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Smart contracts are tempting targets of attacks, since they often hold and manipulate significant financial assets, are immutable
after deployment, and have publicly available source code, with assets estimated in the order of millions of US Dollars being
lost in the past due to vulnerabilities. Formal verification is thus a necessity, but smart contracts challenge the existing highly
efficient techniques routinely applied in the symbolic verification of software, due to specificities not present in general
programming languages. A common feature of existing works in this area is the attempt to reuse off-the-shelf verification
tools designed for general programming languages. This reuse can lead to inefficiency and potentially unsound results, since
domain translation is required. In this paper we describe a carefully crafted approach that directly models the central aspects
of smart contracts natively, going from the contract to its logical representation without intermediary steps. We use the
expressive and highly automatable logic of constrained Horn clauses for modeling and we instantiate our approach to the
Solidity language. A tool implementing our approach, called Solicitous, was developed and integrated into the SMTChecker
module of the Solidity compiler solc. We evaluated our approach on an extensive benchmark set containing 22446 real-world
smart contracts deployed on the Ethereum blockchain over a 27 months period. The results show that our approach is able
to establish safety of significantly more contracts than comparable, publicly available verification tools, with an order of
magnitude increase in the percentage of formally verified contracts.

CCS Concepts: « Security and privacy — Logic and verification; Software and application security.

Additional Key Words and Phrases: smart contracts, direct modeling, vulnerability detection

1 INTRODUCTION

Distributed ledgers, which underpin the blockchain technology, allow secure transactions between distrusting
parties to take place without the need of a supervising authority, such as a bank. Their rise promises to disrupt
the established way in which individuals and institutions interact with each other, projecting to providing a
faster, cheaper, and more secure way to exchange goods and services. While the use of distributed ledgers was
initially restricted to the creation of eryptocurrencies, e.g. Bitcoin [48], as interest in the area grew, blockchain
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2 « Otonietal.

platforms started to also support programs capable of automatically executing contractual agreements written as
code, in the form of smart contracts.

1.1 The Smart Contracts Technology

Smart contracts are distributed programs designed to manage and enforce contract transactions without relying
on trusted authorities, but instead exploiting blockchain platforms to achieve this goal. A prime example of
such a platform is Ethereum [14], one of the most used blockchain platforms [33], and the main target for
the development of smart contracts. In the case of Ethereum, smart contracts are commonly implemented in
high-level languages such as Solidity [23] and Vyper [62], and then compiled to low-level Ethereum virtual
machine (EVM) bytecode [68], which is deployed on the blockchain itself. Besides their direct application in the
financial sector [19, 54], smart contracts have being used in a variety of other areas, such as healthcare [27, 69],
energy management [3, 13, 65], and gaming [46], among others [56].

1.2 Intricacies of Smart Contracts

Concerning their technical aspects, being deployed on blockchains gives smart contracts some peculiar features.
Execution-wise, their transactional nature, in which a function execution either finishes successfully or has all
its changes reversed, is the main difference in relation to traditional programming languages, such as C/C++
and Java. Regarding the code itself, it is: (i) immutable after deployment, which prevents vulnerability fixes; (ii)
publicly visible, allowing potential attackers to search for code exploits; (iii) freely available, meaning that any
user can interact with its interface. These features, combined with the fact that smart contracts often hold and
manipulate significant financial assets, marks them as likely targets of attacks, with assets estimated in the order
of millions of US Dollars having already been lost in the past [5]. The use of formal verification in order to ensure
that no vulnerabilities are present in the code before deployment is thus an essential part of smart contracts
development.

1.3 Verifying Smart Contracts

Although smart contracts are relatively new; much effort has been put into formally verifying them, with
techniques such as static analysis [12, 21, 42, 47, 50, 52] and model checking [1, 38, 43, 66], among others [7,
31, 32, 34, 49, 64], having been applied to this domain. Most approaches, however, involve the use of existing
tools, suitable to general software, in the verification of smart contracts. The clear benefit of this is the reuse
of established off-the-shelf tools, which can provide much desired stability and efficiency, but an important
drawback is the need of a translation from the domain of smart contracts to the tool domain, which adds a new
unnecessary layer in the verification framework that is error-prone to develop, requires correctness proofs of its
own, and can negatively impact precision and efficiency. The attempt to reuse existing tools is, thus, interesting
at first, but not an ideal lasting solution, with the alternative being the development of purpose-built algorithms
and tools to handle all features present in the smart contracts domain natively.

1.4 A Direct Modeling Approach

In this work we present a novel approach to the automated verification of smart contracts, called direct modeling,
which we apply to the Solidity language. Direct modeling means that we generate a set of verification conditions
in the target formalism directly from the contract’s control-flow graph (CFG), using domain-specific knowledge,
and without any intermediary steps. The instantiation of our approach to Solidity targets constrained Horn
clauses (CHCs) [8] and is implemented in SoricrTous (Solidity contract verification using constrained Horn
clauses), which is integrated into the SMTCHECKER [2] module of the Solidity compiler sorc [22], with this
paper describing the specification of SMTCHECKER’s CHC model checking engine. We use CHCs for modeling
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contracts’ behaviors because, besides being convenient to model structured computer programs, being used in the
verification of languages such as C/C++ [29] and Java [37], CHCs benefit from an active community of researchers
interested in their solving [8, 16, 28, 30, 36, 39]. Recent efforts in CHC solving lead to very efficient sequential and
parallel solvers [10, 44] that can be directly exploited. The formal models of Solidity smart contracts produced
by our approach are accurate, in that they properly encode the semantic traits specific to the smart contracts
domain, and are solver-independent, meaning that we do not use solver-specific constructs.

Our aim is the verification of assertions already present in the source code, which we take as the contracts’
specifications. This allows developers to not only ensure the absence of common known vulnerabilities, via
injection of assertions that block attacking behaviors, prior to carrying out the verification, but to also check
functional correctness. Additionally, once the set of states reachable in the CHC model is determined, we
necessarily establish either a contract invariant, proving that a given property holds after an unbounded number
of transactions, or a finite-length counter-example (CEX), concretely showing a property violation. Contract
invariants are conditions over the contract’s variables that always hold after any possible transaction, which can
be used by developers to confirm their intents for the code, while CEXs are lists of transactions that lead to an
assertion error, which can aid in the fixing of vulnerabilities.

1.5 Contributions

In addition to the detailed description of our direct modeling approach to the automated verification of smart
contracts, and its implementation in SoricITOUS, We report an extensive experimental evaluation using 22446
real-world smart contracts currently deployed on the Ethereum blockchain. We compare SoLiciTous against
three publicly available tools suitable for automated verification of Solidity assertions: SRI’s SoLc-VERIFY [31, 32],
Microsoft’s VERISoL [66], and ConsenSys’ MYTHRIL [17]. The results show that SoricrTous outperforms the
other tools in terms of both precision and efficiency.

To summarize, our contributions are the following:

(1) A precise direct formal modeling of Solidity smart contracts targeting CHCs, that enables efficient fully
automated verification using CHC solvers.

(2) An industrial-strength implementation of the modeling approach inside the Solidity compiler.

(3) An extensive evaluation over thousands of real-world deployed contracts, which demonstrates the benefits
of our approach in comparison to state-of-the-art techniques.

An earlier version of this work appeared at ISOLA’20 [45]. The present article substantially extends and
improves the previous work, in the four-fold following manner:

(I) The modeling approach was enhanced to allow for the capture of the exact order and arguments of function
calls, both internal and external, that lead to any assertion error, through the addition of four new rules (cf.
Sumldg,ig, Callg g p,,,» Extldc,ia, and ECall;gp_,)-

(I) SovriciTous underwent substantial improvements with respect to (a) its language coverage, resulting in
fewer over-approximations and thus less inconclusive results, and (b) CEX production, providing users
with additional information which enables them to easily reproduce any reported assertion errors.

(IIT) A more comprehensive evaluation was carried out, involving more than three times the number of contracts
used previously and comparing our updated implementation against the newest versions of three state-of-
the-art tools.

(IV) Additional explanations were added to every topic covered in the manuscript, including a running example
in the form of contract Auction, shown in Figure 1, that concretely illustrates all rules in our modeling
approach.
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1.6 Roadmap

The remainder of this paper is structured as follows. Section 2 presents background information. Section 3 details
and illustrates our modeling approach. Section 4 describes the SoriciTOUS tool. Section 5 reports our evaluation
results. Section 6 discusses related work. Finally, Section 7 presents conclusions and future work.

2 BACKGROUND

The differences between smart contracts and general programs come not only from smart contracts intended use,
but also from their technical aspects, with these differences impacting how verification needs to be carried out.
In this section we present the necessary background on smart contracts and the Solidity language, CFGs, and the
CHC formalism.

2.1  Smart Contracts

Smart contracts consist of a storage and a set of functions. The storage is a persistent memory space used to store
variables whose values represent the contract state. Functions are the interface by which users interact with
the contract. Functions are allowed to access the storage both in read and write modes, and their behavior is
defined by their corresponding bytecode instructions, stored persistently in a separate memory residing within
the blockchain; the storage management is done via the blockchain platform’s primitives, e.g. EVM in Ethereum.
The interaction with a contract is performed by calling one of its functions, which can call other functions during
its execution. The execution costs are commonly paid via a fee in the platform’s native currency. Each individual
function call is an atomic transaction, i.e. it either executes without raising exceptions, committing its changes, or
rolls back completely if an exception occurs, leaving the state unchanged. Contrarily, in standard programming
languages all the changes made by a function prior to throwing an exception are preserved.As a concrete example,
if a C++ function throws an exception, the changes made to the heap are preserved.

Solidity language. The main high-level language specifically designed for smart contracts targeting EVM
bytecode, Solidity, is a Turing-complete language in which a contract is a structure similar to a class in object-
oriented programming languages. Contracts can have data types such as Boolean, integer, array, and map, and
declare both public and private functions, depending on whether they can be called directly by the user. Such
functions can make use of common programming languages control structures, such as conditionals and loops.
Functions and blockchain addresses can be marked as payable, allowing them to receive funds in ether, Ethereum’s
native currency, with each contract having its own ether balance.

Example. Consider the Auction contract, shown in Figure 1, which provides realistic support for an auction.
This contract has three state variables (lines 2-4), bid and cash, of type unsigned integer, and winner, of type
address, which is a 20 byte Ethereum address. To manage the auction, bid and cash store the current highest bid
and the amount of currency gathered, respectively, while winner stores the address from which the current highest
bid was made. One function is present, of fer, which handles the placing of new bids by users; for simplicity we
abstract additional contract features, such as the ability to end the auction and forward the gathered funds to the
auctioneer. The of fer function has two implicit arguments: msg. value, that stores the amount of funds sent to the
function, and msg. sender, that stores the address from which the function was called. Every new offer is subject
to a fee of 10'° wei® (line 7), after which the function checks whether the new bid is greater than the current
highest bid (line 8). A require statement works as a pre-condition in Solidity, usually employed to filter invalid
inputs. In of fer, if the new bid is not large enough the transaction reverts, with the fee payment being rescinded.
After validating the new bid, the function returns the previous highest bid, if available, to its owner (lines 9-13),
and updates the state variables (lines 14-16). An assert statement works as a post-condition in Solidity, meaning

lwei is the smallest subunit of ether, with 10'® wei being worth approximately 2.7 US Dollars at the time of writing.
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1 contract Auction {

2 uint bid = 0;

3 uint cash = 0;

4 address payable winner = address (0);
5

6 function offer () public payable {

7 uint new_bid = msg.value - 1015 wei;
8 require(bid < new_bid);

9 if (winner # address(0)) {

10 assert(bid < cash);

1 winner.transfer (bid);

12 cash = cash - bid;

13 }

14 bid = new_bid;

15 cash = cash + msg.value;

16 winner = msg.sender;

17 3}

18

19 %

Fig. 1. Example of a smart contract written in Solidity.

that its expression should never be false in a valid execution, with a violation leading to a Panic exception being
thrown. In the example, an assertion error happens if the contract does not have enough funds to return the
previous highest bid to its owner. Although both the require and assert statements stop the function execution
and revert the changes made, they do it via different exception types, with the former doing it gracefully, since a
failing require is a valid behavior, and the latter resorting to a Panic exception, also thrown, for instance, if a
division by zero occurs.

2.2 Control-flow Graphs

A control-flow graph (CFG)is a graph representation of the execution paths of a program, being commonly used
for static analysis. The graph’s nodes represent basic blocks, i.e. sequences of program statements that do not
change the control flow of the program, while its edges represent jumps modeled after the program’s control
structures. Programming structures that modify the control flow include conditionals, loops, and function calls,
with each edge in a CFG being labeled with a Boolean expression that must be true for the jump to occur.

Given that a smart contract’s transaction is rooted at a call to one of its public functions, which can lead
to additional function calls, a set of CFGs, each modeling one particular function, can accurately capture the
contract’s behavior. In Figure 2 we see a representation of the CFG of function of fer of contract Auction. The
assert statements are modeled as safety blocks, which contain direct jumps to the exit block guarded by the
negation of the asserted expressions. The require statements are treated as execution constraints, i.e. they do
not affect the control flow and only exclude invalid executions, which is their intended purpose. The formal
description of CFGs is given in Section 3.1.

ACM Trans. Priv. Sec.
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uint new_bid = msg.value - 10'° wei;"
require(bid < new_bid);

i(bid < cash)!

________ =

winner.transfer(bid);“
cash = cash - bid;

bid = new_bid;
cash = cash + msg.value;
winner = msg.sender;

Fig. 2. Graphical representation of the CFG of function of fer. Solid and dashed rectangles represent blocks and jumps’
conditions, respectively, and a, w, and s1 correspond to the entry, exit, and safety blocks.

2.3 Constrained Horn Clauses

We leverage symbolic reasoning in determining the safety of a Solidity program. In this approach the state
space of a program consists of the Cartesian product of the domain of the program counter and the domains
of the program’s variables. The full space is restricted to the space reachable by the program by writing down
predicates in some logic that describe the reachable space. With this approach there is no need to explicitly list
all the reachable states, e.g. as a set of tuples. The length of the search space representation in a logic is often
vastly smaller than the explicit representation. In principle the idea is to compute the states that a program
can reach in specific points of interest, given the program’s control flow and its basic blocks in the static single
assignment (SSA) form. Conceptually the idea is simple: each node in the control flow graph maps to a set of
states. The initial states of the program can be obtained from constructors and other initialization. After this,
the control flow is traversed, adding new states as we go to the sets associated with the nodes. This traversal
continues until a fixed point is reached with respect to the state sets. However, finding logical formulas that
represent these states is not easy. To construct the formulas, we apply recently developed methodology that
combines well-defined semantics of this intuition with robust, albeit rapidly evolving solving technology.

ACM Trans. Priv. Sec.
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The existential positive least fixed-point logic (E+LFP) is proven [9] to logically match Hoare logic [35], and is
therefore useful for determining partial correctness of programs. Following [8], we use a specialization of E+LFP
for verification, namely constrained Horn clauses (CHCs), due to their intuitive syntax in representing transition
systems with loops and the efficient decision procedures available for them. We present here a characterization
of CHCs based on first-order logic and the fixed-point operator adapted from [9].

Basic notation. To write the precise definition of how CHCs are used to model programs, we first define some
notation. Let i be a first-order formula over a theory T, with free variables x = {xy, ..., x, }, and {P1, ..., Pn} be a
finite set of predicates over x such that no #; appears in . A predicate P (x) over a set of variables x is associated
with an interpretation that states on which values of x the predicate is true. The interpretation can be thought of
as a set of tuples of length |x| explicitly stating such values. The satisfiability of P1(x) A ... A P(x) A ¥(x) in
theory T, with the interpretations of #; being Ap,, is denoted by U, Ap, 1 P1(x) A ... A Pr(x) A Y(x).

Modeling with CHCs. When modeling a program, the predicates P; are chosen to represent reachable states in
certain key positions. These include the program counter values corresponding to the starts and exits of loops,
function call sites, and, depending on the chosen modeling approach, starts and ends of conditional branches.
The first-order formulas i encode the effect that the program code executed between the positions represented
by predicates has on the state. However, the interpretations of the predicates are not explicitly known, but are
instead defined implicitly by the program code represented by the formulas { and how the predicates are related
by these formulas. CHCs provide a way of representing the relations between the program code and predicates,
and there are highly engineered implementations of algorithms for determining over-approximations of the
interpretations of the predicates for a given system of CHCs.

Given a set of predicates &, a first-order theory T, and a set of variables V, a system of CHCs is a set S of
clauses of form

H(x) «— Y. Pi(y) A oo A Pm(y) A d(x,y), form >0 (DefClause)

where ¢ is a first-order formula over x,y € V, with respect to the theory T, x are the distinct variables free in ¢,
H € P is a predicate with arity matching x, P; € 9 are predicates with arities matching y, and no predicate in
P appears in ¢@. For a clause ¢ we write head(c¢) = H and body(c) = Jy. P1(y) A ... A Pm(y) A ¢(x,y).

For a concrete example, consider a program code x = x+1. To represent the states we need two copies of the
program variable x, one representing x’s value before the execution of the program code and another representing
the value after the execution. By convention these are represented by first-order variables x and x’, respectively.
We then define predicates $, Q that hold before and after the execution of the increment. The system of CHCs
modeling this fragment would then be Q(x") «— Ix.P(x) Ax" =x+ 1.

Precise predicate interpretations from CHCs. The tools that we use in this work do not attempt to determine
the precise interpretations of the predicates appearing in the CHC systems, but instead compute, in general, an
over-approximation of the models. However, to understand the modeling approach it suffices to consider how to
obtain the exact interpretations. To this end, for each predicate # € & we define the transfinite sequence A,
given by

AY =0
AGH = AL U{a | Uges AG FT Vees head(e)=p body(c) [a/x]} (DefPredInt)
A’; = Ug<a A%, for limit ordinals A

Since AZ is monotonic, there is a value for a such that A7, = Afﬂf,”. We denote the set A, with this property by
Ap.

In our approach to modeling and verifying smart contracts, we are interested in determining whether a bad
state is reachable. The bad state is again represented by a CHC with a special head symbol L and a body describing
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the bad state in logic. Determining whether the bad state is reachable reduces then to determining whether the
interpretation A, of predicate L € & is empty.

To continue the above example, we might be interested whether after executing the increment, the value of x
can be greater than 255. This would be encoded as the CHC L « Jx.x > 255 A Q(x).

Concretely, modern CHC solvers, based on the IC3 [11] algorithm, guarantee that if A, is nonempty then the
model of a program violates a safety property, and we are able to map predicate interpretations to a program
execution. Conversely, if A is empty, either the solver does not terminate, or it provides quantifier-free first-order
formulas np (x) in T for each P € P that serve as safe inductive invariants in the following sense:

(1) Each np over-approximates the interpretations Ap, that is, Ap Fr P(x) = ne(x).
(2) For each clause ¢ € S of the form DefClause,
(a) if head(c) # L, then Fr np, (y) A ... Anp, (y) Ap(x,y) = nu(x);
(b) if head(c) = L, then =1 = (np,(y) A ... Anp, (y) A d(x,y)).
Following [8], a set of CHCs is called satisfiable if A, is empty, and unsatisfiable otherwise.

Note that in presenting the clauses we use some conventions that make reading them easier. First, we omit the
existential quantifier since its scope is clear from the arguments of the body for a given clause. Second, we do
not write variables that do not appear in the formulas. Third, we omit superfluous equalities, e.g. if an element
y; of y is equated with an element x; of x in a top-level conjunct of ¢, we do not write the equality but instead
substitute y; for x; in the head.

To conclude, this approach maps naturally to modeling programs. Each predicate # describes the set of
reachable states in the points of interest in the program, and correspond to some concrete program counter
values. The CHCs encode the flow of control between these points, and their constraints ¢ encode the conditions
for control flow and the effects of the SSA executions. The safety properties can be encoded using the special
predicate L that by convention can only appear as a head of CHCs together with bodies that represent the
negations of the safety properties. Finally, the operator A is used for accumulating the reachable states in the
predicates appearing as heads of the CHCs. We will illustrate the use of CHCs shortly by modeling the contract
Auction in Figure 1 step by step, starting in Section 3.2.

3 THE MODEL

Our approach to smart contracts verification is based on direct modeling, which means that we directly model
contracts in the formalism suitable for the back-end reasoning engine used. We use CHCs for modeling contract
behaviors, based on their control flow, with our algorithm creating formal models of Solidity smart contracts
that are accurate and solver-independent. Accurate models properly encode the semantic traits specific of smart
contracts, and solver independence allows any CHC solver to solve them. Additionally, the solving procedure
automatically provides either a contract invariant or a finite-length counter-example (CEX). A contract invariant
is a condition over the contract’s variables that always holds after any possible transaction, enabling proofs of
unbounded safety. A finite-length CEX is a list of transactions that lead to an assertion error, showing a concrete
property violation.

This section is divided into seven parts. We first present our formal definition of a smart contract, followed
by the details regarding the modeling of contract’s functions, static function calls, and dynamic function calls,
the overarching algorithm used to create the CHC model of an entire contract, how safety can be checked, and
finally how CEXs can be produced.

3.1 Basic Definitions and Notation

We define a contract C as a triplet (s, I(s), F), where s is the set of state variables, I(s) is the initial state of s, and
F is the set of all functions in the contract. The disjoint subsets F* and F~ of F denote the sets of public and
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private functions of F. For example, the formal definition of the contract Auction in Figure 1 is as follows
Auction = ({b,c,w},b =0Ac=0Aw=0,{offer({v,s}) — {F}})

with b, ¢, and w representing the state variables bid, cash, and winner, v and s representing the implicit function
arguments msg.value and msg. sender, 7 being a special variable not derived from the source code, used to capture
the occurrence of a revert, and offer € F*. In order to keep the example simple, we refrain from modeling implicit
state variables, e.g. balance € s, which records the amount of funds held by the contract.

Given a function f(a) — r € F, where a is the set of function arguments, and r is the set of return variables,
the CFG of f is the tuple (G, o, w, p). G = (V,E, A, 11, S) is a node- and edge-labeled directed graph, where V is
the set of CFG blocks, E C V X V is the set of control flow jumps, A, € A 1is, for all v € V, the set that contains
the instructions performed by v, g, € p is, for all e € E, the condition under which the jump e is performed, and
S C V is the set of safety blocks, with each such block representing a safety property. The CFG blocks o, w € V'
are respectively the entry and the exit blocks. The CFG of function of fer, represented as CFGey, is as follows

CFGo = (Go, 1,6, po)
Go = ({1,2,3,4,5,6}, {(1,2), (2,3), (2, 5), (3,4), (3,6), (4,5), (5, 6) }, &, i, {3})

with the block identifiers in Figure 2 representing the graph’s nodes and the instructions pertaining to A and p
being as shown in Figure 2, e.g. Ay = A3 = As = 0 and p(12) = pas) = pse) = true.

In the encoding of a function f only local variables are manipulated, therefore the labelings A and y of each block
and jump contain instructions performed only over a set of local variables I of f; changes to state variables are
first done in local copies of them, and only committed if f terminates successfully. The injection p : sUaUr — [
maps every state variable, function argument, and return variable, to a distinct local variable accessed by the
instructions in each block and jump. We extend the mapping notation to sets in the natural way: for a given set
of variables z, p(z) = {p(x) | x € z}. The injection p, present in CFG, is as follows

po={b—-lpc—>l,w— L0 —> s —> I, 7 — I3}

with I, x € {b, c, w, v, s}, representing the local copy of variable x and [; representing the local copy of the revert
variable.

A safety property in the CFG is represented by a safety block. In Solidity, safety properties are specified with
the assert keyword, and their failing during the execution cause the function to revert and return immediately.
To achieve this behavior, for every safety block b € S, there exists the jump e = (b, w), where the condition g, is
the negation of the property. This ensures a direct jump to the exit block in case the safety property is violated. A
jump to the exit block «w from a safety block requires w to revert the changes made by the function, restoring the
state to prior the function’s execution. In order to provide w with the information that a safety property has been
broken, A, sets p(7) € I to a value that uniquely identifies the violated safety property, with 7 € r being a special
revert variable not derived from the source code. For the function of fer we have one safety block, block 3, with
H(3,4) being the asserted property, bid < cash as shown in Figure 2, and ji(3 ) being its negation.

3.2 Contract’s Functions

Given a contract C with state variables s, a function f(a) — r € F, with local variables I and CFG (G, a, w, p), is
modeled in the following manner. For each CFG block o, Pf”(s, a,1) is the predicate symbol that represents the
states that are reachable in block v, and the SSA formula SSAy, (1,1"), with I’ = {x” | x € I}, models the behavior
of v by formalising in first-order logic the relation between x and x’, for each x € I, based on the execution of the
instructions in A,. For each CFG jump e, the formula SSA,, (I) is the logical condition under which e is taken. The
execution of f is defined by three rules.
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The jump rule models each jump e = (v, u) € E, and is expressed by the CHC
P}‘(s, al) « P;(s, a,l) ASSA, (L") ASSA,, () (Jumpg,)

The function of fer contains seven jumps, as seen in the definition of G, and illustrated on Figure 2. Applying
the rule Jump, to these jumps yield the following CHCs:

7)3 — 7); (Jump0’<1’2>)
P PEALy =1, —10° ALy <l ALy #0 Jump, (53)
P> P2 ALy =1, — 108 ALy < Ly A =(L,, #0) (Jump, (55))
P PIAL <, Jump, (3.4))
SDS — 7’3 A=l <IL)ANL=3 (Jump0’<3’6>)
P~ PIAL =1~ 1, (ump, (4.5))
PE—PoAl =Ly AL =L+ 1, A, =1 (Jump, (5.6))

with the signatures of Pl PZ P3P P>, and PS, which represent the CFG blocks of function offer, being
(by e, w, 5,0, 1p, I, Ly, Lo, Ls, Inp, 1) We use Iy, to represent the local variable new_bid. The transfer on line 11 of Fig-
ure 1 is abstracted out because balance € s is not present. When a primed version of a variable appears in the body
of a CHC, such variable is also primed in the head, e.g. in Jump03<5’6> we have Pg(b, W, 8,0, I, Ley L, L, L, Lo, I7)
representing all states reachable in block 5 and Pg (b,c,w,s, 0, ll’7, I, Ly b, Ls, Inp, I7) representing the states reachable
in block 6 by jump (5, 6), which contains updates to Ip, I and [,,.

To illustrate the application of Jump, to one specific jump, let us consider the CHC Jump,, (, 5. Its body
contains predicate P2 conjoined with SSA,,, which is the formula I, = [, — 10" A, < I,;, modeling the behaviour
of block 2, and with SSA s> which is the formula [,, # 0 modeling the entry condition of the if-statement of
function offer. Its head consists of the predicate 2, modeling the states in block 3 reachable through jump (2, 3).
For block 3, we can see that it is part of the body of two CHCs, Jump,, 5 4y and Jump,, (; 5, the former modeling
normal execution and the latter modeling the case in which the assertion fails, with its head being the predicate
encoding block 6, the exit block of of fer.

The entry rule sets the local variables equal to the corresponding current values of state variables and passed
arguments, and is expressed by the CHC

SD;’(S, al) «— /\ x=px)Ap(F)=0 (Entry,)
xesUa
The variables in s and @ are symbolically assigned in Entry » and never changed throughout the applications of
Jumpy ., forany e € E. In case of reverting during execution, these variables provide the necessary information
to revert to the state prior to the execution of f. A revert is caused by a jump to w setting the local variable p(7)
equal to the integer identifier of a safety property that failed, with p(#) being initially set to zero.
The CHC modeling the entry of function offer, produced by rule Entry, is the following:

Ple—b=lhrc=l.Aw=lL,As=kAo=l,Al;=0 (Entry,)

The function summary of a given function is the relation between its input and output, derived from all possible
function executions. Let Sy (s, a, s’, r) be the predicate symbol representing the function summary of an execution
of f. In this context, the input is represented by the state variables prior to the execution, s, and the function
arguments, a, while the output is represented by the state variables after the execution, s’, and the return values,
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r. The summary rule is expressed by the CHC

Sr(s,a,8',r) 731‘;’(3, al) A (Sumy)
(p(F)#0 = /\x' =x)A(p(F) =0 = /\x’ =p(x)) A /\x:p(x)
XES XES X€Er
revert commit return

Rule Sum + contains three constraints, revert and commit, which are mutually exclusive, and return. The revert
constraint ensures that an execution is reverted when w is reached having the local variable corresponding to
7 set to the identifier of a safety property. The commit constraint stores the local copy of the state variables in
s’, modeling a commit of the computed values. The return constraint equates the return variables r with their
corresponding local variables.

The CHC modeling the summary of function offer, produced by rule Sum 7, is as follows

SO<—P§/\(I;¢O=>b'=b/\c':c/\w':w) (Sum,)
ANlr=0 = b =lbA =l.AW =L ,)AF=1I
with the signature of S, being (b, c, w,v,s,b’,c’, w', 7).

Definition 3.1 (Function Model). Given a contract function f, the set of CHCs modeling f, II¢, consists of
applications of the jump rule Jump, , for each control flow jump e of f, and the entry and summary rules for f,
Entry; and Sumy.

For function offer we have the set

I, = {Jumpy, (1 2y, Jump,, (5 3y, Jump, (5 5y, JUMP,, (3 4y, Jump,, 36y, Jump,, (4 5y, Jump,, 56y} U
{Entry,, Sum,}

3.3  Function Calls

Consider functions f and g, which need not be distinct, represented by CFGs Gy and G,. A function call is
performed by a block v in Gy if its labeling A, contains the call instruction to G,. At runtime, the execution of
the CFG block v is performed by executing the CFG block a of G4, which constitutes the start of an execution of
Gy. When o of Gy is reached, the transaction represented by the execution of G is finalized by committing any
changes to the state variables. The execution is then resumed from v, mapping the return variables of g to the
corresponding local variables of f, and updating the local variables of f representing state variables to match
the new values resulting from the commit just performed by the concluded transaction. When the execution
terminates, p is used to commit the changes performed locally in the model to the state variables.

Consider a control flow jump e = (v, u), where A, contains a function call to g(a,) returning variables ry. The
summary of g is used to synchronize the local variables of f with the new state committed by g after its execution
terminates. To precisely represent distinct calls to the same function, in order to accurately record where an
exception occurs, if it does so, we create uniquely tagged summaries for each call and use them in the definition
of their respective SSA formulas.

The tagged summaries are created by the summary id rule, expressed by the CHC

S,ia(s, a, s',r) « Sy(s,a,s',r) (Sumldy,iq)
The first tagged summary of function offer would be given by the following CHC:
Sy« S, (Sumld,;)
with additional tagged summaries being possible through CHCs Sumld,,, n € {2,3,...}.
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Given a freshly tagged summary, SSA;, (I, 1) of Jump > containing a function call, is defined as

’ "’
Sga(s’,ags",rg) A (Callgig p,.)
’ 7 ’ ’
N x=pa) AN & =p@Ax"=p@)) A\ ' =x
x€ayUry XES xel\l.ay
arguments and returns passing state set and update untouched locals

The tagged summary maps s’ to s/, instead of s to s’, and appends the function’s name to its arguments and
return variables, in order to avoid a clash with the representation of the variables in the callee. The mapping
Peall : @g — L,ry — I’ is specific to this call and maps both the arguments of g to I and the return variables of g
to I’. The set of local variables that can be affected by the call is I .qy = pean(ry) U p(s). The arguments are passed
by value, thus local variables p.,;(a,) provided as arguments to function g are not affected by g’s execution.

The SSA defined in Callg q 5, constrains its function summary in a three-fold manner. First, the arguments and
returns passing conjunction uses p.q to match arguments and return variables to the respective local variables
of the caller. Second, the state set and update conjunction ensures that the local variables in I’ that represent
state variables are updated according to the execution g. Note that in case a revert occurs in the execution
of g, p(x) = p(x)’, meaning the state has not changed, and p..;(7;) € Lis set according to the revert, which
allows the modeling of revert propagation or catching by the caller. Lastly, for each local variable not in I, the
untouched locals conjunction equates its primed and non-primed versions, modeling that its value is not affected
by the execution of g. Since all variables in I are constrained, Callg g, models a deterministic execution of the
callee. By combining rules Jump, and Callgq p,,,, the resulting CHC is nonlinear, i.e. it contains more than one
predicate in its body, in this case the predicates Pf” and Sgia.

If the contract Auction contained a function refundFee, which allowed selected bidders to have their fees
refunded, a call to it by some other function in Auction would be defined by the SSA

Srfl N0y = I, A Srf = Is A Frf = l; (Ca”rf,l’l)call,f,)
A =l A =)A=l A = D) A (W =1y Aw = 11,)
AN =1, AN =1

with the summary S, given by the CHC
Srf1 — S (Sumld,z)

The predicates’ signaturesin Ca”rf,l,pcau,ﬂ and Sumld,y,; are (b',¢’, W', 0,1, 8,7, 0", ¢”', w”’, Frp) and (b, ¢, w, 5,0, b", ¢", W', F).
Identifier 1 is assumed to tag only this particular call to refundFee, and refundFee has neither explicit arguments
and return variables nor local variables in its body.

3.4 Contract’s External Behavior

A transaction of a given a contract C = (s,I(s), F) consists of the execution of a single public function of C.
Contract transactions can therefore be modeled by the summaries of every function f € F*, with each summary
providing the relation between the state variables before and after the execution of its associated function. The
external behavior of C encompasses all possible interactions between it and an external contract, being defined as
the transitive closure of C’s transactions. This way we capture the relation between the state variables before and
after an arbitrary number of calls to any of the contract’s public functions, in any order; to capture whether an
assertion error occurs in such calls, the revert variable 7 is also recorded. We define the predicate &c that models
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the external behavior of C inductively. The external base rule is expressed by the CHC
Ec(s,s,0) «— T (ExtBase()
and the external inductive rule is expressed, for each f € F*, by the CHC
Ec(s,s”,7") — Ec(s, s, F)ANSp(s',a,s", F) ANF =0AF" =F (Extindc,f)

The external behaviour of contract Auction, assuming it contains the function offer as well as the function
refundFee described at the end of Section 3.3, is given by the following CHCs:

Eae—T (ExtBase,)
EA—EANS, AT =0AF" =F (ExtInda,)
Ea—EANSy AF =0NF" =F (ExtInd,r)

with the signature of 4 being (b?, c?, w?, b4, ¢4, w4, 77), p and q being n primes, n € {0, 1,2}, depending of the
rule being applied, and the signature of S, and S,¢ being (b, ¢’, ', s,0,b”,c”, w", 7).

Predicate & can be used to model calls to functions of an external contract D, whose source code is unknown,
capturing all possible interactions between C and D. Every control flow jump (v, u) of C in which block v contains
a call to a function with unknown code is modeled by a uniquely tagged &, instead of the called function’s
summary. The external id rule is given by the CHC

Ecia(s,s",F") « Ec(s,s"sF" (Extldc,ia)
The first tagged predicate modeling the external behaviour of contract Auction is given by the following CHC:
8A1 — Ea (EXtIdA,I)

with & 41 having the same signature as E4.

The SSA formula modeling the external call in block v, SSAy, (1,1"), is similar to Callyjq p,,,, With two differences:
the predicate used is Ecu, instead of Sia, and the arguments and returns passing constraint is reduced to the
update of p(7)’. The local variables in p.;(r4) \ {p(7)"} are unconstrained in order to nondeterministically model
any possible values returned by the unknown source code. The definition of SSA_ (1,1') is

Ecia(s', 8", P Np(F) =F" A /\ (x" = p(x) Ax"" = p(x)") A /\ x'=x (ECallig )
X€s xe’\lcall
—_————
revert recording state set and update untouched locals

If the function refundFee contained a call to an external function unknown, such a call would be defined by the
following SSA formula:

8A1 A l'/: = f” (Ecalllrpcullul)

AW =l A" =L)A (" =lcA” =) A (W =1, AW =1)

ANy=1, NI =1

If a safety proof for this model can be obtained, then it is not possible to construct an external contract that
can violate assertions in C by any sequence of reentrant calls. The existence of a CEX for this model implies that
there exists a contract that can be designed specifically for violating one or more assertions, by calling one or
more public functions in a particular order and returning specific values. The unique tag on &, allows us to
record which external function call led to the assertion failure, in case a CEX is produced, which is important

because calls made at different points of a function’s body can have different effects, in case state variables are
being manipulated.
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3.5 Contract’s Complete Behavior

Given a contract C, let C(s) be the predicate representing the reachable values for the contract’s state variables.
The contract’s initial state is modeled by the initialization rule, expressed by the CHC

C(s) « I(s) (Inite)
Every root transaction with f € F* is modeled by the root transaction rule, expressed by the CHC
C(s") <« C(s) ASp(s,a, s, r) ANF=0 (RootTre ¢)
For the contract Auction and function offer shown in Figure 1, we have
A—b=0Ac=0Aw=0 (Inity)
A —AANS, AT=0 (RootTra,)

Predicate A’s signature is (b, ¢, w), with A’ standing for A(b’, ¢/, w’); S,’s signature is as Sum,’s.

Definition 3.2 (Contract Model). Given a contract C, the set of CHCs modeling all possible behaviors of C, I1¢,
consists of applications of the initialization rule Init¢ and the external base rule ExtBase, together with the set
of CHCs Il of every function f € F and, for each public function f € F*, the external inductive rule ExtIndc ¢
and the root transaction rule RootTr¢ .

The complete CHC model of contract Auction is
IT4 = {Inita, ExtBasea} UII, U{Extind o, RootTra,}

Our modeling technique is summarized in Algorithm 1. Given as input a smart contract C, the algorithm
returns the set II¢c of CHCs modeling C. Initially, I1¢ contains only applications of rules Init¢ and ExtBasec. The
loop from line 1 to 26 iterates over every contract function f, constructing their respective Iy sets, which are
merged with II¢ in line 22, and applying rules ExtIndc s and RootTrc f, in line 24, if the function is public. The
internal loop from line 6 to 21 iterates over every edge e = (v, w) of the CFG of f, in order to apply rule Jump .
For the modeling of block v, the case in which it represents a function call is handled in lines 7 to 15, using either
the summary of the called function or the predicate of an external call, while if no function call is present in v,
the formal model representing its execution is generated in line 17.

3.6 Checking Contract Safety
The safety of a public function f € F*, X, is modeled by the safety rule, expressed by the CHC

L C(s) ASp(s,a,s,r) AT #0 (Safetyc r)

Definition 3.3 (Contract Safety). Given a contract C, its safety condition consists of the set X containing the
safety rules of every public function f € F*.

If A, is empty for a given function f, then no transaction of f can result in an assertion error. A given
contract C is safe if, and only if, the set of CHCs II¢ U X is satisfiable. If an assertion error can be reached
during the execution f, then there exist an interpretation of C and Sy that evaluates the body of the safety rule
to true, making the set of CHCs unsatisfiable. Conversely, if the set IIc U 2¢ is satisfiable, then there exists a
first-order formula 7(s) such that A¢ 1 C(s) = 1(s). The formula 7(s), called a safe inductive invariant,
over-approximates the states reachable through any sequence of transactions and proves inductively that >¢
always holds. Any formula i(s) implied by a safe inductive invariant is a contract invariant, i.e. it is true in every
reachable contract state.
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Input : contract C = (s, I(s), F)
Output : set of CHCs II¢
Initially: II¢ « {Initc, ExtBasec}
1 foreach f = (G, o, w, p) € Fwith G =(V,E, A, 11, S) do

2 a « arguments of f

3 r « return variables of f

4 I « local variables of f

5 Iy « {Entry, Sumg}

6 foreach e = (v, w) € E do

7 if o contains a call to g(ay) — r, then

8 create p.,y from A, // maps arguments and returns of the call
9 if Sum, is known then

10 Iy « Iy U {Sumldg 4} // adds a freshly tagged summary
11 SSA, (L") « Callgig .,

12 else

13 f « Iy U {Extldc,ia} // adds a freshly tagged external call
14 SSA, (L") « ECallig .,

15 end

16 else

17 ‘ SSAy, (1) « model(A,) //-models according to the instructions of v
18 end

19 SSA,, < model() // models according to the conditions of e
20 If <—HfU{Jumpf’e}
21 end
22 I[Ie <« Ilc U Hf

23 if f € F* then

24 ‘ ¢ « IlIc U {ExtInd¢ f, RootTrc ¢}

25 end
26 end

Algorithm 1: The algorithm to construct Ilc.

For the code shown in Figure 1, having the predicates’ signatures as in RootTr,4,, the safety rule of function
offer, %,, and the safety condition of contract Auction, 34, are respectively

L—AANS,AF£0 (Zo)
ZAZ{ZO}

Contract Auction has a potential vulnerability that can allow malicious users to siphon funds out of it, in a
two step attack using function of fer. First, the attacker makes a bid that is smaller than the bidding fee, e.g. by
calling of fer with msg.value = 0, leading to an underflow during the calculation of new_bid (line 7), which will
be set to 22°¢ — 105 + msg.value, assuming wrapping, i.e. overflow and underflow, is enabled; the type of uint is
unsigned integer of 256 bits. This allows the attacker to set themselves as the winner, while sending no funds
to the contract. Second, the attacker calls of fer again, this time sending more funds than previously, but still
less than the bidding fee, causing another underflow. Since the attacker is the current winner at this point, the

ACM Trans. Priv. Sec.



16 « Otonietal.

function will refund them their previous bid (lines 9-13). The assert ensuring that a refund cannot be larger than
the amount of funds gathered by the auction so far (line 10) prevents this attack.

A common practice in the domain of smart contracts is to add assertions during development, with the goal
of catching unintended behaviors, but to remove them prior to deployment, in order to reduce deployment
and execution costs. In the case of contract Auction, if the vulnerability was not caught prior to the removal of
the assert, this would leave it open to the attack described, depending on the semantics of integer arithmetics
adopted. Since the attack relies on underflows happening, the satisfiability of the set [Ty U 34 varies by language
version. The newest Solidity version, v0.8, treats overflow and underflow as invalid operations by default, which
automatically revert, making the attack impossible. Using v0.8 default semantics when generating the SSA
formulas will thus make the set 14 U 34 satisfiable?. The Solidity versions preceding v0.8, which account for the
overwhelming majority of deployed contracts, and that can be expected to be used for a significant number of
contracts deployed in the near future as well, since developers tend to migrate slowly to newer versions, have,
however, wrapping behavior enabled, allowing the siphoning of funds.

By integrating our verification approach into the development process, developers can catch not only this
simple vulnerability, but all vulnerabilities that can be specified using assertions, including documented exploits,
and also check for functional properties. The checking procedure can easily be applied during development,
since both the construction of the set of CHCs II¢ U ¢, for a given contract C, and the CHC solving, are fully
automated, as detailed in Section 4.

3.7 Counter-Example Production

The refutation, or proof of unsatisfiability, of IIc UX¢ proves that a specific safety rule in ¢ cannot be satisfied, i.e.
A, is nonempty. While our solving methodology can show satisfiability over unbounded executions, through the
use of over-approximation, we can only represent finite refutations. This is, of course, not a practical limitation,
since we are only interested in vulnerabilities that manifest themselves after a finite number of steps. The
description of how a refutation is constructed by the CHC solver is outside of the scope of this paper; instead we
give here an overview of the refutations themselves and of how they are used in the production of CEXs.

A refutation is a tree-shaped structure obtained by an unwinding of clauses. Its nodes are labeled with clauses,
with its root, vy, being labeled with a clause having L as head. For each predicate P in the body of clause c of a
given refutation node, we create for said node a child labeled with a unique clause ¢’, with head(c’) = P. The
leaves of the tree are labeled with clauses containing no predicates in their body. In a refutation, for all paths
g, . . ., U from the root to aleaf, labeled with clauses cy, . . ., ¢, it must hold that

=1 body¢(cl)(x0, x1) A body¢(cz)(x1,x2) A A body¢(ck)(xk_1,xk) (DefRefPath)

with body, (c) denoting the constraint ¢ of a given clause ¢ in the general form DefClause.

A CEX s produced from a refutation by traversing the tree and listing the nodes that refer to the initialization
rule Init¢, the root transaction rule RootTr¢, £ and the safety rule Safetyc’ Iz Due to the refutation’s structure,
traversing its leftmost path gives us a list of nodes in which the first element is labeled with a safety rule,
followed by zero or more elements labeled with root transaction rules, and the last element is a leaf labeled as an
initialization rule. The conjunction of the clauses in the obtained list satisfies DefRefPath and represents a trace
of transactions that leads to an assertion error, with the children of each node modeling the contract state prior
the transaction and the function call with specific arguments that results in the new state.

Assuming underflow as a valid operation, II4 U X4 is unsatisfiable, and thus leads to a refutation, shown in
Figure 3. In order to produce the CEX, the tree is traversed, providing us with the list (Z,, RootTr4 4, Init4). The
initial transaction in the CEX trace is the one from deployment, given by node Init4, which sets bid = @, cash = o,

2Solidity v0.8 allows wrapping behaviour via the unchecked command, which enables the semantics used in older versions.
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and winner = 9, and is followed by the function calls modeled by the two other nodes. Node RootTr,4 , models
the result of the first call to of fer, with msg.value = 0 and msg.sender = @xA1. Node X, models the results of the
second call to of fer, with msg.value = 1 and msg.sender = 0xA2, which results in an assertion error.

4 IMPLEMENTATION

Our approach is implemented inside the SMTCHECKER [2] component of the Solidity compiler sorc® [22], as
part of an ongoing collaboration with the engineers of the Ethereum Foundation. The implementation, called
Sotricrrous (Solidity contract verification using constrained Horn clauses), consists of the CHC model checking
engine of SMTCHECKER.

4.1 Toolchain Integration

The Soricitous functionality can be enabled by simply adding pragma experimental SMTChecker directly into the
source file, prior to the compilation. If enabled, the compiler provides the contract’s CFG to Soricirous, which
produces the CHC model Il¢ U Z¢, following Algorithm 1 for Il¢ and Safety g ¢ for Z¢. The CHC model is then
provided to SPACER [40], the IC3 [11] engine of the Z3 [18] solver, for checking. In case an assertion error is
detected, SoLiciTOUS provides a transaction trace as a witness to the error, which can be easily validated by the
developer. An overview of SoLIcITOUS can be seen in Figure 4.

4.2 Modeling Details

The modeling of control flow structures such as conditionals and loops is not restricted by rule Jump ., following
the topology of the CFG provided. The types of all variables in the CHC model directly reflects their source code
equivalents, with addresses being treated as uninterpreted symbols and the unique names of the variables being
derived from the CFG structure.

In addition to general functions, Solidity has two special function-like structures: modifiers and constructors. A
modifier is a code fragment that envelops a number of selected functions’ bodies. In SoricrTous, modifiers are not
modeled separately, but are instead inlined to the functions they modify. A constructor contains the initialization
procedure executed during the deployment of a contract. Constructors are used in the definition of I(s), where
variables are given either an explicit initial value or the default initial value of their type. In contracts that inherit
base classes, the inheritance order is obtained by the Solidity compiler using the C3 linearization [6], with each
constructor being executed exactly once. In SoLiciTOUS, the entire deployment procedure, which might include
state variables’ initialization and inheritance linearization, is inlined into a single constructor function.

4.3 CurrentScope

To the best of our knowledge, no verification tool targeting Solidity supports the complete range of language
features, with all tools working on a best-effort basis. SoriciTous currently supports a large working subset of
Solidity, including the complex control flow and arithmetic operators, excluding exponentiation, integers of all
available sizes, Boolean variables, arrays, mappings’ assignment and access, and inheritance. Strings and structs
are currently not supported, and their occurrences in ¢ are replaced by nondeterministic operations in order
to maintain soundness. Continuous support in terms of both language features and versions is a goal of the
Ethereum Foundation, with the supported subset of language expected to grow in the future.

3 Available at https://github.com/ethereum/solidity/releases.
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5 EXPERIMENTS

We performed large-scale experiments to evaluate both the precision and efficiency of our approach, as well
as the current support of language features offered by our implementation. The evaluation was done in a fully
automated fashion [61], enabling easy replication by interested third parties.

5.1 Benchmarks

Our benchmarks consist of real-world contracts deployed on the Ethereum blockchain over a period of 27 months.
We gathered all contract deployment transactions present from block 7 million, mined on the 2nd of January
2019, to block 12 million, mined on the 8th of March 2021, and queried the Etherscan block explorer [20] for their
respective source codes. We obtained the source code of 224186 contracts, of which 73614 are unique: 355 v0.8,
2617 v0.7, 16981 v0.6, 25306 v0.5, and 28355 of versions older than 0.5.

In our experiments we used only contracts containing assert statements, which were selected in two comple-
mentary ways. The first way was to simply select contracts already containing asserts, with these contracts being
used as they were deployed. The second way involved contracts containing only asserts that were commented,
with these contracts having their asserts uncommented. Commented asserts are of interest because developers
might have commented them before deployment in order to reduce deployment and execution costs, believing
them to always hold. In total, we used 22446 contracts in our evaluation: 38 v0.8, including 61 asserts, 870 v0.7,
including 1110 asserts, 9136 v0.6, including 11114 asserts, and 12402 v0.5, including 20912 asserts; older versions
were not included due to lack of tool support. All benchmarks are publicly available?.

5.2 Approaches Compared Against

We compare SoLiciTouUs against three publicly available tools suitable for automated verification of Solidity asser-
tions: SRI’s SoLc-VERIFY [31, 32] and Microsoft’s VERISOL [66], that verify Solidity source code, and ConsenSys’
MYTHRIL [17], that verifies EVM bytecode. To the best of our knowledge these are the only tools with which
an automated comparison is possible. We considered two other tools for comparison, namely Zeus [38] and
SAFEVM [1], but ZEus is not publicly available and SAFEVM only supports Solidity v0.4.

Of the selected tools, SoricrTous, SoLc-VERIFY, and VERISOL can produce safe inductive invariants, and thus
establish contract safety. MYTHRIL, however, is a purely bounded checking engine, being only capable of verifying
up to a set number of transactions after contract deployment; by default a depth of three transactions is considered.
Given this, MYTHRIL can never ensure safety, only report unsafe or inconclusive results. Despite these limitations,
MyTHRIL is well known in the smart contracts community for having good support for language features, and we
choose it to serve as the gold standard for the language support metric. Regarding CEX production, SoriciTous
can produce CEXs of arbitrary length, reporting assertion errors that can happen at any point during the lifecycle
of a contract, while VERISoL and MYTHRIL can produce CEXs only up to given length, and SoLc-VERIFY does not
produce CEXs at all; VERISoL has a hybrid approach, first attempting to establish unbounded safety, and if that is
not successful it performs a bounded check.

The features implemented in SoriciTous vary by language version, with the description in Section 4.3 reflecting
the current status of the v0.8 implementation. The support for language features is smaller for previous versions,
with the v0.5 and v0.6 implementations not producing CEXs. This variation between versions is assumed to
also hold for the other tools. SoLiciToUs supports the full range of Solidity versions from v0.5 to v0.8, as does
MYTHRIL, but SOLC-VERIFY is restricted to v0.5, v0.7, and v0.8, while VERISOL only supports v0.5. We relied on
73 4.8.10 as the back end for all tools and set their encoding to modular arithmetic mode in order to properly
capture the behaviour of arithmetic types.

4 Available by cloning the git repository https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git.
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Table 1. Summary of experimental results. The best results are highlighted.

SovricrTous (SOL) Sorc-VERIFY (SV) VERISOL (VS) MYTHRIL (M)

Benchmarks 22446 13310 12402 22446
Safe 6651 103 201 0
Unsafe 8 0 9 21
Inconclusive 2970 5601 230 728
Timeout 9058 3163 4032 19511
Tool crash 3759 4443 7930 2186
Verified ~29% ~0.7% ~1% ~0.09%

5.3 Comparative Analysis

The summary of our results can be seen in Table 1, with the number of benchmarks available for each tool
being derived from the Solidity versions it supports. A breakdown of results per Solidity version can be seen
in Table 2. Safe contracts are those for which all asserts are proved safe by safe inductive invariants. Unsafe
contracts are those for which a CEX was produced. Inconclusive results arise when the tool fails to either establish
safety or produce a CEX. The timeout for each individual tool execution is 60 seconds. The difference between
an inconclusive result and a timeout is that in the former case the tool terminates successfully but is unable
to classify the contract, while in the latter case the process running the tool is killed upon reaching the time
limit; in the occurrence of a timeout a developer can decide to run the tool for longer, which is not applicable
for inconclusive results, arising due to fundamental limitations of the tool’s approach. Crashes happen when
language elements not handled properly by the tool are present in the contract, e.g. inlined assembly code. A
contract is considered verified if it is classified as either safe or unsafe.

SovriciTous was able to guarantee one order of magnitude more contracts to be safe, in comparison with
Sorc-VERIFY and VERISOL. In terms of catching assertion errors, SoLicIToUs was the most performant tool for
the versions in which it produces CEXs, v0.7 and v0.8, with MYTHRIL having the best result overall, probably
due to the large percentage of instances of versions 0.5 and 0.6. The large number of benchmarks that lead to
an inconclusive result or a timeout, among all tools, indicates the highly nontrivial nature of smart contracts
verification. Regarding tool crashes, MYTHRIL has shown itself to be the more stable tool, as expected, with
Soricitous having the least amount of crashes among the tools capable of unbounded verification.

In order to compare the performance of the tools we gathered the runtimes of the executions that produced
safe inductive invariants. The results are summarized in Figure 5. SorLiciTous was able to verify more than 4000
contracts in less than 10 seconds, and more than 6000 in less than 30 seconds, which highlights its applicability
for contract developers. SoLc-VERIFY’s runtimes are also distributed throughout the time axis, with most of the
103 contracts classified as safe being done so in less than 40 seconds. VERISoL achieved all its 201 safe results
in less than 10 seconds. The fact that the majority of the contracts were classified as safe in less than half the
allocated time indicates that, for all tools, practical results can be achieved with small timeouts. We can also
conclude that increasing the timeout can be beneficial for both SoLiciToUus and SoLc-VERIFY, but may not be for
VERISOL. Given the positive results, aligned with the practical nature of the benchmarks, SoricrTous stands as a
valuable tool for Solidity developers.
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Table 2. Experimental results detailed per Solidity version. SOL, SV, VS, and M stand, respectively, for SoLiciTous, SoLc-VERIFY,
VERISoL, and MYTHRIL. A dash means that the corresponding tool does not support the specific Solidity version. The best
results are highlighted.

(a) Version 0.5, totaling 12402 instances. (b) Version 0.6, totaling 9136 instances.
SOL N VS M SOL SV VS M
Safe 3689 95 201 0 Safe 2877 - - 0
Unsafe 0 0 9 13 Unsafe 0 - - 7
Inconclusive 2383 5327 230 279 Inconclusive 583 - - 413
Timeout 4101 3045 4032 9935 Timeout 4159 - - 8706
Tool crash 2229 3935 7930 2175 Tool crash 1517 - - 10
Verified ~29% ~0.7% ~1% ~0.1% Verified ~31% - - ~0.07%
(c) Version 0.7, totaling 870 instances. (d) Version 0.8, totaling 38 instances.
SOL SV VS M SOL SV VS M
Safe 72 8 - 0 Safe 13 0 -0
Unsafe 7 0 - 1 Unsafe 1 0 -0
Inconclusive 4 268 - 35 Inconclusive 0 6 - 1
Timeout 775 118 - 833 Timeout 23 0 - 37
Tool crash 12 476 - 1 Tool crash 1 32 -0
Verified ~9% ~0.9% - ~0.1% Verified ~36% 0% - 0%

5.4 Manual Inspection and Vulnerabilities Found

To understand the types of vulnerabilities found by each tool and the contracts in which they occur, we manually
inspected all thirty-eight contracts that were classified as unsafe in our experiments. In addition, we also inspected
all v0.8 contracts classified as safe by SoriciTous, in order to understand how complex are the contracts for
which SoriciTous can ensure safety.

Of the eight contracts classified as unsafe by SoriciToUus, five are governance contracts based on ERC20, one is
a token exchange contract based on ERC20 and ERC165, one is token sale contract, and one is a voting contract.
These contracts have 584 lines of code on average, with the smallest having 97 lines of code and the largest
having 1325 lines of code. The vulnerabilities found are caused by reentrant calls, affecting one contract, overflow,
also affecting one contract, and unexpected inputs, affecting the remaining six contracts. Regarding the assertion
failures caused by unexpected inputs, one is simply due to using assert for input validation instead of require,
one is a call by the contract owner to a function containing the selfdestruct statement, which is guarded by
assert(balance > 0), with the implicit assumption being that the owner will transfer all funds from the contract
before making such a call, and four are asserting properties on values returned from calls to external contracts.
The vulnerabilities caused by unexpected inputs, although less severe, are still problematic, since they lead to
execution fees not being refunded depending on the Solidity version being used.

Of the nine contracts classified as unsafe by VERISoL, seven are governance contracts based on ERC20, one
is a token sale contract, and one is a simple token transfer contract. These contracts have 229 lines of code on
average, with the smallest having 37 lines of code and the largest having 397 lines of code. The vulnerabilities
found are caused by overflow, affecting five contracts, unexpected inputs, affecting two contracts, and asserting a
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transfer statement, also affecting two contracts. Both assertions failures caused by unexpected inputs are due
to using assert for input validation instead of require. The transferring of funds can fail for various reasons
pertaining to the target address and should thus be avoided.

Of the twenty-one contracts classified as unsafe by MyTHRIL, four are governance contracts based on ERC20,
four are token sale contracts, two are token time lock contracts, four are wallet management contracts, two are
airdrop contracts, three are logging contracts, which store hashes associated with timestamps, one is a signature
contract, and one is a simple contract that delegates calls to a specified address. These contracts have 390 lines
of code on average, with the smallest having 23 lines of code and the largest having 990 lines of code. The
vulnerabilities found are caused by overflow, affecting thirteen contracts, unexpected inputs, affecting seven
contracts, and unexpected branch execution, affecting one contract. The assertion failures caused by unexpected
inputs are due to validation of functions’ inputs, two occurrences, and owner privileges checking, five occurrences.
The assertion failure caused by an unexpected branch execution consists of an assert(false) statement in a part
of the code that should not be reachable.

Of the thirteen v0.8 contracts classified as safe by SoLicrTous, nine are governance contracts based on ERC20,
two are token exchange contracts based on ERC20, ERC165, and ERC1363, one is a betting contract, and one is a
vesting contract. These contracts have 565 lines of code on average, with the smallest having 233 lines of code
and the largest having 721 lines of code. An interesting point is that three contracts contain comments stating
that they were independently audited.

6 RELATED WORK

There is much interest in formally verifying smart contracts. With Ethereum being one of the most used platforms
for smart contract applications currently, most verification works target either EVM bytecode, which is deployed
directly on the blockchain, or Solidity source code, which is compiled to EVM bytecode. Verification approaches
vary in both their scope and the manner in which they are carried out. The scope ranges from the checking of
specific vulnerabilities, usually selected from among high-profile documented exploits, to the use of different
forms of specification languages, be they code assertions, design patterns, or behavioral descriptions. The manner
goes from fully automated verification, aimed at developers, to manually intensive checking, usually intended to
be used as auditing aid.

6.1 Automated Verification of Specific Vulnerabilities

OYENTE [42] is one of the pioneers in the field, using symbolic execution of EVM bytecode, underpinned by
satisfiability modulo theories (SMT) solving, to check for common pre-defined vulnerabilities. MAIAN [50] uses
symbolic execution to check for specific types of trace vulnerabilities in EVM bytecode, i.e. vulnerabilities that
manifest themselves over many transactions, and also relies on SMT solving. MANTICORE [47] is based on a
symbolic execution engine for EVM that searches for pre-defined vulnerabilities using SMT solving. SLITHER [21]
is a static analysis framework for the verification of Solidity contracts containing several vulnerability detectors
based on bounded model checking. ETHAINTER [12] is a static analysis tool focused on tainted information
detection on EVM bytecode, it relies on Datalog and can catch vulnerabilities such as free access to a contract’s
selfdestruct instruction. The issue of smart contract gas consumption, i.e. the payment of fees for the execution
of contracts, and its related vulnerabilities, is considered in [43], where gas consumption estimation is tackled
via SMT solving. An approach aimed at preventing vulnerabilities from being introduced in the first is place is
that of ScrLra [58], an alternative programming language based on System F [53] built with contract safety as a
principal concern. SCILLA’s type system prevents a number of runtime vulnerabilities from being implemented
and the language is accompanied by a framework for static analyses capable of checking specific properties,
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including the estimation of gas consumption. In contrast to the previously mentioned works, however, SciLLa
does not target Ethereum, being used instead in the Zilliqa platform [63].

Compared to our approach, these techniques are restricted in terms of the scope of their verification. SoLiciTous
differs from them by not constraining the verification to predefined properties, allowing developers instead to
check any properties that can be expressed via code assertions.

6.2 Automated Verification using Specification Languages

A verification framework based on F* [60] as an intermediary language, enabling the translation of both EVM
and Solidity code to F* and the subsequent checking of error patterns via SMT solving, is proposed in [7]. It
allows for the definition of different patterns in F*, but lacks support for many important language features, such
as loops. SECURIFY [64] encodes EVM bytecode into Datalog and checks for defined bytecode patterns, with a set
of patterns being pre-defined, and a specification language being provided for the definition of additional ones.
ETBMC [26] is a bounded model checker based on SMT solving targeting EVM bytecode. It can define a precise
model of a contract’s memory and is capable of checking a set of relevant properties, including access to the
selfdestruct instruction. Extension of the checking capabilities is possible by encoding additional properties as
constraints to be checked. Zgus [38] is a framework to check the correctness and fairness of smart contracts
targeting the Ethereum or Fabric [4] blockchain platforms, with a fairness specification language being defined,
from which assertions are injected into the source code prior to verification. It translates high-level source
code into LLVM [41] bitcode, from which CHCs are generated and discharged to a solver, using either the
SEAHORN [29] or SMACK [15] model checkers. SAFEVM [1] translates EVM bytecode to C, and then uses C
verifiers to check properties such as invalid array access and division by zero, as well as assertion violations.
ETHOR [57] is a static analysis tool targeting EVM bytecode. It abstracts the bytecode into CHCs via its HoRSt
framework and uses reachability checking to verify the absence of vulnerabilities such as reentrancy. It can also
check assertion failures by verifying the reachability of the INVALID EVM instruction. SMARTPULSE [59] allows for
the checking of safety and liveness properties in Solidity contracts. The desired properties need to be specified in
the SmartLTL language and be provided to SMARTPULSE together with the contract’s source code and a model of
the environment in which it is expected to operate. SMARTPULSE instruments the contract’s code based on the
properties specified, translates it to the BooGIE intermediary language, and then performs verification based on
counter-example guided abstraction refinement (CEGAR).

The three tools used for comparison in our evaluation also fall in this category. SoLc-VERIFY [31, 32] translates
Solidity source code to the BooGIE intermediary language and then generates verification conditions that can
be discharged to SMT solvers. In addition to checking for issues such as overflow and underflow, and assertion
violations, it also provides support for annotations that can be added to the code to complement assertions.
VERISOL [66] also translates Solidity source code to the BooGIE intermediary language, checking assertion
violations first in an unbounded manner and, if that does not yield a result, in a bounded fashion. MYTHRIL [17] is
a tool capable of symbolic execution of EVM bytecode to check assertion violations and some specific properties.
It is potentially unsound, since it relies solely on bounded analysis over a given number of transactions, leaving
undisclosed bugs that happen only after extended use of the contract. In contrast to our approach, these techniques
tend to rely on existing frameworks, e.g. BOOGIE, and provide weaker guarantees, e.g. MYTHRIL.

The fundamental problem that all cited tools attempt to tackle, that of verifying that a contract complies with
a user-made specification, is also the target of Soricrtous. The difference here comes from how the problem
is approached. The cited works all rely on indirect representation in one way or another, even when CHCs are
involved, as is the case of Zeus and ETHOR, while SorLicrToUs models the contracts directly in the formalism
suitable for solving.
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6.3 Manually Supported Verification

K [55] is a semantic framework that has specific support for EVM [34], as well as Solidity [25] and Vyper [24],
but is time-consuming and difficult for non-expert users to interact with, since it relies on manual intervention
for verification. Deductive verification using WHY3 is proposed in [49]. This approach involves crafting and
verifying smart contracts in Why3’s language, WhyML, and then compiling them to EVM, but it was evaluated
only on a single case study. VERX [52] verifies functional properties of Solidity contracts written using its own
specification language, it uses SMT solving and has a certain degree of push-button automation, but may require
user input during the verification. The cited tools differ fundamentally from SovriciTous by requiring human
intervention during the verification process, in addition to the specification of properties. Compared to our
approach, these techniques have the obvious drawback of not being fully automated, with their target audience
comprising mainly of highly specialized users, and should thus be considered orthogonal.

7 CONCLUSIONS

In this article we presented a novel approach to the automated verification of smart contracts, called direct
modeling, which allows us to bypass intermediary steps commonly found in current verification approaches.
Our approach is instantiated to the Solidity language and targets the CHC formalism, leading to CHC models
that (a) formally capture the semantic features specific of smart contracts, (b) enable efficient fully automated
verification of contracts’ properties, and (c) can directly exploit powerful CHC solvers for the production of both
safe inductive invariants and CEXs. We implemented our approach in Sovicrrous, the CHC model checking
engine of the Solidity compiler’s formal verification module SMTCHECKER. An extensive evaluation involving
22446 real-world contracts specifying in total 33197 properties was performed, comparing SoLICITOUS against
three state-of-the-art tools. The results obtained demonstrate the benefits of our approach, with an order of
magnitude improvement in the percentage of verified contracts. In light of our evaluation, we believe that our
approach represents an effective and highly promising avenue for the verification of smart contracts.

Interesting directions for future research include (i) the further enhancement of the modeling, (ii) validation of
the verification, and (iii) instantiation to other languages. For the first direction, enhancements could be made
by considering both known external code during the verification, e.g. a call to a previously deployed contract
written by the same development team, in order to increase precision, and the gas consumption of the contract’s
functions, to predict their execution fees. For the second direction, we envision lightweight correctness certificates
that can be used to independently and automatically validate the safety of smart contracts, with their practical
goal being to provide assurances to third parties about the contracts they are interacting with. Concretely, such
certificates would validate results of unsatisfiability for CHC solvers, in a similar manner to what is already done
with solvers for Boolean satisfiability (SAT) [67] and SMT [51]. For the third direction, our approach could be
instantiated to other languages for smart contracts development, in order to investigate its generality and extend
its practical application.
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Fig. 3. Refutation tree for the set II4 U X 4. Besides its label, each node is annotated with a tuple containing the head of the
referenced clause and the current value of relevant variables. The values 0xA1 and 0xA2 represent two Ethereum addresses,

Bi =226 — 1015, and By = 226 — 1015 + 1.
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Fig. 5. Comparison of number of contracts classified as safe by allocated time.
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