
Interpolation-Based Model Checking for Efficient
Incremental Analysis of Software

Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina
Faculty of Informatics, University of Lugano

Via Guiseppe Buffi 13, CH-6904 Lugano, Switzerland

Abstract—Verification based on model checking has recently
obtained an important role in certain software engineering tasks,
such as developing operating system device drivers. This extended
abstract discusses how model checking can be made more efficient
by using the structure from program function calls. We use this
idea in two orthogonal ways, both of which fundamentally depend
on automatically summarizing the relevant behavior of the
function calls based on an earlier verification. The first approach
assumes a piece of software needs to be verified with respect to a
set of properties, whereas the second approach considers a case
where an early version of a software has been verified but needs
to be re-verified after an upgrade. These techniques have been
implemented in tools FunFrog and eVolCheck for verifying C
programs. Both of them have been tested on a range of academic
and industrial benchmarks, and provide in many cases an order
of magnitude speed-up with respect to the baseline. They seem
to scale to programs with thousands of lines of code.

I. INTRODUCTION

Model checking is a powerful technique for automati-
cally verifying that the behavior of a system implementation
conforms to its specifications. For instance, if the system
being verified is a C program, its specifications could be a
set of assertions written by the programmer or obtained by
automatic means from the source code. The advantages of
model checking are often shaded by the high consumption of
computational resources, the state-space explosion problem.
Many algorithms have been developed to efficiently cope with
this problem. In particular, the state-space of a system is often
expressed symbolically, typically as a Boolean formula, instead
of explicitly as a graph. Other approaches include Bounded
Model Checking (BMC) [1], and different types of automated
abstraction, such as predicate abstraction [2], interpolation-
based reasoning [3], and function summarization [4], [5], [6].
Most state-of-the-art model checking tools implement some
combinations of these methods in order to deal with complex
verification tasks.

In this extended abstract we discuss a technique for ex-
tracting reusable information about software to avoid repeating
previous computation in an incremental verification task. The
repetition occurs naturally when the same piece of code is
verified multiple times with respect to different properties (for
example, [7]), or when a previously verified software needs
to be re-verified after a software upgrade. We report that
the presented approach often scales to software of practical
significance, and in particular to validation cases provided by
VTT Technical Research Centre of Finland and ABB. The
technology is being integrated to the CCRT collaborative code
review tool developed at IBM.

II. FUNCTION SUMMARIES

We follow the usual notion in symbolic model checking
that the program p to be verified is transformed, along with
conditions c to be verified, into a propositional formula φp∧φc

in conjunctive normal form that is satisfiable if and only if
there is a violation of one of the verification conditions c in
the program. The formula can then be solved with an efficient,
general purpose solver for propositional satisfiability (SAT). In
the transformation process the program is first converted into
a static single assignment (SSA) form where the loops are
unwound up to some fixed bound and then to a propositional
formula via bit-blasting.

Function summarization can be used when φp∧φc has been
proved unsatisfiable. A summary for a function f is a propo-
sitional formula If corresponding to a Craig Interpolant [8]
obtained from the proof and partitioning of the formula φp∧φc

to the function φf being summarized and the rest of the
program φ′

p. By construction the summary If is an over-
approximation of the formula φf in the propositional sense
that still results in an unsatisfiable formula when conjoined
with the rest of the formula. More technically, it is guaranteed
that |= φf → If and that φ′

p ∧ If is unsatisfiable. To use the
extracted summary If in later verification rounds, we substitute
the formula φf in φp ∧ φc with If .

III. SEQUENTIAL PROCESSING OF VERIFICATION
CONDITIONS

Assume the program has now been verified to work cor-
rectly with respect to a verification condition c and we would
like to verify it with respect to another condition c′. If the
summaries If produced in the proof for c are sufficiently
strong, substituting them instead of the full functions φf results
potentially in significant speed-up. However, since a summary
is an over-approximation of a function, made for a specific
property, it may contain spurious behaviors. These behaviors
may be crucial for checking another property, leading to
spurious errors. In such a case, our method requires refinement,
in which we analyze the spurious error trace. The method aims
at determining the function calls substituted by summaries that
occur on the error trace and influence the verification condition.
We repeat the check again without using these summaries, but
keeping the rest. If no such summary is identified, the error
is real. The extraction, use, and refinement of summaries are
described in detail in [9].

IV. SOFTWARE UPGRADE CHECKING

Consider now a case where an earlier version of the
program has been checked with respect to a set of verification

Embedded Tutorial I

978-1-4673-6136-1/13/$31.00 c©2013 IEEE 8

conditions, and now an upgrade of the program needs to be
verified. We propose to reuse the already extracted summaries
to prevent re-verification of the entire code. Initially we first
check whether the old summaries are valid for the functions
of the upgraded program. Since this check considers only
code of the function bodies, its old summary and potentially
summaries of its callees, it is very local and thus it tends to
be computationally inexpensive. If old summaries are valid,
the upgrade is safe. Otherwise, the check is propagated to
the callers of the modified functions. When the summary of
the call tree root is shown to be violated, a real error is
found and it is reported to the user along with an error trace.
After each successful check, any invalidated summaries are
regenerated so that they are ready for the check of the next
version. In addition, our method implements a counter-example
guided refinement to deal with too coarse summaries during
the checks. This process is described in details in [10].

V. IMPLEMENTATION

The sequential processing of verification conditions is
implemented in a model checker called FunFrog [11], an exten-
sion of the CBMC [12] model checker. The upgrade checking
method is implemented in a tool called eVolCheck [13]. The
tools have been evaluated using a set of industrial benchmarks.
Our experimentation confirms that the incremental analysis
of upgrades containing incremental changes is often orders
of magnitude faster than analysis performed from scratch.
Both tools use the OpenSMT solver [14] both for satisfiability
checks and interpolation. Note that OpenSMT is used as a SAT
solver, which gives us bit-precise reasoning1.

VI. CONCLUSIONS AND FURTHER WORK

The FunFrog and eVolCheck tools were validated on a
wide range of various benchmarks inccluding validation cases
provided by project collaborators of the Pincette EU project2.
In particular, they were used to verify the C part of an
implementation of the DTP2 robot controller, developed by
VTT for the ITER fusion reactor. They were also applied to
validation cases, provided by ABB, on a code taken from
the project implementing a core of a feeder protector and
controller. The code originates from an embedded software
used in the ABB hardware module. This is a large scale
project containing many sub-projects which implement various
functions of the feeder device. The total number of lines in the
overall code is in millions. The implementation details and a
thorough experimental analysis is available in [13], [11], [10],
[15], [9].

In addition to the stand-alone use of eVolCheck, we are cur-
rently exploring the use of the tool as a static analysis engine
within the hybrid static/dynamic upgrade checking platform
developed as part of the Pincette project. The platform has been
applied to the analysis of software developed by Pincette’s
industrial partners VTT, ABB, and Israeli Aerospace Industries
(IAI), the last developing a software for a stabilized optical
device payload (MSEOS) of unmanned airborne vehicles. As

1Specialized SAT solvers without proof construction generally outperform
OpenSMT in the satisfiability checks though they lack the interpolant gener-
ation features.

2http:/www.pincette-project.eu/

part of the project, eVolCheck is also integrated in the CCRT
platform3, a collaborative code review tool developed at IBM.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in The 5th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS ’99),
ser. Lecture Notes in Computer Science, vol. 1579. Springer, 1999,
pp. 193–207.

[2] S. Graf and H. Saı̈di, “Construction of abstract state graphs with
PVS,” in The 9th International Conference on Computer Aided Ver-
ification (CAV ’97), ser. Lecture Notes in Computer Science, vol. 1254.
Springer, 1997, pp. 72–83.

[3] K. L. McMillan, “Applications of Craig Interpolation in Model Check-
ing,” in The 11th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’05), ser. Lecture
Notes in Computer Science, vol. 3440, 2005, pp. 1–12.

[4] ——, “Lazy abstraction with interpolants,” in The 18th International
Conference on Computer Aided Verification, (CAV ’06), ser. Lecture
Notes in Computer Science, vol. 4144. Springer, 2006, pp. 123–136.

[5] ——, “Lazy annotation for program testing and verification,” in
The 22nd International Conference on Computer Aided Verification
(CAV’10), ser. Lecture Notes in Computer Science, vol. 6174. Springer,
2010, pp. 104–118.

[6] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Whale: An
interpolation-based algorithm for inter-procedural verification,” in The
13th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’12), ser. Lecture Notes in Computer
Science, vol. 7148. Springer, 2012, pp. 39–55.

[7] T. Ball and S. K. Rajamani, “Bebop: A symbolic model checker for
boolean programs,” in The 7th International SPIN Workshop (SPIN ’00),
vol. 1885. Springer, 2000, pp. 113–130.

[8] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” Journal of Symbolic Logic, vol. 22,
no. 3, pp. 269–285, 1957.

[9] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-based func-
tion summaries in bounded model checking,” in Haifa Verification
Conference (HVC 2011), ser. Lecture Notes in Computer Science, vol.
7261. Springer, 2012, pp. 160–175.

[10] ——, “Incremental upgrade checking by means of interpolation-based
function summaries,” in 12th International Conference on Formal
Methods in Computer-Aided Design (FMCAD 2012), to appear.

[11] ——, “FunFrog: Bounded model checking with interpolation-based
function summarization,” in The 10th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2012), ser.
Lecture Notes in Computer Science, vol. 7561. Springer, 2012, pp.
203–207.

[12] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-
C programs,” in The 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, (TACAS ’04),
ser. Lecture Notes in Computer Science, vol. 2988. Springer, 2004,
pp. 168–176.

[13] G. Fedyukovich, O. Sery, and N. Sharygina, “eVolCheck: Incremental
upgrade checker for C,” in 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2013),
ser. Lecture Notes in Computer Science, vol. 7795. Springer, 2013,
pp. 292–307.

[14] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The
OpenSMT solver,” in The 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’10),
ser. Lecture Notes in Computer Science, vol. 6015. Springer, 2010,
pp. 150–153.

[15] G. Fedyukovich, O. Sery, and N. Sharygina, “Function summaries in
software upgrade checking,” in Haifa Verification Conference (HVC
2011), ser. Lecture Notes in Computer Science, vol. 7261. Springer,
2012, pp. 257–258.

3CCRT is a proprietary tool of IBM

Embedded Tutorial I

9

