
Lookahead in Partitioning SMT
Antti E. J. Hyvärinen1, Matteo Marescotti2, and Natasha Sharygina1

1 Università della Svizzera italiana, Switzerland
2 Facebook, UK

Parallel SMT Solving

SMT-COMP 2021 -- the first time SMT solvers competed in a truly parallel setting
(64/1600 virtual CPU cores)

-> Parallel implementations of some of the best solvers (CVC5, OpenSMT, Par4, STP, Vampire)
-> Often the parallel solvers performed better than the best sequential solvers

See https://smt-comp.hyvarinen.ch/2021/parallel-and-cloud-tracks.html

The question on how to best achieve scalability is very relevant

Increasingly relevant as a result of widely available parallel execution environments
(mainly Amazon EC2)

https://smt-comp.hyvarinen.ch/2021/parallel-and-cloud-tracks.html

Portfolio vs Divide-and-Conquer

Algorithm Portfolio: Divide-and-Conquer:

- Run a set of solvers in
parallel on the same
instance

- Terminate when one solver
determines satisfiability

- Possibly share information
between different solvers

- Partition the search space of an
instance to mutually disjoint parts

- Terminate when one solver has
shown satisfiability or all partitions
have been shown not to contain
solutions

- Possibly share information, but
make sure that the information is
valid in the target partition

Divide-and-conquer is much
faster than the sequential version

SMT-COMP 2021 QF linear arithmetic divisions (QF_LinearIntArith, QF_LinearRealArith)

✕ -- satisfiable, ☐ -- unsatisfiable

There is no clear winner between
divide-and-conquer and portfolio

Understanding divide-and-conquer in SMT

Divide-and-conquer is complicated to implement. There are many potential
reasons to explain a relative slowdown in SMT

Communication
delays

Construction of
partitions is costly

Memory congestion in
shared memory systems Suboptimal partitions

Statistics-based slowdown in
unsatisfiable instances [HJN11]

Proof-theoretical reasons
[JJ:CP07]

Incomplete understanding of
the real search space in SMT

[HJN11] Hyvärinen, Junttila, Niemelä: Partitioning Search Spaces of a Randomized Search. Fundam. Informaticae 107(2-3): 289-311 (2011)

[JJ:CP07] Järvisalo, Junttila: Limitations of Restricted Branching in Clause Learning. CP 2007: 348-363

Understanding divide-and-conquer in SMT

Divide-and-conquer is complicated to implement. There are many potential
reasons to explain a relative slowdown in SMT

Communication
delays

Construction of
partitions is costly

Memory congestion in
shared memory systems Suboptimal partitions

Statistics-based slowdown in
unsatisfiable instances [HJN11]

Proof-theoretical reasons
[JJ:CP07]

Incomplete understanding of
the real search space in SMT

[HJN11] Hyvärinen, Junttila, Niemelä: Partitioning Search Spaces of a Randomized Search. Fundam. Informaticae 107(2-3): 289-311 (2011)

[JJ:CP07] Järvisalo, Junttila: Limitations of Restricted Branching in Clause Learning. CP 2007: 348-363

In this talk we attempt to exclude some of these reasons and still show a slowdown

Presentation Outline

DPLL
Lookahead

CDCL(T)
Lookahead

Partitioning with
CDCL(T)
lookahead

Experimental results

Communication
delays

Construction of
partitions is costly

Memory congestion in
shared memory systems

Suboptimal partitions

DPLL algorithm

Decisions are heuristically
chosen among unassigned
literals

Propagation occurs when all but
one literal in clause is assigned
to false

Conflict occurs when
propagation forces a literal to
be both true and false

SAT instance in Conjunctive
Normal Form

DPLL search tree

Lookahead in DPLL

Before committing to a decision, see how many literals would propagate as a result
Commit to the decision that results in most propagations

The DPLL algorithm changes a little because of the early conflict detection

Lifting Lookahead to CDCL(T)

Most SMT solvers are driven by a conflict-driven clause-learning SAT solver

The algorithm differs significantly from a DPLL style search

The algorithm learns
clauses using resolution

SMT solvers in addition
learn theory lemmas

There is no search tree in the sense
of a DPLL search

CDCL: Search

Search is ordered as a stack of decisions and propagated variables

CDCL: Clause Learning

A propagated literal has incoming edges from the
propagating clause. Each literal is labelled with decision
level based on number of decision literals in the stack.

A conflict graph guides resolution that derives a learned
clause with a single literal at the highest decision level

If propagation results in conflict, solver constructs a conflict graph

CDCL: Clause Learning

Each literal is labelled with decision level based on
number of decision literals in the stack

A conflict graph guides resolution and derives a learned
clause with a single literal at the highest decision level

If propagation results in conflict, solver constructs a conflict graph

CDCL: Backtracking

By construction the learned clause propagates a new
literal

The learned clause is added to the solver and used for backtracking

Backtracking

The learned clause is added to the solver and used for backtracking

By construction the learned clause propagates a new
literal

A conflict graph guides resolution and derives a learned
clause with a single literal at the highest decision level

Lookahead in CDCL-Based Solving

The idea is to build a DPLL search tree style object

We use a CDCL(T) solver to compute the lookahead values

The CDCL(T) state of the solver evolves

● Learned clauses and theory lemmas affect the lookahead scores
● Use the evolving state to prune partitions that are newly discovered

unsatisfiable

CDLC(T) lookahead algorithm

Build the DPLL tree depth first

● Place the CDCL(T) solver to a given node
● Compute the lookahead score

○ Backtrack and learn clauses in case of conflicts
○ Choose the best literal according to LA

The CDCL(T) solver may encounter conflicts and needs to
backtrack to resolve them, rebuilding parts of the tree

The solver state might change significantly in the lookahead phase

CDCL(T) lookahead in splitting

Construct a DPLL search tree depth-first

● Limit the depth of the tree to n where 2n is the desired number of partitions

Use the CDCL(T) solver to guide the construction of the DPLL tree as in the
CDCL(T) lookahead algorithm

This design results naturally in a splitting algorithm that either

1. Produces exactly 2n splits, or
2. Shows the instance unsatisfiable, or
3. Shows the instance satisfiable.

Experiments

Instances taken from SMT-LIB logics QF_LRA and QF_UF

● The logics exercise three algorithms that are widely used in practical SMT
solving

○ CDCL algorithm (both QF_LRA and QF_UF)
○ Simplex (QF_LRA)
○ Congruence closure (QF_UF)

● We selected instances that are hard: OpenSMT needs 100 seconds to solve
them

○ Recent improvements on OpenSMT result in some of these instances not being that hard, but
they still require more than 10 seconds to solve.

Experimental setup

Lookahead partitioner

Solver

Solver

Solver

Solver

SMT instance

The run time of Part(n) is
● If instance is satisfiabile: the

shortest run time of any Solver
finding a solution

● If the instance is unsatisfiable: the
longest run time of any Solver

P1, …, Pn

P1

P2

...

Pn

Run time of Part(n) does not include communication delays or time to partition

The partitions are inserted as-is to the SMT solver (no incrementality)

Partitioning in two parts

QF_UF: the approach works generally well,
and slowdowns seem to be random noise.

Partitioning in two parts

QF_UF: the approach works generally well,
and slowdowns seem to be random noise.
The boxes pointed to by arrows are
run times for partitioning into 64.

Partitioning in two parts

QF_UF: the approach works generally well,
and slowdowns seem to be random noise.
The boxes pointed to by arrows are
run times for partitioning into 64.

QF_LRA: the approach works generally well.
There are, however, non-trivial slowdowns

Slowdown anomaly: a satisfiable instance (QF_LRA)

Median solving time as a function of
number of partitions
There is an increase before a speed-up at
4 partitions, that then stabilises

Slowdown anomaly: a satisfiable instance (QF_LRA)

Median solving time as a function of
number of partitions
There is an increase before a speed-up at
4 partitions, that then stabilises

Run time for each partition. Partitions are
grouped visually and sorted

When more partitions are created, the
partitions split into two groups:

● Satisfiable (easier)
● Unsatisfiable (harder)

Slowdown anomalies: a satisfiable instance (QF_LRA)

Median solving time as a function of
number of partitions
There is an increase before a speed-up at
4 partitions, that then stabilises

Run time for each partition. Partitions are
grouped visually and sorted

When more partitions are created, the
partitions split into two groups:

● Satisfiable (easier)
● Unsatisfiable (harder)

Each partition was run several time to obtain a
distribution. Overlapping partitions suggest
good balance and result in speedup

The increase in difficulty for Part(2) is quite
clear

Slowdown anomalies: a satisfiable instance (QF_LRA)

Median solving time as a function of
number of partitions
There is an increase before a speed-up at
4 partitions, that then stabilises

Instance solving time statistics as a function of
number of partitions: Part(2) is harder than the
original instance and the spread diminishes with
increasing number of partitions

Slowdown anomalies: an unsatisfiable instance

Median solving time as a function of
number of partitions
Runtime increase until a speed-up at
1024 partitions

Slowdown anomalies: an unsatisfiable instance

Median solving time as a function of
number of partitions
Runtime increase until a speed-up at
1024 partitions

Often a handful of hard partitions, and the rest
are relatively easy

Slowdown anomalies: an unsatisfiable instance

Median solving time as a function of
number of partitions
Runtime increase until a speed-up at
1024 partitions

Increase and especially sudden drop in
difficulty are visible in the distributions

Often a handful of hard partitions, and the rest
are relatively easy

Slowdown anomalies: an unsatisfiable instance

Median solving time as a function of
number of partitions
Runtime increase until a speed-up at
1024 partitions

Runtime increase most visible in
Min and least visible in Max

Computing the partitions with lookahead

16 partitions

The implementation is not
particularly optimised.

Producing instances with
lookahead can be costly

Computing the partitions with lookahead

16 partitions

The implementation is not
particularly optimised.

Producing instances with
lookahead can be costly

Marked instances are the
anomalous ones (✕ - sat, ☐ -
unsat)

Conclusions

Using divide-and-conquer algorithms in parallel SMT solving is in general a good
technique to obtain speedup

Partitioning to many parts not only makes solving often faster, but decreases the
randomness in the run times

Lookahead-based partitioning in CDCL(T) is relatively expensive, but I’m optimistic
that approximative algorithms and optimizations can make this approach practical.

Even when using the good lookahead heuristic there may be surprising slowdowns
especially with the Simplex-based QF_LRA algorithms

