Σo for function offer is the CHC

⊥←A ∧So ∧ r̃ 6= 0

The set of CHCs ΠA∪{Σo} is unsatisfiable, that is, there exist a refutation, shown
in fig. 6.3, that proves Σo a contradiction given ΠA. In order to create the coun-
terexample, the tree search provides the list of nodes 〈InitA ,RootTrA ,o,Σo〉.
The counterexample is constructed initially by using the node InitA to construct
the contract by setting bid=0, cash=0 and winner=0. Then, the following two
nodes are used to create two transaction completing the counterexample, which
functions and arguments are given in each node’s children. In particular, the
node RootTrA ,o is the result of a call to offer() having msg.sender=0xA1 and
msg.value=0 represented by the child Sumo, and the node Σo that fails an asser-
tion is the result of a call to offer() having msg.sender=0xA2 and msg.value=1

represented by the child Sumo. The counterexample shows that an initial null of-
fer that results in a current bid of 2256−5×1015 wei (B1 in fig. 6.3, 2.3×1061 USD
at the time of writing), leaving cash null in line 15. The following transaction
places a very small offer of 1 wei (2×10−16 USD at the time of writing), causing
the the new bid (B2 in fig. 6.3) to be higher than the previous. The attempt to
refund the previous offer fails because of the assertion on line 10.

6.4 Implementation

A prototype of the proposed modelling approach has been implemented in collab-
oration with the engineers from the ETHEREUM Foundation, inside the SMTChecker
component [smt20, AR18] of the Solidity compiler [Eth18b]. Specifically, the im-
plementation of our work consists of the CHC model checking engine of SMTChecker,
called SOLICITOUS.

The SOLICITOUS functionality can be enabled in the compilation by providing
the corresponding pragma directive in the source file. Once enabled, the com-

102 6.4 Implementation

Solidity Code

Compiler Stack
Solicitous

EVM Code

Z3

CEX

AST Generator

Solidity

AST
CHC Generator

CEX
Generator

UNSAT

CHCs

INVARIANT

SAT

Figure 6.4. SOLICITOUS module inside the Solidity compiler.

piler provides the main Abstract Syntax Tree (AST) to SOLICITOUS that generates
the CHC model of the contract following Algorithm 2. The CHC model is then
provided to the engine SPACER [KGC16] of the SMT solver Z3 [dMB08] for solv-
ing. In case an assertion failure is detected, SOLICITOUS can provide a transaction
trace as a witness to the failure, which can easily be checked by the developer.
An overview of SOLICITOUS and Solidity can be seen in fig. 6.4.

The emphasis of this technique is in the modelling of the control flow of So-
lidity contracts. The control flow corresponds to AST nodes related to language
constructs such as loops and conditional branches. Visiting these nodes triggers
the creation of the corresponding clauses as described in section 6.2. In addition,
the AST nodes corresponding to Solidity expressions result in accumulating the
constraintφ of the clauses. Each expression node introduces a new SMT variable
of the type of the expression. As an implementation detail, the unique identifiers
the compiler assigns to AST nodes are used for guaranteeing unique names for
these variables.

Solidity offers two special types of functions: modifiers and constructors. Mod-
ifiers represent pieces of code that envelope a function body. Therefore, modi-
fiers’ definitions depend on the functions they envelope, and they are not encoded
separately but instead in-lined to the functions. Constructors define the initial-
ization procedure executed at deployment time of a contract. The constructor
modeling is prepended by providing the initialization I(s) where variables are
either zeroed or given their explicit initial values. In contracts that inherit base
classes, the inheritance order is obtained by the Solidity compiler using the C3
linearization [BCH+]. In addition, each constructor is executed exactly once. In
our implementation, the entire deployment procedure, which might include the
inheritance linearization and state variable initialization, is in-lined into a single
constructor function.

SOLICITOUS currently supports a working subset of the Solidity language, in-

103 6.5 Experiments

cluding the complex control flow and arithmetic operators (except exponentia-
tion), integers of all available sizes, Boolean variables, arrays, mappings access
and assignment, and inheritance. Strings and structs are currently not supported,
and their occurrences in φ are replaced by nondeterministic operations in order
to maintain soundness. Continuous support and the addition of the remaining
language features is a goal of the ETHEREUM Foundation, and the supported sub-
set of language is therefore expected to grow.

6.5 Experiments

The precision and language coverage of SOLICITOUS is evaluated on a set of real-
world contracts over a 17 months period, between the block 7 million, mined
2nd of January 2019 and the block 10 million, mined on 4th of May 2020. All
contracts deployed in that period that are written in Solidity v0.5 and v0.6, and
are available through the Etherscan block explorer [eth20a] were extracted. The
benchmarks are available at https://scm.ti-edu.ch/repogit/verify-solidity-contracts.
git.

The query consisted of 1147850 addresses, obtaining 136802 contract sources,
of which 27887 are unique: 367 v0.6, 10301 v0.5, and 17219 of previous ver-
sions. The tools was run only on contracts containing assertions. However, com-
mented assertions were also checked. Commented assertions are of special inter-
est because developers might have removed them before deployment in order to
reduce gas cost, believing them to always hold. In total, the set consists of 6061
v0.5 contracts including 11076 assertions (the V5 benchmark set), and 77 v0.6
contracts including 163 assertions (the V6 benchmark set).

SOLICITOUS1 is here compared against three other tools: SOLC-VERIFY [HJ19]
and VERISOL [LCWD18] that verify Solidity source code, and MYTHRIL [Con18]
that verifies Ethereum Virtual Machine (EVM) bytecode. MYTHRIL differs from
the other tools in that it is a purely bounded checking engine of three trans-
actions. Unlike SOLICITOUS, SOLC-VERIFY and VERISOL, MYTHRIL does not pro-
duce safe inductive invariants, and contracts MYTHRIL reports safe can be consid-
ered safe only up to three transactions after contract deployment. In this sense
MYTHRIL can report only unsafe results, and only if a counterexample within
three transactions exists. It is also hard to make claims about the validity of its
counterexamples, as MYTHRIL authors do not provide any scientific publication
that explains their technique. Despite its limitations, MYTHRIL is well known

1Available at https://github.com/usi-verification-and-security/solc

https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git
https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git
https://github.com/usi-verification-and-security/solc

104 6.5 Experiments

in the smart contracts community for having the best support for language fea-
tures. In our comparative analysis, MYTHRIL serves as a gold standard for the
language support metric. To the best of our knowledge these tools are the only
ones with which an automated comparison is possible.2 Both SOLC-VERIFY and
VERISOL support only Solidity v0.5, thus for the comparative analysis using V5,
it is used a legacy version of SOLICITOUS supporting v0.5 that has no support
for counterexample generation. SOLC-VERIFY, VERISOL and legacy SOLICITOUS

are sound but over-approximative. Specifically, while safe results are justified in
these tools by an inductive invariant that proves safety, the tools do not justify
unsafe results: in particular they do not provide an execution that would serve as
a counterexample for the validity of an assertion. Therefore there is a distinction
between ‘not safe’ and ‘unsafe’, using the former when no or spurious counterex-
ample is produced and the latter when a concrete counterexample proves a real
bug. The current SOLICITOUS implementation is separately evaluated using V6
to assess the concrete counter-example generation for proving unsafe results.

6.5.1 Counterexample Generation

The overall results for the V6 benchmark set is shown in table 6.1. SOLICITOUS

is executed with two different types of encodings where integer arithmetic is en-
coded both without and with modularity. The former allows arbitrarily large val-
ues, while the latter models overflow and underflow precisely. MYTHRIL reports
13 safe contracts up to three transactions. SOLICITOUS performs the best over this
benchmark set, not only guaranteeing a good number of contracts to be safe, but
also supporting the language features present in most contracts. The counterex-
amples of the 7 unsafe contracts reported by SOLICITOUS were all checked to be
concrete with the ETHEREUM evaluator HEVM [Eth20b]. Every counterexample
leads to a runtime exception. Despite the small number of benchmarks due to
Solidity v0.6 being very recent at the time of writing, our results show that SO-
LICITOUS is capable of generating valuable witnesses of assertion failures that
can help developers to prevent vulnerabilities.

In addition to its standard execution, in which a potential assertion failure
is reported by mentioning its line number in the source file, SOLICITOUS is also
capable of generating concrete counterexamples to prove that the result is un-
safe and not spuriously reported not safe due to the over-approximations of
unsupported features. Unlike the fixed-size bounded approach of VERISOL and

2Two other tools were considered for the comparison, namely ZEUS [KGDS18] and SAFEVM
[ACG+19], but ZEUS is not publicly available and SAFEVM only supports Solidity v0.4.

105 6.5 Experiments

Table 6.1. Experimental results for the V6 benchmark set. INT and MOD

stand for integer and modulo arithimetics. SOL and M respectively stand for
SOLICITOUS and MYTHRIL. Verified shows the percentage of contracts with
either Safe or Unsafe result.

INT MOD

SOL SOL M

Safe 32 27 –
Unsafe 7 7 1
Timeout 5 9 63
Error 33 34 0

Verified 50% 44% 18%

MYTHRIL, SOLICITOUS generates counterexamples of arbitrary length, reporting
assertion failures that can happen at any point in the lifecycle of a contract.

6.5.2 Comparative Analysis

To get a better understanding of SOLICITOUS performance on a larger benchmark
set, the 0.5 version of SOLICITOUS, SOLC-VERIFY, and VERISOL are evaluated on
V5. The results are shown in table 6.2. Safe contracts are those for which all
the assertions in the code are proved safe by safe inductive invariants. Not safe
contracts have at least one assertion that is not proven safe. The timeout of each
individual verification run is 60 seconds. Verification tasks halted for various
types of errors are counted in the error row.

SOLICITOUS reports the largest amount of safe inductive invariants for both
arithmetic encodings. Regarding the not safe results, SOLICITOUS can indistin-
guishably produce spurious and concrete results depending on whether unsup-
ported features are present or not, since they are modelled as non-deterministic
operations in order to preserve soundness. Similarly, SOLC-VERIFY introduces
over-approximations during its translation to Boogie that produce the same ef-
fect. VERISOL presents the same issue, however if no invariant is found it per-
forms a further step creating a bounded model of length four. If the bounded
check reports unsafe, VERISOL produces a concrete counterexample. In summary,
VERISOL can prove an assertion unsafe only if it can fail within four transactions
after contract deployment. The unsafe reports proved by a concrete counterex-
ample are shown with an asterisk in table 6.2.

The table also provides a comparison against MYTHRIL. Considering that

106 6.6 Related Work

Table 6.2. Experimental results for the V5 benchmark set. INT and MOD stand
for integer and modulo arithimetics. SOL, SV, VS, and M respectively stand
for SOLICITOUS, SOLC-VERIFY, VERISOL and MYTHRIL. The Verified row shows
the percentage of contracts reported either Safe or Not safe. The best result in
each category is highlighted. * These numbers refer to unsafe reports proved
by a concrete counterexample.

INT MOD

SOL SV VS SOL SV VS M

Safe 1720 778 135 1681 54 117 –
Not safe 142 572 298 (46*) 93 515 198 (31*) 23*
Timeout 586 89 37 678 56 130 5426
Error 3613 4622 5591 3609 5436 5616 33

Verified 30% 22% 7% 29% 9% 5% 9%

MYTHRIL can only produce bounded proofs, the number of contracts reported
safe (579) is not reported in table 6.2. Our experiments show that SOLICITOUS is
the tool that guarantees the largest amount of contracts to be safe, and that it is
also the one able to verify the largest amount of contracts in general. Regarding
the coverage of language features, using the amount of errors as a proxy metric,
MYTHRIL possesses the best support. SOLICITOUS is closer to it than SOLC-VERIFY

or VERISOL. Given the positive results, aligned with the practical nature of the
benchmarks set used, SOLICITOUS stands as a valuable tool for Solidity develop-
ers.

6.6 Related Work

There is much interest in formally verifying ETHEREUM smart contracts, and sev-
eral tools rely on different techniques to verify either Solidity or Vyper source
code, or EVM bytecode. OYENTE [LCO+16] is one of the pioneers in this field,
and uses symbolic execution of EVM bytecode to find common vulnerabilities.
MYTHRIL [Con18] is a security tool based on control-flow analysis and concolic
execution of EVM, supporting analysis of assertions up to a fixed bound of trans-
actions. MAIAN [NKS+18] is also bounded in the number of transactions and
searches EVM bytecode for three specific types of vulnerabilities. SECURIFY [TDDC+18]
encodes EVM bytecode into Datalog to analyze programs, targeting specific types
of bugs encoded as data patterns. VERX [PDT+20] verifies temporal properties
written using a specification language for a particular class of contracts referred

107 6.7 Conclusions and Future Work

as effectively external callback free. It requires user intervention when the auto-
matic inference of abstraction predicates fails. The tool is not publicly avail-
able. MANTICORE [MMH+19] has a symbolic execution engine for EVM that
uses SMT to systematically explore the state space of the contract by repeat-
edly executing symbolic transactions. KEVM [HSR+18] is a formal specification
of the EVM semantics written in the K-FRAMEWORK [RS10]. It provides an as-
sisted theorem prover and a specification language for further analysis, including
reachability. Similarly, KVYPER [Fra18b] and KSOLIDITY [Fra18a] are the Vyper
and Solidity semantics expressed over the the K-FRAMEWORK. KLAB [ELHL20]
provides a specification language tailored for smart contracts that compiles to
general K properties and a framework for proof debugging and counterexam-
ple analysis based on KEVM. SAFEVM [ACG+19] verifies EVM code produced
by Solidity 0.4 through an intermediate translation to C that can be checked
with three different backend C-verifiers. ZEUS [KGDS18] translates Solidity into
LLVM bitcode which is fed to the SEAHORN [GKKN15] model checker. A subset
of Solidity not including loops is verified after a translation to F* [BDLF+16].
WHY3 [Why18] has also been used to verify translated Solidity programs. How-
ever, Why3 does not support many of the Solidity constructs and is no longer
developed. Slither [FGG19] translates Solidity to its own intermediate SSA lan-
guage and performs bounded checks for several vulnerability classes. More re-
cently, the tools SOLC-VERIFY [HJ19] from SRI and VERISOL [LCWD18] from
Microsoft verify Solidity contracts using the language Boogie as intermediate
representation.

6.7 Conclusions and Future Work

This chapter presented a formal technique for modelling smart contracts using
CHCs. The results reported in this chapter have been published in [MOA+20].
The models are designed to formally capture semantic features specific for smart
contracts, enable fully-automated verification of safety properties, and are suit-
able for exploiting sequential and parallel generic theorem provers in the task
of analysis and contract invariants generation. The modelling technique is im-
plemented for the Solidity language and its effectiveness is evaluated through
an extensive experimentation involving 6138 contracts specifying 11239 safety
properties, showing concrete effectiveness in real-world settings.

The results obtained so far opened several directions for future research. The
following are the three research challenges related to the contribution of this
chapter. (1) The control-flow graph creation can be performed in different ways

108 6.7 Conclusions and Future Work

by varying the block size and the operations that trigger the creation of new
blocks. An interesting research direction involves comparing different CFG build-
ing schemes and their performances. (2) Increasing the support of Solidity lan-
guage features might open new challenges also with respect of which achieves
the best performance. (3) Encoding gas usage in the CHCs model would enable
reasoning over gas-related properties in an unbounded way. However how to
perform such modelling effectively is not trivial.

Chapter 7

Bounded Gas Analysis for Smart
Contracts

Users interact with ETHEREUM by submitting transactions that miners execute
for a fee charged on-the-fly based on the complexity of the execution. The exact
fee, measured in gas, in general depends on the unknown state of the contract,
and predicting even its worst case is in principle undecidable. Uncertainty in gas
consumption may result in inefficiency, loss of money, and, in extreme cases, in
funds being locked for an indeterminate duration.

This chapter presents two methods for determining the exact worst-case gas
consumption of a bounded transaction execution using methods influenced by
symbolic model checking. ETHEREUM provides a Turing-complete execution en-
vironment, and therefore computing the worst-case gas consumption is undecid-
able. The protocol imposes, however, a maximum gas consumption for a block,
making the computation in principle decidable. The challenge of computing
the exact worst-case gas consumption of a transaction is addressed relying on
highly efficient methods adapted from symbolic bounded model checking and
using SMT solvers. The central concept introduced in this chapter is the gas con-
sumption path (GCP). A GCP is a symbolic execution path that models concrete
execution paths all having the same gas cost. The proposed techniques exhaus-
tively examine all GCPs of a smart contract function using symbolic methods.
The paths are identified in the high-level language Solidity and projected to the
low-level EVM bytecode currently used in ETHEREUM. This approach has several
advantages: Due to the combination of high and low-level representations we
are able to be precise on the execution paths while maintaining exactness of the
gas consumption. The approach is independent of the low-level representation,
where gas consumed by the instructions might depend on protocol version, dif-

109

110 7.1 Preliminaries

ferent compilers might produce different code, and even the assembly language
is subject to change.

The rest of this chapter is organized as follows. Section 7.1 introduces the
necessary preliminaries for the concepts used in the chapter. Sections 7.2 and 7.3
present the two algorithms, respectively the GCP enumeration and the function-
oriented GCP enumaration. Section 7.4 provides the concrete results for the exe-
cution of both algorithms over an example contract. Finally, sections 7.5 and 7.6
respectively provides an overview of the related work and conclusions for this
chapter.

7.1 Preliminaries

Table 7.1. Some EVM instruction costs [Eth18a]. The second half of the table
lists examples of instructions whose cost depends on the context in which they
are executed and the arguments provided.

Instruction Gas Description

JUMPDEST 1 Indicates a valid jump destination
POP 2 Pop from the stack
PUSHn 3 Push an n-bit item to stack
ADD/SUB 3 Arithmetic Operation
LT/GT/SLT/SGT/EQ 3 Arithmetic comparisons
MLOAD/MSTORE 3 Memory operations
MUL/DIV/MOD 5 Arithmetic Operations
JUMP 8 Unconditional jump to a location at the top

of the stack
JUMPI 10 Conditional jump to a location at the top of

the stack
SLOAD 200 Load from storage

CALL 700 Call a contract transaction with zero-valued
arguments

CALLVAL 9,000 Call a contract transaction with non-zero
valued arguments

SSTORE 5,000 Store a zero, or non-zero when previous
value is non-zero

SSTORE 20,000 Store a non-zero when previous value is zero
SSTORE 15,000 Added to refund counter when storing a zero

and previous value is non-zero.

111 7.1 Preliminaries

The complexity of an ETHEREUM transaction is measured in its gas consump-
tion. Each EVM instruction has an associated gas consumption, a measure that
relates the instruction to its storage or execution cost. See table 7.1 for examples
of some costs. In addition to instruction-specific costs, certain instructions and
declarations affect the size of the memory local to a function, called the active
memory [Eth18a]. Let a and b be the sizes of the active memory in bytes, re-
spectively, before and after executing an instruction. The possible change incurs
a cost or a refund defined as

∆Cmem(a, b) = 3 · (a− b) +
�

a2

512

�

−
�

b2

512

�

.

To execute a transaction through a miner, a user provides a price he or she is
willing to pay for a unit of gas in a currency called Ether, and the total amount
of Ether that the transaction may consume. Assuming no errors are encountered
while running the transaction and the amount paid for the actual gas consump-
tion is sufficient, the transaction is carried out successfully. If carrying out the
transaction requires more gas than what is provided, the execution is terminated
without a refund.

Due to the memory model of EVM, in some cases the cost of an instruction de-
pends on arguments of the instruction or the state of the contract when executing
the instruction. For example:

• The instruction SSTORE writes into contract storage. The operation is
costly in particular if a non-zero value is written to a storage location that
previously contained a zero value. The EVM execution model contains a
refund counter which is used for rewarding the user for executing instruc-
tions that make EVM less expensive. This is reflected in the case where
SSTORE instruction writes a zero value to a location that previously held a
non-zero value, resulting in a refund.

• The instruction cost of the instruction pair CALL and CALLVAL depend on
their arguments. The instructions are used to call a transaction in another
contract. While technically two different instructions, they can be inter-
preted as a single instruction from the perspective of a higher-level lan-
guage. In this case the cost of a transaction depends on whether the values
of the arguments passed in the call are zero.

The cost of a complete transaction in EVM is in part defined by the flow of
control dictated by the EVM state, arguments, and the function code. Due to ar-
gument and environment dependence of instruction costs, the control flow graph

112 7.2 Gas Consumption Path Enumeration

is not sufficient for determining the transaction cost. The control flow graph is
generalized here to a gas consumption graph by adding new edges and nodes
based on the instruction argument and environment dependence in a natural
way, and call paths in the gas consumption graph gas consumption paths (GCP).
All executions of a function that follow the same gas consumption path consume
therefore equal amount of gas. Our approach aims at identifying a GCP that max-
imizes the gas consumption over all GCPs. Instead of working directly on EVM
bytecode, we base the analysis on the higher-level Solidity language, arguably
the most popular language for writing smart contracts at the time. Therefore the
concept of GCPs is generalized here to Solidity GCPs. These are not in general
the same for instance due to low-level optimizations available for EVM. As a re-
sult we do not attempt to compute the gas consumption on the Solidity code, but
instead compute exact EVM gas consumption using concrete executions that are
guaranteed to cover all Solidity GCPs.

We assume that the Solidity GCPs cover also all EVM GCPs. We want to em-
phasise this methodological choice as a potential threat to the validity of the
results, and will reflect it in the theorems on correctness in the next sections.

To identify potentially different GCPs we employ bounded-model-checking
techniques [BCCZ99] together with SMT solvers [dMB08, HMAS16, BCD+11,
CGSS13], by operating on the static single assignment (SSA) level of Solidity
where loops have been unwound up to a given limit. The approach can be made
complete by increasing the unwinding limit since the ETHEREUM protocol im-
poses a maximum gas consumption for a transaction.

7.2 Gas Consumption Path Enumeration

This section presents an algorithm for enumerating symbolically Solidity GCPs
based on the unwound SSA representation of smart contracts. While the number
of GCPs is in general exponential in the size of the unwound SSA representation,
due to the symbolic representation the algorithm runs in polynomial space.

We first give the translation of a Solidity contract to an unwound SSA (USSA)
form in fig. 7.1 for an example program adapted from [FDHS15]. For brevity,
fig. 7.1 (a) uses a pseudo-code resembling the Solidity language instead of the
actual Solidity language.1 The contract consists of functions f and g, where g
calls f. Function g writes to the storage variable z and uses the solidity function
msg.sender.transfer here abstracted simply as transfer(z). Function f does

1For a compilable Solidity contract see fig. 7.2.

113 7.2 Gas Consumption Path Enumeration

operations on its arguments inside a loop, stores the result into a local variable,
and returns the result after the computation.

The search for GCPs is done on the USSA form, given in fig. 7.1 (b). The form
consists of a sequence of guarded assignments having the form c → b = e(x) or
c→ b =s e(x), where c is a conjunction of Boolean-valued expressions, and e(x)
is an operation over variables x . We distinguish between assignments where the
left side of the equality is a variable in memory (=) and a storage location (=s)
since depending on the values these have different costs (see table 7.1). Similarly
the costs of some instructions depend on their arguments. For this purpose we
define the function ArgCond that maps an instruction to its cost condition. For
instance, ArgCond(a+ b) = ;, and ArgCond(transfer(x)) = {x = 0}. The cost
implied by ∆Cmem only depends on the control flow path and therefore requires
no special treatment.

The pseudo-code of the enumeration-based algorithm is given in algorithm 3.
The algorithm takes as input an entry point function f (~v) and constructs the
USSA starting from f , in-lining recursively all functions called from f (line 1).
The USSA is then traversed to construct a set of Boolean expressions C by adding
each conjunct from each guard c of the USSA assignment in lines 4–9. Additional
Boolean expressions are added to C for each storage assignment =s (line 7), and
for each instruction whose cost depends on its arguments (line 9). The function
pre(x i) = x i−1 maps a USSA variable x i to its previous instantiation. In case x i is
the first instantiation (i.e., i = 1), pre(x i) is a “fresh” variable not appearing in
the USSA.

In the second phase the algorithm exhaustively queries the SMT encoding of
the USSA form for each Boolean combination of expressions from C and obtains
values for ~v and S that cover these cases in case of satisfiability. The cost of each
value combination for ~v and S is then queried by simulating the transaction, and
the highest gas estimate is returned as the exact worst-case bound.

Running algorithm 3 on the USSA form on fig. 7.1 (b) gives

C = {x1 ≥ y1, y1 ≥ 0, (x1 + y1 = 0)∧ (z0 = 0), (x1 + y1 = 0)∧ (z0 6= 0), z1 = 0,
fi1 < fa1

+ fb1
,fi1 < fa1

,fi6 < fa1
+ fb1

,fi6 < fa1
,

(fret1
= 0)∧ z1 = 0), (fret1

= 0)∧ z1 6= 0)},

where the first two constraints x1 ≥ y1 and y1 ≥ 0 and the whole of the second
row constraining the local variables of the functions fi j

, fa j
, fb j

come from the
if-conditions; the conjunctive constraints (x1 + y1 = 0) ∧ (z0 = 0), (x1 + y1 =
0)∧ (z0 6= 0) come from the argument and environment dependency of SSTORE
(see table 7.1), and the constraint z1 = 0 comes from the argument dependency

114 7.2 Gas Consumption Path Enumeration

1 contract C:

2 int z;

3 function g(x, y):

4 if (x >= y)

5 if (y >= 0)

6 z = x + y

7 transfer(z)

8 z = f(x, y)

9
10 function f(a, b):

11 int i = 0

12 while (i < a + b):

13 if (i < a):

14 i = i + a

15 else:

16 i = i + b

17 return i

(a) Pseudo-Solidity contract

x1 ≥ y1 ∧ y1 ≥ 0→ z1 =
s x1 + y1; (7.1)

x1 ≥ y1→ transfer(z1); (7.2)

t rue→ fa1
= x2; (7.3)

t rue→ fb1
= y2; (7.4)

t rue→ fi1 = 0; (7.5)

(fi1 < fa1
+ fb1

)∧ (fi1 < fa1
)→ fi2 = fi1 + fa1

; (7.6)

(fi1 < fa1
+ fb1

)∧ (fi1 ≥ fa1
)→ fi3 = fi1 + fb1

; (7.7)

(fi1 < fa1
+ fb1

)→ fi4 = ite((fi1 < fa1
),fi2 ,fi3); (7.8)

(fi1 ≥ fa1
+ fb1

)→ fi5 = fi1; (7.9)

t rue→ fi6 = ite((fi1 < fa1
+ fb1

),fi4 ,fi5); (7.10)

(fi6 < fa1
+ fb1

)∧ (fi6 < fa1
)→ fi7 = fi6 + fa1

; (7.11)

(fi6 < fa1
+ fb1

)∧ (fi6 ≥ fa1
)→ fi8 = fi6 + fb1

; (7.12)

(fi6 < fa1
+ fb1

)→ fi9 = ite((fi6 < fa1
),fi7 ,fi8); (7.13)

(fi6 ≥ fa1
+ fb1

)→ fi10
= fi6; (7.14)

t rue→ fi11
= ite((fi6 ≤ fa1

+ fb1
),fi9 ,fi10

); (7.15)

t rue→ fret1
= fi11

; (7.16)

t rue→ z2 =
s fret1

; (7.17)

(b) USSA approximation (bound = 2)

Figure 7.1. Converting a contract into a USSA

115 7.2 Gas Consumption Path Enumeration

Input : Entry function f ; unwind limit n
Output: A set of Boolean expressions C

1 Let U = the USSA form starting from f unwound up to n
2 Let C = ;
3 foreach guarded assignment a ∈ U do
4 Let c1 ∧ . . .∧ ck be the guard of a

5 C = C ∪
⋃k

i=1{ci}
6 if a is of form c1 ∧ . . .∧ ck→ y =s e(x) then
7 C = C ∪ {(e(x) = 0)∧ (pre(y) = 0), (e(x) 6= 0)∧ (pre(y) = 0)}
8 end
9 C = C ∪ArgCond(e(x))

10 end
11 foreach truth value combination for the elements of C do
12 if C ∧ U is satisfiable then
13 Measure the gas consumption of f on environment corresponding

to the satisfying truth assignment
14 Update the maximum if necessary
15 end
16 end
Algorithm 3: Enumeration-based algorithm to compute GCPs of a function f .

116 7.3 Function-Oriented GCP Enumeration

of CALL and CALLVAL, that is, ArgCond(transfer(z1)); and the third row comes
similarly from the argument and environment dependency of SSTORE.

The constraint set C is then provided to an SMT solver together with an
SMT representation of the USSA form. Each combination of truth values for
the constraints in C is queried from the USSA form, resulting in the worst case
211 = 2048 SMT queries. Note that due to the incremental implementation of
SMT solvers in practice the number of queries might be (exponentially) smaller,
depending on the order of the queries. In certain scenarios also the input ~v of
the function might be known, reducing the number of queries to a fraction of the
worst case.

From the results of the satisfiable queries the algorithm will extract concrete
values for ~v and S, which are then used for computing exact gas consumptions
for the corresponding gas consumption paths.

The USSA form presented in fig. 7.1 does not acknowledge the invariant z ≥
0, and is therefore more permissive than the original contract. Obtaining such
contract invariants is non-trivial and out of the scope of this chapter. To obtain
exact worst-case gas consumption, contract invariants need to be conjoined to
the USSA.

By construction of algorithm 3 and the definition of GCPs, we immediately
have the following theorem:

Theorem 2 Given a function f , assuming a USSA for f that exactly describes the
contract behaviour, and that there is a one-to-one mapping between the Solidity and
the EVM code, algorithm 3 return the worst-case gas consumption of f .

7.3 Function-Oriented GCP Enumeration

This section presents an algorithm for Function-Oriented GCP Enumeration (FGCP),
an approach to computing GCPs that prunes locally the immediately unsatisfiable
gas consumption paths. The basic GCP Enumeration presented in section 7.2
in-lines every function call and computes GCPs from the encoding of the whole
program. The function-oriented approach computes the paths gradually, starting
from the low-level instructions and refining the set of GCPs discovered so far in
a recursive manner. We expect local pruning of GCPs to be particularly efficient
for contracts that call a given function multiple times, since the approach is able
to reuse previously computed, function-specific GCPs.

To present the function-oriented approach, we change slightly the notation
used in section 7.2. We introduce cost equivalence classes that extend the notion

117 7.3 Function-Oriented GCP Enumeration

of cost condition from a single instruction to a block of instructions and user-
defined functions. The cost equivalence classes capture the conditions under with
a function behaves differently with respect to gas consumption. They correspond
exactly to the GCPs of the function. We use the term function to refer to both
low level instructions, such as arithmetic operations, and user-defined functions,
since cost-equivalence classes do not distinguish between the two. We do not
distinguish between= and=s, but instead introduce a separate function SSTORE
that is used for updating the storage S. Finally, we introduce a separate function-
oriented version of the static single assignment form, called FSSA, that is based
on guarded function calls instead of guarded assignments.

Definition 15 (Environment) Given a function f (~v) and storage S, the environ-
ment of an execution of f is an evaluation υ for ~v and σ for S.

Given a function f and its environment, the execution of f is deterministic
and results in a new storage state.

Definition 16 (Cost-equivalence class) Given a function f (~v) and storage S, a
cost-equivalence class is a formula representing environments ϕ(S, ~v), such that the
cost of executing f on any environment satisfying ϕ is the same.

Algorithm 4 computes a set of cost-equivalence classes for the input function
f (~v). Note that the set of classes computed by the algorithm is not guaranteed
to be the minimal, namely there may be different classes representing executions
with equal costs.

We define withC the map from function to a set of its cost-equivalence classes,
such that every environment satisfies exactly one formula. Thus, given a function
f (~v), the cost equivalence classes of f is the finite set

C[f (~v)] = {ϕ1(S, ~v), . . . ,ϕn(S, ~v)}

such that
∨n

i=1ϕi is a tautology and for all i 6= j,ϕi ∧ϕ j is unsatisfiable.
Initially, all the basic functions are defined in C having their classes inserted

manually following their cost specification. For instance, in ETHEREUM storing a
value in the storage is performed by the operation SSTORE, which cost depends
on both the value and the storage location [Eth18a]. In particular, setting a
storage location from zero to a non-zero value costs more than all the other cases.
Thus, according to the EVM gas consumption specifications, C[SSTORE(l, v)] =
{(S[l] = 0∧ v 6= 0), (S[l] 6= 0∨ v = 0)}.

118 7.3 Function-Oriented GCP Enumeration

Input : A FSSA f (~v), the cost-equivalence classes C.
1 Let Tr f (S, ~v) the USSA of f , having local SSA variables ~l.
2 foreach c→ g(~l 7→ ~vg) in f do
3 with Tr f compute
4 π(S, ~v) := path constraint of the call g(~vg).
5 M(S, ~v, ~vg) := the mapping from ~v to ~vg of the call g(~vg).
6 end
7 Let s = ;
8 foreach ϕ(S, ~v) in C[f] do
9 if ¬π∧ϕ is SAT then s← s ∪ {¬π∧ϕ};

10 foreach ψ(S, ~vg) in C[g] do
11 Let ϕ′(S, ~v) = π∧ϕ ∧M ∧ψ
12 if ϕ′ is SAT then
13 s← s ∪ {ϕ′}
14 end
15 end
16 end
17 C[f]← s
18 end
Algorithm 4: The FGCP algorithm to compute the set C[f] of cost equivalence
classes of f .

119 7.3 Function-Oriented GCP Enumeration

Algorithm 4 assumes that C contains all the functions in the input function’s
call tree. Such functions are both basic functions and user defined functions
for each of which a previous execution of the algorithm created its classes. We
assume there is no recursion.

Definition 17 (FSSA: Function-oriented SSA) Given a function f (~v) and its USSA
representation, the FSSA representation is a list of guarded function calls, one for
each function call in f and having the form c → g(~l 7→ ~vg) where ~l ⊇ ~v are the
local USSA variables representing the inlining of the call mapped to the arguments
~vg needed for executing g, and c ∈ ~l is the USSA guard of the call.

The FSSA provides the necessary information for building the call specific
mapping M on line 5 of algorithm 4. In particular, M maps the current call site
to the previously computed cost-equivalence classes of the callee. Therefore M
enables building the cost-equivalence classes of a callee function g (from defini-
tion 16 defined over its variables ~vg), in terms of ~v. A new cost-equivalence class
in terms of the caller variables is built by conjoining M and ψ in line 11, result-
ing in a formula defined over S and ~v. Such operation is always possible because
the USSA provides a formula for computing USSA local variables ~l in terms of ~v.
Then, a simple rewriting following each FSSA call ~l 7→ ~vg will therefore build the
new class in terms of ~v. An example of FSSA is given in fig. 7.2.

Theorem 3 Given a function f , assuming that the USSA formula Tr f used in al-
gorithm 4 exactly describes the contract behaviours and that the EVM and Solidity
gas consumption paths have one-to-one correspondence, algorithm 5 returns the
maximum gas consumption of f .

Theorem 3 ensures that the size of each classes set in C is finite, and that every
possible behaviour is considered. This proves termination and completeness of
the algorithm.

Proof sketch. The property that every environment satisfies exactly one class
in C is an invariant during the execution of algorithm 4. The property is main-
tained inductively. In line 11 the algorithm creates the new classes ϕ′ for f from
the classes ψ of the callee g. Each ϕ′ is mutually exclusive provided that all
ψ in C[g] are mutually exclusive, because every ψ appears in the conjunction.
Furthermore, the disjunction of s is a tautology meaning it is complete, if the
disjunction of all ψ in C[g] is also complete. The models excluded by π being
in the conjunction in line 11, are considered by the class ¬π added to s in line 9.
�

120 7.3 Function-Oriented GCP Enumeration

Input : A function f (~v), the cost-equivalence classes C.
Output : The maximum cost c.

1 Let c = 0
2 foreach ϕ(S, ~v) in C[f] do
3 Let σ(S),υ(~v) = an environment in ϕ
4 Let c′ the cost of executing f (υ) with storage σ
5 if c′ > c then c← c′;
6 end
7 return c
Algorithm 5: The algorithm to compute the maximum gas consumption.

Algorithm 5 computes the costs of every cost-equivalence class and returns
the maximum. Definition 16 ensures that every environment satisfied by the
same equivalence class has the same cost. Thus, on line 3 the SMT solver is
queried for a model of each class ϕ, which is guaranteed to be satisfiable by
line 13 of algorithm 4. We split the environment in two parts: σ assigning stor-
age locations’ values, and υ assigning values to the input argument ~v. Then on
line 4 the function f is executed on the specific environment and the cost of such
execution is returned. If the cost is higher than the current maximum, on line 5
the current maximum is updated to the new value.

Parallelization Opportunities

Often the complexity and intrinsic sequentiality of model checking algorithms
prevent parallelization. This results in missing the opportunity to exploit the
modern hardware infrastructures, increasingly directed toward higher degrees of
parallelism. Algorithms 3, 4 and 5 are immediately suitable for parallelization.

Due to the worst-case exponential number of SMT queries that Alg. 3 needs
to perform we believe that the part most profiting from parallelization is the eval-
uation of truth assignments and simulating the execution on the block starting
at line 11. Since the USSA form U remains the same over the queries, the paral-
lelization may be enhanced with a clause-sharing scheme similar to [MHS16].

Algorithm 4 can be parallelized by asynchronously executing the building of
all formulas and SMT queries inside the foreach at line 8. Each independent
process can safely execute line 13 because inserting a new formula in the set s
affects neither the future nor running executions. Executing line 16 and proceed-
ing to the next function call can be done as soon as all independent executions
are terminated. Algorithm 5 can be easily parallelized with using the MapReduce
paradigm by defining proper map and reduce procedures. In this particular case
the procedure map maps classes to their costs, while reduce compares the costs

121 7.4 Example

1 contract C {

2 int a;

3 function f(bool c, int z)

4 {

5 if (c)

6 {

7 g(z);

8 z = z + 1;

9 g(z);

10 }

11 }

12
13 function g(int u)

14 {

15 a = u;

16 }

17 }

1 f(bool c, int z):
2 c→ g(z 7→ u)
3 c→ ADD(z 7→ x , 1 7→ y, z1 7→ r)
4 c→ g(z1 7→ u)
5
6 g(int u):
7 >→ SSTORE(id(a) 7→ l, u 7→ v)
8
9 ADD(int x, int y, int r):

10 >→ r = x + y
11
12 SSTORE(int l, int v):
13 >→ S[l] = v

Figure 7.2. Left: An example contract with two functions. Right: the encoding
to FSSA. Lines not representing an implication are only intended to show which
function the following implications refer to. The macro id() returns the storage
id of the variable.

in order to compute the maximum.

7.4 Example

In this section we provide the example contract C, and we simulate the execution
of algoritms 3 and 4 on the contract C from fig. 7.2.

7.4.1 Function-Oriented GCP Enumeration

The contract in fig. 7.2 uses two basic functions, namely ADD and STORE. Follow-
ing the ETHEREUM gas specification we define

C[ADD(x , y, r)] = {>}, and

C[SSTORE(l, v)] = {(S[l] = 0∧ v 6= 0), (S[l] 6= 0∨ v = 0)}.

122 7.4 Example

The execution of algorithm 4 on g(u) and C will result in the classes

C[g(u)] = {M7 ∧ (S[l] = 0∧ v 6= 0), M7 ∧ (S[l] 6= 0∨ v = 0)}.

where M7(S, u, l, v) := (l = id(a)∧ v = u). Note that M7 describes the mapping
of the specific function call in line 7 of the FSSA in fig. 7.2, which is the only
function call in g, having path constraint π := >. The transition relation Trg of
g is

Trg(S, u) := S[id(a)] = u.

After simplifying, the classes of g are

C[g(u)] = {(S[id(a)] = 0∧ u 6= 0), (S[id(a)] 6= 0∨ u= 0)}.

We now consider an execution of algorithm 4 on f(c, z), a function with 3
FSSA guarded calls at lines 2, 3 and 4 of fig. 7.2 right, all having π := c. The
USSA transition relation of f is

Trf(S, c, z) := c→ (S[id(a)]1 = z ∧ z1 = z + 1∧ S[id(a)]2 = z1),

and the mappings for each function call in f are

M2(S, c, z, u) := (u= z),

M3(S, c, z, x , y, r) := (x = z ∧ y = 1∧ r = z + 1), and

M4(S, c, z, u) := (u= z + 1).

The resulting classes for f are

C[f(c, z)] = { ¬c,
c ∧ S[id(a)] = 0∧ z 6= 0∧ z 6= −1,
c ∧ S[id(a)] = 0∧ z = 0,
c ∧ S[id(a)] = 0∧ z = −1,
c ∧ S[id(a)] 6= 0}.

Algorithm 4 computes a total of 5 classes. This set is not the minimal because
both classes C[f]3 and C[f]4 cause exactly one write from zero to non-zero,
resulting in the same cost. The minimal set would then be of size 4. However,
by trivially combining all the cases, the total number of combinations is 16. The
proposed algorithm is therefore able to reduce the number of possible classes
consistently with respect to trivial enumeration, keeping the size ofC reasonable.

123 7.5 Related work

7.4.2 Symbolical GCP enumeration

The USSA form for contract C in fig. 7.2 is

c1→ gu1
= z1;

c1→ a1 =
s gu1

;

c1→ gu2
= z1 + 1;

c1→ a2 =
s gu2

;

a3 = ite(c1, a2, a0);

Running algorithm 3 on the USSA gives the set

C = {c1, (a0 = 0)∧ (gu1
= 0), (a0 6= 0)∧ (gu1

= 0),
(a1 = 0)∧ (gu2

= 0), (a1 6= 0)∧ (gu2
= 0)}.

The size of the set is five, resulting in the worst case 25 = 32 SMT queries.

7.5 Related work

The tool GASPER [CLLZ17] analyses ETHEREUM smart contracts compiled into
the low-level EVM bytecode and is capable of identifying certain constructs that
are costly and can be simplified to equivalent, less costly programs. Similarly,
the tool GASOL [ACG+20] provides an ECLIPLE plugin for Solidity that provides
the user with an upper bound for the cost of a target function. Furthermore,
GASOL is able to detect certain under-optimized storage patterns, automatically
proposing optimal solutions.

Incorrect gas consumption values for EVM instructions enable DoS attacks on
ETHEREUM based on frequently executing under-evaluated instructions. In [CLW+17],
the authors propose an emulation-based framework to automatically adjust the
gas prices of EVM instructions based on measuring their resource consumptions.
As part of the emulation the approach measures the gas consumption of functions
based on control and data flow, but the emulation is based on random sampling
and therefore is bound to be incomplete for all but the simplest contracts.

In [GKJ+18] the authors propose a static analysis tool called MADMAX to au-
tomatically detect gas-related vulnerabilities in ETHEREUM that trigger undesired
behaviors when a transaction runs out of gas. The authors evaluated MADMAX

over smart contracts deployed in ETHEREUM up to April 2018 and it reported
vulnerabilities in contracts that hold together approximately 2.8 Billion USD. A

124 7.6 Conclusions and Future Work

manual inspection of a sample resulted in 81% of the reported contracts to be
actually vulnerable.

Correctness aspects of smart contracts other than gas consumption have been
studied using symbolic methods. For instance Oyente [LCO+16] extracts the con-
trol flow graph from the EVM bytecode of a contract, and symbolically executes
it in order to detect some vulnerability patterns, although it is neither sound nor
complete. Zeus [KGDS18] is a framework for verification of Solidity smart con-
tracts using abstract interpretation and symbolic model checking. The tool works
by converting Solidity to LLVM bit code, and verifying reachability properties us-
ing the SeaHorn model checker [GKKN15].

7.6 Conclusions and Future Work

This chapter presents the two algorithms for addressing the problem of estimat-
ing the gas consumption of ETHEREUM smart contracts, based on techniques in-
spired by bounded model-checking. The contributions presented in this chapter
has been published in [MBH+18]. The first, Gas Consumption Path Enumera-
tion, collects all constraints that affect the gas consumption, evaluates all com-
binations of them one-by-one, and simulates those that are satisfiable. The sec-
ond, Function-Oriented Gas Consumption Path Enumeration constructs GCPs for
each function as explicit cost-equivalence classes, which are reused through vari-
able renaming to recursively construct more cost-equivalence classes for calling
functions. Both algorithms can be parallelized, and this chapter reports possi-
ble ways to improve performance in that way. In summary, the contributions of
this chapter are the definition of GCP and an algorithm to enumerate all paths
from a bounded symbolic representation of a smart contract; the definition of
cost-equivalence class for smart contracts functions and an algorithm for enu-
meratation; and a comparative analysis with an example. The most interesting
future research steps are the implementation and evaluation of the techniques
on real-world smart contracts, and the integration with existing model checking
technology for smart contracts.

Chapter 8

Conclusions

Formal methods address the problem of proving system correctness by produc-
ing a logical argument stating that any possible behaviours manifestable by the
system are correct and do not produce errors. Automated formal verification
aims to perform such task without human intervention. Excluding human errors
from altering the verification result comes with the downside of increasing the
complexity of the underlying algorithms, that are entirely entrusted to perform
the reasoning. Therefore, full automation of verification introduces important
challenges in devising efficient reasoning methods.

This thesis addressed the problem of automated verification efficiency by
proposing methods to improve the automatic reasoning capabilities of verifica-
tion techniques for software systems. The proposed contributions target both the
two automatic tasks performed by model checkers in the process of automatic
verification: modelling and checking.

Chapters 3 and 4 presents methods to exploit the massive computational
power offered by distributed computing systems in the task of checking a mathe-
matical model. The parallel execution is performed using multi-agent solvers
that cooperate by exchanging data, in order to actively and collectively con-
verge to a solution while preventing the same tasks to be performed redun-
dantly in different solvers. In particular, chapter 3 focuses on techniques to
parallelize SMT solving that have a direct impact of bounded model checking
and optimization. The results from this track have been published in [MHS16,
HMS15]. Chapter 4 centre on the parallelization of the inductive-based reason-
ing IC3 [Bra11] using SMT, completing the picture by providing parallel methods
suitable also for unbounded model checking. This contribution has been pub-
lished in [MGHS17]. The efforts invested in the design of parallel methods for
bounded and unbounded model checking performed over big distributed com-

125

126

puting environment resulted in the SMTS framework, presented in chapter 5
and published in [MHS18]. SMTS is a tool that provides effective primitives to
facilitate the parallelization of sequential solvers. This ability is demonstrated in
chapters 3 and 4, and in the related publication [BHMS20]where the unbounded
model checking algorithm PD-KIND [JD16] is parallelized using SMTS.

Chapters 6 and 7 focus on the design of modelling techniques necessary to
correctly and effectively verify the new emerging technology of smart contracts
running on blockchain systems. A proper modelling is crucial for achieving opti-
mal performance later during the checking task. In particular, chapter 6 focuses
on the modelling of ETHEREUM smart contracts written in Solidity using CHCs.
This contribution provides an effective solution for checking safety of real-world
smart contracts using existing inductive-based reasoning, including those paral-
lelized in chapter 4. This allows smart contracts verification to directly benefit
from such research effort and exploit the massive computational power offered
by distributed computing clusters to improve efficiency. The results for this con-
tribution are published in [MOA+20]. Finally, chapter 7 studies the problem
of finding the worst-case gas consumption of smart contracts transactions, pre-
senting two algorithmic solutions specific for ETHEREUM. This contribution is
published in [MBH+18].

Future work directions from this thesis centre around further improvements
of model checking performance. The most important direction for paralleliza-
tion is making cooperative multi-agent techniques scalable up to thousands of
solvers. This task poses several challenges for its accomplishment that require
dealing with many peculiarities that, despite being well observed in this thesis,
are still not clear yet. Such phenomena regard diversification and cooperation.
In particular, experiments from chapter 3 show that fixing atoms makes the par-
titions sometimes harder for T -DPLL solvers and sharing clauses between parti-
tions is not beneficial for the performance. Similarly, experiments from chapter 4
suggest that partitioning is not always beneficial for inductive-based solvers, and
despite the number of exchanged lemmas is lower than the SMT systems, scal-
ing to thousands of agent would result in huge burden. Clearing these points
is highly non-trivial and would help engineering more effective parallelization
techniques. The results so far are very promising, showing that further improve-
ment could be substantial for parallel model checking and that SMTS can be
used to pursue these research tracks thanks to its flexibility.

Smart contracts and blockchain systems are still a new and emergent area of
informatics. Safety properties check and gas consumption analysis for smart con-
tracts, presented respectively in chapters 6 and 7, are very interesting problems
where formal methods are currently needed. It is likely that in the near future

127

new areas will emerge, requiring formal methods for more and more tasks in
this context. However, many improvements can already be pursued. The most
important is improving the support of language features for the CHCs encoding.
This might reveal the need of further SMT theories in the bodies of the CHCs,
requiring solvers to support them and potentially opening other challenges. Sev-
eral small tweaks on the modelling, e.g. control-flow block size, can have huge
impact on the solving task. Further knowledge on what is behind each modelling
choice can improve performance dramatically. Finally, unbounded gas analysis
would provide developers with more detailed information about the general ef-
ficiency of the functions, and how parameters affect the gas consumptions.

128

Bibliography

[ACG+19] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez,
and Albert Rubio. SAFEVM: a safety verifier for ethereum smart con-
tracts. In Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2019, pages 386–389,
2019.

[ACG+20] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-
Díez, and Albert Rubio. GASOL: gas analysis and optimization for
ethereum smart contracts. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference,
TACAS 2020, Proceedings, volume 12079 of LNCS, pages 118–125.
Springer, 2020.

[AHJP14] Gilles Audemard, Benoît Hoessen, Saïd Jabbour, and Cédric Piette.
Dolius: A distributed parallel SAT solving framework. In POS-14.
Fifth Pragmatics of SAT workshop, a workshop of the SAT 2014 con-
ference, part of FLoC 2014 during the Vienna Summer of Logic, vol-
ume 27 of EPiC Series, pages 1–11. EasyChair, 2014.

[AR18] Leonardo Alt and Christian Reitwiessner. SMT-based verification
of solidity smart contracts. In Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice - 8th In-
ternational Symposium, ISoLA 2018, Proceedings, pages 376–388.
Springer, 2018.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS 1999,
Proceedings, volume 1579 of LNCS, pages 193–207. SV, 1999.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Ce-

129

130 Bibliography

sare Tinelli. CVC4. In Computer Aided Verification, CAV 2011, Pro-
ceedings, volume 6806 of LNCS, pages 171 – 177. Springer, 2011.

[BCH+] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Play-
ford, and P. Tucker Withington. A monotonic superclass lineariza-
tion for dylan. In Proceedings of the 1996 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’96).

[BDLF+16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Ku-
latova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and
Santiago Zanella-Béguelin. Formal verification of smart contracts:
Short paper. In Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security, PLAS@CCS 2016, pages
91–96, 2016.

[BdR+10] Clark Barrett, Leonardo de Moura, Silvio Ranise, Aaron Stump, and
Cesare Tinelli. The SMT-LIB initiative and the rise of SMT (HVC
2010 award talk). In Hardware and Software: Verification and Test-
ing, HVC 2010, Proceedings, number 6504 in LNCS, page 3. SV, 2010.

[BG87] Andreas Blass and Yuri Gurevich. Existential fixed-point logic. In
Computation Theory and Logic, In Memory of Dieter Rödding, volume
270 of LNCS, pages 20–36. SV, 1987.

[BGMR15] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey
Rybalchenko. Horn clause solvers for program verification. In Fields
of Logic and Computation II, pages 24–51, 2015.

[BHKS19] Martin Blicha, Antti E. J. Hyvärinen, Jan Kofroň, and Natasha Shary-
gina. Decomposing Farkas interpolants. In Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2019, Proceedings,
volume 11427 of LNCS, pages 3–20. SV, 2019.

[BHMS20] Martin Blicha, Antti E. J. Hyvärinen, Matteo Marescotti, and
Natasha Sharygina. A cooperative parallelization approach for
property-directed k-induction. In Verification, Model Checking, and
Abstract Interpretation, VMCAI 2020, Proceedings, volume 11990 of
LNCS, pages 270–292. Springer, 2020.

131 Bibliography

[Bra11] Aaron R. Bradley. SAT-based model checking without unrolling.
In Verification, Model Checking, and Abstract Interpretation, VMCAI
2011, Proceedings, pages 70–87, 2011.

[BS96] Max Böhm and Ewald Speckenmeyer. A fast parallel SAT-solver:
Efficient workload balancing. 17(4–3):381–400, 1996.

[BSS15] Tomas Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A mas-
sively parallel portfolio SAT solver. In Theory and Applications of
Satisfiability Testing, SAT 2015, Proceedings, volume 9340 of LNCS,
pages 156–172. SV, 2015.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825–885. IOS Press, 2009.

[CE81] E.M. Clarke and A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Pro-
grams, 1981.

[CG12] Alessandro Cimatti and Alberto Griggio. Software model check-
ing via IC3. In Computer Aided Verification, CAV 2012, Proceedings,
pages 277–293, 2012.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement. In
Computer Aided Verification, CAV 2000, Proceedings, pages 154–169,
2000.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 2001.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS 2013,
Proceedings, volume 7795 of LNCS, pages 93 – 107. Springer, 2013.

[CH00] Manuel Carro and Manuel V. Hermenegildo. Tools for search-tree
visualisation: The APT tool. In Analysis and Visualization Tools for
Constraint Programming, Constrain Debugging (DiSCiPl project), vol-
ume 1870 of LNCS, pages 237–252. SV, 2000.

132 Bibliography

[CK16] Sagar Chaki and Derrick Karimi. Model checking with multi-
threaded IC3 portfolios. In Verification, Model Checking, and Abstract
Interpretation, VMCAI 2016, Proceedings, pages 517–535, 2016.

[CLLZ17] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. In IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
SANER 2017, pages 442–446. IEEE Computer Society, 2017.

[CLW+17] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo,
Man Ho Au, and Xiaosong Zhang. An adaptive gas cost mechanism
for ethereum to defend against under-priced dos attacks. In Infor-
mation Security Practice and Experience - 13th International Confer-
ence, ISPEC 2017, Proceedings, pages 3–24. Springer, 2017.

[Con18] ConsenSys. Mythril, 2018. github.com/ConsenSys/mythril.

[Cra57] W. Craig. Three uses of the Herbrand-Gentzen theorem in relat-
ing model theory and proof theory. The Journal of Symbolic Logic,
22(3):269–285, 1957.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-
arithmetic solver for DPLL(T). In Computer Aided Verification, CAV
2006, Proceedings, volume 4144 of LNCS, pages 81–94. SV, 2006.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2008, Proceedings, volume 4963 of LNCS, pages
337 – 340. Springer, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. Journal of the ACM, 52(3):365–473,
2005.

[Dut14] Bruno Dutertre. Yices 2.2. In Computer Aided Verification, CAV 2014,
Proceedings, volume 8599 of LNCS, pages 737 – 744. Springer, 2014.

[ELHL20] Denis Erfurt, Martin Lundfall, Everett Hildenbrandt, and Lev Livnev.
Klab, 2020. https://github.com/dapphub/klab.

133 Bibliography

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient im-
plementation of property directed reachability. In International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2011,
Proceedings, pages 125–134, 2011.

[Eth18a] Ethereum Foundation. Ethereum: A secure de-
centralised generalised transaction ledger, 2018.
ethereum.github.io/yellowpaper/paper.pdf.

[Eth18b] Ethereum Foundation. Solidity compiler, 2018.

[eth20a] Etherscan, 2020. https://etherscan.io.

[Eth20b] Ethereum Foundation. HEVM Ethereum evaluator, 2020.
https://github.com/dapphub/dapptools/tree/master/src/hevm.

[FDHS15] Grigory Fedyukovich, Andrea Callia D’Iddio, Antti E. J. Hyvärinen,
and Natasha Sharygina. Symbolic detection of assertion depen-
dencies for bounded model checking. In Fundamental Approaches
to Software Engineering, FASE 2015, Proceedings, volume 9033 of
LNCS, pages 186–201. SV, 2015.

[FGG19] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A Static
Analysis Framework For Smart Contracts. arXiv e-prints, page
arXiv:1908.09878, Aug 2019.

[Fra18a] K Framework. Solidity semantics, 2018.
https://github.com/kframework/solidity-semantics.

[Fra18b] K Framework. Vyper semantics, 2018.
https://github.com/kframework/vyper-semantics.

[GI15] Arie Gurfinkel and Alexander Ivrii. Pushing to the top. In Inter-
national Conference on Formal Methods in Computer-Aided Design,
FMCAD 2015, Proceedings, pages 65–72, 2015.

[GI17] Arie Gurfinkel and Alexander Ivrii. K-induction without unrolling.
In International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2017, Proceedings, pages 148–155. IEEE, 2017.

[GKJ+18] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: surviving out-of-gas
conditions in ethereum smart contracts. Proc. ACM Program. Lang.,
2(OOPSLA):116:1–116:27, 2018.

134 Bibliography

[GKKN15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and
Jorge A. Navas. The SeaHorn verification framework. In Computer
Aided Verification, CAV 2015, Proceedings, pages 343–361, 2015.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state
graphs with PVS. In Orna Grumberg, editor, Computer Aided Verifi-
cation, CAV 1997, Proceedings, volume 1254 of LNCS, pages 72–83.
Springer, 1997.

[GSCK00] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-
tailed phenomena in satisfiability and constraint satisfaction prob-
lems. Journal of Automated Reasoning, 24(1/2):67–100, 2000.

[GSV18] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. Quantifiers on de-
mand. In Automated Technology for Verification and Analysis, ATVA
2018, Proceedings, pages 248–266, 2018.

[HB12] Krystof Hoder and Nikolaj Bjørner. Generalized Property Directed
Reachability. In Theory and Applications of Satisfiability Testing, SAT
2012, Proceedings, pages 157–171, 2012.

[HJ19] Ákos Hajdu and Dejan Jovanovic. solc-verify: A modular verifier for
solidity smart contracts. In Verified Software. Theories, Tools, and Ex-
periments, VSTTE 2019, Proceedings, volume 12031 of LNCS, pages
161–179. Springer, 2019.

[HJN06] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. A distri-
bution method for solving SAT in grids. In Theory and Applications of
Satisfiability Testing, SAT 2006, Proceedings, volume 4121 of LNCS,
pages 430–435. SV, 2006.

[HJN09] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Incorporating clause learning in grid-based randomized
SAT solving. Journal on Satisfiability, Boolean Modeling and Compu-
tation (JSAT), 6(4):223–244, 2009.

[HJN10] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Partitioning SAT instances for distributed solving. In Logic
for Programming, Artificial Intelligence and Reasoning, LPAR-17, Pro-
ceedings, pages 372–386, 2010.

135 Bibliography

[HJN11] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Partitioning search spaces of a randomized search. 107(2-
3):289–311, 2011.

[HJS09] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a par-
allel SAT solver. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT), 6(4):245 – 262, 2009.

[HKWB11] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere.
Cube and conquer: Guiding CDCL SAT solvers by lookaheads. In
Hardware and Software: Verification and Testing, HVC 2011, Pro-
ceedings, pages 50–65, 2011.

[HM12] Antti Eero Johannes Hyvärinen and Norbert Manthey. Designing
scalable parallel SAT solvers. In Theory and Applications of Satisfi-
ability Testing, SAT 2012, Proceedings, volume 7317 of LNCS, pages
214–227. SV, 2012.

[HMAS16] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha
Sharygina. OpenSMT2: An SMT solver for multi-core and cloud
computing. In Theory and Applications of Satisfiability Testing, SAT
2016, Proceedings, number 9710 in LNCS, pages 547 – 553. SV,
2016.

[HMS15] Antti E. J. Hyvärinen, Matteo Marescotti, and Natasha Sharygina.
Search-space partitioning for parallelizing SMT solvers. In Theory
and Applications of Satisfiability Testing, SAT 2015, Proceedings, vol-
ume 9340 of LNCS, pages 369–386. SV, 2015.

[HMS+18] Antti Hyvärinen, Matteo Marescotti, Parvin Sadigova, Hana Chock-
ler, and Natasha Sharygina. Lookahead-based smt solving. In Logic
for Programming, Artificial Intelligence and Reasoning, LPAR-22, Pro-
ceedings, volume 57 of EPiC Series in Computing, pages 418–434.
EasyChair, 2018.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[Hol16] Gerard J. Holzmann. Cloud-based verification of concurrent soft-
ware. In Verification, Model Checking, and Abstract Interpretation,
VMCAI 2016, Proceedings, pages 311–327, 2016.

136 Bibliography

[HSR+18] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. KEVM:
A Complete Formal Semantics of the Ethereum Virtual Machine. In
31st IEEE Computer Security Foundations Symposium, CSF 2018, Pro-
ceedings, pages 204–217, 2018.

[HvM09] Marijn Heule and Hans van Maaren. Look-ahead based SAT solvers.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 155–184. IOS Press, 2009.

[HW18] Antti E. J. Hyvärinen and Christoph M. Wintersteiger. Parallel sat-
isfiability modulo theories. In Handbook of Parallel Constraint Rea-
soning., pages 141–178. SV, 2018.

[Hyv11] Antti E. J. Hyvärinen. Grid-Based Propositional Satisfiability Solving.
PhD thesis, Aalto University School of Science, Aalto Print, Helsinki,
Finland, 11 2011.

[JD16] Dejan Jovanovic and Bruno Dutertre. Property-directed k-
induction. In International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2016, Proceedings, pages 85–92.
IEEE, 2016.

[KGC16] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based
model checking for recursive programs. Formal Methods in System
Design, 48(3):175–205, 2016.

[KGDS18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
ZEUS: analyzing safety of smart contracts. In Network and Dis-
tributed System Security Symposium, NDSS 2018, Proceedings. The
Internet Society, 2018.

[KS13] Arne König and Torsten Schaub. Monitoring and visualizing answer
set solving. TPLP, 13(4-5-Online-Supplement), 2013.

[KSSS13] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and Lau-
rent Simon. Resolution and parallelizability: Barriers to the efficient
parallelization of SAT solvers. In Conference on Artificial Intelligence,
AAAI 2013, Proceedings. AAAI Press, 2013.

[KT11] Temesghen Kahsai and Cesare Tinelli. PKind: A parallel k-induction
based model checker. Electronic Proceedings in Theoretical Computer
Science, 72:55–62, 2011.

137 Bibliography

[LA03] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In 2nd IEEE / ACM
International Symposium on Code Generation and Optimization (CGO
2004), Proceedings, CGO ’04, pages 75–. IEEE Computer Society,
2003.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making Smart Contracts Smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 254–269. ACM, 2016.

[LCWD18] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig.
Formal specification and verification of smart contracts for azure
blockchain. CoRR, abs/1812.08829, 2018.

[MBH+18] Matteo Marescotti, Martin Blicha, Antti E. J. Hyvärinen, Sepideh
Asadi, and Natasha Sharygina. Computing exact worst-case gas con-
sumption for smart contracts. In Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice - 8th Interna-
tional Symposium, ISoLA 2018, Proceedings, volume 11247 of LNCS,
pages 450–465. Springer, 2018.

[McM05] Kenneth L. McMillan. Applications of craig interpolants in model
checking. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2005, Proceedings, pages 1–12, 2005.

[MGHS17] Matteo Marescotti, Arie Gurfinkel, Antti E. J. Hyvärinen, and
Natasha Sharygina. Designing parallel pdr. In International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2017,
Proceedings, pages 156–163, 2017.

[MHS16] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina.
Clause sharing and partitioning for cloud-based SMT solving. In
Automated Technology for Verification and Analysis, ATVA 2016, Pro-
ceedings, pages 428–443, 2016.

[MHS18] Matteo Marescotti, Antti Hyvärinen, and Natasha Sharygina. Smts:
Distributed, visualized constraint solving. In Logic for Program-
ming, Artificial Intelligence and Reasoning, LPAR-22, Proceedings, vol-
ume 57 of EPiC Series in Computing, pages 534–542. EasyChair,
2018.

138 Bibliography

[MMH+19] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg.
Manticore: A user-friendly symbolic execution framework for bi-
naries and smart contracts. CoRR, abs/1907.03890, 2019.

[MML12] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. An overview
of parallel SAT solving. 17(3):304–347, 2012.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation Conference, DAC
2001, pages 530–535, 2001.

[MOA+20] Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster,
Antti E. J. Hyvärinen, and Natasha Sharygina. Accurate smart con-
tract verification through direct modelling. In Proc. ISoLA 2020, to
appear, LNCS. Springer, 2020.

[MSS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search
algorithm for propositional satisfiability. 48(5):506–521, 1999.

[NKS+18] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal contracts
at scale. CoRR, abs/1802.06038, 2018.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving
SAT and SAT modulo theories: From an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
53(6):937 – 977, 2006.

[par17] Parity security alert, 2017. https://www.parity.io/security-alert-2/.

[PC13] Hristina Palikareva and Cristian Cadar. Multi-solver support in sym-
bolic execution. In Computer Aided Verification, CAV 2013, Proceed-
ings, volume 8044 of LNCS, pages 53–68. SV, 2013.

[PDT+20] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. VerX: safety verification of smart con-
tracts. In IEEE Symposium on Security and Privacy (S&P), IEEE SP
2020, Proceedings, 2020.

139 Bibliography

[QS82] J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In International Symposium on Programming,
1982.

[Rei14] Christian Reisenberger. PBoolector: a parallel SMT solver for QF_BV
by combining bit-blasting with look-ahead. Master’s thesis, Jo-
hannes Kepler Univesität Linz, Linz, Austria, 2014.

[RS10] Grigore Rosu and Traian Florin Serbanuta. An Overview of the K
Semantic Framework. The Journal of Logic and Algebraic Program-
ming, 79(6):397 – 434, 2010.

[RSMO15] Emil Rakadjiev, Taku Shimosawa, Hiroshi Mine, and Satoshi Os-
hima. Parallel SMT solving and concurrent symbolic execution.
In 2015 IEEE TrustCom/BigDataSE/ISPA, Proceedings, pages 17–26,
2015.

[Sim00] Patrick Simons. Extending and Implementing the Stabel Model Se-
mantics. PhD thesis, Helsinki University of Technology, 2000.

[Sin07] Carsten Sinz. Visualizing SAT instances and runs of the DPLL algo-
rithm. J. Autom. Reasoning, 39(2):219–243, 2007.

[smt20] Smtchecker documentation, 2020.
https://solidity.readthedocs.io/en/v0.6.6/security-
considerations.html#formal-verification.

[sol20] Solidity documentation, 2020. https://solidity.readthedocs.io.

[TDDC+18] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical Security Anal-
ysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 67–82.
ACM, 2018.

[the20] theDAO, 2020. https://etherscan.io/address/
0xbb9bc244d798123fde783fcc1c72d3bb8c189413.

[Tin02] Cesare Tinelli. A dpll-based calculus for ground satisfiability mod-
ulo theories. In Logics in Artificial Intelligence, European Conference,
JELIA 2002, Proceedings, pages 308–319, 2002.

[vyp20] Vyper documentation, 2020. https://vyper.readthedocs.io.

140 Bibliography

[WHdM09] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Men-
donça de Moura. A concurrent portfolio approach to SMT solving.
In Computer Aided Verification, CAV 2009, Proceedings, volume 5643
of LNCS, pages 715–720. SV, 2009.

[Why18] Why3. Why3, 2018. http://why3.lri.fr.

[ZBH96] H. Zhang, M. Bonacina, and J. Hsiang. PSATO: A distributed
propositional prover and its application to quasigroup problems.
21(4):543–560, 1996.

[ZM88] Ramin Zabih and David McAllester. A rearrangement search strat-
egy for determinig propositional satisfiability. In Conference on Ar-
tificial Intelligence, AAAI 1988, Proceedings, pages 155–160, 1988.

	Contents
	Introduction
	Automated Formal Verification
	Verification challenges addressed in the thesis
	Contributions
	Parallel SMT Solving
	Parallel Unbounded Model Checking
	Modelling Smart Contracts

	Summary of Contributions

	Background
	Satisfiability
	Safety for Transition Systems
	The IcE/FiRE framework
	Smart Contracts

	Multi-agent SMT Solving
	Background
	T-DPLL Algorithm
	Parallelization Approaches for SMT
	Search-Space Partitioning
	Clause sharing

	The Parallelization Tree Framework
	Partition Distributions
	Linear Real Arithmetic
	Equivalence Logic with Uninterpreted Functions
	Partition Heuristics
	Repeated Partitioning

	Evaluation of the Parallelization Tree Framework
	Logic of Equality and Uninterpreted Functions
	Logic of Linear Real Arithmetic

	Clause Sharing
	The Effect of Clause Sharing
	The Clause Sharing Heuristics
	Comparison to Other Solvers

	Related Work
	Conclusions and Future Work

	Multi-agent Solving by Induction
	Background
	The P3 Algorithm
	Portfolio
	Partitioning
	Lemma sharing
	Parallelly Performed IC3

	Experiments
	Experimental setup
	Comparing Parallel Techniques
	Scalability
	Comparison Against Sally

	Related work
	Conclusions and Future Work

	SMTS: multi-agent cooperative constraints solving
	SMTS Architecture
	Application Program Interface
	Graphical User Interface
	SMT Formula Visualization

	Multi-agent IcE/FiRE
	Experiments

	Related work
	Conclusions and Future Work

	Accurate Smart Contract Verification through Direct Modelling
	Background
	The Model
	Model of a Contract Function
	Function Calls
	Contract's External Behaviour
	Checking Contract Safety
	Counterexample Generation

	Example
	Implementation
	Experiments
	Counterexample Generation
	Comparative Analysis

	Related Work
	Conclusions and Future Work

	Bounded Gas Analysis for Smart Contracts
	Preliminaries
	Gas Consumption Path Enumeration
	Function-Oriented GCP Enumeration
	Example
	Function-Oriented GCP Enumeration
	Symbolical GCP enumeration

	Related work
	Conclusions and Future Work

	Conclusions
	Bibliography

