
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

The Golem Horn Solver

Martin Blicha1,2[0000−0001−8140−4098], Konstantin Britikov1[0009−0005−7843−7290],
and Natasha Sharygina1[0000−0002−8872−4913]

1 Università della Svizzera italiana, Lugano, Switzerland
2 Charles University, Prague, Czech Republic

{blichm,britik,sharygin}@usi.ch

Abstract. The logical framework of Constrained Horn Clauses (CHC)
models verification tasks from a variety of domains, ranging from verifi-
cation of safety properties in transition systems to modular verification
of programs with procedures. In this work we present Golem, a flexible
and efficient solver for satisfiability of CHC over linear real and integer
arithmetic. Golem provides flexibility with modular architecture and
multiple back-end model-checking algorithms, as well as efficiency with
tight integration with the underlying SMT solver. This paper describes
the architecture of Golem and its back-end engines, which include our
recently introduced model-checking algorithm TPA for deep exploration.
The description is complemented by extensive evaluation, demonstrating
the competitive nature of the solver.

Keywords: Constrained Horn Clauses · Model Checking

1 Introduction

The framework of Constrained Horn Clauses (CHC) has been proposed as a
unified, purely logic-based, intermediate format for software verification tasks [33].
CHC provides a powerful way to model various verification problems, such as
safety, termination, and loop invariant computation, across different domains
like transition systems, functional programs, procedural programs, concurrent
systems, and more [33,34,41,35]. The key advantage of CHC is the separation
of modelling from solving, which aligns with the important software design
principle—separation of concerns. This makes CHCs highly reusable, allowing a
specialized CHC solver to be used for different verification tasks across domains
and programming languages. The main focus of the front end is then to translate
the source code into the language of constraints, while the back end can focus solely
on the well-defined formal problem of deciding satisfiability of a CHC system.

CHC-based verification is becoming increasingly popular, with several frame-
works developed in recent years, including SeaHorn, Korn and TriCera for
C [36,27,28], JayHorn for Java [44], RustHorn for Rust [48], HornDroid for
Android [18], SolCMC and SmartACE for Solidity [2,57]. A novel CHC-based
approach for testing also shows promising results [58]. The growing demand from
verifiers drives the development of specialized Horn solvers. Different solvers

https://doi.org/10.5281/zenodo.7973428

2 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

implement different techniques based on, e.g., model-checking approaches (such as
predicate abstraction [32], CEGAR [22] and IC3/PDR [16,26]), machine learning,
automata, or CHC transformations. Eldarica [40] uses predicate abstraction and
CEGAR as the core solving algorithm. It leverages Craig interpolation [23] not
only to guide the predicate abstraction but also for acceleration [39]. Additionally,
it controls the form of the interpolants with interpolation abstraction [53,46].
Spacer [45] is the default algorithm for solving CHCs in Z3 [51]. It extends PDR-
style algorithm for nonlinear CHC [38] with under-approximations and leverages
model-based projection for predecessor computation. Recently it was enriched with
global guidance [37]. Ultimate TreeAutomizer [25] implements automata-
based approaches to CHC solving [43,56]. HoIce [20] implements a machine-
learning-based technique adapted from the ICE framework developed for discov-
ering inductive invariants of transition systems [19]. FreqHorn [29,30] combines
syntax-guided synthesis [4] with data derived from unrollings of the CHC system.

According to the results of the international competition on CHC solving
CHC-COMP [54,31,24], solvers applying model-checking techniques, namely
Spacer and Eldarica, are regularly outperforming the competitors. These are
the solvers most often used as the back ends in CHC-based verification projects.
However, only specific algorithms have been explored in these tools for CHC
solving, limiting their application for diverse verification tasks. Experience from
software verification and model checking of transition systems shows that in
contrast to the state of affairs in CHC solving, it is possible to build a flexible in-
frastructure with a unified environment for multiple back-end solving algorithms.
CPAchecker [6,7,8,9,10,11], and Pono [47] are examples of such tools.

This work aims to bring this flexibility to the general domain-independent
framework of constrained Horn clauses. We present Golem, a new solver for
CHC satisfiability, that provides a unique combination of flexibility and ef-
ficiency.3 Golem implements several SMT-based model-checking algorithms:
our recent model-checking algorithm based on Transition Power Abstraction
(TPA) [14,13], and state-of-the-art model-checking algorithms Bounded Model
Checking (BMC) [12], k-induction [55], Interpolation-based Model Checking
(IMC) [49], Lazy Abstractions with Interpolants (LAWI) [50] and Spacer [45].
Golem achieves efficiency through tight integration with the underlying interpo-
lating SMT solver OpenSMT [17,42] and preprocessing transformations based
on predicate elimination, clause merging and redundant clause elimination. The
flexible and modular framework of OpenSMT enables customization for different
algorithms; its powerful interpolation modules, particularly, offer fine control (in
size and strength) with multiple interpolant generation procedures. We report ex-
perimentation that confirms the advantage of multiple diverse solving techniques
and shows that Golem is competitive with state-of-the-art Horn solvers on large
sets of problems.4 Overall, Golem can serve as an efficient back end for domain-

3 Golem is available at https://github.com/usi-verification-and-security/golem

https://github.com/usi-verification-and-security/golem

The Golem Horn Solver 3

specific verification tools and as a research tool for prototyping and evaluating
SMT- and interpolation-based verification techniques in a unified setting.

2 Tool overview

In this section, we describe the main components and features of the tool together
with the details of its usage. For completeness, we recall the terminology related
to CHCs first.

Constrained Horn clauses A constrained Horn clause is formula φ∧B1∧B2∧
. . . ∧Bn =⇒ H, where φ is the constraint, a formula in the background theory,
B1, . . . , Bn are uninterpreted predicates, and H is an uninterpreted predicate or
false. The antecedent of the implication is commonly denoted as the body and
the consequent as the head. A clause with more than one predicate in the body is
called nonlinear. A nonlinear system of CHCs has at least one nonlinear clause;
otherwise, the system is linear.

Interpreter Preprocessor BMC KIND

LAWI IMC

SpacerTPA

Engines

.smt2

SAT
+

model

UNSAT
+

proof Interpolator

Core solver

OpenSMT

Interpolation
customization

Fig. 1: High-level architecture of Golem

Architecture The flow of data inside Golem is depicted in Fig. 1. The system
of CHCs is read from .smt2 file, a script in an extension of the language of
SMT-LIB.5 Interpreter interprets the SMT-LIB script and builds the internal
representation of the system of CHCs. In Golem, CHCs are first normalized,
then the system is translated into an internal graph representation. Normalization
rewrites clauses to ensure that each predicate has only variables as arguments.

4 This is in line with results from CHC-COMP 2021 and 2022 [31,24]. In 2022, Golem
beat other solvers except Z3-Spacer in the LRA-TS, LIA-Lin and LIA-Nonlin tracks.

5 https://chc-comp.github.io/format.html

https://chc-comp.github.io/format.html

4 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

The graph representation of the system is then passed to the Preprocessor,
which applies various transformations to simplify the input graph. Preprocessor
then hands the transformed graph to the chosen back-end engine. Engines in
Golem implement various SMT-based model-checking algorithms for solving
the CHC satisfiability problem. There are currently six engines in Golem: TPA,
BMC, KIND, IMC, LAWI, and Spacer (see details in Sec. 3). User selects
the engine to run using a command-line option --engine. Golem relies on the
interpolating SMT solver OpenSMT [42] not only for answering SMT queries but
also for interpolant computation required by most of the engines. Interpolating
procedures in OpenSMT can be customized on demand for the specific needs of
each engine [1]. Additionally, Golem re-uses the data structures of OpenSMT
for representing and manipulating terms.

Models and proofs Besides solving the CHC satisfiability problem, a witness
for the answer is often required by the domain-specific application. Satisfiability
witness is a model, an interpretation of the CHC predicates that makes all clauses
valid. Unsatisfiability witness is a proof, a derivation of the empty clause from
the input clauses. In software verification these witnesses correspond to program
invariants and counterexample paths, respectively. All engines in Golem produce
witnesses for their answer. Witnesses from engines are translated back through
the applied preprocessing transformations. Only after this backtranslation, the
witness matches the original input system and is reported to the user. Witnesses
must be explicitly requested with the option --print-witness.

Models are internally stored as formulas in the background theory, using only
the variables of the (normalized) uninterpreted predicates. They are presented
to the user in the format defined by SMT-LIB [5]: a sequence of SMT-LIB’s
define-fun commands, one for each uninterpreted predicate.

For the proofs, Golem follows the trace format proposed by Eldarica.
Internally, proofs are stored as a sequence of derivation steps. Every derivation
step represents a ground instance of some clause from the system. The ground
instances of predicates from the body form the premises of the step, and the
ground instance of the head’s predicate forms the conclusion of the step. For
the derivation to be valid, the premises of each step must have been derived
earlier, i.e., each premise must be a conclusion of some derivation step earlier in
the sequence. To the user, the proof is presented as a sequence of derivations of
ground instances of the predicates, where each step is annotated with the indices
of its premises. See Example 1 below for the illustration of the proof trace.

Golem also implements an internal validator that checks the correctness of
the witnesses. It validates a model by substituting the interpretations for the
predicates and checking the validity of all the clauses with OpenSMT. Proofs
are validated by checking all conditions listed above for each derivation step.
Validation is enabled with an option --validate and serves primarily as a
debugging tool for the developers of witness production.

The Golem Horn Solver 5

Example 1. Consider the following CHC system and the proof of its unsatisfiability.

x > 0 =⇒ L1(x)

x′ = x+ 1 =⇒ D(x, x′)

L1(x) ∧D(x, x′) =⇒ L2(x′)

L2(x) ∧ x ≤ 2 =⇒ false

1. L1(1)

2. D(1, 2)

3. L2(2) ; 1, 2

4. false ; 3

The derivation of false consists of four derivation steps. Step 1 instantiates
the first clause for x := 1. Step 2 instantiates the second clause for x := 1 and
x′ := 2. Step 3 applies resolution to the instance of the third clause for x := 1
and x′ := 2 and facts derived in steps 1 and 2. Finally, step 4 applies resolution
to the instance of the fourth clause for x := 2 and the fact derived in step 3.

Preprocessing transformations Preprocessing can significantly improve per-
formance by transforming the input CHC system into one more suitable for
the back-end engine. The most important transformation in Golem is predicate
elimination. Given a predicate not present in both the body and the head of the
same clause, the predicate can be eliminated by exhaustive application of the
resolution rule. This transformation is most beneficial when it also decreases the
number of clauses. Clause merging is a transformation that merges all clauses
with the same uninterpreted predicates in the body and the head to a single
clause by disjoining their constraints. This effectively pushes work from the level
of the model-checking algorithm to the level of the SMT solver. Additionally,
Golem detects and deletes redundant clauses, i.e., clauses that cannot participate
in the proof of unsatisfiability.

An important feature of Golem is that all applied transformations are
reversible in the sense that any model or proof for the transformed system can
be translated back to a model or proof of the original system.

3 Back-end Engines of Golem

The core components of Golem that solve the problem of satisfiability of a CHC
system are referred to as back-end engines, or just engines. Golem implements
several popular state-of-the-art algorithms from model checking and software
verification: BMC, k-induction, IMC, LAWI and Spacer. These algorithms treat
the problem of solving a CHC system as a reachability problem in the graph
representation.

The unique feature of Golem is the implementation of the new model-
checking algorithm based on the concept of Transition Power Abstraction (TPA).
It is capable of much deeper analysis than other algorithms when searching for
counterexamples [14], and it discovers transition invariants [13], as opposed to
the usual (state) invariants.

6 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

3.1 Transition Power Abstraction

The TPA engine in Golem implements the model-checking algorithm based
on the concept of Transition Power Abstraction. It can work in two modes:
The first mode implements the basic TPA algorithm, which uses a single TPA
sequence [14]. The second mode implements the more advanced version, split-
TPA, which relies on two TPA sequences obtained by splitting the single TPA
sequence of the basic version [13]. In Golem, both variants use the under-
approximating model-based projection for propagating truly reachable states,
avoiding full quantifier elimination. Moreover, they benefit from incremental
solving available in OpenSMT, which speeds up the satisfiability queries.

The TPA algorithms, as described in the publications, operate on transition
systems [14,13]. However, the engine in Golem is not limited to a single transition
system. It can analyze a connected chain of transition systems. In the software
domain, this model represents programs with a sequence of consecutive loops. The
extension to the chain of transition systems works by maintaining a separate TPA
sequence for each node on the chain, where each node has its own transition rela-
tion. The reachable states are propagated forwards on the chain, while safe states—
from which final error states are unreachable—are propagated backwards. In this
scenario, transition systems on the chain are queried for reachability between
various initial and error states. Since the transition relations remain the same,
the summarized information stored in the TPA sequences can be re-used across
multiple reachability queries. The learnt information summarizing multiple steps
of the transition relation is not invalidated when the initial or error states change.

Golem’s TPA engine discovers counterexample paths in unsafe transition
systems, which readily translate to unsatisfiability proofs for the corresponding
CHC systems. For safe transition systems, it discovers safe k-inductive transition
invariants. If a model for the corresponding CHC system is required, the engine
first computes a quantified inductive invariant and then applies quantifier elimi-
nation to produce a quantifier-free inductive invariant, which is output as the
corresponding model.6

The TPA engine’s ability to discover deep counterexamples and transition
invariants gives Golem a unique edge for systems requiring deep exploration.
We provide an example of this capability as part of the evaluation in Sec. 4.

3.2 Engines for state-of-the-art model-checking algorithms

Besides TPA, Golem implements several popular state-of-the-art model-checking
algorithms. Among them are bounded model checking [12], k-induction [55] and
McMillan’s interpolation-based model checking [49], which operate on transi-
tion systems. Golem faithfully follows the description of the algorithms in the
respective publications.

6 The generation of unsatisfiability proofs also works for the extension to chains
of transition systems, while the generation of models for this case is still under
development.

The Golem Horn Solver 7

Additionally, Golem implements Lazy Abstractions with Interpolants (LAWI),
an algorithm introduced by McMillan for verification of software [50].7 In the
original description, the algorithm operates on programs represented with abstract
reachability graphs, which map straightforwardly to linear CHC systems. This is
the input supported by our implementation of the algorithm in Golem.

The last engine in Golem implements the IC3-based algorithm Spacer [45]
for solving general, even nonlinear, CHC systems. Nonlinear CHC systems can
model programs with summaries, and in this setting, Spacer computes both
under-approximating and over-approximating summaries of the procedures to
achieve modular analysis of programs. Spacer is currently the only engine in
Golem capable of solving nonlinear CHC systems.

All engines in Golem rely on OpenSMT for answering SMT queries, often
leveraging the incremental capabilities of OpenSMT to implement the corre-
sponding model-checking algorithm efficiently. Additionally, the engines IMC,
LAWI, Spacer and TPA heavily use the flexible and controllable interpolation
framework in OpenSMT [52,1], especially multiple interpolation procedures for
linear-arithmetic conflicts [3,15].

4 Experiments

In this section, we evaluate the performance of individual Golem’s engines
on the benchmarks from the latest edition of CHC-COMP. The goal of these
experiments is to 1) demonstrate the usefulness of multiple back-end engines
and their potential combined use for solving various problems, and 2) compare
Golem against state-of-the-art Horn solvers. The benchmark collections of CHC-
COMP represent a rich source of problems from various domains.8 Version
0.3.2 of Golem was used for these experiments. Z3-Spacer (Z3 4.11.2) and
Eldarica 2.0.8 were run (with default options) for comparison as the best Horn
solvers available. All experiments were conducted on a machine with an AMD
EPYC 7452 32-core processor and 8x32 GiB of memory; the timeout was set
to 300 seconds. No conflicting answers were observed in any of the experiments.
The results are in line with the results of the last editions of CHC-COMP where
Golem participated [31,24]. Our artifact for reproducing the experiments is
available at https://doi.org/10.5281/zenodo.7973428.

4.1 Category LRA-TS

We ran all engines of Golem on all 498 benchmarks from the LRA-TS (transition
systems over linear real arithmetic) category of CHC-COMP.

Table 1 shows the number of benchmarks solved per engine, together with a
virtual best (VB) engine.9 On unsatisfiable problems, the differences between the
engines’ performance are not substantial, but the BMC engine firmly dominates
7 It is also known as Impact, which was the first tool that implemented the algorithm.
8 https://github.com/orgs/chc-comp/repositories
9 Virtual best engine picks the best performance from all engines for each benchmark.

https://doi.org/10.5281/zenodo.7973428
https://github.com/orgs/chc-comp/repositories

8 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

BMC KIND IMC LAWI Spacer split-TPA VB
SAT 0 260 145 279 195 128 360

UNSAT 86 84 70 76 69 72 86
Table 1: Number of solved benchmarks from LRA-TS category.

the others. On satisfiable problems, we see significant differences. Fig. 2 plots,
for each engine, the number of solved satisfiable benchmarks (x-axis) within the
given time limit (y-axis, log scale).

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350

ru
nt

im
e

(s
)

solved problems

IMC

KIND

LAWI

Spacer

split-TPA

VB

Fig. 2: Performance of Golem’s engines on SAT problems of LRA-TS category.

The large lead of VB suggests that the solving abilities of the engines are
widely complementary. No single engine dominates the others on satisfiable
instances. The portfolio of techniques available in Golem is much stronger than
any single one of them.

Moreover, the unified setting enables direct comparison of the algorithms.
For example, we can conclude from these experiments that the extra check for
k-inductive invariants on top of the BMC-style search for counterexamples, as
implemented in the KIND engine, incurs only a small overhead on unsatisfiable
problems, but makes the KIND engine very successful in solving satisfiable
problems.

4.2 Category LIA-Lin

Next, we considered the LIA-Lin category of CHC-COMP. These are linear
systems of CHCs with linear integer arithmetic as the background theory. There
are many benchmarks in this category, and for the evaluation at the competition,
a subset of benchmarks is selected (see [31,24]). We evaluated the LAWI and

The Golem Horn Solver 9

Spacer engines of Golem (the engines capable of solving general linear CHC
systems) on the benchmarks selected at CHC-COMP 2022 and compared their
performance to Z3-Spacer and Eldarica. Notably, we also examined a specific
subcategory of LIA-lin, namely extra-small-lia10 with benchmarks that fall
into the fragment accepted by Golem’s TPA engine.

There are 55 benchmarks in extra-small-lia subcategory, all satisfiable, but
known to be highly challenging for all tools. The results, given in Table 2, show
that split-TPA outperforms not only LAWI and Spacer engines in Golem,
but also Z3-Spacer. Only Eldarica solves more benchmars. We ascribe this
to split-TPA’s capability to perform deep analysis and discover transition
invariants.

Golem
split-TPA LAWI Spacer Z3-Spacer Eldarica

22 12 18 18 36
Table 2: Number of solved benchmarks from extra-small-lia subcategory.

For the whole LIA-Lin category, 499 benchmarks were selected in the 2022
edition of CHC-COMP [24]. The performance of the LAWI and Spacer engines
of Golem, Z3-Spacer and Eldarica on this selection is summarized in Table 3.
Here, the Spacer engine of Golem significantly outperforms the LAWI engine.
Moreover, even though Golem loses to Z3-Spacer, it beats Eldarica. Given
that Golem is a prototype, and Z3-Spacer and Eldarica have been developed
and optimized for several years, this demonstrates the great potential of Golem.

Golem
LAWI Spacer Z3-Spacer Eldarica

SAT 131 184 211 183
UNSAT 77 82 96 60

Table 3: Number of solved benchmarks from LIA-Lin category.

4.3 Category LIA-Nonlin

Finally, we considered the LIA-Nonlin category of benchmarks of CHC-COMP,
which consists of nonlinear systems of CHCs with linear integer arithmetic
as the background theory. For the experiments, we used the 456 benchmarks
selected for the 2022 edition of CHC-COMP. Spacer is the only engine in Golem
capable of solving nonlinear CHC systems; thus, we focused on a more detailed
comparison of its performance against Z3-Spacer and Eldarica. The results of
the experiments are summarized in Fig. 3 and Table 4.

10 https://github.com/chc-comp/extra-small-lia

https://github.com/chc-comp/extra-small-lia

10 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

0.01

0.1

1

10

100

0.01 0.1 1 10 100
t/o

m/o

Z
3-

S
pa

c
er

Golem-Spacer

(a) Golem vs Z3-Spacer

0.01

0.1

1

10

100

0.01 0.1 1 10 100
t/o

m/o

E
ld

a
r
ic

a

Golem-Spacer

(b) Golem vs Eldarica

Fig. 3: Comparison on LIA-Nonlin category (× - SAT, ⊡ - UNSAT).

Golem-Spacer Z3-Spacer Eldarica
SAT 239 (4) 248 (13) 221 (6)

UNSAT 124 (2) 139 (5) 122 (0)
Table 4: Number of solved benchmarks from LIA-Nonlin category. The number
of uniquely solved benchmarks is in parentheses.

Overall, Golem solved fewer problems than Z3-Spacer but more than El-
darica; however, all tools solved some instances uniquely. A detailed comparison
is depicted in Fig. 3. For each benchmark, its data point in the plot reflects the
runtime of Golem (x-axis) and the runtime of the competitor (y-axis). The plots
suggest that the performance of Golem is often orthogonal to Eldarica, but
highly correlated with the performance of Z3-Spacer. This is not surprising
as the Spacer engine in Golem is built on the same core algorithm. Even
though Golem is often slower than Z3-Spacer, there is a non-trivial amount
of benchmarks on which Z3-Spacer times out, but which Golem solves fairly
quickly. Thus, Golem, while being a newcomer, already complements existing
state-of-the-art tools, and more improvements are expected in the near future.

To summarise, the overall experimentation with different engines of Golem
demonstrates the advantages of the multi-engine general framework and illustrates
the competitiveness of its analysis. It provides a lot of flexibility in addressing
various verification problems while being easily customizable with respect to the
analysis demands.

5 Conclusion

In this work, we presented Golem, a flexible and effective Horn solver with mul-
tiple back-end engines, including recently-introduced TPA-based model-checking

The Golem Horn Solver 11

algorithms. Golem is a suitable research tool for prototyping new SMT-based
model-checking algorithms and comparing algorithms in a unified framework.
Additionally, the effective implementation of the algorithm achieved with tight
coupling with the underlying SMT solver makes it an efficient back end for
domain-specific verification tools. Future directions for Golem include support
for VMT input format [21] and analysis of liveness properties, extension of TPA
to nonlinear CHC systems, and support for SMT theories of arrays, bit-vectors
and algebraic datatypes.

Acknowledgements This work was partially supported by Swiss National
Science Foundation grant 200021_185031 and by Czech Science Foundation
Grant 23-06506 S.

References

1. Alt, L.: Controlled and Effective Interpolation. Ph.D. thesis, Università della
Svizzera italiana (2016), available at https://susi.usi.ch/usi/documents/318933

2. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity compiler’s
model checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. pp.
325–338. Springer International Publishing, Cham (2022)

3. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
In: Strichman, O., Tzoref-Brill, R. (eds.) Hardware and Software: Verification and
Testing. pp. 195–210. Springer International Publishing, Cham (2017)

4. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
2013 Formal Methods in Computer-Aided Design. pp. 1–8 (2013)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available at
www.SMT-LIB.org

6. Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate abstrac-
tion vs. Impact. In: 2012 Formal Methods in Computer-Aided Design (FMCAD).
pp. 106–113 (Oct 2012)

7. Beyer, D., Dangl, M.: Software verification with PDR: An implementation of the
state of the art. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 3–21. Springer International Publishing,
Cham (2020)

8. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification.
pp. 622–640. Springer International Publishing, Cham (2015)

9. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. Journal of Automated Reasoning 60(3), 299–335 (Mar 2018)

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. pp.
184–190. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

11. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. Tech. Rep. 2208.05046, arXiv/CoRR
(August 2022)

https://susi.usi.ch/usi/documents/318933
www.SMT-LIB.org

12 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

12. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 193–207. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

13. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Split transition power
abstractions for unbounded safety. In: Griggio, A., Rungta, N. (eds.) Proceedings
of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD
2022. pp. 349–358. TU Wien Academic Press (2022). https://doi.org/10.34727/
2022/isbn.978-3-85448-053-2_42

14. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power
abstractions for deep counterexample detection. In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 524–542.
Springer International Publishing, Cham (2022)

15. Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina, N.: Using linear algebra in
decomposition of Farkas interpolants. International Journal on Software Tools for
Technology Transfer 24(1), 111–125 (2022)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp. 70–87.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 150–153. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

18. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: Practical and sound static
analysis of android applications by SMT solving. In: 2016 IEEE European Sympo-
sium on Security and Privacy. pp. 47–62 (2016)

19. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 365–384.
Springer International Publishing, Cham (2018)

20. Champion, A., Kobayashi, N., Sato, R.: HoIce: An ICE-based non-linear Horn
clause solver. In: Ryu, S. (ed.) Programming Languages and Systems. pp. 146–156.
Springer International Publishing, Cham (2018)

21. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools (2021)
22. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification. pp. 154–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

23. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

24. De Angelis, E., Vediramana Krishnan, H.G.: CHC-COMP 2022: Competition report.
Electronic Proceedings in Theoretical Computer Science 373, 44–62 (nov 2022)

25. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate TreeAu-
tomizer (CHC-COMP tool description). In: Angelis, E.D., Fedyukovich, G.,
Tzevelekos, N., Ulbrich, M. (eds.) Proceedings of the Sixth Workshop on Horn
Clauses for Verification and Synthesis and Third Workshop on Program Equivalence
and Relational Reasoning, HCVS/PERR@ETAPS 2019, Prague, Czech Republic,
6-7th April 2019. EPTCS, vol. 296, pp. 42–47 (2019)

26. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed
reachability. In: Proceedings of the International Conference on Formal Methods
in Computer-Aided Design. pp. 125–134. FMCAD ’11, FMCAD Inc, Austin, TX
(2011)

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42

The Golem Horn Solver 13

27. Ernst, G.: Korn—software verification with Horn clauses (competition contribution).
In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 559–564. Springer Nature Switzerland,
Cham (2023)

28. Esen, Z., Rümmer, P.: TriCera: Verifying C programs using the theory of heaps.
In: Griggio, A., Rungta, N. (eds.) Proceedings of the 22nd Conference on Formal
Methods in Computer-Aided Design – FMCAD 2022. pp. 360–391. TU Wien
Academic Press (2022)

29. Fedyukovich, G., Kaufman, S.J., Bodík, R.: Sampling invariants from frequency
distributions. In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp.
100–107 (2017)

30. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained Horn
clauses using syntax and data. In: 2018 Formal Methods in Computer Aided Design
(FMCAD). pp. 1–9 (2018)

31. Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-21. In: Hojjat, H.,
Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification and
Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp.
91–108 (2021)

32. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) Computer Aided Verification. pp. 72–83. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997)

33. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software
verifiers from proof rules. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 405–416. PLDI ’12,
Association for Computing Machinery, New York, NY, USA (2012)

34. Gurfinkel, A., Bjørner, N.: The science, art, and magic of constrained Horn clauses.
In: 2019 21st International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). pp. 6–10 (2019)

35. Gurfinkel, A.: Program verification with constrained Horn clauses (invited paper).
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. pp. 19–29. Springer
International Publishing, Cham (2022)

36. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification.
pp. 343–361. Springer International Publishing, Cham (2015)

37. Hari Govind, V.K., Chen, Y., Shoham, S., Gurfinkel, A.: Global guidance for local
generalization in model checking. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided
Verification. pp. 101–125. Springer International Publishing, Cham (2020)

38. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing – SAT 2012.
pp. 157–171. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

39. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants.
In: Chakraborty, S., Mukund, M. (eds.) Automated Technology for Verification and
Analysis. pp. 187–202. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

40. Hojjat, H., Rümmer, P.: The Eldarica Horn solver. In: FMCAD. pp. 158–164.
IEEE (10 2018)

41. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed
systems. Electronic Proceedings in Theoretical Computer Science 169, 39–52 (dec
2014)

42. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)

14 Martin Blicha, Konstantin Britikov, and Natasha Sharygina

Theory and Applications of Satisfiability Testing – SAT 2016. pp. 547–553. Springer
International Publishing, Cham (2016)

43. Kafle, B., Gallagher, J.P.: Tree automata-based refinement with application to Horn
clause verification. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp. 209–226. Springer Berlin Heidelberg,
Berlin, Heidelberg (2015)

44. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: Jayhorn: A framework for verifying
Java programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification.
pp. 352–358. Springer International Publishing, Cham (2016)

45. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (Jun 2016)

46. Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with domain-
specific abstractions. Acta Informatica 53(4), 387–424 (2016)

47. Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A.,
Barrett, C.: Pono: A flexible and extensible SMT-based model checker. In: Silva,
A., Leino, K.R.M. (eds.) Computer Aided Verification. pp. 461–474. Springer
International Publishing, Cham (2021)

48. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
Rust programs. ACM Trans. Program. Lang. Syst. 43(4) (oct 2021)

49. McMillan, K.L.: Interpolation and SAT-based model checking. In: Computer Aided
Verification. pp. 1–13. Springer, Berlin Heidelberg (2003)

50. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
Computer Aided Verification. pp. 123–136. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

51. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

52. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning. pp. 683–693. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

53. Rümmer, P., Subotić, P.: Exploring interpolants. In: 2013 Formal Methods in
Computer-Aided Design. pp. 69–76 (Oct 2013)

54. Rümmer, P.: Competition report: CHC-COMP-20. Electronic Proceedings in Theo-
retical Computer Science 320, 197–219 (Aug 2020)

55. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and
a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) Formal Methods in Computer-
Aided Design. pp. 127–144. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

56. Wang, W., Jiao, L.: Trace Abstraction Refinement for Solving Horn Clauses. The
Computer Journal 59(8), 1236–1251 (08 2016)

57. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
Verifying solidity smart contracts via communication abstraction in smartace.
In: Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 425–449. Springer International Publishing, Cham (2022)

58. Zlatkin, I., Fedyukovich, G.: Maximizing branch coverage with constrained Horn
clauses. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 254–272. Springer International Publishing, Cham
(2022)

	The Golem Horn Solver

