
Theory-Specific Proof Steps Witnessing Correctness
of SMT Executions

Rodrigo Otoni∗, Martin Blicha∗†, Patrick Eugster∗‡§, Antti E. J. Hyvärinen∗ and Natasha Sharygina∗
∗ Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

{rodrigo.benedito.otoni,martin.blicha,patrick.thomas.eugster,antti.hyvaerinen,natasha.sharygina}@usi.ch
† Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

‡ Department of Computer Science, Technische Universität Darmstadt, Darmstadt, Germany
§ Department of Computer Science, Purdue University, West Lafayette, USA

Abstract—Ensuring hardware and software correctness in-
creasingly relies on the use of symbolic logic solvers, in particular
for satisfiability modulo theories (SMT). However, building effi-
cient and correct SMT solvers is difficult: even state-of-the-art
solvers disagree on instance satisfiability. This work presents a
system for witnessing unsatisfiability of instances of NP problems,
commonly appearing in verification, in a way that is natural to
SMT solving. Our implementation of the system seems to often
result in significantly smaller witnesses, lower solving overhead,
and faster checking time in comparison to existing proof formats
that can serve a similar purpose.

Index Terms—proof of unsatisfiability, correctness certificate,
model checking, satisfiability modulo theories

I. INTRODUCTION

Automated reasoning engines for first-order logic are a core
component of a vast range of different approaches for symbolic
model checking [1]. The aim of these approaches is to leverage
techniques from computational logic to efficiently traverse im-
mense search spaces in order to determine whether hardware
and software implementations conform to their specifications.
Many model checkers ultimately reduce the verification prob-
lem to satisfiability queries in first-order logic expressed in
a form suitable for satisfiability modulo theories (SMT) [2]
solvers. The approach has recently gained significant traction.
In addition to internal and less advertised uses in companies
such as Microsoft, the Ethereum Foundation’s SOLC smart
contract compiler includes the capability of producing logic
models suited for model checking [3].

As the approach becomes more common, the correctness of
the reasoning algorithms becomes critical. Efficient reasoning
algorithms are, however, non-trivial to implement and might
themselves contain bugs. For example, in the 2020 edition
of the SMT-COMP annual competition for SMT solvers (see
smt-comp.github.io/2020), there were in total 149 instances
with unknown status where at least two state-of-the-art solvers
disagreed on the satisfiability. Some SMT solvers (e.g. [4]–
[6]) offer the capability of producing proofs in a given proof
system [7], that, among other uses, can partially respond to
the need of increasing the trust in SMT solver. The idea is

This work was partially supported by the SNSF (grant 200021 197353),
by the ERC (grant FP7-617805), and by the GAČR (project 20-07487S).

that the proofs can be replayed with an external proof checker
(e.g. [8]–[12]), that may then accept or reject the proofs. In
contrast to constructing proofs, we aim at making it simple
for the interested parties to ensure the correctness of results1.
The idea is to use the mathematical and logical foundations
of the SMT algorithms to produce certificates that are simple
enough to allow an auditor to write checkers for them with
little effort, e.g., in a matter of hours or days.

Our emphasis is on quantifier-free fragments of first-order
logic, and in particular showing correct the unsatisfiability
of problems in NP, as this is more challenging than satisfia-
bility in NP, assuming NP 6= coNP. We further concentrate
on the theories of linear real and integer arithmetics, and
uninterpreted functions with equality, as these underly most
other SMT theories. Our core contribution is in showing
how to efficiently certify the executions of the theory-specific
algorithms employed in SMT, and in joining them to produce
checkable certificates starting from a directed acyclic graph
(DAG) representation of the formula and ending, essentially,
in an empty resolvent of a resolution refutation. The base of
the certificates is the deletion resolution asymmetric tautology
(DRAT) format [13], which we extend with real arithmetic
certificates obtained based on Farkas’ Lemma [14], natural
formalization of equality of functions, lemmas for simple
forms of Gomory cuts, and an axiomatization of the Tseitin
transformation [15] and the De Morgan rules for converting
logical circuits to conjunctive normal form (CNF).

We designed a draft format for the certificates, implemented
the TSWC (Theory-Specific Witness Checker) tool for check-
ing the correctness of proofs with respect to DAG represen-
tations of the corresponding input formulas, and instrumented
the SMT solver OPENSMT [16] to produce the certificate
format. Our experiments on the SMT-LIB benchmarks2 show
that the resulting system has a low overhead and that it
performs well in the task of certifying unsatisfiability in
comparison to the existing proof formats for SMT, in particular
the logical framework with side conditions (LFSC) format [17]
from the SMT solver CVC4 [18].

1We refrain from calling our certificates proofs, but acknowledge that the
study of their polynomial simulation relations, worst-case sizes, or other
aspects as a proof system, are interesting, but out of the scope of this paper.

2See http://smtlib.cs.uiowa.edu978-1-6654-3274-0/21/$31.00 © 2021 IEEE

II. STATE OF THE ART

We address the concerns on the correctness of SMT solvers
previously identified for solvers for the propositional satis-
fiability problem (SAT) [19]. The annual SAT competition
adopted a proof format for ensuring the correctness of un-
satisfiability results in 2013 [20] and since 2014 adopted the
DRAT format [13], based on a property of SAT solvers that
inserted clauses result in contradiction as a result of a limited,
polynomial-time computation called unit propagation [21].
The format is designed to express most current SAT solving
techniques compactly and is a generalisation of the deletion
reverse unit propagation (DRUP) [22] and the resolution
asymmetric tautology (RAT) [23] formats. A variant, linear
RAT (LRAT) [24], allows proof-checking in strictly linear time
by decorating the DRAT format with indices serving as hints
for unit propagation, with the price of an additional logging
overhead during the search. While there is no widely accepted
format for SMT proofs [7], we use a subset of the DRAT
format for the underlying SAT reasoning.

The approach closest to ours is that of the SMT solver
CVC4 [18], which produces proofs in the LFSC meta-
logic [17] that can be checked by the automatic LFSC checker.
Similar to us, the system uses DRAT to validate the steps of
the back-end SAT solver. However, the DRAT proofs need
to be translated into LFSC, creating a bottleneck both for
proof production and for proof checking [25]. CVC4’s proofs
can further be reconstructed in COQ [12]. The VERIT SMT
solver [26] is specifically designed for producing proofs and
its proof format [4] is being developed alongside the solver
itself. Unlike in our system, there is no independent checker
for VERIT proofs, but instead proofs can be checked using
interactive theorem provers. A common workflow for SMT
is to tune and replay a solver-specific proof in an interactive
theorem prover such as COQ [8] or ISABELLE/HOL [9]. The
SMT solver Z3 [27] produces its own format [5], which can
be reconstructed in ISABELLE/HOL [11]. Currently the Z3
proof production capability seems to be experimental3 and to
the best of our knowledge, no independent checker exists.

III. BACKGROUND

Our formulas F are in quantifier-free, multi-sorted first-
order logic and contain logical operators, predicates, and
theory atoms, i.e., (in)equalities over arithmetics and uninter-
preted functions. We treat a formula as a directed, acyclic
graph FDAG where nodes are labeled with symbols, i.e.,
functions, predicates, constants, or logical operations; and
outgoing edges are ordered. A symbol is a tuple 〈p, s, c〉 where
p is the symbol name (e.g. +,∧, or 0), s the return sort, and
c = s1 . . . sn are the argument sorts, where n is the arity of
p. Hence if a node is labeled with 〈p, s, c〉, it has the ordered
outgoing edges to the nodes ci having the return sorts si for
1 ≤ i ≤ n. There is a unique source node, and it must be
labelled with a symbol with the Boolean return sort. To avoid

3See the discussion in https://github.com/Z3Prover/z3/issues/4226

exponential blowup, if two subtrees rooted at the nodes r and
r′ are equal (in the natural sense), then r = r′.

Given the formula F , an SMT solver attempts to determine
whether FDAG is satisfiable [2]. The formula FDAG is first
converted to an equisatisfiable CNF formula FCNF, i.e., a
conjunction of clauses over a set of propositional atoms
and their negations, while maintaining the first-order theory
interpretation of the atoms. The SMT solver determines the
satisfiability of the formula in a search space traversal done
by a conflict-driven clause-learning SAT solver [28] operating
on FCNF. During the search the SAT solver adds clauses to
FCNF while maintaining as invariant that if F is satisfiable,
FCNF is propositionally satisfiable, i.e., satisfiable when the
theory interpretations of its atoms are ignored. Therefore, if
at some point FCNF becomes unsatisfiable propositionally, F
must be unsatisfiable as well.

New clauses can be derived in two ways: either as learned
clauses, through resolution on previous clauses, or as theory
clauses, when a theory solver reports that a set of theory
(in)equalities is unsatisfiable. One way to obtain a certificate
for the correctness for an SMT execution determining un-
satisfiability is thus to produce partial certificates connecting
an input formula FDAG to the step in a propositional proof
system deriving false . This includes proving the derivation of
the learned clauses, the theory clauses, and the transformation
into FCNF. In the next section we cover each step in detail,
including how to connect the individual certificates.

IV. SMT CERTIFICATION

The formula FDAG is constructed by the SMT parser
from an input SMT2 file, or directly by the model checker.
The instrumentation added to an SMT solver produces the
certificates and a DAG file, a serialization of FDAG, that in
the case of unsatisfiability can be checked by the certificate
checker using different checker modules, and a DAG checker
that can be used to ensure the correctness of the construction
of FDAG from F with a straight-forward traversal. Figure 1
shows the components of our system.

The core of our system is in SAT solving certificates,
where clauses derived from both CNF conversion and theory
solving are provided to the DRAT proof checker. It thus
suffices to produce and check certificates for the clauses. In
the following we discuss certificate production and checking
for CNF conversion, theories for arithmetics for linear reals
and integers, as well as uninterpreted functions with equality.

Input. The original formula F is transformed to its simpli-
fied version FDAG. To validate the conversion, it suffices to
traverse the representation of F and compare it to FDAG.

CNF conversion. Certifying the CNF conversion consists
of reproducing the standard way in which modern SMT
solvers perform CNF conversion by applying Tseitin transfor-
mation [15] and the De Morgan rules. The certificate consists
of a sequence of rule applications that map the nodes NB

of FDAG having the Boolean return sort to clauses in FCNF;
and a bijection L between NB and a set of literals. The
checker verifies that L is a bijection, traverses FDAG and,

solver input

certificate checker
certificates

SMT2 file

SMT solver

SAT UNSAT valid invalid

checker modules

model checkerSMT parser

DAG file

DAG checker

instrumentation

n
2

1

1
2

n

Fig. 1: Overview of our system. The SMT solver is shown
yellow, with the artefacts needed for certificate production
being in green, and those for checking being in blue.

at each node in NB , applies the appropriate rule based on
the node’s symbol’s name and verifies that the correct set of
clauses appears in FCNF. This is done by applying L−1 to
each literal in the candidate clauses and checking that they
match correctly the node and its children. Identifiers can be
used to point to clauses in the certificate to avoid the worst-
case quadratic blow-up in the size of the CNF formula in cases
where many nodes produce a shared clause.

SAT solving. To validate the computations done by the
back-end SAT solver we use the DRAT proof format, which
is based on the concept of clause redundancy. Having a CNF
formula as input, a DRAT proof sequentially adds and deletes
clauses from the formula while preserving unsatisfiability, with
the last addition of a valid proof being that of the empty clause,
interpreted as false .

Linear real arithmetic solving. To validate the theory
clauses in linear real arithmetic contained in the CNF formula
we recreate the conflicts that originated them. To do so, the
conflict’s explanations, i.e., the conjunction of literals that
led to the conflict, are logged in the linear real arithmetic
certificate, with the literals representing inequalities derived
from the original formula F . Using Farkas’ lemma, a linear
combination of the inequalities must lead to an inconsistency
of form 1 ≤ 0 in a correct witness. The corresponding
conjunction of inequalities is then negated and matched to
the theory clause.

Linear integer arithmetic solving. The theory clauses in
linear integer arithmetic can be validated by two different
methods. The first method involves recreating the conflicts
that happen in the real domain, using the same approach as
done for real arithmetic, since an unsatisfiable result in the
real domain implies the same result in the integer domain. The
second method validates the tautological theory clauses of the
form of integer bounds, given when a non-integer assignment
is found, in order to restrict the search space. Since tautological
clauses do not interfere with the satisfiability of the formula,
we only check if they are well-formed bounds of the form
x ≤ n∨x ≥ n+1, where n ∈ Z and x is a variable in FDAG.

Uninterpreted functions solving. The uninterpreted func-
tions theory clauses have a specific form, which corresponds to
a conflict of a single disequality t1 6= t2 and a set of equalities

P from which an equality t1 = t2 can be derived. Moreover,
this equality can be derived using the basic properties of
logical equality: symmetry, transitivity and congruence. The
uninterpreted functions certificate records the applications of
the transitivity and the congruence rule in the derivation of the
equality t1 = t2. It is possible to record the whole derivation
in the run of the Explain procedure of the state-of-the-art
congruence-closure algorithm of [29] with minimal changes.
To validate the certificate it is sufficient to (recursively) check
that the equality t1 = t2 is well-derived, where an equality is
well-derived if it or its symmetrical counterpart i) is an element
of P , or ii) has been derived using congruence or transitivity
from well-derived equalities.

V. IMPLEMENTATION

We implemented both the certificate production and the
certificate checking parts of our approach, (the instrumentation
and the certificate checker in Fig. 1). The instrumentation
was done on the freely available, MIT licensed SMT solver
OPENSMT [16]. OPENSMT won the quantifier-free linear
real arithmetic (QF LRA) track in SMT-COMP 2020, and
is competitive in the instances from the logics quantifier-
free linear integer arithmetic (QF LIA) and quantifier-free
uninterpreted functions (QF UF). The instrumentation size (as
reported by GIT-DIFF) is 1795 lines, excluding regression and
unit tests. The certificate checking was implemented as the
independent automatic checker TSWC; both our tools are
available online4.

Certificate production. We developed an instrumented
version of OPENSMT, called OPENSMT-C, that accepts
instances in the SMT-LIB2 standard and produces correctness
certificates for each individual checker module, i.e., CNF
conversion, SAT solving, and theory solving for QF LRA,
QF LIA, and QF UF, that can then be forwarded to a checker.
A key point to avoid the introduction of a memory overhead
due to certificate production is that all information relevant to
the certificate is written to the disk immediately, instead of
being stored in an internal data structure of the solver. In the
current implementation we omit certain simple rewriting steps
that OPENSMT performs while transforming F to FDAG.
These steps are thus currently left for the DAG checker. We
took great care that all the simplifications that we do not
validate can indeed be performed by the DAG checker in the
sense that checking them does not require knowledge of the
SMT solver’s data structures.

Certificate checking. Our TSWC tool consists of nine
independent components, one of them being the DRAT-TRIM
proof checker [13] for certifying the results of the SAT
solver, and the other eight being Python scripts with less
than 300 lines of code each. We believe that the compact and
modular checker design makes the code base easier to inspect
both manually and, in the future, automatically. An overview
of TSWC can be seen in Fig. 2. Starting with the CNF
conversion, its checker receives the DAG, the CNF conversion

4Available at: http://verify.inf.usi.ch/certificate-producing-opensmt2

SAT solving

DRAT-trim

CNF conversion

CNF conversion
checker

QF_LRA solving

QF_LRA
theory checker

QF_LRA
containment checker

QF_UF solving

QF_UF
theory checker

QF_UF
containment checker

QF_LIA solving

QF_LIA real
theory checker

QF_LIA integer
theory checker

QF_LIA integer
containment checker

literals file

LA inequalities file

CNF file

QF_LIA clauses file

QF_LRA clauses file

QF_UF clauses file

DAG file

QF_UF terms file

CNF certificate file

DRAT proof file

QF_LIA certificate file

QF_LRA certificate file

QF_UF certificate file

QF_LIA real
containment checker

Fig. 2: TSWC architecture. The nine components are represented as solid rectangles, and are grouped by checker modules
they belong to; the components in blue were developed by us, and the one in purple is off-the-shelf. All the files used by
TSWC are also shown, in green, with the lines indicating which files are used by each component.

certificate, and the CNF formula used by DRAT-TRIM, and it
applies the rules listed by the certificate in order to validate the
clauses on the CNF formula that are derived from the DAG.
The remaining clauses in the CNF formula are theory clauses,
with the purpose of the checkers for each theory being to
validate them. Each theory has both a theory checker, that
validates the theory certificate, and a containment checker,
that checks if all theory clauses added to the CNF formula
are certified; for QF LIA we use both the checkers for real
and integer arithmetics, since it has solving procedures from
both domains. With the clauses derived from both the CNF
conversion and the theory solving validated, DRAT-TRIM can
then ensure unsatisfiability at the SAT level. All auxiliary
data is stored in the literals, inequalities, and terms files. The
literals file contains a mapping between literals and nodes
of FDAG; the inequalities file contains the linear arithmetic
literals, and the terms file contains the uninterpreted functions
and their arguments.

VI. EVALUATION

In our evaluation we used the non-incremental benchmark
sets of each theory supported by OPENSMT-C available in the
SMT-LIB benchmark repository2. For certificate production
we compared our implementation against three proof produc-
ing solvers, namely CVC4 1.8, VERIT 09a24ff-rmx, and Z3
4.8.9; from now on we refer to witnesses as either certificates
or proofs, depending on the tool being referenced. We measure
the number of witnesses produced and their sizes, as well as
the witness production time and overhead, in terms of runtime
and memory use. For witness checking we compared TSWC
against the LFSC checker, which can automatically check
CVC4’s proofs, and is the only tool comparable to TSWC,
in terms of runtime and memory use. Our experiments were
done with a 60 seconds timeout and a 10 gigabytes memory
limit; all results are available online5.

5Available at: https://scm.ti-edu.ch/repogit/verify-witness-evaluation.git

Witness production. We ran all solvers in both standard and
witness producing modes. Our results are compiled in Table I.
For the number of witnesses produced, OPENSMT-C had the
best result for QF LRA and QF UF, also having the smallest
overhead in number of witnesses, while Z3 had by far the best
results for QF LIA. Regarding runtime, OPENSMT-C and
VERIT had the best performances for QF LRA and QF UF,
respectively, while for QF LIA CVC4 had the shortest run-
time in witness producing mode. CVC4’s average runtime for
QF LIA has, however, to be taken with a grain of salt, since
its apparent increase in performance when witness production
is enabled may be due to the sharp increase in the number of
timeouts, which are not part of the computed average. When
comparing memory use, OPENSMT-C had the best results
in witness producing mode for QF LRA and QF UF, while
VERIT had the smallest use for QF LIA. In terms of witnesses
sizes, OPENSMT-C had the best results for QF LIA and
QF UF, while also having a competitive result for QF LRA,
with an average witness size close to that of Z3, which had the
best result. One important point to make about the Z3 proofs
is that they are known to be unstable3, and that it has been over
a decade since the last documented update on their format [5],
[11], unlike CVC4’s [6], [17], [25] and VERIT’s [4], [10]. A
runtime, memory use, and witness size comparison of the two
solvers with most witnesses produced, for each theory, can be
seen in Fig. 3; all pair-wise comparisons are available online5.

Certificate checking. For all proofs produced by
OPENSMT-C and CVC4 we ran their respective checkers,
with our results being compiled in Table II; no witness was
rejected by either tool, nor did we register any memouts. We
can see that TSWC was able to verify more witnesses for
every theory. For runtime and memory use, LFSC had better
results for two of the three theories, but this can be mainly
attributed to the high number of errors it had, which are not
part of the computed average.

TABLE I: Witness production comparison. We report, for each theory, the number of unsatisfiable instances, timeouts, memouts,
and errors, given by the solvers, as well as their average runtime, in seconds, and memory use and witness size, in kilobytes;
an error refers to an exception being thrown during execution. Each cell contains the result for standard mode on the left and
for witness producing mode on the right, with the exception of those for % change, which report the variation on the number
of unsatisfiable instances given, and for average witness size, whose results are only relevant in witness producing mode.

UNSAT % change Timeout Memout Error Avg. runtime Avg. mem. use Avg. witness size

QF LRA
(1648 instances)

OPENSMT-C 636/633 99.5% 151/156 0/0 0/0 3.91/4.31 30532/26603 3956
CVC4 583/570 97.7% 274/289 0/0 0/0 5.73/6.61 35877/76953 13684
VERIT 580/561 96.7% 249/268 0/0 10/10 4.12/5.22 19227/44358 69438

Z3 570/558 97.8% 253/264 0/0 0/0 5.17/5.30 36472/76929 3546

QF LIA
(6947 instances)

OPENSMT-C 2023/1519 75.0% 3341/3892 0/0 0/0 10.07/9.99 113622/51443 13018
CVC4 1398/928 66.3% 3147/3620 0/0 0/0 6.30/1.30 63127/37728 18883
VERIT 1002/953 95.1% 4198/4247 0/0 1/1 1.82/4.05 12028/20277 165914

Z3 2238/2340 104.5% 1786/1685 1/1 0/0 5.17/6.62 58325/276318 24876

QF UF
(7457 instances)

OPENSMT-C 4326/4311 99.6% 24/39 0/0 0/0 0.95/1.14 9416/9563 6730
CVC4 4321/4220 97.6% 34/135 0/0 0/0 0.39/1.83 17517/28316 6854
VERIT 4347/4176 96.0% 3/166 0/0 0/8 0.10/0.79 5931/23940 20102

Z3 4341/4236 97.5% 9/114 0/0 0/0 0.22/1.26 15474/49355 12601

TABLE II: Witness checking comparison. We report, for each theory, the number of verified witnesses, timeouts, and errors,
given by the checkers, as well as their average runtime, in seconds, and memory use, in kilobytes; an error refers to an exception
being thrown during execution. The instances used are those for which both OPENSMT-C and CVC4 produced a witness.

Verified Timeout Error Avg. runtime Avg. mem. use

QF LRA
(567 instances)

TSWC 564 3 0 3.15 67372
LFSC 471 8 88 2.85 102861

QF LIA
(913 instances)

TSWC 903 10 0 1.37 65039
LFSC 128 0 785 0.12 26609

QF UF
(4218 instances)

TSWC 4217 1 0 1.44 69507
LFSC 4157 50 11 4.01 28454

VII. CONCLUSION

SMT solvers are being increasingly used in studying cor-
rectness of safety-critical software, making the correctness
of the solvers themselves critical. A central part of SMT
solvers’ work is in answering satisfiability queries of instances
of problems in NP. While the correctness of a satisfiable
result can be checked in time polynomial in the query size,
certificates for unsatisfiability are believed to be much harder.

We showed in this paper that when a SMT solver claims
that a query on an instance is unsatisfiable, the correctness of
that claim can be checked using the data structures that the
core solving algorithms of SMT are already maintaining, by
connecting them to their underlying mathematical and logical
foundations. In addition, it is easy to write checkers for these
certificates, and producing them has a comparable or smaller
overhead when contrasted with more traditional proofs.

We identify several directions for further work. First, we
believe that the community would benefit from a common
format for the certificates. Second, we would like to extend
the approach to SMT theory combinations and more applied
theories such as arrays and data structures. Third, the produced
certificates could be integrated into tools for more complex
logics such as those with quantifiers, or systems of Horn
clauses. Finally, we believe that connecting the practical
certificates to a formal proof system will provide interesting

insight in the complexity of the SMT algorithms.

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite state concurrent systems using temporal logic specifications: A
practical approach,” in Principles of Programming Languages – POPL
1983, 1983.

[2] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, Satisfiability
modulo theories, 2009.

[3] M. Marescotti, R. Otoni, L. Alt, P. Eugster, A. E. J. Hyvärinen,
and N. Sharygina, “Accurate smart contract verification through direct
modelling,” in International Symposium on Leveraging Applications of
Formal Methods – ISoLA 2020, 2020.

[4] F. Besson, P. Fontaine, and L. Thry, “A flexible proof format for SMT:
a proposal,” First Workshop on Proof eXchange for Theorem Proving –
PxTP 2011, 2011.

[5] L. de Moura and N. Bjrner, “Proofs and refutations, and Z3,” CEUR
Workshop, vol. 418, 2008.

[6] G. Katz, C. Barrett, C. Tinelli, A. Reynolds, and L. Hadarean,
“Lazy proofs for DPLL(T)-based SMT solvers,” in Formal Methods in
Computer-Aided Design – FMCAD 2016, 2016.

[7] C. Barrett, L. de Moura, and P. Fontaine, “Proofs in satisfiabil-
ity modulo theories,” 2014, available at: theory.stanford.edu/ bar-
rett/pubs/BdMF15.pdf.

[8] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner,
“A modular integration of SAT/SMT solvers to Coq through proof
witnesses,” in Certified Programs and Proofs – CPP 2011, 2011.

[9] J. C. Blanchette, S. Bhme, M. Fleury, S. J. Smolka, and A. Steckermeier,
“Semi-intelligible Isar proofs from machine-generated proofs,” Journal
of Automated Reasoning, vol. 56, no. 2, 2016.

[10] H. Barbosa, J. C. Blanchette, and P. Fontaine, “Scalable fine-grained
proofs for formula processing,” in Automated Deduction – CADE 26,
2017.

0.1

1

10

100

0.1 1 10 100

C
V

C
4

(s
ec

on
ds

)

OpenSMT-C (seconds)

(a) QF LRA runtime comparison

0.1

1

10

100

0.1 1 10 100

Z3
(s

ec
on

ds
)

OpenSMT-C (seconds)

(b) QF LIA runtime comparison

0.1

1

10

100

0.1 1 10 100

Z3
(s

ec
on

ds
)

OpenSMT-C (seconds)

(c) QF UF runtime comparison

10000

100000

1× 106

10000 100000 1× 106

C
V

C
4

(k
ilo

by
te

s)

OpenSMT-C (kilobytes)

(d) QF LRA memory use comparison

10000

100000

1× 106

10000 100000 1× 106

Z3
(k

ilo
by

te
s)

OpenSMT-C (kilobytes)

(e) QF LIA memory use comparison

10000

100000

1× 106

10000 100000 1× 106

Z3
(k

ilo
by

te
s)

OpenSMT-C (kilobytes)

(f) QF UF memory use comparison

1000

10000

100000

1× 106

1000 10000 100000 1× 106

C
V

C
4

(k
ilo

by
te

s)

OpenSMT-C (kilobytes)

(g) QF LRA witness size comparison

1000

10000

100000

1× 106

1000 10000 100000 1× 106

Z3
(k

ilo
by

te
s)

OpenSMT-C (kilobytes)

(h) QF LIA witness size comparison

1000

10000

100000

1× 106

1000 10000 100000 1× 106

Z3
(k

ilo
by

te
s)

OpenSMT-C (kilobytes)

(i) QF UF witness size comparison

Fig. 3: Comparison between the two solvers with most witnesses produced, for each theory, both in witness producing mode;
squares and crosses stand for UNSAT and SAT results, the top and right lines represent value limit, timeout, and memout.

[11] S. Böhme and T. Weber, “Fast LCF-style proof reconstruction for Z3,”
in Interactive Theorem Proving – ITP 2010, 2010.

[12] B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz, A. Reynolds, and
C. Barrett, “SMTCoq: A plug-in for integrating SMT solvers into Coq,”
in Computer Aided Verification – CAV 2017, 2017.

[13] N. Wetzler, M. J. H. Heule, and W. A. Hunt, “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Theory and
Applications of Satisfiability Testing – SAT 2014, 2014.

[14] J. Farkas, “Theorie der einfachen ungleichungen.” Journal fr die reine
und angewandte Mathematik, vol. 1902, no. 124, 1902.

[15] G. S. Tseitin, On the Complexity of Derivation in Propositional Calcu-
lus, 1983.

[16] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina,
“OpenSMT2: An SMT solver for multi-core and cloud computing,” in
Theory and Applications of Satisfiability Testing – SAT 2016, 2016.

[17] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli, “SMT proof
checking using a logical framework,” Formal Methods in System Design,
vol. 42, no. 1, 2013.

[18] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification –
CAV 2011, 2011.

[19] A. V. Gelder, “Producing and verifying extremely large propositional
refutations - have your cake and eat it too,” Ann. Math. Artif. Intell.,
vol. 65, no. 4, pp. 329–372, 2012.

[20] A. Balint, A. Belov, M. J. H. Heule, and M. Järvisalo, “Proceedings of
SAT competition 2013: Solver and benchmark descriptions,” Tech. Rep.
B-2013-1, 2013.

[21] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 5, pp. 201 – 215, 1960.

[22] M. J. H. Heule, W. A. Hunt, and N. Wetzler, “Trimming while check-
ing clausal proofs,” in Formal Methods in Computer-Aided Design –
FMCAD 2013, 2013.

[23] M. J. H. Heule, W. A. Hunt, and N. Wetzler, “Verifying refutations with
extended resolution,” in Automated Deduction – CADE 24, 2013.

[24] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in Automated
Deduction – CADE 26, 2017.

[25] A. Ozdemir, A. Niemetz, M. Preiner, Y. Zohar, and C. Barrett, “DRAT-
based bit-vector proofs in CVC4,” in Theory and Applications of
Satisfiability Testing – SAT 2019, 2019.

[26] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine,
“veriT: An open, trustable and efficient SMT-solver,” in Automated
Deduction – CADE 22, 2009.

[27] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems – TACAS
2008, 2008.

[28] J. P. M. Silva and K. A. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, 1999.

[29] R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence closure,”
in Rewriting Techniques and Applications – RTA 2005, 2005.

