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Abstract. The Ethereum platform is a public, distributed, blockchain-
based database that is maintained by independent parties. Users interact
with Ethereum by writing programs and having miners execute them for
a fee charged on-the-fly based on the complexity of the execution. The ex-
act fee, measured in gas consumption, in general depends on the unknown
Ethereum state, and predicting even its worst case is in principle unde-
cidable. Uncertainty in gas consumption may result in inefficiency, loss of
money, and, in extreme cases, in funds being locked for an indeterminate
duration. This feasibility study presents two methods for determining
the exact worst-case gas consumption of a bounded Ethereum execution
using methods influenced by symbolic model checking. We give several
concrete cases where gas consumption estimation is needed, and provide
two approaches for determining gas consumption, one based on symbol-
ically enumerating execution paths, and the other based on computing
paths modularly based on the program structure.

1 Introduction

Algorithms for reaching consensus in a distributed environment have recently
found applications in financial transactions based on distributed, public databases.
One of the most famous applications of such systems is the Bitcoin platform. The
idea is generalized to executing programs in [17] and has then been applied to
other blockchains [12,13], most notably to the Ethereum platform that provides
a Turing-complete execution environment where participants run programs in
the form of smart contracts [4].

Smart contracts resemble classes in programming languages such as Java,
C++, or Python, in that they contain data fields, called storage, and program
code, called functions, which in turn have variables with a scope local to the
functions. They differ from traditional programs in that, once deployed, a smart
contract cannot be changed and will be publicly available. The contracts are
commonly associated with monetary value, and therefore programming errors
in contracts might have financial implications to the contract participants. As a
result, the correct behaviour of contracts is of high interest to the participants.



The execution of the Ethereum platform is carried out by miners that mine
the transactions between a contract participant and a contract for a fee. The fee
is based on the cost of the transaction as specified by the execution environment,
in an abstract quantity called gas. A participant specifies the price he or she is
willing to pay for a unit of gas, and provides an amount of money for the trans-
action. The miner then keeps the price of the actual gas used in the transaction
from the amount as a compensation for mining the transaction, and returns the
rest. In the whole Ethereum platform the daily gas costs sum up to roughly
500’000 USD at the moment of writing, and therefore even small changes in gas
consumption can have a big cumulative effect.

In general the cost of a transaction depends on the unknown state of the
platform, and therefore it is useful to talk about transaction’s worst-case gas
consumption. Ethereum provides a Turing-complete execution environment, and
therefore computing the worst-case consumption is undecidable.3 We address the
central challenge of computing the exact worst-case gas consumption of a trans-
action through highly efficient methods adapted from symbolic bounded model
checking [3] and using efficient SMT solvers [16,10,2,7]. The gas consumption of
a transaction is of interest to contract participants for several reasons. In the
following, we identify three cases in which computing gas consumption can help
in making Ethereum more efficient.

– The Ethereum protocol imposes an upper limit for the amount of gas that
a transaction may consume. As a result, if the execution cost of a function
increases over time, it may happen that at a certain point a transaction of a
program can no longer be carried out [1]. Computing the gas consumption
helps identifying such programming errors.

– A reliable gas estimation helps a participant to place a price on the unit of
gas in line with the utility of the transaction. An amount that turns out to
be insufficient to carry out the transaction results in the participant losing
the money without executing the transaction, while an overestimated gas
consumption makes the transaction less appealing to a miner and therefore
less likely to be executed.

– An approach for computing the exact worst-case gas consumption can be
used as an aide to the developer for comparing semantically equivalent smart
contracts with respect to their gas consumption. If the tool can show that
one implementation has a lower gas consumption than others, the developer
can choose to deploy the implementation with the lower gas consumption.

We define the gas consumption paths (GCPs) for Ethereum, and exhaustively
examine all GCPs of a function using symbolic methods. The paths are identified
in the high-level language Solidity, and projected to the low-level assembly code
EVM currently used in Ethereum. This approach has several advantages: Due to
the combination of high and low-level representations we are able to be precise
on the execution paths while maintaining exactness of the gas consumption. The

3 The protocol imposes, however, a maximum gas consumption for a block, making
the computation in principle decidable.



approach is independent of the low-level representation, where gas consumed by
the instructions might depend on protocol version, different compilers might
produce different code, and even the assembly language is subject to change.

We suggest two algorithms for studying the GCPs. Both use techniques in-
fluenced by symbolic model checking [3] to enumerate all paths that can have
different gas consumption. The first, Gas Consumption Path Enumeration, col-
lects all constraints that affect the gas consumption, evaluates all combinations of
them one-by-one, and simulates those that are satisfiable. The second, Function-
Oriented Gas Consumption Path Enumeration constructs GCPs for each func-
tion as explicit cost-equivalence classes, which are reused through variable re-
naming to recursively construct more cost-equivalence classes for calling func-
tions. We outline in addition how both algorithms can be parallelized. Both
algorithms are capable of computing the exact worst-case behaviour assuming
that the underlying bounded model checking formula exactly describes the con-
tract behaviour and that the EVM and Solidity gas consumption paths have
one-to-one correspondence.

Related work. The solc compiler for the Solidity language provides a gas con-
sumption estimate as part of the compilation. However, the estimator assumes
concrete values for transaction parameters and the Ethereum state, therefore
merely providing a lower bound for the worst-case gas consumption.

The tool GASPER [5] analyses Ethereum smart contracts compiled into the
low-level EVM bytecode and is capable of identifying certain constructs that
are costly and can be simplified to equivalent, less costly programs. While some
technologies used in GASPER, such as SMT solvers and symbolic computation,
are similar to ours, we identify two important differences: We propose to work
on the higher-level Solidity language, and our goal is to estimate the worst-case
gas consumption instead of identifying code that can be optimized.

Incorrect gas consumption values for EVM instructions enable DoS attacks
on Ethereum based on frequently executing under-evaluated instructions. In [6],
the authors propose an emulation-based framework to automatically adjust the
gas prices of EVM instructions based on measuring their resource consumptions.
As part of the emulation the approach measures the gas consumption of functions
based on control and data flow, but the emulation is based on random sampling
and therefore is bound to be incomplete for all but the simplest contracts. Our
approach instead guarantees the completeness of the gas consumption measure-
ment through symbolic computation and could therefore be used for improving
the precision of the approach.

Correctness aspects of smart contracts other than gas consumption have been
studied using symbolic methods. For instance Oyente [14] extracts the control
flow graph from the EVM bytecode of a contract, and symbolically executes it
in order to detect some vulnerability patterns, although it is neither sound nor
complete. Zeus [11] is a framework for verification of Solidity smart contracts
using abstract interpretation and symbolic model checking. The tool works by
converting Solidity to LLVM bit code, and verifying reachability properties using
the SeaHorn model checker [9].



Table 1. Some EVM instruction costs [18]. The second half of the table lists examples
of instructions whose cost depends on the context in which they are executed and the
arguments provided.

Instruction Gas Description

JUMPDEST 1 Indicates a valid jump destination
POP 2 Pop from the stack
PUSHn 3 Push an n-bit item to stack
ADD/SUB 3 Arithmetic Operation
LT/GT/SLT/SGT/EQ 3 Arithmetic comparisons
MLOAD/MSTORE 3 Memory operations
MUL/DIV/MOD 5 Arithmetic Operations
JUMP 8 Unconditional jump to a location at the top of

the stack
JUMPI 10 Conditional jump to a location at the top of the

stack
SLOAD 200 Load from storage

CALL 700 Call a contract transaction with zero-valued ar-
guments

CALLVAL 9,000 Call a contract transaction with non-zero valued
arguments

SSTORE 5,000 Store a zero, or non-zero when previous value is
non-zero

SSTORE 20,000 Store a non-zero when previous value is zero
SSTORE 15,000 Added to refund counter when storing a zero

and previous value is non-zero.

2 Preliminaries

The Ethereum Virtual Machine (EVM) is a distributed-consensus-based com-
puter running in the Ethereum blockchain [4]. EVM executes smart contracts,
programs written in a stack-based byte-code providing a small set of low-level in-
structions. Smart contracts can be seen as entities that contain scoped program
functions which operate on contract-wide storage that is persistent over func-
tion calls, and local variables that are only visible inside a function. We define
a function in Ethereum, both in EVM byte-code and in solidity, as f(v) where
f is the name of the function, and v is the set of function’s formal parameters.
When clear from the context, we omit v. The storage, denoted by an array S,
is the set of storage variables that the function may access. Accesses to storage
are denoted by S[i] where i is an integer.

While smart contracts correspond to concepts such as instances of Java
classes, they differ in an interesting way in some respects. For instance, once
deployed in Ethereum, smart contracts become publicly visible and the contract
code cannot be changed. Anybody can interact with EVM through transactions,
i.e., creating smart contracts or calling their functions, by paying a miner that
will carry out the transaction.



The complexity of a transaction is measured in its gas consumption. Each
EVM instruction has an associated gas consumption, a measure that relates
the instruction to its storage or execution cost. See Table 1 for examples of
some costs. In addition to instruction-specific costs, certain instructions and
declarations affect the size of the memory local to a function, called the active
memory [18]. Let a and b be the sizes of the active memory in bytes, respectively,
before and after executing an instruction. The possible change incurs a cost or
a refund defined as

∆Cmem(a, b) = 3 · (a− b) +

⌊
a2

512

⌋
−
⌊
b2

512

⌋
.

To execute a transaction through a miner, a user provides a price he or she is
willing to pay for a unit of gas in a currency called Ether, and the total amount
of Ether that the transaction may consume. Assuming no errors are encountered
while running the transaction and the amount paid for the actual gas consump-
tion is sufficient, the transaction is carried out successfully. If carrying out the
transaction requires more gas than what is provided, the execution is terminated
without a refund.

Due to the memory model of EVM, in some cases the cost of an instruc-
tion depends on arguments of the instruction or the state of the contract when
executing the instruction. For example:

– The instruction SSTORE writes into contract storage. The operation is costly
in particular if a non-zero value is written to a storage location that previ-
ously contained a zero value. The EVM execution model contains a refund
counter which is used for rewarding the user for executing instructions that
make EVM less expensive. This is reflected in the case where SSTORE in-
struction writes a zero value to a location that previously held a non-zero
value, resulting in a refund.

– The instruction cost of the instruction pair CALL and CALLVAL depend on
their arguments. The instructions are used to call a transaction in another
contract. While technically two different instructions, they can be interpreted
as a single instruction from the perspective of a higher-level language. In this
case the cost of a transaction depends on whether the values of the arguments
passed in the call are zero.

The cost of a complete transaction in EVM is in part defined by the flow of
control dictated by the EVM state, arguments, and the function code. Due to ar-
gument and environment dependence of instruction costs, the control flow graph
is not sufficient for determining the transaction cost. We generalize the control
flow graph to a gas consumption graph by adding new edges and nodes based on
the instruction argument and environment dependence in a natural way, and call
paths in the gas consumption graph gas consumption paths (GCP). All execu-
tions of a function that follow the same gas consumption path consume therefore
equal amount of gas. Our approach aims at identifying a GCP that maximizes
the gas consumption over all GCPs. Instead of working directly on EVM byte-
code, we base the analysis on the higher-level Solidity language, arguably the



most popular language for writing smart contracts at the time. Therefore we
generalize the concept of GCPs to Solidity GCPs. These are not in general the
same for instance due to low-level optimizations available for EVM. As a result
we do not attempt to compute the gas consumption on the Solidity code, but
instead compute exact EVM gas consumption using concrete executions that are
guaranteed to cover all Solidity GCPs.

We assume that the Solidity GCPs cover also all EVM GCPs. We want to
emphasise this methodological choice as a potential threat to the validity of the
results, and will reflect it in the theorems on correctness in the next sections.

To identify potentially different GCPs we employ bounded-model-checking
techniques [3] together with SMT solvers [16,10,2,7], by operating on the static
single assignment (SSA) level of Solidity where loops have been unwound up to
a given limit. The approach can be made complete by increasing the unwinding
limit since the Ethereum protocol imposes a maximum gas consumption for a
transaction.

3 Gas Consumption Path Enumeration

We present an algorithm for enumerating symbolically Solidity GCPs based on
the unwound SSA representation of smart contracts. While the number of GCPs
is in general exponential in the size of the unwound SSA representation, due to
the symbolic representation the algorithm runs in polynomial space.

We first give the translation of a Solidity contract to an unwound SSA
(USSA) form in Fig. 1 for an example program adapted from [8]. For brevity,
Fig. 1 (a) uses a pseudo-code resembling the Solidity language instead of the
actual Solidity language.4 The contract consists of functions f and g, where
g calls f. Function g writes to the storage variable z and uses the solidity
msg.sender.transfer function here abstracted simply as transfer(z). Func-
tion f does operations on its arguments inside a loop, stores the result into a
local variable, and returns the result after the computation.

The search for GCPs is done on the USSA form, given in Fig. 1 (b). The form
consists of a sequence of guarded assignments having the form c → b = e(x) or
c→ b =s e(x), where c is a conjunction of Boolean-valued expressions, and e(x)
is an operation over variables x. We distinguish between assignments where the
left side of the equality is a variable in memory (=) and a storage location (=s)
since depending on the values these have different costs (see Table 1). Similarly
the costs of some instructions depend on their arguments. For this purpose we
define the function ArgCond that maps an instruction to its cost condition. For
instance, ArgCond(a+ b) = ∅, and ArgCond(transfer(x)) = {x = 0}. The cost
implied by ∆Cmem only depends on the control flow path and therefore requires
no special treatment.

The pseudo-code of the enumeration-based algorithm is given in Alg. 1. The
algorithm takes as input an entry point function f(v) and constructs the USSA

4 For a compilable Solidity contract see Fig. 2.



int z;

func g(x, y):

if (x >= y)

if (y >= 0)

z = x + y

transfer(z)

z = f(x, y)

func f(a, b):

int i = 0

while (i < a + b):

if (i < a):

i = i + a

else:

i = i + b

return i

x1 ≥ y1 ∧ y1 ≥ 0→ z1 =s x1 + y1; (1)

x1 ≥ y1 → transfer(z1); (2)

true→ fa1 = x2; (3)

true→ fb1 = y2; (4)

true→ fi1 = 0; (5)

(fi1 < fa1 + fb1) ∧ (fi1 < fa1)→ fi2 = fi1 + fa1 ; (6)

(fi1 < fa1 + fb1) ∧ (fi1 ≥ fa1)→ fi3 = fi1 + fb1 ; (7)

(fi1 < fa1 + fb1)→ fi4 = ite((fi1 < fa1), fi2 , fi3); (8)

(fi1 ≥ fa1 + fb1)→ fi5 = fi1 ; (9)

true→ fi6 = ite((fi1 < fa1 + fb1), fi4 , fi5); (10)

(fi6 < fa1 + fb1) ∧ (fi6 < fa1)→ fi7 = fi6 + fa1 ; (11)

(fi6 < fa1 + fb1) ∧ (fi6 ≥ fa1)→ fi8 = fi6 + fb1 ; (12)

(fi6 < fa1 + fb1)→ fi9 = ite((fi6 < fa1), fi7 , fi8); (13)

(fi6 ≥ fa1 + fb1)→ fi10 = fi6 ; (14)

true→ fi11 = ite((fi6 ≤ fa1 + fb1), fi9 , fi10); (15)

true→ fret1 = fi11 ; (16)

true→ z2 =s
fret1 ; (17)

(a) Pseudo-
solidity

(b) USSA approximation (bound = 2)

Fig. 1. Converting a contract into a USSA



starting from f , in-lining recursively all functions called from f (line 1). The
USSA is then traversed to construct a set of Boolean expressions C by adding
each conjunct from each guard c of the USSA assignment in lines 4–9. Additional
Boolean expressions are added to C for each storage assignment =s (line 7), and
for each instruction whose cost depends on its arguments (line 9). The function
pre(xi) = xi−1 maps a USSA variable xi to its previous instantiation. In case xi
is the first instantiation (i.e., i = 1), pre(xi) is a “fresh” variable not appearing
in the USSA.

In the second phase the algorithm exhaustively queries the SMT encoding of
the USSA form for each Boolean combination of expressions from C and obtains
values for v and S that cover these cases in case of satisfiability. The cost of each
value combination for v and S is then queried by simulating the transaction, and
the highest gas estimate is returned as the exact worst-case bound.

Input : Entry function f ; unwind limit n
Output: A set of Boolean expressions C

1 Let U = the USSA form starting from f unwound up to n
2 Let C = ∅
3 foreach guarded assignment a ∈ U do
4 Let c1 ∧ . . . ∧ ck be the guard of a

5 C = C ∪
⋃k

i=1{ci}
6 if a is of form c1 ∧ . . . ∧ ck → y =s e(x) then
7 C = C ∪ {(e(x) = 0) ∧ (pre(y) = 0), (e(x) 6= 0) ∧ (pre(y) = 0)}
8 end
9 C = C ∪ArgCond(e(x))

10 end
11 foreach truth value combination for the elements of C do
12 if C ∧ U is satisfiable then
13 Measure the gas consumption of f on environment corresponding to the

satisfying truth assignment
14 Update the maximum if necessary

15 end

16 end
Algorithm 1: Enumeration-based algorithm to compute GCPs of a function f .

Example 1. Running Alg. 1 on the USSA form on Fig. 1 (b) gives

C = {x1 ≥ y1, y1 ≥ 0, (x1 + y1 = 0) ∧ (z0 = 0), (x1 + y1 = 0) ∧ (z0 6= 0), z1 = 0,
fi1 < fa1

+ fb1 , fi1 < fa1
, fi6 < fa1

+ fb1 , fi6 < fa1
,

(fret1 = 0) ∧ z1 = 0), (fret1 = 0) ∧ z1 6= 0)},

where the first two constraints x1 ≥ y1 and y1 ≥ 0 and the whole of the second
row constraining the local variables of the functions fij , faj

, fbj come from the
if-conditions; the conjunctive constraints (x1 + y1 = 0) ∧ (z0 = 0), (x1 + y1 =
0) ∧ (z0 6= 0) come from the argument and environment dependency of SSTORE



(see Table 1), and the constraint z1 = 0 comes from the argument dependency
of CALL and CALLVAL, that is, ArgCond(transfer(z1)); and the third row comes
similarly from the argument and environment dependency of SSTORE.

The constraint set C is then provided to an SMT solver together with an
SMT representation of the USSA form. Each combination of truth values for
the constraints in C is queried from the USSA form, resulting in the worst case
211 = 2048 SMT queries. Note that due to the incremental implementation of
SMT solvers in practice the number of queries might be (exponentially) smaller,
depending on the order of the queries. In certain scenarios also the input v of
the function might be known, reducing the number of queries to a fraction of
the worst case.

From the results of the satisfiable queries the algorithm will extract concrete
values for v and S, which are then used for computing exact gas consumptions
for the corresponding gas consumption paths.

The USSA form presented in Fig. 1 does not acknowledge the invariant z ≥
0, and is therefore more permissive than the original contract. Obtaining such
contract invariants is non-trivial and out of the scope of this paper. To obtain
exact worst-case gas consumption, contract invariants need to be conjoined to
the USSA.

By construction of Alg. 1 and the definition of GCPs, we immediately have
the following theorem:

Theorem 1. Given a function f , assuming a USSA for f that exactly describes
the contract behaviour, and that there is a one-to-one mapping between the So-
lidity and the EVM code, Algorithm 1 return the worst-case gas consumption of
f .

4 Function-Oriented GCP Enumeration

In this section we present an algorithm for Function-Oriented GCP Enumeration
(FGCP), an approach to computing GCPs that prunes locally the immediately
unsatisfiable gas consumption paths. The basic GCP Enumeration presented in
Sec. 3 in-lines every function call and computes GCPs from the encoding of the
whole program. The function-oriented approach computes the paths gradually,
starting from the low-level instructions and refining the set of GCPs discovered
so far in a recursive manner. We expect local pruning of GCPs to be particularly
efficient for contracts that call a given function multiple times, since the approach
is able to reuse previously computed, function-specific GCPs.

To present the function-oriented approach, we change slightly the notation
used in Sec. 3. We introduce cost equivalence classes that extend the notion
of cost condition from a single instruction to a block of instructions and user-
defined functions. The cost equivalence classes capture the conditions under with
a function behaves differently with respect to gas consumption. They correspond
exactly to the GCPs of the function. We use the term function to refer to both
low level instructions, such as arithmetic operations, and user-defined functions,



since cost-equivalence classes do not distinguish between the two. We do not dis-
tinguish between = and =s, but instead introduce a separate function SSTORE
that is used for updating the storage S. Finally, we introduce a separate function-
oriented version of the static single assignment form, called FSSA, that is based
on guarded function calls instead of guarded assignments.

Definition 1 (Environment). Given a function f(v) and storage S, the envi-
ronment of an execution of f is an evaluation υ for v and σ for S.

Given a function f and its environment, the execution of f is deterministic
and results in a new storage state.

Definition 2 (Cost-equivalence class). Given a function f(v) and storage
S, a cost-equivalence class is a formula representing environments ϕ(S,v), such
that the cost of executing f on any environment satisfying ϕ is the same.

Algorithm 2 computes a set of cost-equivalence classes for the input function
f(v). Note that the set of classes computed by the algorithm is not guaranteed
to be the minimal, namely there may be different classes representing executions
with equal costs.

We define with C the map from function to a set of its cost-equivalence
classes, such that every environment satisfies exactly one formula. Thus, given
a function f(v), the cost equivalence classes of f is the finite set

C[f(v)] = {ϕ1(S,v), . . . , ϕn(S,v)}

such that
∨n

i=1 ϕi is a tautology and for all i 6= j, ϕi ∧ ϕj is unsatisfiable.
Initially, all the basic functions are defined in C having their classes in-

serted manually following their cost specification. For instance, in Ethereum
storing a value in the storage is performed by the operation SSTORE, which
cost depends on both the value and the storage location [18]. In particular,
setting a storage location from zero to a non-zero value costs more than all
the other cases. Thus, according to the EVM gas consumption specifications,
C[SSTORE(l, v)] = {(S[l] = 0 ∧ v 6= 0), (S[l] 6= 0 ∨ v = 0)}.

Algorithm 2 assumes that C contains all the functions in the input function’s
call tree. Such functions are both basic functions and user defined functions
for each of which a previous execution of the algorithm created its classes. We
assume there is no recursion.

Definition 3 (FSSA: Function-oriented SSA). Given a function f(v) and
its USSA representation, the FSSA representation is a list of guarded function
calls, one for each function call in f and having the form c→ g(l 7→ vg) where
l ⊇ v are the local USSA variables representing the inlining of the call mapped
to the arguments vg needed for executing g, and c ∈ l is the USSA guard of the
call.

The FSSA provides the necessary information for building the call specific
mapping M on line 5 of Algorithm 2. In particular, M maps the current call site



Input : A FSSA f(v), the cost-equivalence classes C.
1 Let Trf (S,v) the USSA of f , having local SSA variables l.
2 foreach c→ g(l 7→ vg) in f do
3 with Trf compute
4 π(S,v) := path constraint of the call g(vg).
5 M(S,v,vg) := the mapping from v to vg of the call g(vg).

6 end
7 Let s = ∅
8 foreach ϕ(S,v) in C[f ] do
9 if ¬π ∧ ϕ is SAT then s← s ∪ {¬π ∧ ϕ};

10 foreach ψ(S,vg) in C[g] do
11 Let ϕ′(S,v) = π ∧ ϕ ∧M ∧ ψ
12 if ϕ′ is SAT then
13 s← s ∪ {ϕ′}
14 end

15 end

16 end
17 C[f ]← s

18 end

Algorithm 2: The FGCP algorithm to compute the set C[f ] of cost equiva-
lence classes of f .

to the previously computed cost-equivalence classes of the callee. Therefore M
enables building the cost-equivalence classes of a callee function g (from Def. 2
defined over its variables vg), in terms of v. A new cost-equivalence class in
terms of the caller variables is built by conjoining M and ψ in line 11, resulting
in a formula defined over S and v. Such operation is always possible because the
USSA provides a formula for computing USSA local variables l in terms of v.
Then, a simple rewriting following each FSSA call l 7→ vg will therefore build
the new class in terms of v. An example of FSSA is given in Fig. 2.

Theorem 2. Given a function f , assuming that the USSA formula Trf used
in Algorithm 2 exactly describes the contract behaviours and that the EVM and
Solidity gas consumption paths have one-to-one correspondence, Algorithm 3 re-
turns the maximum gas consumption of f .

Theorem 2 ensures that the size of each classes set in C is finite, and that every
possible behaviour is considered. This proves termination and completeness of
the algorithm.

Proof sketch. The property that every environment satisfies exactly one class
in C is an invariant during the execution of Algorithm 2. The property is main-
tained inductively. In line 11 the algorithm creates the new classes ϕ′ for f from
the classes ψ of the callee g. Each ϕ′ is mutually exclusive provided that all
ψ in C[g] are mutually exclusive, because every ψ appears in the conjunction.
Furthermore, the disjunction of s is a tautology meaning it is complete, if the
disjunction of all ψ in C[g] is also complete. The models excluded by π being in
the conjunction in line 11, are considered by the class ¬π added to s in line 9. �



Input : A function f(v), the cost-equivalence classes C.
Output : The maximum cost c.

1 Let c = 0
2 foreach ϕ(S,v) in C[f ] do
3 Let σ(S), υ(v) = an environment in ϕ
4 Let c′ the cost of executing f(υ) with storage σ
5 if c′ > c then c← c′;

6 end
7 return c
Algorithm 3: The algorithm to compute the maximum gas consumption.

Algorithm 3 computes the costs of every cost-equivalence class and returns
the maximum. Definition 2 ensures that every environment satisfied by the same
equivalence class has the same cost. Thus, on line 3 the SMT solver is queried
for a model of each class ϕ, which is guaranteed to be satisfiable by line 13
of Algorithm 2. We split the environment in two parts: σ assigning storage
locations’ values, and υ assigning values to the input argument v. Then on
line 4 the function f is executed on the specific environment and the cost of
such execution is returned. If the cost is higher than the current maximum, on
line 5 the current maximum is updated to the new value.

4.1 Parallelization Opportunities

Often the complexity and intrinsic sequentiality of model checking algorithms
prevent parallelization. This results in missing the opportunity to exploit the
modern hardware infrastructures, increasingly directed toward higher degrees of
parallelism. Algorithms 1, 2 and 3 are immediately suitable for parallelization.

Due to the worst-case exponential number of SMT queries that Alg. 1 needs
to perform we believe that the part most profiting from parallelization is the
evaluation of truth assignments and simulating the execution on the block start-
ing at line 11. Since the USSA form U remains the same over the queries, the
parallelization may be enhanced with a clause-sharing scheme similar to [15].

Algorithm 2 can be parallelized by asynchronously executing the building of
all formulas and SMT queries inside the foreach at line 8. Each independent
process can safely execute line 13 because inserting a new formula in the set s
affects neither the future nor running executions. Executing line 16 and proceed-
ing to the next function call can be done as soon as all independent executions
are terminated. Algorithm 3 can be easily parallelized with using the MapRe-
duce paradigm by defining proper map and reduce procedures. In this particular
case the procedure map maps classes to their costs, while reduce compares the
costs in order to compute the maximum.



5 Example

In this section we provide the example contract C, and we simulate the execution
of Algorithms 2 and 1 on C.

1 contract C {

2 int a;

3 function f(bool c, int z)

4 {

5 if (c)

6 {

7 g(z);

8 z = z + 1;

9 g(z);

10 }

11 }

12

13 function g(int u)

14 {

15 a = u;

16 }

17 }

1 f(bool c, int z):
2 c→ g(z 7→ u)
3 c→ ADD(z 7→ x, 1 7→ y, z1 7→ r)
4 c→ g(z1 7→ u)
5

6 g(int u):
7 > → SSTORE(id(a) 7→ l, u 7→ v)
8

9 ADD(int x, int y, int r):
10 > → r = x+ y
11

12 SSTORE(int l, int v):
13 > → S[l] = v

Fig. 2. Left: An example contract with two functions. Right: the encoding to FSSA.
Lines not representing an implication are only intended to show which function the
following implications refer to. The macro id() returns the storage id of the variable.

5.1 Function-Oriented GCP Enumeration

The contract in Fig. 2 uses two basic functions, namely ADD and STORE. Following
the Ethereum gas specification we define

C[ADD(x, y, r)] = {>}, and

C[SSTORE(l, v)] = {(S[l] = 0 ∧ v 6= 0), (S[l] 6= 0 ∨ v = 0)}.

The execution of Algorithm 2 on g(u) and C will result in the classes

C[g(u)] = {M7 ∧ (S[l] = 0 ∧ v 6= 0),M7 ∧ (S[l] 6= 0 ∨ v = 0)}.

where M7(S, u, l, v) := (l = id(a)∧ v = u). Note that M7 describes the mapping
of the specific function call in line 7 of the FSSA in Fig. 2, which is the only
function call in g, having path constraint π := >. The transition relation Trg of
g is

Trg(S, u) := S[id(a)] = u.



After simplifying, the classes of g are

C[g(u)] = {(S[id(a)] = 0 ∧ u 6= 0), (S[id(a)] 6= 0 ∨ u = 0)}.

We now consider an execution of Algorithm 2 on f(c, z), a function with 3
FSSA guarded calls at lines 2, 3 and 4 of Fig. 2 right, all having π := c. The
USSA transition relation of f is

Trf(S, c, z) := c→ (S[id(a)]1 = z ∧ z1 = z + 1 ∧ S[id(a)]2 = z1),

and the mappings for each function call in f are

M2(S, c, z, u) := (u = z),

M3(S, c, z, x, y, r) := (x = z ∧ y = 1 ∧ r = z + 1), and

M4(S, c, z, u) := (u = z + 1).

The resulting classes for f are

C[f(c, z)] = { ¬c,
c ∧ S[id(a)] = 0 ∧ z 6= 0 ∧ z 6= −1,
c ∧ S[id(a)] = 0 ∧ z = 0,
c ∧ S[id(a)] = 0 ∧ z = −1,
c ∧ S[id(a)] 6= 0}.

Algorithm 2 computes a total of 5 classes. This set is not the minimal because
both classes C[f]3 and C[f]4 cause exactly one write from zero to non-zero,
resulting in the same cost. The minimal set would then be of size 4. However,
by trivially combining all the cases, the total number of combinations is 16. The
proposed algorithm is therefore able to reduce the number of possible classes
consistently with respect to trivial enumeration, keeping the size of C reasonable.

5.2 Symbolical GCP enumeration

The USSA form for contract C in Fig. 2 is

c1 → gu1
= z1;

c1 → a1 =s gu1
;

c1 → gu2
= z1 + 1;

c1 → a2 =s gu2
;

a3 = ite(c1, a2, a0);

Running Alg. 1 on the USSA gives the set

C = {c1, (a0 = 0) ∧ (gu1
= 0), (a0 6= 0) ∧ (gu1

= 0),
(a1 = 0) ∧ (gu2

= 0), (a1 6= 0) ∧ (gu2
= 0)}.

The size of the set is five, resulting in the worst case 25 = 32 SMT queries.



6 Summary and Future work

In this paper we have presented a solution to the problem of estimating the
gas consumption for Ethereum smart contracts based on techniques inspired by
bounded model-checking techniques.

We have defined a gas consumption path which extends a program path in
a natural way taking into account the fact that the same operation consumes
different amount of gas depending on the values of its arguments and the cur-
rent environment. We have presented two different algorithms to identify gas
consumption paths of a given function. For each gas consumption path we are
able to obtain, using SMT solver, the state of the environment that forces the ex-
ecution to take the given path. Finally, we can use the functionality provided by
EVM to compute the exact gas consumption of the function under the obtained
state of the environment.

The main application is in computing the worst-case gas consumption that
provides useful insights for the developers and may lead to uncovering a flaw
in the design of the smart contract or may provide useful information when
choosing between two alternative implementations. Worst-case gas consumption
is of interest also for a user who wants to call a method of a contract with certain
arguments, but the state of the environment is not known.

As a next step we plan to implement the presented algorithms on top of
the EVM framework APIs. The implementation will serve us to compare and
evaluate our proposed approach on real-world smart contracts.
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