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Abstract

Blockchain technologies have drawn significant attention from both academia
and industry over the last decade, with increasing adoption by the general public
and potential to drastically change the way in which individuals and institutions
interact with each other. Due to their extensive use as a means to hold and ma-
nipulate financial assets, they are likely targets of attacks, with assets estimated
in the order of millions of US Dollars having already been lost in the past. In light
of this, the ability to ensure the absence of vulnerabilities is of crucial importance.

This work addresses the need for automated verification of blockchain tech-
nologies with correctness guarantees. The blockchain space is approached both
at the platform and the application level, with the use of verification techniques
based on first-order logic being investigated as a means to tackle the growing
need of assurances in this domain. To strengthen the guarantees provided, the
use of correctness witnesses to validate the results of logic solvers dedicated to
logic fragments of interest is also investigated.

This dissertation draws on recent advances in the field of symbolic model
checking, specifically on techniques based on satisfiability modulo theories (SMT)
and constrained Horn clauses (CHC), and extend the state of the art in a fourfold
manner. It (i) proposes a novel scalable SMT-based model checking approach for
distributed algorithms, which are the cornerstone of blockchain platforms, speci-
fied in TLA+. It (ii) evaluates and enhances a direct modelling CHC-based model
checking approach for smart contracts, which are programs executing on top of
blockchain platforms, written in Solidity. It (iii) proposes a novel format for wit-
nesses of SMT unsatisfiability results, which leads to witnesses that are compact
and lightweight to produce and validate. It (iv) proposes a novel proof-backed
approach for the validation of CHC satisfiability results.

The first two contributions are directly applicable in the blockchain domain
and they interface with the last two via their use of SMT and CHC. Despite the
focus on one specific domain, the insights presented in this dissertation can in
principle be applied in the general case and serve as a basis for further research.
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Chapter 1

Introduction

Distributed ledgers, which underpin the blockchain technologies, allow secure
transactions between distrusting parties to take place without the need of a su-
pervising authority, such as a bank. Their rise promises to disrupt the established
way in which individuals and institutions interact with each other, projecting to
providing a cheaper and more secure way to exchange goods and services.

The use of distributed ledgers was initially focused on the creation of fungi-
ble tokens in the form of cryptocurrencies, e.g., Bitcoin [Nakamoto, 2008]. As
interest in the area grew, blockchain platforms started to also support programs
capable of automatically executing contractual agreements written as code, in
the form of smart contracts. This set the stage for the rise of a whole new ecosys-
tem, one in which developers make applications via smart contracts and rely on
blockchains to securely transmit tokens as intended.

Due to their extensive use as a means to hold and manipulate financial assets,
blockchain technologies are likely targets of attacks. Such attacks can attempt
to exploit vulnerabilities in smart contracts applications [Atzei et al., 2017] or
in the blockchain platforms in which they rely upon [Chen et al., 2020], with
assets estimated in the order of millions of US Dollars having already been lost
in the past. The ability to ensure that no vulnerabilities are present in both smart
contract applications and blockchain platforms is thus of paramount importance,
with formal verification being an ideal approach to achieve this goal.

Formal verification is a broad term referring to a number of logic-based tech-
niques that aim at mathematically ensuring that a program or system behaves
according to some specification, which can range from the simple absence of
overflows to complex functional properties. The different formal verification
techniques vary in their level of automation, expressiveness, and efficiency, of-
ten being best suited to specific settings. One technique that has seen significant
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2 1.1 Blockchain Technologies

advances in the last two decades is the encoding of verification tasks in, and
the solving of, first-order logic (FOL) formulas [Kroening and Strichman, 2016].
Many logic solvers have been developed and used in both academia and industry,
due to their combination of push-button automation, expressive formalisms, and
high level of efficiency in many real world scenarios.

Despite their extensive usage in verification, with one explicit goal being to
prevent bugs that can be exploited by attackers, logic solvers are themselves far
from being immune to bugs. This has been made evident by the constant uncov-
ering of issues during tool competitions over the last few years, with many state-
of-the-art solvers yielding contradictory results [Barbosa et al., 2022b; de Angelis
and Govind V. K., 2022]. This is a critical problem, since unsound results can po-
tentially have catastrophic repercussions, which makes correctness guarantees
vital to practical solver usage.

This dissertation focuses on automated verification of blockchain technolo-
gies via logic solvers with correctness guarantees. The sections of this chap-
ter provide an overview of the relevant blockchain technologies (Section 1.1),
automated verification techniques (Section 1.2), and logic solvers’ correctness
guarantees (Section 1.3), as well a summary of the challenges and contributions
(Section 1.4), and an outline of the remainder of the manuscript (Section 1.5).

1.1 Blockchain Technologies

Blockchain platforms are, at their core, a large number of geographically dis-
tributed replicated state machines. Each replica holds a copy of a ledger, with a
distributed algorithm, often called a protocol, ensuring that ledger updates hap-
pen in a consistent way. Such algorithms are often extremely complex, since they
have to ensure consensus in the presence of Byzantine faults, i.e., they have to en-
sure that faulty nodes behaving arbitrarily do not impede other nodes from func-
tioning correctly [van Steen and Tanenbaum, 2017]. Many different blockchain
platforms exist, each with their own particular protocol [Cachin and Vukolic,
2017]. While initially used only for direct token storage and transfer, the advent
of smart contracts allowed blockchains to serve as the basis for a wide variety of
new applications.

Smart contracts are distributed programs designed to manage and enforce
contract transactions without relying on trusted authorities, but instead exploit-
ing blockchain platforms to achieve this goal. A prime example of such a plat-
form is Ethereum [Buterin, 2014], one of the most used blockchain platforms and
the main target for the development of smart contracts. In the specific case of
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Ethereum, smart contracts are commonly implemented in high-level languages
such as Solidity and Vyper, and then compiled to low-level Ethereum virtual ma-
chine (EVM) bytecode [Wood, 2015], which is deployed on the blockchain itself.
Despite having many elements in common with general programs, smart con-
tracts have their own specificities that make developing and reasoning about
them to be quite different. A good example of such differences is the transac-
tional nature of smart contracts, which ensures that function executions either
terminate successfully or have all their changes reversed, due to how the effects
of these executions are stored in the blockchain. Besides their immediate ap-
plication in the financial sector [Egelund-Müller et al., 2017; Rius and Gashier,
2020], smart contracts have also been used in a variety of other areas, such as
healthcare [Gordon and Catalini, 2018; Zhang et al., 2018], energy manage-
ment [Andoni et al., 2019; Wang et al., 2019], and gaming [Min et al., 2019],
among others [Rouhani and Deters, 2019].

1.2 Automated Verification

Many techniques fall under the formal verification umbrella, including model
checking [Clarke et al., 2018], static analysis [Rival and Yi, 2020], and theorem
proving [Bertot and Castéran, 2004], each with their own level of automation
and list of strengths and weaknesses. Of those, model checking is one technique
that has seen many successes over the years, recognised most notably by the
2007 Turing Award. In addition to being the target of academic interest, model
checking has increasingly been used in industry [Woodcock et al., 2009], with
one of the most famous examples of this trend being its adoption by Amazon
Web Services [Newcombe et al., 2015].

In essence, model checking consists of encoding a program or system, to-
gether with a desired property, in a suitable mathematical formalism, and then
checking if all behaviours respect the given property. The choice of formal-
ism, e.g., state transition graphs checked via graph traversal, has a significant
impact on model checking performance and is thus a major focus of research.
Despite successes, model checking remains a daunting task in practice, due to
limited scalability caused by the well known state explosion problem [Clarke
et al., 2012]. This task, already highly nontrivial in cases consisting exclusively
of sequential behaviours, is made much harder in a distributed setting, in which
communication among different nodes is extensive and done over potentially
unreliable channels, with the possibility of node failures further complicating
reasoning. In an effort to better address this issue, model checking approaches
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based on symbolic reasoning via logic formulas have been proposed, leading to
improvements not only in the verification of programs, e.g., written in languages
such as C/C++ [Gurfinkel et al., 2015] and Java [Kahsai et al., 2016], but also
also of system’s specifications, e.g., written in languages such as TLA+ [Konnov
et al., 2019] and Ivy [McMillan and Padon, 2020].

Symbolic reasoning is commonly done in fragments of FOL, since they are
capable of representing many interesting verification problems, with the choice
of fragment being based on a trade-off between expressiveness and efficiency.
Automated reasoning of FOL formulas is done via logic solvers, with each such
solver catering to one or more FOL fragments. The most well known solver cate-
gories are arguably those of Boolean satisfiability (SAT) and satisfiability modulo
theories (SMT) [Kroening and Strichman, 2016], which respectively cater to for-
mulas in the propositional fragment of FOL and in extensions of it with theories
such as arithmetics, arrays, and bit vectors. Another category of interest is that
of constrained Horn clauses (CHC) [Gurfinkel and Bjørner, 2019], which has
been shown to be a match for Hoare logic [Hoare, 1969] with many practical
uses [Bjørner et al., 2015].

1.3 Correctness Guarantees

Logic solvers are a central part of many modern verification tools, functioning
as their back-end reasoning engines. Despite their importance, these solvers are
known to contain bugs, as exemplified by the 2022 edition of the annual SMT
competition, in which 18 benchmarks led to at least two state-of-the-art solvers
disagreeing on the results [Barbosa et al., 2022b]. In light of this, having guaran-
tees about solvers’ results is of paramount importance. One approach to achieve
this goal is to formally verify the solvers’ code, as has been done for read-eval-
print loop (REPL) [Kumar et al., 2014] and garbage collector [Sandberg Erics-
son et al., 2019] implementations. In spite of the strong guarantees provided,
this approach incurs a high cost to verify the existing codebase and any future
modifications to it, as well as potentially preventing many code optimizations
to be made, which are essential for solver performance. Another, less invasive,
approach, is to validate solvers’ outputs, rather than verifying the solvers them-
selves. This requires a solver, in addition to producing its standard output, to also
produce a witness that can be used by an independent tool to validate the given
result. Currently, the community is moving towards the second approach, with
many witness formats being proposed to validate the outputs of SAT [Heule et al.,
2013a; Cruz-Filipe et al., 2017; Baek et al., 2021] and SMT [Stump et al., 2013;
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Schurr et al., 2021; Hoenicke and Schindler, 2022] solvers, and both the annual
SAT and SMT competitions now following this approach. Codebase verification
can still be applied, however, targeting instead the validation tools [Heule et al.,
2017; Lammich, 2020], which are much less complex and easier to maintain.

1.4 Challenges and Contributions

Driven by the critical need to prevent vulnerabilities that can be exploited by
attackers, significant research effort was made in recent years in order to pro-
vide practitioners with the tooling necessary to formally verify many aspects of
blockchain platforms and smart contracts. The same can be said of the need to
provide correctness guarantees of logic solvers’ results, since a large number of
modern verification tools, targeting the blockchain space or otherwise, rely on
logic solvers. Despite advances, however, many challenges still remain, of which
four are considered in this dissertation. First, verifying real world distributed
systems is often infeasible with existing approaches, since currently available ap-
proaches struggle to cope with the sheer complexity of the task. Second, the exe-
cution model of smart contracts is quite different from those of general programs,
requiring its specificities to be accurately handled during verification. Third, wit-
nesses produced to validate logic solvers’ results tend to be excessively large, up
to the order of gigabytes, which is a limiting factor w.r.t. their practical usage.
Fourth, witness validation approaches for certain FOL fragments require complex
procedures that may themselves have invalid results, undermining any potential
guarantees given.

The contributions of this dissertation, summarised in Figure 1.1, address the
challenges just described and can be split into two categories: automated verifi-
cation and correctness guarantees. Challenges one and two fall under automated
verification and are tackled via novel model checking approaches. To increase ef-
ficiency of verification of distributed systems a scalable SMT-based model check-
ing approach of TLA+ specifications was developed, described in Section 1.4.1.
TLA+ is a language widely used to formalise algorithms underpinning distributed
systems, being thus an ideal target to achieve this goal. To aid in precisely repre-
senting smart contracts specificities during verification a large scale evaluation of
a CHC-based model checking approach of Solidity programs was conducted and
an extension to it proposed, described in Section 1.4.2. Solidity is by far the most
used language for the implementation of smart contracts, being thus a prime tar-
get for verification. Challenges three and four fall under correctness guarantees
and are tackled via novel witness production and checking approaches. To ad-
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SMT-based
model checking of

TLA+ specifications
[Chapter 3]

CHC-based
model checking of
Solidity programs

[Chapter 4]

Validation of
SMT solvers’

unsatisfiability results
[Chapter 5]

Validation of
CHC solvers’

satisfiability results
[Chapter 6]

Distributed
algorithms

Smart
contracts

Automated
verification

Correctness
guarantees

Figure 1.1. Contributions of this dissertation and how they are organised.

dress the issue of witnesses sizes in the context of SMT solving a novel format for
unsatisfiability witnesses with compactness as its main priority was developed,
described in Section 1.4.3. To strengthen the validation guarantees achieved in
the context of CHC solving a novel proof-backed approach for the validation of
satisfiability witnesses was developed, described in Section 1.4.4.

1.4.1 Model Checking of TLA+ Specifications

Reasoning about distributed algorithms is a highly nontrivial task that can greatly
benefit from tool support. Verification tooling can provide not only automation,
but also guarantees regarding the results, which are much needed since pen-
and-paper proofs can contain mistakes that go unnoticed for years [Lincoln and
Rushby, 1993]. TLA+ is a specification language based on the temporal logic
of actions (TLA) which allows users to describe the expected behaviour of a sys-
tem while abstracting away implementation details that do not impact high-level
properties, such as memory management [Lamport, 2002]. It is widely used to
formalise and reason about distributed algorithms, both in academia and in in-
dustry [Newcombe et al., 2015], with a handful of tools being available to aid in
verification tasks [Konnov et al., 2022].

Symbolic model checking of TLA+ specifications was spearheaded by Konnov
et al. [2019], who proposed an encoding of TLA+ into SMT constraints over unin-
terpreted constants and arithmetics. Their tool, APALACHE, saw many successes,
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but encountered difficulties when handling particularly complex specifications.
One key aspect of APALACHE’s approach is the encoding of TLA+ data structures
as uninterpreted constants, which prevents the structural information present in
the input specification to be reflected in the SMT formula encoding it, leading to
a negative impact on performance.

The structural information not forwarded to the SMT solver has the poten-
tial to significantly improve solving efficiency, which is the determining factor in
overall model checking performance. In light of this, an alternative SMT encod-
ing was proposed that makes full use of the SMT theory of arrays [de Moura and
Bjørner, 2009] to encode the main TLA+ data structures. The proposed encod-
ing was implemented in APALACHE and compared against APALACHE’s original
encoding and the explicit state enumeration approach followed by the model
checker TLC [Yu et al., 1999]. The evaluation performed indicates that embed-
ding structural information into the SMT formulas has a significant positive im-
pact on performance, with this insight potentially generalising to other contexts.

The results of this work have been published at TACAS’23 [Otoni et al., 2023b]
and are presented in detail in Chapter 3.

1.4.2 Model Checking of Solidity Programs

Due to their deployment on blockchain platforms, smart contracts have a number
of specificities not found in general programs. Execution-wise, their transactional
nature, in which a function execution either finishes successfully or has all its
changes reversed, is the main difference in relation to traditional programs, such
as those written in C/C++ and Java. Regarding the code itself, it is immutable
after deployment, which prevents vulnerability fixes, publicly visible, allowing
potential attackers to search for code exploits, and freely available, meaning that
any user can interact with its interface. The combination of these features makes
smart contract verification essential, with many approaches aiming to aid in this
being proposed over the years, based on model checking [Kalra et al., 2018;
Albert et al., 2019; Wang et al., 2020], static analysis [Luu et al., 2016; Mossberg
et al., 2019; Permenev et al., 2020], or other techniques [Bhargavan et al., 2016;
Tsankov et al., 2018; Hajdu and Jovanovic, 2020].

A trend among verification approaches targeting smart contracts is the at-
tempt to reuse existing tools, designed to reason about general programs, to
reason about contracts’ behaviours. The clear benefit of this is the reuse of estab-
lished off-the-shelf tools, which can provide much desired stability and efficiency,
but an important drawback is the need of a translation from the domain of smart
contracts to the tool domain, which adds a new unnecessary layer in the verifica-
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tion framework that is error-prone to develop, requires correctness proofs of its
own, and can negatively impact precision and efficiency. The attempt to reuse
existing tools is, thus, interesting at first, but not an ideal lasting solution, with
the alternative being the development of purpose-built algorithms and tooling to
handle all features present in the smart contracts domain natively.

To help tackle this challenge the CHC-based model checking approach tar-
geting Solidity programs by Marescotti et al. [2020] was assessed and extended.
The approach is based on direct modelling, meaning that verification conditions
are generated in the target formalism directly from the control-flow graph (CFG)
of the contract, using domain-specific knowledge, and without any intermediary
steps. Solidity contract verification using constrained Horn clauses, SOLICITOUS

for short, implements the approach and acts as the CHC model checking engine
of SOLCMC [Alt et al., 2022], being capable of checking code assertions as well
as predetermined properties, such as overflows.

The evaluation of SOLICITOUS was done by executing it with 22446 real world
Solidity contracts currently deployed on the Ethereum blockchain and compar-
ing it against three publicly available tools suitable for automated verification
of Solidity assertions, namely SRI’s SOLC-VERIFY [Hajdu and Jovanovic, 2020],
Microsoft’s VERISOL [Wang et al., 2020], and ConsenSys’ MYTHRIL [ConsenSys,
2021]. Quantitative and qualitative analyses of the results obtained were per-
formed, including a manual inspection of all bugs found. In addition, an exten-
sion of the encoding to gather the exact order and arguments of function calls
for better counterexample (CEX) generation was proposed.

The results of this work have been published at TOPS [Otoni et al., 2023c]
and are presented in detail in Chapter 4.

1.4.3 Validation of SMT Solvers’ Unsatisfiability Results

A SMT formula can be either satisfiable, SAT for short (not to be confused with
Boolean satisfiability), meaning that there exists an assignment to its variables
such that the formula evaluates to true, or unsatisfiable, UNSAT for short, if
no such assignment is possible. Witnesses for satisfiable results are called SAT
models, while witnesses for unsatisfiable results are called UNSAT proofs. The
emphasis in this dissertation is on UNSAT proofs for quantifier-free fragments of
FOL, in particular showing to be correct the unsatisfiability of problems in NP, as
this is more challenging than satisfiability in NP, assuming NP ̸= coNP.

The production of UNSAT proofs can currently be done by a number of SMT
solvers, each using their own specific proof format [Barrett et al., 2015]. Proof
checking was initially done by replaying the proof inside theorem provers such
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as COQ [Armand et al., 2011; Ekici et al., 2017] and ISABELLE/HOL [Böhme and
Weber, 2010; Blanchette et al., 2016]. Formats capable of being checked by
lightweight tools, such as the one based on the logical framework with side con-
ditions (LFSC) [Stump et al., 2013], also emerged, providing a way to validate
SMT solvers’ UNSAT results without relying on the infrastructure of a theorem
prover. These formats, however, tend to produce witnesses that are quite large,
hindering their integration into SMT-based tooling.

To address this issue a novel proof format with the goal of producing com-
pact proofs was proposed. The proofs in this format start from a directed acyclic
graph (DAG) representation of the input formula and end, essentially, in an
empty resolvent of a resolution refutation. The DRAT format by Wetzler et al.
[2014] was used as a base, to reason about the propositional fragment of FOL,
and extend with real arithmetic certificates based on Farkas’ Lemma, lemmas for
simple forms of Gomory cuts, a natural formalization of equality of functions,
and an axiomatization of the Tseitin transformation and the De Morgan rules.
The focus was on the theories of quantifier-free linear real arithmetic (QF_LRA),
quantifier-free linear integer arithmetic (QF_LIA), and quantifier-free uninter-
preted functions (QF_UF), as these underpin most other SMT theories. The SMT
solver OPENSMT [Bruttomesso et al., 2010] was instrumented to produce proofs
in the proposed format and the Theory-Specific Witness Checker, TSWC for short,
was implemented to check them. The evaluation performed indicates that the
format leads to smaller proofs that can be produced with a low overhead during
solving, relative to other proof producing solvers, and can be efficiently checked.

The results of this work have been published at DAC’21 [Otoni et al., 2021]
and are presented in detail in Chapter 5.

1.4.4 Validation of CHC Solvers’ Satisfiability Results

The input of a CHC solver is a conjunction of logical implications containing unin-
terpreted predicates, with the task of the solver being to decide if false can be de-
rived or not. If it can the input is considered unsatisfiable, and if it cannot the in-
put is considered satisfiable. As with SMT solving, the SAT and UNSAT acronyms
are used as shorthands for satisfiable and unsatisfiable, and witnesses for these
results are respectively called models and proofs. The production of witnesses
is a common feature of modern CHC solvers, but efforts in witnesses validation
are limited. The validation of models is done via SMT queries, and is currently
supported only by an ad hoc validator tied to the SMT solver Z3 [de Moura and
Bjørner, 2008b]. Unlike is the case for models, however, the proofs produced
cannot be validated with available tooling, given that, to the best of our knowl-
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edge, no proof checking approach currently exists.
Since CHC model validation is underpinned by SMT solving, the same con-

cern regarding the correctness of CHC solvers results is put on the validation
itself, i.e., on the correctness of SMT solvers’ results. To address this, a two-
layered validation approach to provide additional guarantees about the results
obtained was proposed. The first layer, consisting of the SMT queries responsible
for model validation, is enhanced by a second layer, consisting of the production
and checking of SMT proofs, with the result obtained being forwarded to the
user or tool interacting with the CHC solver. The approach is generic w.r.t. FOL
theories and solvers, and is also very modular, enabling different SMT solvers to
be used in the validation, further increasing assurances.

In order to both make the approach practical and conduct an evaluation, the
modulAr consTrained Horn clauses modEl validatioN frAmework, ATHENA for
short, was developed, capable of catering to different combinations of state-of-
the-art CHC and SMT solvers. Concretely, the framework was used to validate
the models produced by three CHC solvers, with each model produced being sep-
arately validated by five proof producing SMT solvers. In addition, all the proofs
produced in the proof formats currently supported by automated proof check-
ers were checked. All 955 linear integer arithmetic (LIA) benchmarks from the
2022 edition of the annual CHC competition were used in the evaluation, 499
containing only linear Horn clauses, i.e., implications with a single uninterpreted
predicate in the implicant, and 456 containing nonlinear Horn clauses, i.e., im-
plications with multiple uninterpreted predicates in the implicant. The results
indicate that model validation can be used in practice, with the majority of the
models being validated with available tooling, but models sizes are a concern.

The results of this work have been accepted to iFM’23 [Otoni et al., 2023a]
and are presented in detail in Chapter 6.

1.5 Outline

The remainder of the dissertation is structured as follows. The necessary back-
ground is covered in Chapter 2. The proposed SMT-based model checking ap-
proach targetting TLA+ specifications is presented in Chapter 3. The evaluation
and extension of the CHC-based model checking approach targeting Solidity pro-
grams by Marescotti et al. is presented in Chapter 4. The proposed approach to
validate SMT unsatisfiability results is presented in Chapter 5. The proposed ap-
proach to validate CHC satisfiability results is presented in Chapter 6. Finally,
closing remarks are presented in Chapter 7.



Chapter 2

Background

This chapter introduces the basics of symbolic model checking, in Section 2.1, the
TLA+ language, in Section 2.2, the Solidity language, in Section 2.3, satisfiability
modulo theories, in Section 2.4, and constrained Horn clauses, in Section 2.5.

2.1 Symbolic Model Checking

Symbolic model checking is a state-of-the-art approach for software verification.
It is a variation of the original model checking approach, now commonly referred
to as explicit state model checking. In contrast to the original approach, which
represents all states explicitly, usually by means of a graph structure, symbolic
model checking represents sets of states as logical constraints under a chosen
formalism. This shift in representation allowed for the production of models that
are significantly more compact and enabled efficient reasoning about systems
that were previously intractable. Here an overview of symbolic model checking
and its uses is provided, with further details being available in the handbook by
Clarke et al. [2018].

Similar to its explicit state counterpart, symbolic model checking has two
steps: modelling and checking. While these steps are in principle independent,
the modelling formalism chosen is often strongly correlated with one or more
checking algorithms. It is also worth pointing out that different encoding ap-
proaches based on the same formalism can be more or less amenable to specific
checking algorithms. Expressive formalisms allow for natural and efficient en-
coding of systems and properties to be verified, but the higher the expressiveness
the harder the problem of deciding if a given property holds or not, with some
formalisms even leading to the checking step to be undecidable.

Once a system is modelled, the checking algorithm tries to establish if there

11
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exists a counterexample (CEX) for the property being checked. A CEX is a se-
quence of transitions starting at the initial state of the model, i.e., the state rep-
resenting the starting configuration of the system being analysed, and reaching
a so called bad state, i.e., a state representing a configuration of the system be-
ing analysed that violates the property being checked; transitions in this context
represent system’s behaviours leading to a change in configuration, e.g., a vari-
able update. If it can be shown that no CEX exists, then the system is considered
safe, i.e., the desired property holds in all possible executions. If, instead, a CEX
exists, then a bug has been found.

The first formalism used to represent a set of explicit states as a single, sym-
bolic, state, was binary decision diagrams (BDD) [Bryant, 1986]. The use of BDD
was an improvement over the state of the art [Burch et al., 1992], but the expo-
nential increase in the number of states, known as the state explosion problem,
remained an obstacle to practicality in software verification.

The next formalism to be widely used in symbolic model checking was propo-
sitional logic, guided by advances in Boolean satisfiability (SAT) solving [Biere
et al., 1999]. SAT solvers are tools specifically designed to decide if there exists
a satisfiable assignment to a formula in propositional logic, i.e., if there is an
assignment to all free variables such that the formula evaluates to true. Satisfi-
ability of general propositional formulas is a NP-complete problem, but despite
this, solvers with clever heuristics are able to solve formulas representing many
practical problems. Such solvers are commonly used to support bounded model
checking (BMC), which is an approach for bounded reasoning that iteratively
tries to find a CEX of an ever increasing length k for a given property. If no CEX
of length k exists and there are still unexplored states, BMC either increments
k or terminates, depending on how deep the user decides to explore. Given its
bound, BMC is only able to establish safety for systems that can be represented
by a finite amount of states.

SAT-based model checking proved to be a great advance, but propositional
logic was found to be very restrictive to model software. The search for expres-
siveness led to the adoption of another formalism for model checking, called
satisfiability modulo theories (SMT). SMT combines propositional logic with
different first-order logic (FOL) theories, such as arithmetics, to provide better
abstractions for modelling, and is discussed in Section 2.4. In addition to provid-
ing a more natural way of representing systems, better abstractions often lead
to performance improvements in solving, which propagate to model checking as
a whole. The benefits that come with using FOL are, however, matched by the
drawback of dealing with formulas whose solving is, in the general case, unde-
cidable. A common way to circumvent this issue is to restrict the modelling to
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decidable fragments of FOL, which limit, for instance, the use of logic quantifiers.
Similar to SAT, a common use of SMT is to support bounded model checking, with
this combination being an active are of research. One of the contributions of this
dissertation, the novel SMT-based encoding of TLA+ described in Chapter 3, falls
in this category.

One of the promises of formal verification is to not only allow for bugs to be
found if they exist, but to also be able to ensure the absence of said bugs in the
opposite case, i.e., establish safety. While relying on a bounded approach, all
safety guarantees given are also bounded, which is an important limitation. One
formalism that has gained traction over the last decade and allows for unbounded
reasoning is constrained Horn clauses (CHC). The CHC formalism is discussed in
Section 2.5, but the two aspects of it that are relevant here are its ability to enable
unbounded model checking and the need to deal with an undecidable problem
in order to do so. The common way in which solving is approached is through
the incremental construction of a safe inductive invariant, i.e., an invariant that
is implied by the initial state and that defines a closed set of states which contains
no bad states. Despite the decidability issue, this approach has been shown to be
practical in many different contexts.

One example of unbounded model checking pertinent to this dissertation is
the CHC-based smart contract verification approach by Marescotti et al. [2020].
It consists of an encoding of Solidity contracts into CHC and is detailed in Sec-
tion 4.1; the section also contains four rules proposed to extend the original en-
coding. Due to the undecidability of CHC solving, it is critical to asses how any
encoding will fare in practice, with the assessment of this encoding, discussed
in Section 4.3, being one the contributions of this dissertation. The evaluation
performed not only indicates that this CHC encoding is practical, but also that it
can outperform comparable approaches.

Many state-of-the-art logic solvers exist and are in active development. To
further illustrate the interplay between model checkers and solvers, the SMT
solver OPENSMT [Bruttomesso et al., 2010] serves as a good additional exam-
ple. OPENSMT is a solver specifically designed to be a playground for differ-
ent solving procedures and SMT-based verification approaches, which makes it
an excellent tool for research activities. On the solving side, it currently sup-
ports eight different quantifier-free SMT theories and serves as the base of the
CHC solver GOLEM [Blicha et al., 2023]. On the model checking side, it is the
base of four different bounded checking tools, namely FUNFROG [Sery et al.,
2012], EVOLCHECK [Fedyukovich et al., 2013], HIFROG [Alt et al., 2017], and
UPPROVER [Asadi et al., 2020].
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2.2 The TLA+ Language

TLA+ is a language for modelling systems, particularly suited to describing sys-
tems dealing with distribution. The language is introduced via a specification of
the asynchronous Byzantine agreement protocol by Bracha and Toueg [1985],
shown in Figure 2.1. Here the focus is on the most relevant TLA+ constructs,
with further details being available in the reference book by Lamport [2002].

The first notable aspect of TLA+ is that specifications may be parametrised,
e.g., the number of processes and faults may not be fixed. In the example, the
keyword CONSTANTS, in line 3, is used to declare its parameters: N , the total
number of processes, and T and F , the maximal and actual number of faulty
processes. It is important to understand, however, that while a specification may
be parametrised, model checking can only be carried out for a specific instance
of the protocol at a time, e.g., N = 4 and T = F = 1. Parameter declarations
are followed by variable declarations, by the use of the VARIABLES keyword, in
line 4. Variables define the states of the state-machine that the specification
describes, with each state being defined by the combination of the values held
by each variable. In the example, each state is defined by the values of sentEcho,
sentRead y , rcvdEcho, rcvdRead y , and pc.

The remaining TLA+ operators describe state machine transitions or proper-
ties to be checked, and are defined using

∆
=. Two operators are of special signif-

icance, one that defines the initial state predicate and one that plays the role of
the transition operator. In the example, these operators are Ini t, in line 8, and
Nex t, in line 37. Concretely, Ini t defines the starting point for state space ex-
ploration and Nex t defines the exploration itself. Transitions are guided by con-
straints that must hold in both pre-transition states, represented by nonprimed
variables, and post-transition states, represented by primed variables.

Specifications may optionally define invariants, i.e., properties that should
hold in every reachable state. There is no special syntax for invariants, and they
are provided by name to model checkers at invocation time. In the example, there
is one invariant, NoDecide, in line 44. A specification satisfies NoDecide if no
state reachable from Ini t via any number of Nex t transitions has pc[p] = “AC”,
for some p ∈ Corr. Abstractly, this invariant holds iff Decide can never be taken.

To illustrate, consider having N = 1 and T = F = 0 in the example. In
this case Ini t would admit a state with pc = [p ∈ {1} 7→ “V1”], rcvdEcho =
rcvdRead y = [p ∈ {1} 7→ {}], and sentEcho = sentRead y = {}. Furthermore,
Nex t would allow a transition via SendEcho from that state to one with pc =
[p ∈ {1} 7→ “EC”], rcvdEcho = rcvdRead y = [p ∈ {1} 7→ {}], sentEcho = {1},
and sentRead y = {}. Finally, a state with pc = [p ∈ {1} 7→ “cat”], rcvdEcho =
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1 module ABA
2 extends Integers, FiniteSets
3 constants N , T , F
4 variables sentEcho, sentReady , rcvdEcho, rcvdReady , pc
5 Corr

∆
= 1 . . (N − F ) The set of correct processes

6 Byz
∆
= (N − F + 1) . . N The set of Byzantine processes

7 Proc
∆
= 1 . . N The set of all processes

8 Init
∆
= ∧ pc ∈ [Corr → {“V0”, “V1”}]

9 ∧ rcvdEcho = [p ∈ Corr 7→ {}]
10 ∧ rcvdReady = [p ∈ Corr 7→ {}]
11 ∧ sentEcho ∈ subset Byz
12 ∧ sentReady ∈ subset Byz
13 Receive(p, nextEcho, nextReady)

∆
=

14 ∧ rcvdEcho[p] ⊆ nextEcho
15 ∧ rcvdReady [p] ⊆ nextReady
16 ∧ rcvdEcho′ = [rcvdEcho except ! [p] = nextEcho]
17 ∧ rcvdReady ′ = [rcvdReady except ! [p] = nextReady ]
18 SendEcho(p, nextEcho, nextReady)

∆
=

19 ∧ ∨ pc[p] = “V1”
20 ∨ ∧ pc[p] = “V0”
21 ∧ ∨ Cardinality(nextEcho) ≥ (N + T + 2)÷ 2
22 ∨ Cardinality(nextReady) ≥ T + 1
23 ∧ pc′ = [pc except ! [p] = “EC”]
24 ∧ sentEcho′ = sentEcho ∪ {p}
25 ∧ unchanged sentReady
26 SendReady(p, nextEcho, nextReady)

∆
=

27 ∧ pc[p] = “EC”
28 ∧ ∨ Cardinality(nextEcho) ≥ (N + T + 2)÷ 2
29 ∨ Cardinality(nextReady) ≥ T + 1
30 ∧ pc′ = [pc except ! [p] = “RD”]
31 ∧ sentReady ′ = sentReady ∪ {p}
32 ∧ unchanged sentEcho
33 Decide(p, nextReady)

∆
=

34 ∧ pc[p] = “RD” ∧ Cardinality(nextReady) ≥ 2 ∗ T + 1
35 ∧ pc′ = [pc except ! [p] = “AC”]
36 ∧ unchanged 〈sentEcho, sentReady〉
37 Next

∆
=

38 ∃ p ∈ Corr , nextEcho ∈ subset sentEcho, nextReady ∈ subset sentReady :
39 ∧ Receive(p, nextEcho, nextReady)
40 ∧ ∨ SendEcho(p, nextEcho, nextReady)
41 ∨ SendReady(p, nextEcho, nextReady)
42 ∨Decide(p, nextReady)
43 ∨ unchanged 〈pc, sentEcho, sentReady〉
44 NoDecide

∆
= ∀ p ∈ Corr : pc[p] 6= “AC” Invariant stating that processes never Decide

45

1
Figure 2.1. TLA+ specification of the asynchronous Byzantine agreement pro-
tocol by Bracha and Toueg [1985].
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rcvdRead y = [p ∈ {1} 7→ {}], and sentEcho = sentRead y = {42} is not reach-
able via any of the transitions defined.

2.3 The Solidity Language

Solidity is the main high-level language specifically designed for smart contracts
targeting EVM bytecode. It is a Turing-complete language in which a contract is a
structure similar to a class in object-oriented programming languages. Contracts
can have data types such as Boolean, integer, array, and map, and declare both
public and private functions, depending on whether they can be called directly
by the user. Such functions can make use of common programming languages
control structures, such as conditionals and loops, and can be marked as payable,
allowing them to receive funds in ether, Ethereum’s native currency, with each
contract having its own ether balance.

When deployed, Solidity contracts consist of a storage area and a set of func-
tions. The storage is a persistent memory space used to store variables whose
values represent the contract state and functions are the interface by which users
interact with the contract. Functions are allowed to access the storage both in
read and write modes and their behaviour is defined by their corresponding byte-
code instructions, stored persistently in a separate memory residing within the
blockchain; the storage management is done via EVM primitives. The interaction
with a contract is performed by calling one of its functions, which can call other
functions during its execution. The execution costs are commonly paid via a fee
in the platform’s native currency. Each individual function call is an atomic trans-
action, i.e., it either executes without raising exceptions, committing its changes,
or rolls back completely if an exception occurs, leaving the state unchanged. Con-
trarily, in traditional programming languages all the changes made by a function
prior to throwing an exception are preserved. Further details on Solidity and the
operation of its contracts are available in the official language documentation1.

As an example, consider the Auction contract, shown in Figure 2.2, which
provides realistic support for an auction. This contract has three state variables,
in lines 2-4, bid and cash, of type unsigned integer, and winner, of type address,
which is a 20 byte Ethereum address. To manage the auction, bid and cash store
the current highest bid and the amount of currency gathered, respectively, while
winner stores the address from which the current highest bid was made. One
function is present, offer, which handles the placing of new bids by users; addi-
tional features, such as the ability to end the auction and forward the gathered

1Available at https://docs.soliditylang.org/en/latest.

https://docs.soliditylang.org/en/latest
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1 contract Auction {

2 uint bid = 0;

3 uint cash = 0;

4 address payable winner = address(0);

5
6 function offer() public payable {

7 uint new_bid = msg.value - 1015 wei;

8 require(bid < new_bid);

9 if (winner ̸= address(0)) {

10 assert(bid ≤ cash);

11 winner.transfer(bid);

12 cash = cash - bid;

13 }

14 bid = new_bid;

15 cash = cash + msg.value;

16 winner = msg.sender;

17 }

18 ...

19 }

Figure 2.2. Example of an auction contract in Solidity.

funds to the auctioneer, are abstracted for simplicity. The offer function has two
implicit arguments: msg.value, that stores the amount of funds sent to the func-
tion, and msg.sender, that stores the address from which the function was called.
Every new offer is subject to a fee of 1015 wei2, in line 7, after which the function
checks whether the new bid is greater than the current highest bid, in line 8.
A require statement works as a pre-condition in Solidity, usually employed to
filter invalid inputs. In offer, if the new bid is not large enough the transaction
reverts, with the fee payment being rescinded. After validating the new bid, the
function returns the previous highest bid, if available, to its owner, in lines 9-13,
and updates the state variables, in lines 14-16. An assert statement works as a
post-condition in Solidity, meaning that its expression should never be false in a
valid execution, with a violation leading to a Panic exception being thrown. In
the example, an assertion error happens if the contract does not have enough
funds to return the previous highest bid to its owner. Although both the require

and assert statements stop the function execution and revert the changes made,
they do it via different exception types, with the former doing it gracefully, since

2Ethereum’s native currency, ether, has wei as its smallest subunit, with 1 US Dollar being
worth approximately 238 wei at the time of writing.
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a failing require is a valid behavior, and the latter resorting to a Panic exception,
also thrown, for instance, if a division by zero occurs.

2.4 Satisfiability Modulo Theories

SMT studies the decision problem of satisfiability of FOL formulas within the
scope of various first-order theories, such as arithmetic, arrays and bit-vectors. It
combines the expressiveness of FOL with efficient decision procedures, enabling
the representation and analysis of many real world problems. Here the focus
is on the aspects of SMT relevant to this dissertation, with further details being
available in the comprehensive book by Kroening and Strichman [2016].

Considered formulas are in quantifier-free multi-sorted first-order logic and
contain logical operators, predicates, and theory atoms, with examples of theory
atoms being equalities over arithmetics and uninterpreted functions. A formula
F is treated as a DAG FDAG, where nodes are labelled with symbols, which can
be functions, predicates, constants, or logical operations, and outgoing edges are
ordered. Formally, a symbol is a tuple 〈p, s,c〉 where p is the symbol name, e.g.,
+, ∧, or 0, s the return sort, and c = s1, . . . , sn are the argument sorts, where
n is the arity of p. Hence, if a node is labelled with 〈p, s,c〉, it has the ordered
outgoing edges to the nodes ci having the return sorts si, for 1 ≤ i ≤ n. There
is a unique source node, and it must be labelled with a symbol with the Boolean
return sort. To avoid exponential blowup, if two subtrees rooted at the nodes r
and r ′ are equal, then r = r ′.

Given the formula F , an SMT solver attempts to determine whether FDAG

is satisfiable or not. The formula FDAG is first converted into an equisatisfiable
conjunctive normal form (CNF) formula FCNF, i.e., FDAG is converted into a con-
junction of logic clauses over a set of propositional atoms and their negations,
while maintaining the first-order theory interpretation of the atoms. The SMT
solver then determines the satisfiability of the formula via a search space traver-
sal carried out by a conflict-driven clause-learning (CDCL) SAT solver [Marques-
Silva and Sakallah, 1999] operating on FCNF. During the search the SAT solver
adds logic clauses to FCNF while maintaining as invariant that if F is satisfiable
then FCNF is propositionally satisfiable, i.e., FCNF is satisfiable when the theory in-
terpretations of its atoms are ignored. Therefore, if at some point FCNF becomes
unsatisfiable propositionally, F must be unsatisfiable as well.

SMT theories are plentiful, each with their own associated decision proce-
dures that aid the CDCL search space traversal. The operators of theory of ar-
rays [de Moura and Bjørner, 2009] will be used to illustrate the aspects of a
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theory. Given the set of sorts S, containing one sort sτ for each relevant type
τ, e.g., integers, an array sort sτ1,τ2

has the form sτ1
⇒ sτ2

, with sτ1
∈ S being

its index sort and sτ2
∈ S being its value sort. Each array sort is supported by

two basic operators, select : (sτ1
⇒ sτ2

, sτ1
) → sτ2

, which handles array access
at a given index, and store : (sτ1

⇒ sτ2
, sτ1

, sτ2
) → sτ1

⇒ sτ2
, which updates

an array for a given index and value. For brevity, select(a, i) will be written
as a[i] in the remainder of the manuscript. Regarding equality between ar-
rays, different interpretations are possible. Arrays with extensionality [Stump
et al., 2001] are used in this dissertation, which are considered equal if they
contain the same values in the same entries. Extensionality is formally defined
as ∀ a, b : sτ1

⇒ sτ2
. a = b ∨ ∃ i : sτ1

. a[i] ̸= b[i]. For access and update,
consistency is ensured by the following property:

∀ a : sτ1
⇒ sτ2

, i : sτ1
, j : sτ1

, v : sτ2
.

store(a, i, v)[i] = v
︸ ︷︷ ︸

access consistency

∧ (i = j ∨ store(a, i, v)[ j] = a[ j])
︸ ︷︷ ︸

update consistency

In addition to select and store, the theory of arrays can be extended with
other operators, two of which are map f and Ksτ , whose signatures are shown
below. The map f operator applies a n-ary function f : (sτ1

, ..., sτn
) → sτ to the

values stored in each index of its array arguments, producing a new array whose
values are the result of the function application, i.e., map f is the pointwise array
extension of f . The Ksτ operator produces a constant array, with all its values
being the constant provided as argument. The properties defining the behaviour
of these two operators are shown after their signatures.

map f : (sτ⇒ sτ1
, ..., sτ⇒ sτn

)→ sτ⇒ sτ f
Ksτ : sτconst

→ sτ⇒ sτconst

∀ a1 : sτ⇒ sτ1
, ..., an : sτ⇒ sτn

, i : sτ . map f (a1, ..., an)[i] = f (a1[i], ..., an[i])

∀ i : sτ1
, v : sτ2

. Ksτ1
(v)[i] = v

The select and store operators are part of theory of arrays with extensionality
defined in version 2.6 of the SMT-LIB standard [Barrett et al., 2021]. Other op-
erators are provided on a solver-by-solver basis, e.g., Z3 [de Moura and Bjørner,
2008b] supports both map f and Ksτ , while CVC5 [Barbosa et al., 2022a] supports
Ksτ; future SMT-LIB updates may add these operators to the standard.
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2.5 Constrained Horn Clauses

The constrained Horn clauses formalism is a logic-based language suited for ver-
ification tasks such as safety, termination, and loop invariant computation. Here
a CHC characterization based on FOL and the fixed-point operator adapted from
the work of Blass and Gurevich [1987] is presented.

To precisely define how CHC are used we must first define some notation. Let
ψ be a first-order formula over a theory T , with free variables x = {x1, ..., xn},
and {P1, . . . ,Pm} be a finite set of predicates over x , such that no Pi appears inψ.
A predicate P(x ) over a set of variables x is associated with a so called interpre-
tation, that states on which values of x the predicate is true. The interpretation
can be thought of as a set of tuples of length |x | explicitly stating such values. The
satisfiability of P1(x )∧ . . .∧Pm(x )∧ψ(x ) in theory T , with the interpretations
of Pi being ∆Pi

, is denoted by
⋃m

i=1∆Pi
|=T P1(x )∧ . . .∧Pm(x )∧ψ(x ).

When modelling a program, the predicates Pi are chosen to represent reach-
able states in certain key positions. These include the program counter values
corresponding to the starts and exits of loops, function call sites, and, depend-
ing on the chosen modelling approach, starts and ends of conditional branches.
Complementary, the first-order formulas ψ encode the effect that the program
code executed between the positions represented by predicates has on the state.
The interpretations of the predicates are, however, not explicitly known, being
defined implicitly by the program code represented by the formulas ψ and how
the predicates are related by these formulas. CHC provide a way of representing
the relations between the program code and predicates, and there are highly en-
gineered implementations of algorithms for determining over-approximations of
the interpretations of the predicates for a given CHC system.

Given a set of predicates P , a first-order theory T , and a set of variables V,
a CHC system is a set S of clauses of form

H(x )←∃y .P1(y)∧ . . .∧Pm(y)∧φ(x , y), for m≥ 0 (DefClause)

where φ is a first-order formula over x , y ⊆ V, with respect to the theory T , x
are the variables free in φ, H ∈ P is a predicate with arity matching x , Pi ∈ P
are predicates with arities matching y , and no predicate in P appears in φ. For
a clause c we write head(c) =H and body(c) = ∃y .P1(y)∧ . . .∧Pm(y)∧φ(x , y).

As an example, consider the program statement x = x + 1. To represent
the states two copies of the program variable x are needed, one representing x’s
value before the execution of the program statement and another representing
the value after the execution. By convention these are represented by first-order



21 2.5 Constrained Horn Clauses

variables x and x ′, respectively. The predicates P and Q, that hold before and af-
ter the execution of the increment, are then defined. The CHC system modelling
this fragment would then be Q(x ′)←∃x .P(x)∧ x ′ = x + 1.

To understand how predicate interpretations are obtained, consider the fol-
lowing. For each P ∈ P we define the transfinite sequence ∆α

P
given by

∆0
P
= ;

∆α+1
P
=∆α

P
∪ {a |
⋃

Q∈P ∆
α
Q
|=T

∨

c∈S,head(c)=P body(c)[a/x ]}
∆λ

P
=
⋃

α<λ∆
α
P
, for limit ordinals λ

(DefPredInt)

Since ∆α
P

is monotonic, there is a value for α such that ∆α
P
= ∆α+1

P
. The set ∆α

P

with this property is denoted by ∆P.
When checking safety, we are interested in determining whether a bad state

is reachable. The bad state is represented by a CHC with a special head symbol
⊥ and a body describing the bad state in logic. Determining whether the bad
state is reachable reduces then to determining whether the interpretation ∆⊥
of predicate ⊥ ∈ P is empty. To continue the above example, we might be
interested whether after executing the increment, the value of x can be greater
than 255. This would be encoded as the CHC ⊥← ∃x .Q(x)∧ x > 255.

Modern CHC solvers, based on the IC3 verification algorithm [Bradley, 2011],
guarantee that if ∆⊥ is nonempty then the model of a program violates a safety
property, and we are able to map predicate interpretations to a program exe-
cution. Conversely, if ∆⊥ is empty, either the solver does not terminate, or it
provides quantifier-free first-order formulas ηP(x ) in T for each P ∈ P that
serve as safe inductive invariants in the following sense:

1. Each formula ηP over-approximates an interpretation ∆P, meaning that
∆P |=T P(x ) =⇒ ηP(x ).

2. For each clause c ∈ S of the form DefClause,

(a) if head(c) ̸=⊥, then |=T ηP1
(y)∧ . . .∧ηPm

(y)∧φ(x , y) =⇒ ηH(x );

(b) if head(c) =⊥, then |=T ¬
�

ηP1
(y)∧ . . .∧ηPm

(y)∧φ(x , y)
�

.

Following the terminology set by Bjørner et al. [2015], a set of CHC is called
satisfiable if ∆⊥ is empty, and unsatisfiable otherwise.

When presenting CHC systems and individual clauses in this manuscript some
conventions are used to make reading them easier. First, the existential quantifier
is omitted since its scope is clear from the arguments of the body for a given
clause. Second, variables that do not appear in the formulas are not written.
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Third, superfluous equalities are omitted, e.g., if an element yi of y is equated
with an element x j of x in a top-level conjunct of φ, then the equality is not
written and instead yi is substituted for x j in the head.

To summarise, CHC allow for a natural modelling of programs. Each predi-
cateP describes the set of reachable states in the points of interest in the program,
and correspond to some concrete program counter values. The CHC encode the
flow of control between these points, and their constraints φ encode the condi-
tions for control flow and the effects of the executions. The safety properties can
be encoded using the special predicate ⊥ that by convention can only appear as
a head of CHC together with bodies that represent the negations of the safety
properties. Finally, the operator ∆ is used for accumulating the reachable states
in the predicates appearing as CHC heads.



Chapter 3

Symbolic Model Checking for TLA+

Made Faster

The ability to ensure that a distributed system, such as a blockchain, operates
correctly is paramount. To achieve this, one can specify and reason about pro-
tocols using TLA+ [Lamport, 2002], with this approach being adopted by com-
panies such as Amazon Web Services [Newcombe et al., 2015]. Despite interest
and recent advances, the verification of distributed systems remains notoriously
difficult. This is due to the fact that, given their distributed nature, distributed al-
gorithms’ executions admit numerous potential interleavings of steps, with state-
spaces generally growing exponentially with the number of participants.

A handful of tools are available to aid in verifying TLA+ specifications [Kon-
nov et al., 2022]. TLC [Yu et al., 1999] is an explicit state model checker that
enumerates all reachable states of the given system. APALACHE [Konnov et al.,
2019] is a symbolic bounded model checker that uses a SMT encoding of states
in order to better tackle the state explosion problem. TLAPS [Chaudhuri et al.,
2010] is an interactive proof system that enables the proving of properties with-
out the need of exploring the state-space itself. Despite providing the benefit of
verifying specifications with infinite state-spaces, and efforts being made towards
partial automation [Merz and Vanzetto, 2018], TLAPS adoption is still slow, with
engineers favouring the push-button automation provided by model checkers.

This chapter focuses on symbolic model checking for TLA+, as spearheaded
by the SMT encoding which underpins APALACHE, but provide insights into SMT-
based model checking that may generalise to other contexts. The encoding of
TLA+ into SMT done by APALACHE removes all structural information present
in the encoded specification, with the TLA+ data structures being represented
via uninterpreted constants in the generated SMT formula. The information not

23
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TLA+

specification
Preprocessing KerA+

specification

Constants
ARS

SMT
(QF_UFNIA)

Arrays
ARS

SMT
(QF_AUFNIA)

Figure 3.1. Overview of the symbolic model checking approach for TLA+. The
dotted box highlights the identification of symbolic transitions proposed by
Kukovec et al. [2018] and the rewriting into KerA+. The dashed box highlights
the encoding based on uninterpreted constants by Konnov et al. [2019]. The
solid box highlights the arrays-based encoding propose in this work.

forwarded to the SMT solver has the potential to significantly improve solving
efficiency. This work proposes an alternative encoding that makes full use of the
SMT theory of arrays [de Moura and Bjørner, 2009] to encoded the main TLA+

data structures, i.e., sets and functions, with the goal of improving solving perfor-
mance, which is the determining factor in overall model checking performance.

3.1 Symbolic Model Checking Approach

The novel encoding consists of a new abstract reduction system (ARS) to generate
constraints in the SMT theory of arrays. It relies on APALACHE’s preprocessing
infrastructure, which rewrites the input specification into the KerA+ verification-
friendly fragment of TLA+ [Konnov et al., 2019] and then applies ARS rules to
generate the SMT formula to be solved, as illustrated in Figure 3.1.

3.1.1 The KerA+ Language

TLA+ provides users with a myriad of ways of specifying systems. This richness,
although being one of its strengths, adds significant difficulty to the generation of
SMT constraints. To overcome this challenge, TLA+ specifications are rewritten
into a more compact language, KerA+, before being checked. From KerA+, the
ARS can generate SMT constraints in a simpler and provably sound way.

The KerA+ language consists of a small subset of TLA+ conjoined with four
additional constructs not originating from TLA+, and is able to express almost all
TLA+ expressions. It contains constructs for the manipulation of sets, functions,
records, tuples, and sequences, as well as integer arithmetic operators, Boolean
and integer literals, and constants, with all data structures having a bounded size.
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c1 : Int c2 : Int c3 : Int

(a) integers
5, 6, and 7

c4 : Set[Int] c5 : Set[Int]

c1 : Int c2 : Int c3 : Int

1 2 1 2

(b) sets of integers
{5,6} and {6, 7}

c6 : Set[Set[Int]]

c4 : Set[Int] c5 : Set[Int]

c1 : Int c2 : Int c3 : Int

1 2

1 2 1 2

(c) set of sets of integers
{{5,6}, {6,7}}

Figure 3.2. Illustration of three arenas. The modelled elements have the
overapproximation c1 = 5, c2 = 6, c3 = 7, c4 = {5,6}, c5 = {6,7}, and
c6 = {{5, 6}, {6, 7}}. Note that the concrete value of a cell can be given by
any of the possible subtrees having said cell as a root, e.g., for c6 we have that
∃c4 ∈ P({5, 6}), c5 ∈ P({6, 7}) . c6 ∈ P({c4, c5}); here P stands for power set.

The semantics of KerA+ derive directly from the TLA+ constructs it uses, with the
non-TLA+ based constructs, which help simplify the rewriting system, having
simple control semantics. The correctness of the rewriting itself is guaranteed by
construction. One example is the rewriting of S ∪ T into the set comprehension
{x ∈ S : x ∈ T}. Further KerA+ details are available in Appendix A.

3.1.2 Abstract Reduction System

In order to verify a specification in KerA+ a SMT formula that is equisatisfiable to
it is generated. To do so, an abstract reduction system is used, which iteratively
applies reduction rules that transform KerA+ expressions into SMT constraints.
The core of the ARS is the arena, a graph structure that overapproxiamtes the
specification’s data structures and guides rule application. The rules collapse
KerA+ expressions into cells, which represent the symbolic evaluation of these
expressions, with the cells then being used as vertices in the arena. The arena
edges represent the data structures overapproximation, e.g., a cell representing
a set will have directed edges to the cells representing all its potential elements,
as illustrated in Figure 3.2. The reduction process terminates when the initial
KerA+ expression e is collapsed into a single cell c, producing a SMT formula
Φ in the process, such that c ∧ Φ is equisatisfiable to e; equisatisfiability relies
on the boundedness of the data structures and is detailed in Section 3.2.3. The
satisfiability of e can then be checked by forwarding c∧Φ to a SMT solver.

Formally, the ARS is defined as (S,⇝), with S being the set of ARS states and
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⇝ ⊆ S × S being the transition relation. A state (e,A,ν,Φ) ∈ S is a four-tuple
containing a KerA+expression e, an arena A, a binding of names to cells ν, and a
first-order formula Φ. ARS states’ elements contain a number of cells, which are
first-order terms annotated with a type τ. Cells of type Bool and Int are inter-
preted in SMT as Booleans and integers, while cells of the remaining types are
encoded as uninterpreted constants in the constants encoding; the arrays encod-
ing approach is discussed in Section 3.2. Cells are referred to via the notation
cname or cindex, and they can be seen as both KerA+ constants and first-order terms
in SMT. An arena is a directed acyclic graph A= (V,E), with V being a finite set
of cells and E ⊆ V×(1..|V|)×V being a set of relations between the cells in V. Ev-
ery relation between cells is represented by an arena edge of form (ca, i, cb), also
written ca

i
−→cb, with no duplicates, i.e., for every pair (ca1

, i1, cb1
), (ca2

, i2, cb2
) ∈ E

we have that ca1
= ca2

∧ cb1
̸= cb2

implies i1 ̸= i2, and no gaps in the relation
indexes, i.e., for every edge (ca, i, cb) and index j ∈ 1..(i − 1) we have that
∃cc ∈ V . (ca, j, cc). A binding is a partial function from KerA+ variables to V

of A, i.e., a mapping from variables to cells. Finally, Φ is a formula in the SMT
fragment supported by the ARS and the target SMT solver, e.g., the quantifier-
free uninterpreted functions and nonlinear arithmetics (QF_UFNIA) fragment
supported by the constants encoding.

A series of n reduction steps has the form s0⇝...⇝sn, with each step gener-
ating state si+1 for state si, 0 ≤ i < n, by applying a reduction rule. The initial
state s0 = (e0,A0,ν0,Φ0) has e0 as the initial KerA+ specification, A0 = (;,;), ν0

containing no mappings, and Φ0 = true. The reduction steps end upon reaching
a state sn = (en,An,νn,Φn), with en being a single cell c ∈ Vn and An = (Vn,En).
Below three examples of rules are given.

Integer literal reduction. One of the simplest rules has an integer literal num
being rewritten into a cell cnum. This cell is added to the arena and a constraint
equating cnum to the literal is conjoined with Φ; we use vertical lines to separate
state elements and commas to indicate additions to A and conjunctions to Φ.



num : Int |A | ν | Φ
�

num is one of 0, 1,−1, ...



cnum |A, cnum : Int | ν | Φ, cnum = num
� (INT)

The descriptions of rules can be given as inferences, with the premisses above
the bar and the resulting state below it. Inferences, although reasonable to ex-
press rules such as INT, are not suitable to give the intuition about how more
complex rules work. In light of this, a simplified notation will be used moving
forward. Inferences are inlined as ↣ and nonessential information is omitted,
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e.g., propagated values. Below we can see rule INT in this simplified format. Note
that only A and Φ updates are shown, without propagating them, and that ν is
omitted. All rules are available as inferences in Appendix B.

num : Int
num is one of 0,1,−1, ...

↣ cnum | cnum : Int | cnum = num (Int)

Picking. To pick a cell out of n cells an oracle θ is used, as per rule FromBasic.
In addition to the FROM ... BY θ expression, this rule requires that all pickable
cells are of the same basic type τ, e.g., Int. The resulting state has a new cell
cpick, which is equated to one of the n cells if 1 ≤ θ ≤ n and is unconstrained
otherwise. Picking among cells representing data structures, e.g., sets, can be
done via a more general version of rule FromBasic.

FROM c1, ..., cn BY θ : τ
τ is basic and c1 : τ, ..., cn : τ

↣ cpick | cpick : τ |
∧

1≤i≤n

(θ = i→ cpick = ci)

(FromBasic)

Branching. To reduce an if-then-else expression we rely on picking, as can be
seen in rule ITE; parentheses indicate the application of another rule. This rule
has an inference that picks one of the branches via an oracle, with the branching
itself being made by setting the oracle value via the constraint θ = 1↔ cp.

ITE(cp, c1, c2) : τ↣
�

FROM c1, c2 BY θ : τ | θ : Int | 1≤ θ ≤ 2↣ cres

�

↣ cres | θ = 1↔ cp
(ITE)

3.2 Encoding TLA+ using Arrays

The goal is to encode TLA+ data structures in a structure-preserving way. To do
this, arrays are used to represent the main components of TLA+, sets and func-
tions, as SMT constraints. We follow the ARS structure described in Section 3.1.2,
but update the reduction rules handling sets and functions. The remaining TLA+

constructs, e.g., tuples, are represented as per the constants encoding; details on
the SMT constraints generated by constants encoding are in Appendix C.

The two efficiency benefits of the arrays encoding are the ease of access of
data structures and the possibility of using SMT equality. The first benefit can
be easily understood by the use of SMT select, which allows us to check a stored
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Table 3.1. Amount of constraints gener-
ated by each SMT encoding to model the
main TLA+ constructs.

Construct Constants Arrays

Set enumeration O(n) O(n)
Set filter O(n) O(n)
Set map O(n) O(n)
Set membership O(n) O(1)
Set equality O(n2) O(1)
Fun. definition O(n) O(n)
Fun. domain O(n) O(1)
Fun. equality O(n2) O(1)
Fun. update O(n) O(1)
Fun. application O(n) O(n)

value by using a single constraint,
in contrast to the amount of con-
straints used in the constants en-
coding, which is linear in the size
of data structures’ overapproxima-
tion. The second benefit affects the
comparison of data structures, which
can be done via a single SMT equal-
ity for sets and functions in the ar-
rays encoding, since these structures
are represented by a single SMT
term, while the constants encoding
requires a number of constraints that
is quadratic in the size of data struc-
tures’ overapproximation. A com-
parison between the two encodings
is shown in Table 3.1. We first describe how to encode sets and functions, and
then present the correctness argument for the reduction to arrays.

3.2.1 Encoding TLA+ Sets using Arrays

Arrays are used to encode TLA+ sets as characteristic functions, i.e., a set of type
τ is represented by an array of sort sτ ⇒ Bool. Set membership is encoded by
storing true or false on a given array index. The reduction rules used to handle
the main set operators are presented below.

Set Enumeration. The simplest way to create a set is to enumerate its elements.
Rule Enum reduces an explicit set of cells to a fresh cell cset, whose edges link it
to its elements; cset→c1, . . . , cn is a shorthand for cset

1
−→c1, ..., cset

n
−→cn. There is no

guarantee that the enumerated elements are unique, thus the arena may contain
edges to repeated elements.

{c1, . . . , cn} : Set[τ]↣ cset | cset : Set[τ], cset→c1, . . . , cn | EnumC tr (Enum)

The constraints EnumCtr added by the arrays encoding create an empty set,
by using a constant array with the value false,⊥, and updates the array by storing
true,⊤, on the appropriate indexes. The array resulting from the last update, an

cset
,

is then equated to cset. Since cells representing repeated elements lead to updates
to the same index, we encode standard sets, in contrast the constants encoding,
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which encodes multisets due to the arena imprecision; multisets lead to multiple
constraints being generated to encode membership of a single element.

a0
cset
= Kτ(⊥)
︸ ︷︷ ︸

empty set

∧
∧

1≤i≤n

ai
cset
= store(ai−1

cset
, ci,⊤)

︸ ︷︷ ︸

set updates

∧ cset = an
cset

︸ ︷︷ ︸

cell equality

(EnumCtr)

Although the amount of constraints generated by the arrays encoding to
model set enumeration is equal to that of the constants encoding, it has the ben-
efit of generating a defined interpretation for cset, the array an

cset
, which is not

present in the constants encoding. This has a significant impact on set member-
ship and cell equality, as described below.

Set Membership. The checking of a membership relation cx ∈ cset, given the
presence of the arena edges cset→c1, ..., cn and 1 ≤ x ≤ n, is straightforward. A
single fresh cell of Boolean type is introduced and is equated to cset[cx].

Cell Equality. The constraints generated by encoding set membership and many
other constructs assume that cells can be compared. When this is not directly the
case the equalities are cached in preparation. For example, if a set of n tuples
ct of size two is being equated, the constraints ct i

= ct j
↔ c1

t i
= c1

t j
∧ c2

t i
= c2

t j
,

with 1 ≤ i ≤ n and 1 ≤ j ≤ n, are added to Φ; here we use c1
t and c2

t to repre-
sent the values of the 2-tuple. The need for this caching of equalities only arises
when data structures encoded as uninterpreted constants are compared. For the
remaining rules it is assumed that caching was done, if needed, and cells can be
compared via direct equality.

Set Filter. In TLA+, the elements of a set S can be filtered by a predicate p via
the expression {x ∈ S : p}. This expression will create a set F which contains
only the elements of S that satisfy p, e.g., {x ∈ {−1, 0,1} : x ≥ 0} = {0,1}. Rule
Filter reduces a filter to a new set cell, cF , whose arena overappoximation con-
tains the elements of S, but whose constraints ensure that only filtered elements
are members of F ; p[y/x] means that x is replaced by y in p and parentheses
indicate the application of another rule, the predicate resolution rule in this case.

{x ∈ cS : p} : Set[τ] and cS→c1, . . . , cn

↣
�

p[c1/x] : Bool, . . . , p[cn/x] : Bool↣ cp
1, . . . , cp

n

�

↣ cF | cF : Set[τ], cF→c1, . . . , cn | F il terC t r
(Filter)
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The constraints added use an array a0
cF

initially unconstrained, i.e., the val-
ues mapped by all the indexes of a0

cF
are unconstrained, as opposed to a0

cset
in

EnumCtr. The values of a0
cF

mapped by indexes c1, . . . , cn are constrained by
cp

1, . . . , cp
n via array access, i.e., a0

cF
[ci] is asserted to be true or false based on cp

i ,
with 1≤ i ≤ n. Pointwise conjunction is then applied to cS and a0

cF
via the map f

SMT operator; we go from a0
F to an

F to keep the array index in step with the arena
overapproximation. Indexes whose values were false in S remain so in F , and
indexes whose values were true in S store the filter’s predicate evaluation.
∧

1≤i≤n

ite
�

cp
i , a0

cF
[ci],¬a0

cF
[ci]
�

︸ ︷︷ ︸

predicate-based constraining

∧ an
cF
= map∧(cS, a0

cF
)

︸ ︷︷ ︸

pointwise conjunction

∧ cF = an
cF

︸ ︷︷ ︸

cell equality

(FilterCtr)

Both encodings generate a linear amount of constraints, since n p[ci/x] pred-
icates have to be considered. Unlike with EnumCtr, FilterCtr does not contain
many store operations, due to the usage of map f . This avoids the need to create
intermediary arrays, and is not possible in EnumCtr due to its constant array.

Set Map. The expression {e : x ∈ S} can be used to construct a set M from
a set S, having all the elements of M as e[y/x], with y ∈ S. For example, the
expression {x ÷ 5 : x ∈ {4, 5,6}} yields the set {0,1}, with ÷ denoting standard
integer division. To reduce set map rule Map is used.

{e : x ∈ cS} : Set[τ] and cS→c1, . . . , cn

↣
�

e[c1/x] : τ, . . . , e[cn/x] : τ↣ ce
1 :, . . . , ce

n

�

↣ cM | cM : Set[τ], cM→ce
1, . . . , ce

n | MapC tr
(Map)

The constraints added in rule Map are similar to those added in rule Enum. The
difference between them is that set enumeration precisely defines the elements to
be added to the new set cell, while set map is based on an existing set cell, which
is a set overapproximation. Due to this, membership in M has to be guarded by
membership in S, leading to a linear amount of constraints being generated.

a0
cM
= Kτ(⊥)

︸ ︷︷ ︸

empty set

∧
∧

1≤i≤n

ite





cS[ci],
ai

cM
= store(ai−1

cM
, ce

i ,⊤),
ai

cM
= ai−1

cM





︸ ︷︷ ︸

set updates

∧ cM = an
cM

︸ ︷︷ ︸

cell equality

(MapCtr)
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3.2.2 Encoding TLA+ Functions using Arrays

Arrays are used to encode TLA+ functions directly as functions themselves. To do
this, arrays are used in their general format, with a function f : sτ1

→ sτ2
being

encoded as an array of sort sτ1
⇒ sτ2

. Since functions with a finite domain can
rely on infinite sorts, e.g., the integer numbers, the encoding of each function also
includes constraints defining its domain set, by means of the rules described in
the previous section; the result of a function application to a value outside its do-
main is undefined in TLA+. This approach allows us to generate SMT constraints
that follow directly from TLA+, making the encoding not only more efficient, but
also more natural to describe. In contrast, the constants encoding represents
functions explicitly as sets of pairs of form {〈x , f (x)〉 : x ∈ DOMAIN f }. Due to
this, its function manipulation relies on set manipulation, e.g., function compar-
ison is encoded as set comparison, leading to a quadratic amount of constraints.
The reduction rules used to handle functions are presented below.

Function Definition. The definition of a function in TLA+ is an expression of
the form [x ∈ S 7→ e], which maps every domain value v to the expression
e[v/x]. This definition is similar to that of set map {e : x ∈ S}, and thus gen-
erates constraints in a similar fashion to rule Map. The main difference is that
the evaluations of the expression e[v/x] are stored as array values, rather than
array indexes, i.e., function definition uses store(a, v, e[v/x]) and set map uses
store(a, e[v/x],⊤), with v being a value in the function’s domain or the set be-
ing mapped. Every encoded function has a single argument, with multiple argu-
ments being rewritten as tuples in preprocessing.

Unlike with set cells, a function cell cF in the arena does not directly point
to its values, with the arrays encoding adding two edges to cF , cF

1
−→cFdom

and
cF

2
−→cFpairs

. Cell cFdom
represents the function’s domain and cell cFpairs

represents
the set of pairs {〈x , f (x)〉 : x ∈ DOMAIN f }. Cell cFpairs

, despite being in the arena,
has no SMT constraints modelling it in the arrays encoding, with its sole purpose
being to help propagate the arena edges of the function’s codomain elements.

Function Domain. Accessing a function’s domain is trivial in the arrays encod-
ing, since the domain set is generated during function definition. This results in
a simple access to the array representing the domain.

Function Update. The update of a TLA+ function f is done by changing the
result of applying f to an argument ar g, f [ar g], to be a given value v, via the
expression [ f EXCEPT! [ar g] = v]. The update will produce a new function g
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which is identical f , except that g[ar g] = v if ar g ∈ DOMAIN f . The arrays
encoding generates a single array update constraint in this case.

Function Application. The application of a function to an argument ar g is con-
ceptually simple, but is quite intricate to realize, as can be seen in rule FunApp.
The arrays encoding uses an oracle to check that carg is in the domain and to
gather the arena edges of cres. The FunAppCtr constraints ensure that the oracle
chooses the correct index and equates the result cell to an array access on cF .
Note that the value of cres comes directly from the function application expres-
sion itself, with the oracle only been needed to gather the arena edges of cres, if
m > 0, via cp. The need for an oracle is restricted to functions whose codomain
contain structured data, e.g., f : Int → Set[Int]. If this is not the case, e.g.,
g : Int→ Int, rule FunApp is simplified and FunAppCtr becomes cres = cF[carg].

cF[carg] : τ and cF
1
−→cFdom

→cd
1 , . . . , cd

n and cF
2
−→cFpairs

→cp
1, . . . , cp

n

↣
�

FROM cp
1, . . . , cp

n BY θ : 〈τarg,τ〉 | θ : Int | 0≤ θ ≤ n↣ cp
�

and cp[2]→c1, . . . , cm

↣ cres | cres : τ, cres→c1, . . . , cm | FunAppC t r
(FunApp)

∧

1≤i≤n

∧
(θ = i→ carg = cd

i ∧ cFdom
[cd

i ])
(θ = 0→ carg ̸= cd

i ∨¬cFdom
[cd

i ])
︸ ︷︷ ︸

oracle constraining

∧ cres = cF[carg]

︸ ︷︷ ︸

cell equality

(FunAppCtr)

3.2.3 Correctness of the Reduction to Arrays

Correctness of the ARS is given by four properties: finiteness of the models, com-
pliance to the target SMT theories, termination of any reduction sequence, and
soundness of the reductions. These properties had their correctness sketched for
the constants encoding by Konnov et al. [2019], with detailed proofs being writ-
ten by Tran [2023]. Since we rely on the existing ARS and restrict our changes to
mainly affect constraint generation, we have the same degree of overapproxima-
tion and the correctness arguments made for the constants encoding are in large
part valid for the arrays encoding. We present below the definition of a KerA+

model and detail, for each property, how the use of arrays affects the correctness
arguments and how they can be adjusted to remain valid.
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Models. Every satisfiable KerA+ formula has a model M = 〈D, I〉, where D

is the model domain, consisting of a disjoint union of sets D1, ...,Dn, with Di,
1 ≤ i ≤ n, containing the values for type τi, and I is the model interpretation,
consisting of assignments of domain values to KerA+ constants. Models are used
to access cell values, with the value of a KerA+ expression e in model M being
JeKM . In sbefore⇝safter, we go from Mbefore to Mafter, with Mafter containing the
interpretation of additional constants and being thus an extension of Mbefore.

Finiteness. This property states that every interpretation of a KerA+ expres-
sion is defined only over finite values. Its proof is derived from the finiteness of
the elements being modelled. In the arrays encoding, arrays with infinite sorts
are potentially used, e.g., the integers, but all SMT interpretations that can be
derived from such arrays are finite, since only finite TLA+ data structures are
encoded. This guarantees finiteness of all KerA+ models in the arrays encoding.

Theory Compliance. This property states that any sequence of states s0⇝...⇝sn

has the formulas Φi, 1 ≤ i ≤ n, in the first-order logic fragment containing only
quantifier-free expressions over uninterpreted functions and integer arithmetic.
Its proof is done by induction on the constraints generated. The constraint Φ0

is always true and is thus trivially compliant. The inductive case is proved by
showing that the constraints added by each rule are compliant. The rules in the
arrays encoding only add array constraints, in addition to constraints supported
by the constants encoding, so theory compliance is straightforward to guarantee.

Termination. This property states that every sequence of ARS reductions is fi-
nite, i.e., the reduction process always terminates. Its proof is based on ensuring
that every rule r applied to a given state sbefore yields a state safter with eafter being
smaller than ebefore. An expression’s length is given based on the length of its sub-
expressions. The arrays encoding mainly changes constraint generation, and in
the cases where rules are slightly modified they generate resulting expressions
of the same size, thus guaranteeing termination.

Soundness. This property is described in Theorem 1. Both e and Φ are KerA+

expressions, but Φ is in the first-order logic fragment supported by SMT solvers.
Fundamentally, the ARS is rewriting a formula to forward it to the solver. The
soundness proof consists of case analysis of each reduction rule to establish that
ebefore ∧ Φbefore is equisatisfiable to eafter ∧ Φafter, no matter the rule applied in
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sbefore⇝safter. The case analysis, which describes how eafter and Φafter can be de-
rived from ebefore and Φbefore for each rule, relies on six invariants of the reduction
system. Three invariants, 1, 3, and 4, are encoding independent, and thus are
the same as those by Konnov et al. [2019], the remaining three, 2, 5, and 6,
are changed due to the new representation of sets and functions. Below all six
invariants are shown, with the modifications needed for the arrays encoding.

Theorem 1. Let s0⇝...⇝sn be a sequence of states produced by the ARS, with
si =



ei | Ai | νi | Φi

�

and 1 ≤ i ≤ n. Assume that e0 is a formula, i.e., it has type
Bool. Then e0 is satisfiable iff the conjunction en ∧Φn is satisfiable.

Invariant 1 (type correctness). In every reachable state



e | A | ν | Φ
�

of the
ARS, the expression e is well typed.

Invariant 2 (arena membership). In every reachable state



e | A | ν | Φ
�

of the
ARS, every cell c in either the expression e or the formula Φ is also in A.

Invariant 3 (model suitability). Let sbefore⇝safter be a reachable transition in the
ARS, and Mbefore be a suitable model for sbefore. An extended model Mafter from
Mbefore is suitable for safter.

Invariant 4 (overapproximation). Let



e | A | ν | Φ
�

be a reachable state of
the ARS, and M be its model. Assume that cset is a set cell in the arena A and
that cset→c1, . . . , cn are edges in A, for some n ≥ 0. Then, it must hold that
JcsetKM ⊆ {Jc1KM , ..., JcnKM}.

Invariant 5 (function domain). Let



e | A | ν | Φ
�

be a reachable state of the
ARS. Assume that c f is a function cell of type sτ1

→ sτ2
in the arena A. Then,

there is a cell cdom of type sSet[τ1] such that c f
1
−→Acdom.

Invariant 6 (domain reduction). Let



e | A | ν | Φ
�

be a reachable state of the
ARS, and M be its model. Assume that c f is a function cell and that c f

1
−→cFdom

is
in the arena A. Then, it follows that JcFdom

KM = JDOMAIN f KM .

As described in sections 3.2.1 and 3.2.2, arrays precisely model TLA+ sets and
functions. The handling of sets revolves around membership constraints of form
cset[ci], which and can be set to true or false via store. Regarding functions, func-
tion application and update are trivially equivalent to array access and update.
The more elaborate array operators also have a counterpart in TLA+. Constant
arrays are equivalent to a function definition for which all range values are the
same constant, and array map is equivalent to set map. These equivalences ex-
plain how the changes in the arrays encoding do not invalidate the case analysis
of the reduction rules used to prove Theorem 1, thus guaranteeing soundness.
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3.3 Implementation and Evaluation

In order to evaluate the performance impact of the arrays-based encoding, it was
implemented in the APALACHE model checker, which currently supports the con-
stants encoding. Given a TLA+ specification containing a property P, APALACHE

is capable of performing bounded model checking up to a length k and, if P is an
inductive invariant, it can check if the property holds with an unbounded length.
In both modes, APALACHE checks if the SMT formula encoding the specification
is satisfiable when conjoined with ¬P, and if that is the case a CEX in the form
of a trace is produced using the arena information and the satisfiable assignment
provided by the SMT solver. The implementation adds new reduction rules to
APALACHE, which can be enabled via a CLI flag. When enabled, these rules re-
place the existing ones encoding sets and functions, as described in Section 3.2.
In addition, APALACHE’s CEX generation was also extended to handle assignments
to SMT formulas containing arrays. Z3 [de Moura and Bjørner, 2008b] was used
as the back-end solver. APALACHE is open-source and freely available1.

A number of experiments were performed using APALACHE and the explicit
state model checker TLC. For APALACHE, both its existing constants encoding and
two versions of the arrays encoding proposed, called arrays and funArrays, were
evaluated. The arrays version encodes both TLA+ sets and functions as arrays,
while the funArrays version encodes only TLA+ functions as arrays. The purpose
of having two versions of the proposed encoding is to evaluate the impact of
encoding sets and functions as arrays separately. The evaluation setup consisted
of a machine with 64 AMD EPYC 7452 processors and 256 GB of memory. The
benchmarks used are first presented and then the results obtained are discussed.

3.3.1 Benchmarks

The TLA+ specifications of three asynchronous protocols are considered as bench-
marks. The first benchmark is a specification of the asynchronous Byzantine
agreement protocol by Bracha and Toueg [1985], showed in Figure 2.1, refered
to as aba. The second benchmark is a specification of the consensus algorithm
with Byzantine faults in one communication step by Dobre and Suri [2006], re-
ferred to as cab. The third benchmark is a specification of the asynchronous
non-blocking atomic commitment protocol by Guerraoui [2001], referred to as
nac. The common use of aba and cba is in replication scenarios with N = 3F +1
replica nodes to tolerate F failures, while the nac protocol is typically used for

1Available at https://github.com/informalsystems/apalache.

https://github.com/informalsystems/apalache
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partitioned databases. All the specifications used are freely available online2.

3.3.2 Results

For each specification the agreement property was checked. The results are
shown in Figure 3.3. We can see that both arrays and funArrays scale in perfor-
mance better that the constants encoding, with an order of magnitude improve-
ment for some instances. It is also worth pointing out that arrays and funArrays
were able to reach a result before the time limit in 29 and 28 instances, respec-
tively, while the constants encoding was able to do so in only 20 instances. In
regards to TLC, it performed worse than the three APALACHE encodings in the
nontrivial cases, only reaching a result before the time limit in 8 instances.

3.4 Related Work

An extensive discussion of works related to symbolic model checking for TLA+

was done by Konnov et al. [2019]. Here the focus is exclusive to closely related
publications. The IVy Prover [Padon et al., 2016] was designed to tackle verifica-
tion of distributed algorithms with a decidable fragment of relational first-order
logic. Some distributed algorithms, such as the one in Figure 2.1, cannot be di-
rectly expressed in this fragment however, due to the use of power sets and set
cardinalities. Recent efforts have focused on offering support to reason about
set cardinalities [Berkovits et al., 2019], but limitations remain. Cut-off based
techniques to automatically infer invariants of distributed algorithms in the IVy
language, such as relational abstractions of Paxos and two-phase commit, have
been recently proposed [Goel and Sakallah, 2021a,b]. Similar benchmarks are
used by Schultz et al. [2022] to infer generalized invariants from finite instances
of TLA+ and semi-automatically prove invariants with TLAPS. Specifications of
fault-tolerant distributed algorithms encoded as threshold automata can be effi-
ciently verified with ByMC [Konnov et al., 2020; Stoilkovska et al., 2022]. The
manual rewriting of an algorithm into threshold automata is, however, usually
beyond the skills of a typical TLA+ user. The work closest to ours involves the
use of SMT arrays to encode EventB and TLA+ specifications in ProB [Schmidt
and Leuschel, 2021]. The focus on ProB aims at handling infinite data structures,
in contrast to our choice to work with bounded overapproximations. Reasoning
about infinite domains implies the use of quantifiers, which prevents the use of
efficient decision procedures available for the decidable fragment of SMT, with

2Available at https://github.com/informalsystems/apalache-bench.

https://github.com/informalsystems/apalache-bench


37 3.4 Related Work

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(a) Results for aba OK.

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(b) Results for aba NotOK.

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(c) Results for cab OK.

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(d) Results for cab NotOK.

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(e) Results for nac OK.

4 7 10 13 16 19
101

102

103

TO
(1h)

104

Instance size

Ti
m

e
in

se
co

nd
s

ARRAYS
FUNARRAYS
CONSTANTS

TLC

(f) Results for nac NotOK.

Figure 3.3. Time in checking agreement for aba, cab, and nac. The specifi-
cations were ran in two configurations, one in which agreement is expected to
hold (OK) and one in which it is not (NotOK). Instance size stands for the
number of nodes used, starting at 4 and being incremented by 3 up to 19, and
the time is given in seconds in logarithmic scale; Timeout (TO) is 1 hour.
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this approach been shown to underperform when compared against APALACHE

in checking the benchmarks from the work of Konnov et al. [2019].
Two important last points regarding the handling of data structures are that

non-standard SMT theories might be relevant in this context and that approaches
not relying on SMT encoding are also possible. For the first point, a good exam-
ple is CVC5’s theory of sets [Bansal et al., 2016]. Despite focusing on sets, this
theory cannot currently handle nested sets, which is a very commonly used TLA+

construct. It remains as a viable alternative to the SMT theory of arrays for the
encoding of flat sets, but whose use implies important restrictions to the input
language and, consequentially, to practical application. For the second point,
the axiomatic approach followed by BOOGIE [Barnett et al., 2006] illustrates an
alternative way to handle structural information.

3.5 Conclusions and Future Work

In this chapter the novel encoding of the main TLA+ constructs into the SMT the-
ory of arrays proposed was presented, whose goal is to provide the SMT solver
with the structural information it needs to efficiently reach a solution. The en-
coding was implemented into the APALACHE model checker and the evaluation
indicates that it provides a significant performance improvement when compared
against APALACHE’s existing encoding and the explicit state model checker TLC.

Directions for future work include (i) encoding the remaining TLA+ con-
structs in a structure-preserving way, (ii) evaluating the encoding with different
back-end solvers, and (iii) developing an efficient unbounded model checking ap-
proach for TLA+. For the first direction two possibilities are the continued use of
arrays or, alternatively, the use of algebraic datatypes. For the second direction,
candidate solvers are CVC5 [Barbosa et al., 2022a] and OPENSMT [Bruttomesso
et al., 2010]. For the third direction, a CHC-based approach is considered as a
suitable target.



Chapter 4

A Solicitous Approach to Smart
Contract Verification

The safety-critical nature of smart contracts makes formally verifying them a
necessity. The main programming language specifically designed to enable the
implementation of smart contracts currently is Solidity, and this is the language
in which efforts were focused. While existing works make use of different inter-
mediary representations to reuse available verification tooling, Marescotti et al.
[2020] proposed a direct encoding of Solidity into CHC in order to avoid the
need of error-prone and potentially costly translations. This encoding enables
the verification of assertions present in the source code, which are taken as the
contracts’ specifications. Assertion checking allows developers to not only en-
sure the absence of common known vulnerabilities, via injection of assertions
that block attacking behaviours, but to also check functional correctness. By us-
ing CHC, once the set of contract states reachable is determined, it must be the
case that either a contract invariant is established, proving that a given property
holds after an unbounded number of transactions, or a finite-length CEX is found,
concretely showing a property violation. Contract invariants are conditions over
the contract’s variables that always hold, which can thus be used by developers
to confirm their intents for the code, while CEXs are lists of transactions that lead
to an assertion error, which can aid in the fixing of vulnerabilities.

This chapter focuses on symbolic model checking for Solidity. The encod-
ing by Marescotti et al. [2020] allows for unbounded model checking, meaning
that vulnerabilities that happen after any finite sequence of transactions can be
captured, but it produces constraints whose solving is undecidable in the gen-
eral case. Despite this theoretical limitation, CHC solvers are able to reach a
decision in many practical scenarios. To asses the practical use of CHC in smart

39
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contract verification the tool implementing the encoding, SOLICITOUS, was ex-
tensively evaluated by executing it with 22446 real world Solidity contracts cur-
rently deployed on the Ethereum blockchain. In addition, a comparison was
drawn against three publicly available tools suitable for automated verification
of Solidity assertions, namely SRI’s SOLC-VERIFY [Hajdu and Jovanovic, 2020],
Microsoft’s VERISOL [Wang et al., 2020], and ConsenSys’ MYTHRIL [ConsenSys,
2021]. The results show that CHC-based model checking of smart contracts is
viable in practice and that SOLICITOUS outperforms the compared tools. Finally,
an extension of the encoding to improve CEX generation is also proposed.

4.1 Encoding Smart Contracts using CHC

The encoding by Marescotti et al. [2020] is presented in this section, together
with the extension proposed to it. The encoding has a smart contract’s CFG as
its starting point, thus CFGs are described first. After that, the formal definition
of a smart contract is presented, followed by the details regarding the modelling
of contract’s functions, static function calls, and dynamic function calls. The
overarching algorithm used to create the CHC model of an entire contract is
then presented, followed by the detailing of how safety can be checked, and,
finally, how CEXs can be produced. The extension of the encoding consists of
four new rules, namely SumIdg,id, Callg,id,ρcall

, ExtIdC,id, and ECallid,ρcall
, which

allow function calls, both internal and external, to be better represented in CEXs.

4.1.1 Control-Flow Graphs

A control-flow graph is a graph representation of the execution paths of a pro-
gram, commonly used for static analysis. The graph’s nodes represent basic
blocks, i.e., sequences of program statements that do not change the control flow
of the program, while its edges represent jumps modelled after the program’s
control structures. Programming structures that modify the control flow include
conditionals, loops, and function calls, with each edge in a CFG being labelled
with a Boolean expression that must be true for the jump to occur.

Given that a smart contract’s transaction is rooted at a call to one of its public
functions, which can lead to additional function calls, a set of CFGs, each mod-
elling one function, can accurately capture the contract’s behaviour. In Figure 4.1
the CFG of function offer of contract Auction from Figure 2.2 can be seen. The
assert statements are modelled as safety blocks, which contain direct jumps to
the exit block guarded by the negation of the asserted expressions. The require
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Figure 4.1. Graphical representation of the CFG of function offer. Solid and
dashed rectangles represent blocks and jumps’ conditions, respectively, and α,
ω, and s1 correspond to the entry, exit, and safety blocks.

statements are treated as execution constraints, i.e., they do not affect the control
flow and only exclude invalid executions, which is their intended purpose.

In symbolic reasoning the state space of a program consists of the Cartesian
product of the domain of the program counter and the domains of the program’s
variables, with the full space being restricted by writing predicates that describe
the states reachable by the program. With this approach there is no need to list all
the reachable states, thus the length of the search space representation in a logic
is often vastly smaller than the explicit representation. In principle, the idea is
to compute points of interest that a program can reach, given the its control flow
and basic blocks in the static single assignment (SSA) form. Conceptually, each
node in the CFG maps to a set of states. The initial states of the program can be
obtained from constructors and other initialization. After this, the control flow
is traversed, adding new states as we go to the sets associated with the nodes.
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This traversal continues until a fixed point is reached with respect to the state
sets. Finding logical formulas that represent these states is, however, not easy.
To construct the formulas, recently developed methodology that combines well-
defined semantics of this intuition with robust, albeit rapidly evolving, solving
technology is applied.

4.1.2 Basic Definitions and Notation

A contract C is defined as a triplet 〈s , I(s), F〉, where s is the set of state variables,
I(s) is the initial state of s , and F is the set of all functions in the contract. The
disjoint subsets F+ and F− of F denote the sets of public and private functions of
F . For example, the formal definition of the contract Auction in Figure 2.2 is

Auction= 〈{b, c, w}, b = 0∧ c = 0∧w= 0, {offer({v, s})→ {r̃}}〉

with b, c, and w representing the state variables bid, cash, and winner, v and s
representing the implicit function arguments msg.value and msg.sender, r̃ being
a special variable not derived from the source code, used to capture the occur-
rence of a revert, and offer ∈ F+. In order to keep the example simple, we refrain
from modelling implicit state variables, e.g., balance ∈ s , which records the
amount of funds held by the contract.

Given a function f (a)→ r ∈ F , where a is the set of function arguments, and
r is the set of return variables, the CFG of function f is the tuple 〈G,α,ω,ρ〉.
G = (V, E,λ,µ, S) is a node- and edge-labelled directed graph, where V is the
set of CFG blocks, E ⊆ V × V is the set of control flow jumps, λv ∈ λ is, for all
v ∈ V , the set that contains the instructions performed by v, µe ∈ µ is, for all
e ∈ E, the condition under which the jump e is performed, and S ⊆ V is the
set of safety blocks, with each such block representing a safety property. The
CFG blocks α,ω ∈ V are respectively the entry and the exit blocks. The CFG of
function offer, represented as CFGo, is

CFGo = 〈Go, 1, 6,ρo〉
Go = ({1,2, 3,4, 5,6}, {〈1,2〉, 〈2, 3〉, 〈2, 5〉, 〈3,4〉, 〈3, 6〉, 〈4,5〉, 〈5,6〉},λ,µ, {3})

with the block identifiers in Figure 4.1 representing the graph’s nodes and the
instructions pertaining to λ and µ also following from the depiction in Figure 4.1,
e.g., λ1 = λ3 = λ6 = ; and µ(1,2) = µ(4,5) = µ(5,6) = true.

In the encoding of a function f only local variables are manipulated, therefore
the labelings λ and µ of each block and jump contain instructions performed only
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over a set of local variables l of f ; changes to state variables are first done in local
copies of them, and only committed if f terminates successfully. The injection
ρ : s ∪ a ∪ r → l maps every state variable, function argument, and return
variable, to a distinct local variable accessed by the instructions in each block
and jump. The mapping notation is extended to sets naturally: for a given set of
variables z, ρ(z) = {ρ(x) | x ∈ z}. The injection ρo present in CFGo is

ρo = {b→ lb, c→ lc, w→ lw, v→ lv, s→ ls, r̃ → l r̃}

with lx , x ∈ {b, c, w, v, s}, representing the local copy of variable x and l r̃ repre-
senting the local copy of the revert variable.

A safety property in the CFG is represented by a safety block. In Solidity,
safety properties are specified with the assert keyword, and their failing during
the execution cause the function to revert and return immediately. To achieve
this behaviour, for every safety block b ∈ S, there exists the jump e = 〈b,ω〉,
where the condition µe is the negation of the property. This ensures a direct
jump to the exit block in case the safety property is violated. A jump to the
exit block ω from a safety block requires ω to revert the changes made by the
function, restoring the state to prior the function’s execution. In order to provide
ω with the information that a safety property has been broken, λb sets ρ(r̃) ∈ l
to a value that uniquely identifies the violated safety property, with r̃ ∈ r being a
special revert variable not derived from the source code. For the function offer

we have one safety block, block 3, with µ(3,4) being the property that is asserted,
bid ≤ cash as shown in Figure 4.1, and µ(3,6) being its negation.

4.1.3 Contract’s Functions

Given a contract C with state variables s , a function f (a) → r ∈ F , with local
variables l and CFG 〈G,α,ω,ρ〉, is modelled in the following manner. For each
CFG block v, Pv

f (s , a, l) is the predicate symbol that represents the states that
are reachable in block v, and the SSA formula SSAλv

(l, l ′), with l ′ = {x ′ | x ∈ l},
models the behaviour of v by formalising in first-order logic the relation between
x and x ′, for each x ∈ l, based on the execution of the instructions in λv. For
each CFG jump e, the formula SSAµe

(l) is the logical condition under which e is
taken. The execution of f is defined by three rules.

The jump rule models each jump e = 〈v, u〉 ∈ E, and is expressed by the CHC

Pu
f (s , a, l ′)← Pv

f (s , a, l)∧ SSAλv
(l, l ′)∧ SSAµe

(l) (Jump f ,e)
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The function offer contains seven jumps, as seen in the definition of Go and
illustrated on Figure 4.1. Applying the rule Jump f ,e to these jumps yield the
following CHCs:

P2
o← P1

o (Jumpo,〈1,2〉)

P3
o← P2

o ∧ lnb = lv − 1015 ∧ lb < lnb ∧ lw ̸= 0 (Jumpo,〈2,3〉)

P5
o← P2

o ∧ lnb = lv − 1015 ∧ lb < lnb ∧¬(lw ̸= 0) (Jumpo,〈2,5〉)

P4
o← P3

o ∧ lb ≤ lc (Jumpo,〈3,4〉)

P6
o← P3

o ∧¬(lb ≤ lc)∧ l r̃ = 3 (Jumpo,〈3,6〉)

P5
o← P4

o ∧ l ′c = lc − lb (Jumpo,〈4,5〉)

P6
o← P5

o ∧ l ′b = lnb ∧ l ′c = lc + lv ∧ l ′w = ls (Jumpo,〈5,6〉)

with the signatures of P1
o,P2

o,P3
o,P4

o,P5
o, and P6

o, which represent the CFG blocks
of function offer, being (b, c, w, s, v, lb, lc, lw, lv, ls, lnb, l r̃). lnb is used to represent
the local variable new_bid. The transfer on line 11 of Figure 2.2 is abstracted out
because balance ∈ s is not present. When a primed version of a variable appears
in the body of a CHC, such variable is also primed in the head, e.g., in Jumpo,〈5,6〉
we have P5

o(b, c, w, s, v, lb, lc, lw, lv, ls, lnb, l r̃) representing all states reachable in
block 5 and P6

o(b, c, w, s, v, l ′b, l ′c, l ′w, lv, ls, lnb, l r̃) representing the states reachable
in block 6 by jump 〈5,6〉, which contains updates to lb, lc, and lw.

To illustrate the application of Jump f ,e to one specific jump, let us consider
the CHC Jumpo,〈2,3〉. Its body contains predicate P2

o conjoined with SSAλ2
, which

is the formula lnb = lv − 1015 ∧ lb < lnb modelling the behaviour of block 2, and
with SSAµ〈2,3〉

, which is the formula lw ̸= 0 modelling the entry condition of the
if-statement of function offer. Its head consists of the predicate P3

o, modelling
the states in block 3 reachable through jump 〈2, 3〉. For block 3, we can see that it
is part of the body of two CHCs, Jumpo,〈3,4〉 and Jumpo,〈3,6〉, the former modelling
normal execution and the latter modelling the case in which the assertion fails,
with its head being the predicate encoding block 6, the exit block of offer.

The entry rule sets the local variables equal to the corresponding current val-
ues of state variables and passed arguments, and is expressed by the CHC

Pαf (s , a, l)←
∧

x∈s∪a

x = ρ(x)∧ρ(r̃) = 0 (Entry f )

The variables in s and a are symbolically assigned in Entry f and are never
changed throughout the applications of Jump f ,e, for any e ∈ E. In case of revert-
ing during execution, these variables provide the necessary information to revert
to the state prior to the execution of f . A revert is caused by a jump to ω setting
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the local variable ρ(r̃) equal to the integer identifier of a safety property that
failed, with ρ(r̃) being initially set to zero.

The CHC modelling the entry of function offer, produced by rule Entry f , is
the following:

P1
o← b = lb ∧ c = lc ∧w= lw ∧ s = ls ∧ v = lv ∧ l r̃ = 0 (Entryo)

The function summary of a given function is the relation between its input
and output, derived from all possible function executions. Let S f (s , a, s ′, r ) be
the predicate symbol representing the function summary of an execution of f . In
this context, the input is represented by the state variables prior to the execution,
s , and the function arguments, a, while the output is represented by the state
variables after the execution, s ′, and the return values, r . The summary rule is
expressed by the CHC

S f (s , a, s ′, r )← Pωf (s , a, l) ∧ (Sum f )
�

ρ(r̃) ̸= 0 =⇒
∧

x∈s

x ′ = x
�

︸ ︷︷ ︸

revert

∧
�

ρ(r̃) = 0 =⇒
∧

x∈s

x ′ = ρ(x)
�

︸ ︷︷ ︸

commit

∧
∧

x∈r

x = ρ(x)
︸ ︷︷ ︸

return

Rule Sum f contains three constraints, revert and commit, which are mutually
exclusive, and return. The revert constraint ensures that an execution is reverted
when ω is reached having the local variable corresponding to r̃ set to the identi-
fier of a safety property. The commit constraint stores the local copy of the state
variables in s ′, modelling a commit of the computed values. The return constraint
equates the return variables r with their corresponding local variables.

The CHC modelling the summary of function offer, produced by rule Sum f ,
is the following:

So(b, c, w, v, s, b′, c′, w′, r̃)← P6
o ∧
�

l r̃ ̸= 0 =⇒ b′ = b ∧ c′ = c ∧w′ = w
�

(Sumo)

∧
�

l r̃ = 0 =⇒ b′ = lb ∧ c′ = lc ∧w′ = lw

�

∧ r̃ = l r̃

Definition 4.1.1 (Function Model). Given a contract function f , the set of CHCs
modelling f , Π f , consists of applications of the jump rule Jump f ,e, for each con-
trol flow jump e of f , and the entry and summary rules for f , Entry f and Sum f .

For function offer we have the set

Πo = {Jumpo,〈1,2〉,Jumpo,〈2,3〉,Jumpo,〈2,5〉,Jumpo,〈3,4〉,Jumpo,〈3,6〉,Jumpo,〈4,5〉,

Jumpo,〈5,6〉} ∪ {Entryo,Sumo}
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4.1.4 Function Calls

Consider functions f and g, which need not be distinct, represented by CFGs
G f and Gg . A function call is performed by a block v in G f if its labelling λv

contains the call instruction to Gg . At runtime, the execution of the CFG block
v is performed by executing the CFG block α of Gg , which constitutes the start
of an execution of Gg . When ω of Gg is reached, the transaction represented by
the execution of Gg is finalized by committing any changes to the state variables.
The execution is then resumed from v, mapping the return variables of g to
the corresponding local variables of f , and updating the local variables of f
representing state variables to match the new values resulting from the commit
just performed by the concluded transaction. When the execution terminates, ρ
is used to commit changes performed locally in the model to the state variables.

Consider a control flow jump e = 〈v, u〉, where λv contains a function call to
g(ag) returning variables r g . The summary of g is used to synchronize the local
variables of f with the new state committed by g after its execution terminates.
To precisely represent distinct calls to the same function, in order to accurately
record where an exception occurs, if it does so, uniquely tagged summaries are
created for each call. These summaries are then used in the definition of their
respective SSA formulas.

The tagged summaries are created by using the summary id rule, expressed
by the CHC

Sg id(s , a, s ′, r )← Sg(s , a, s ′, r ) (SumIdg,id)

The first tagged summary of function offer would have been given by the
following CHC:

So1 ← So (SumIdo,1)

with additional tagged summaries being possible through the CHCs SumIdo,n,
n ∈ {2,3, ...}.

Given a freshly tagged summary, SSAλv
(l, l ′) of Jump f ,e containing a function

call is defined as

Sg id(s ′, ag , s ′′, r g) ∧ (Callg,id,ρcall
)

∧

x∈ag∪r g

x = ρcall(x)

︸ ︷︷ ︸

arguments and returns passing

∧
∧

x∈s

�

x ′ = ρ(x)∧ x ′′ = ρ(x)′
�

︸ ︷︷ ︸

state set and update

∧
∧

x∈l\lcall

x ′ = x

︸ ︷︷ ︸

untouched locals
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The tagged summary maps s′ to s′′, instead of s to s′, and appends the func-
tion’s name to its arguments and return variables, in order to avoid a clash with
the representation of the variables in the callee. The mapping ρcall : ag → l, r g →
l ′ is specific to this call and maps both the arguments of g to l and the return
variables of g to l ′. The set of local variables that can be affected by the call is
lcall = ρcall(r g) ∪ ρ(s). The arguments are passed by value, thus local variables
ρcall(ag) provided as arguments to function g are not affected by g ’s execution.

The SSA defined in Callg,id,ρcall
constrains its function summary in a three-fold

manner. First, the arguments and returns passing conjunction uses ρcall to match
arguments and return variables to the respective local variables of the caller.
Second, the state set and update conjunction ensures that the local variables in l ′

that represent state variables are updated according to the execution g. Note that
in case a revert occurs in the execution of g, ρ(x) ≡ ρ(x)′, meaning the state
has not changed, and ρcall(r̃g) ∈ l is set according to the revert, which allows
the modelling of revert propagation or catching by the caller. Lastly, for each
local variable not in lcall, the untouched locals conjunction equates its primed and
non-primed versions, modelling that its value is not affected by the execution
of g. Since all variables in l ′ are constrained, Callg,id,ρcall

models a deterministic
execution of the callee. By combining rules Jump f ,e and Callg,id,ρcall

, the resulting
CHC is nonlinear, i.e., it contains more than one predicate in its body, in this case
the predicates Pv

f and Sg id .

If the contract Auction contained a function refundFee, which allowed se-
lected bidders to have their fees refunded, a call to it by some other function in
Auction would be defined by the SSA

Srf1 ∧ vrf = lv ∧ srf = ls ∧ r̃rf = l ′r̃ (Callrf ,1,ρcallrf1
)

∧ (b′ = lb ∧ b′′ = l ′b)∧ (c
′ = lc ∧ c′′ = l ′c)∧ (w

′ = lw ∧w′′ = l ′w)

∧ l ′v = lv ∧ l ′s = ls

with the summary Srf1 given by the CHC

Srf1 ← Srf (SumIdrf ,1)

The signatures of the predicates in Callrf ,1,ρcallrf1
and SumIdrf ,1 are respectively

(b′, c′, w′, vrf , srf , b′′, c′′, w′′, r̃rf) and (b, c, w, s, v, b′, c′, w′, r̃). It is assumed that
identifier 1 only tags this particular call to refundFee, and refundFee has neither
explicit arguments and return variables nor local variables in its body.
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4.1.5 Contract’s External Behaviour

A transaction of a given a contract C = 〈s , I(s), F〉 consists of the execution of
a single public function of C . Contract transactions can therefore be modelled
by the summaries of every function f ∈ F+, with each summary providing the
relation between the state variables before and after the execution of its associ-
ated function. The external behaviour of C encompasses all possible interactions
between it and an external contract, being defined as the transitive closure of C ’s
transactions. This way we capture the relation between the state variables before
and after an arbitrary number of calls to any of the contract’s public functions, in
any order; to capture whether an assertion error occurs in such calls, the revert
variable r̃ is also recorded. The predicate EC that models the external behaviour
of C is defined inductively. The external base rule is expressed by the CHC

EC(s , s , 0)←⊤ (ExtBaseC)

and the external inductive rule is expressed, for each f ∈ F+, by the CHC

EC(s , s ′′, r̃ ′′)← EC(s , s ′, r̃ ′)∧ S f (s
′, a, s ′′, r )∧ r̃ ′ = 0∧ r̃ ′′ = r̃ (ExtIndC, f )

The external behaviour of contract Auction, assuming it contains the function
offer as well as the function refundFee described at the end of Section 4.1.4, is
given by the following CHCs:

EA←⊤ (ExtBaseA)

EA← EA∧ So ∧ r̃ ′ = 0∧ r̃ ′′ = r̃ (ExtIndA,o)

EA← EA∧ Srf ∧ r̃ ′ = 0∧ r̃ ′′ = r̃ (ExtIndA,r f )

with the signature of EA being (bp, cp, wp, bq, cq, wq, r̃q), p and q being n primes,
n ∈ {0,1, 2}, depending of the rule being applied, and the signature of So and Srf

being (b′, c′, w′, s, v, b′′, c′′, w′′, r̃).
Predicate EC can be used to model calls to functions of an external contract

D, whose source code is unknown, capturing all possible interactions between C
and D. Every control flow jump 〈v, u〉 of C in which block v contains a call to a
function with unknown code is modelled by a uniquely tagged EC , instead of the
called function’s summary. The external id rule is given by the CHC

EC id(s , s ′′, r̃ ′′)← EC(s , s ′′, r̃ ′′) (ExtIdC,id)

The first tagged predicate modelling the external behaviour of the Auction
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contract is given by the following CHC:

EA1 ← EA (ExtIdA,1)

with EA1 having the same signature as EA.
The SSA formula modelling the external call in block v, SSAλv

(l, l ′), is similar
to Callg,id,ρcall

, with two differences: the predicate used is EC id , instead of Sg id ,
and the arguments and returns passing constraint is reduced to the update of
ρ(r̃)′. The local variables in ρcall(r g) \ {ρ(r̃)′} are unconstrained in order to
nondeterministically model any possible values returned by the unknown source
code. The definition of SSAλv

(l, l ′) is

EC id(s ′, s ′′, r̃ ′′)∧ρ(r̃)′ = r̃ ′′

︸ ︷︷ ︸

revert recording

∧
∧

x∈s

�

x ′ = ρ(x)∧ x ′′ = ρ(x)′
�

︸ ︷︷ ︸

state set and update

∧
∧

x∈l\lcall

x ′ = x

︸ ︷︷ ︸

untouched locals

(ECallid,ρcall
)

If the function refundFee contained a call to an external function unknown,
such a call would be defined by the following SSA formula:

EA1 ∧ l ′r̃ = r̃ ′′ (ECall1,ρcallu1
)

∧ (b′ = lb ∧ b′′ = l ′b)∧ (c
′ = lc ∧ c′′ = l ′c)∧ (w

′ = lw ∧w′′ = l ′w)

∧ l ′v = lv ∧ l ′s = ls

If a safety proof for this model can be obtained, then it is not possible to
construct an external contract that can violate assertions in C by any sequence of
reentrant calls. The existence of a CEX for this model implies that there exists a
contract that can be designed specifically for violating one or more assertions, by
calling one or more public functions in a particular order and returning specific
values. The unique tag on EC id allows us to record which external function call
led to the assertion failure, in case a CEX is produced, which is important because
calls made at different points of a function’s body can have different effects, in
case state variables are being manipulated.

4.1.6 Contract’s Complete Behaviour

Given a contract C , let C(s) be the predicate representing the reachable values
for the contract’s state variables. The contract’s initial state is modelled by the
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initialization rule, expressed by the CHC

C(s)← I(s) (InitC)

Every root transaction with f ∈ F+ is modelled by the root transaction rule,
expressed by the CHC

C(s ′)← C(s)∧ S f (s , a, s ′, r )∧ r̃ = 0 (RootTrC, f )

For the contract Auction and function offer shown in Figure 2.2, we have

A← b = 0∧ c = 0∧w= 0 (InitA)

A′← A∧ So ∧ r̃ = 0 (RootTrA,o)

Predicate A’s signature is (b, c, w), with A′ standing for A(b′, c′, w′); So’s signature
is as Sumo’s.

Definition 4.1.2 (Contract Model). Given a contract C , the set of CHCs mod-
elling all possible behaviours of C , ΠC , consists of applications of the initializa-
tion rule InitC and the external base rule ExtBaseC, together with the set of CHCs
Π f of every function f ∈ F and, for each public function f ∈ F+, the external
inductive rule ExtIndC, f and the root transaction rule RootTrC, f .

The complete CHC model of contract Auction is

ΠA = {InitA,ExtBaseA} ∪Πo ∪ {ExtIndA,o,RootTrA,o}

The modelling technique is summarised in Algorithm 1. Given as input a
smart contract C , the algorithm returns the set ΠC of CHCs modelling C . Ini-
tially, ΠC contains only applications of rules InitC and ExtBaseC. The loop from
lines 1 to 26 iterates over every contract function f , constructing their respective
Π f sets, which are merged with ΠC in line 22, and applying rules ExtIndC, f and
RootTrC, f , in line 24, if the function is public. The internal loop from lines 6 to 21
iterates over every edge e = 〈v, w〉 of the CFG of f , in order to apply rule Jump f ,e.
For the modelling of block v, the case in which it represents a function call is
handled in lines 7 to 15, using either the summary of the called function or the
predicate of an external call, while if no function call is present in v, the formal
model representing its execution is generated in line 17.
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Input : contract C = 〈s , I(s), F〉
Output : set of CHCs ΠC

Initially: ΠC ← {InitC,ExtBaseC}
1 foreach f = 〈G,α,ω,ρ〉 ∈ F with G = 〈V, E,λ,µ, S〉 do
2 a← arguments of f
3 r ← return variables of f
4 l ← local variables of f
5 Π f ← {Entry f ,Sum f }
6 foreach e = 〈v, w〉 ∈ E do
7 if v contains a call to g(ag)→ r g then
8 create ρcall from λv // maps arguments and returns of the call
9 if Sumg is known then

10 Π f ← Π f ∪ {SumIdg,id} // adds a freshly tagged summary
11 SSAλv

(l, l ′)← Callg,id,ρcall

12 else
13 Π f ← Π f ∪ {ExtIdC,id} // adds a freshly tagged external call
14 SSAλv

(l, l ′)← ECallid,ρcall

15 end
16 else
17 SSAλv

(l, l ′)←model(λv) // models according to v’s instructions
18 end
19 SSAµe

←model(µe) // models according to e’s conditions
20 Π f ← Π f ∪ {Jump f ,e}
21 end
22 ΠC ← ΠC ∪Π f

23 if f ∈ F+ then
24 ΠC ← ΠC ∪ {ExtIndC, f ,RootTrC, f }
25 end
26 end

Algorithm 1: The algorithm to construct ΠC .

4.1.7 Checking Contract Safety

The safety of a public function f ∈ F+, Σ f , is modelled by the safety rule, ex-
pressed by the CHC

⊥← C(s)∧ S f (s , a, s ′, r )∧ r̃ ̸= 0 (SafetyC, f )
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Definition 4.1.3 (Contract Safety). Given a contract C , its safety condition con-
sists of the set ΣC containing the safety rules of every public function f ∈ F+.

If∆⊥ is empty for a given function f , then no transaction of f can result in an
assertion error. A given contract C is safe if and only if the set of CHCs ΠC ∪ΣC

is satisfiable. If an assertion error can be reached during the execution f , then
there exist an interpretation of C and S f that evaluates the body of the safety rule
to true, making the set of CHCs unsatisfiable. Conversely, if the set ΠC ∪ ΣC is
satisfiable, then there exists a first-order formula η(s) such that∆C |=T C(s) =⇒
η(s). The formula η(s), called a safe inductive invariant, over-approximates the
states reachable through any sequence of transactions and proves inductively
that ΣC always holds. Any formula ι(s) implied by a safe inductive invariant is
a contract invariant, i.e., it is true in every reachable contract state.

For the code shown in Figure 2.2, having the predicates’ signatures as in
RootTrA,o, the safety rule of function offer, Σo, and the safety condition of con-
tract Auction, ΣA, are respectively

⊥← A ∧ So ∧ r̃ ̸= 0 (Σo)

ΣA = {Σo}

Contract Auction has a potential vulnerability that can allow malicious users
to siphon funds out of it, in a two step attack using function offer. First, the
attacker makes a bid that is smaller than the bidding fee, e.g., by calling offer

with msg.value = 0, leading to an underflow during the calculation of new_bid
(line 7), which will be set to 2256 − 1015 + msg.value, assuming wrapping, i.e.,
overflow and underflow, is enabled; the type of uint is unsigned integer of 256
bits. This allows the attacker to set themselves as the winner, while sending no
funds to the contract. Second, the attacker calls offer again, this time sending
more funds than previously, but still less than the bidding fee, causing another
underflow. Since the attacker is the current winner at this point, the function will
refund them their previous bid (lines 9-13). The assert ensuring that a refund
cannot be larger than the amount of funds gathered by the auction so far (line
10) prevents this attack.

A common practice in the domain of smart contracts is to add assertions dur-
ing development, with the goal of catching unintended behaviours, but to remove
them prior to deployment, in order to reduce deployment and execution costs.
In the case of contract Auction, if the vulnerability was not caught prior to the
removal of the assert, this would leave it open to the attack described, depend-
ing on the semantics of integer arithmetics adopted. Since the attack relies on
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underflows happening, the satisfiability of the set ΠA∪ΣA varies by language ver-
sion. The newest Solidity version, v0.8, treats overflow and underflow as invalid
operations by default, which automatically revert, making the attack impossible.
Using v0.8 default semantics when generating the SSA formulas will thus make
the set ΠA∪ΣA satisfiable1. The Solidity versions preceding v0.8, which account
for the overwhelming majority of deployed contracts, and that can be expected
to be used for a significant number of contracts deployed in the near future as
well, since developers tend to migrate slowly to newer versions, have, however,
wrapping behaviour enabled, allowing the siphoning of funds.

By integrating the verification approach into the development process, de-
velopers can catch not only this simple vulnerability, but all vulnerabilities that
can be specified using assertions, including documented exploits, and also check
for functional properties. The checking procedure can easily be applied during
development, since both the construction of the set of CHCs ΠC ∪ΣC , for a given
contract C , and the CHC solving, are fully automated, as detailed in Section 4.2.

4.1.8 Counterexample Production

The refutation, or proof of unsatisfiability, of ΠC ∪ΣC proves that a specific safety
rule in ΣC cannot be satisfied, i.e., ∆⊥ is nonempty. While the solving methodol-
ogy can show satisfiability over unbounded executions, through the use of over-
approximation, only finite refutations can be represented. This is, of course, not
a practical limitation, since only vulnerabilities that manifest themselves after
a finite number of steps are of interest. The description of how a refutation is
constructed by the CHC solver is outside of the scope of this chapter, instead an
overview of the refutations themselves and of how they are used in CEX produc-
tion is given; proofs of unsatisfiability for CHC are touched upon in Chapter 6.

A refutation is a tree-shaped structure obtained by an unwinding of clauses.
Its nodes are labelled with clauses, with its root, v0, being labelled with a clause
having ⊥ as head. For each predicate P in the body of clause c of a given refuta-
tion node, a child labelled with a unique clause c′ is created, with head(c′) = P.
The leaves of the tree are labelled with clauses containing no predicates in their
body. In a refutation, for all paths v0, . . . , vk from the root to a leaf, labelled with
clauses c1, . . . , ck, it must hold that

|=T bodyφ(c1)(x 0, x 1)∧ bodyφ(c2)(x 1, x 2)∧ . . .∧ bodyφ(ck)(x k−1, x k)
(DefRefPath)

1Solidity v0.8 allows wrapping behaviour via the unchecked command, which enables the
semantics used in older versions.
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with bodyφ(c) denoting the constraintφ of a given clause c in the form DefClause.
A CEX is produced from a refutation by traversing the tree and listing the

nodes that refer to the initialization rule InitC, the root transaction rule RootTrC, f ,
and the safety rule SafetyC, f . Due to the refutation’s structure, traversing its left-
most path gives us a list of nodes in which the first element is labelled with a
safety rule, followed by zero or more elements labelled with root transaction
rules, and the last element is a leaf labelled as an initialization rule. The con-
junction of the clauses in the obtained list satisfies DefRefPath and represents a
trace of transactions that leads to an assertion error, with the children of each
node modelling the contract state prior the transaction and the function call with
specific arguments that results in the new state.

Assuming underflow as a valid operation, ΠA ∪ΣA is unsatisfiable, and thus
leads to a refutation, which is shown in Figure 4.2. In order to produce the CEX
the tree is traversed, providing us with the list 〈Σo,RootTrA,o, InitA〉. The initial
transaction in the CEX trace is the one from deployment, given by node InitA,
which sets bid = 0, cash = 0, and winner = 0, and is followed by the function
calls modelled by the two other nodes. Node RootTrA,o models the result of the
first call to function offer, with msg.value = 0 and msg.sender = 0xA1. Node Σo

models the results of the second call to function offer, with msg.value = 1 and
msg.sender = 0xA2, which results in an assertion error.

4.2 Implementation

The approach was implemented inside the SOLCMC [Alt et al., 2022] compo-
nent of the Solidity compiler SOLC2, as part of a collaboration with the engineers
of the Ethereum Foundation. The implementation, called SOLICITOUS (Solidity
contract verification using constrained Horn clauses), consists of the CHC model
checking engine of SOLCMC.

The functionality provided by SOLICITOUS can be enabled by simply adding
pragma experimental SMTChecker directly into the source file, prior to the compi-
lation. If enabled, the compiler provides the contract’s CFG to SOLICITOUS, which
produces the CHC model ΠC∪ΣC , following Algorithm 1 for ΠC and SafetyC, f for
ΣC . The CHC model is then provided to a CHC solver for checking, with SOLCMC
currently supporting the SPACER [Komuravelli et al., 2016] and ELDARICA [Hojjat
and Rümmer, 2018] solvers. In case an assertion error is detected, SOLICITOUS

provides a transaction trace as a witness to the error, which can be easily vali-
dated by the developer. An overview of the SOLICITOUS architecture can be seen

2Available at https://github.com/ethereum/solidity/releases.

https://github.com/ethereum/solidity/releases
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Figure 4.2. Refutation tree for the set ΠA ∪ ΣA. Besides its label, each node
is annotated with a tuple containing the head of the referenced clause and the
current value of relevant variables. The values 0xA1 and 0xA2 represent two
Ethereum addresses, B1 = 2256 − 1015, and B2 = 2256 − 1015 + 1.



56 4.2 Implementation

Solidity code 
with assertions

compiler stack
Solicitous

EVM code

Spacer/Eldarica

CFG producer

Solidity compiler

CHC producer 

CEX producer 

CEX invariant

CFG

CHC

UNSAT SAT

Solidity compiler
CHC solver 
Solicitous tool
Solicitous output

Figure 4.3. Solicitous module inside the Solidity compiler solc.

in Figure 4.3; the solver used, SPACER or ELDARICA, is treated as a black box.
The modelling of control flow structures such as conditionals and loops is not

restricted by rule Jump f ,e, following the topology of the CFG provided. The types
of all variables in the CHC model directly reflects their source code equivalents,
with addresses being treated as uninterpreted symbols and the unique names of
the variables being derived from the CFG structure.

In addition to general functions, Solidity has two special function-like struc-
tures: modifiers and constructors. A modifier is a code fragment that envelops a
number of selected functions’ bodies. In SOLICITOUS, modifiers are not modelled
separately, but are instead inlined to the functions they modify. A constructor
contains the initialization procedure executed during the deployment of a con-
tract. Constructors are used in the definition of I(s), where variables are given
either an explicit initial value or the default initial value of their type. In con-
tracts with inheritance, the inheritance order is obtained by the compiler using
C3 linearisation [Barrett et al., 1996], with each constructor being executed once.
In SOLICITOUS, the deployment procedure, which might include state variables’
initialization and inheritance linearisation, is inlined into a single constructor.

To the best of our knowledge, no verification tool targeting Solidity supports
the complete range of language features, with all tools working on a best-effort
basis. SOLICITOUS currently supports a large working subset of Solidity, including
the complex control flow and arithmetic operators, excluding exponentiation,
integers of all available sizes, Boolean variables, arrays, mappings’ assignment
and access, and inheritance. Strings and structs are currently not supported,
and their occurrences in φ are replaced by nondeterministic operations in order
to maintain soundness. Continuous support in terms of both language features
and versions is a goal of the Ethereum Foundation, with the supported subset of
language expected to grow in the future.
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4.3 Evaluation

Large-scale experiments were performed to evaluate both the precision and ef-
ficiency of the approach, as well as the current support of language features
offered by the implementation. The evaluation was done in a fully automated
fashion [Tange, 2011], enabling easy replication by interested third parties.

SOLICITOUS was compared against three publicly available tools suitable for
automated verification of Solidity assertions: SRI’s SOLC-VERIFY [Hajdu and Jo-
vanovic, 2020] and Microsoft’s VERISOL [Wang et al., 2020], that verify Solid-
ity source code, and ConsenSys’ MYTHRIL [ConsenSys, 2021], that verifies EVM
bytecode. To the best of our knowledge these are the only tools with which an
automated comparison is possible. Two other tools were considered for compar-
ison, namely ZEUS [Kalra et al., 2018] and SAFEVM [Albert et al., 2019], but
ZEUS is not publicly available and SAFEVM only supports Solidity v0.4.

Of the selected tools, SOLICITOUS, SOLC-VERIFY, and VERISOL can produce
safe inductive invariants, and thus establish contract safety. MYTHRIL, however,
is a purely bounded checking engine, being only capable of verifying up to a set
number of transactions after contract deployment; by default a depth of three
transactions is considered. Given this, MYTHRIL can never ensure safety, only
report unsafe or inconclusive results. Despite these limitations, MYTHRIL is well
known in the smart contracts community for having good support for language
features, and it was chosen to serve as the gold standard for the language support
metric. Regarding CEX production, SOLICITOUS can produce CEXs of arbitrary
length, reporting assertion errors that can happen at any point during the life-
cycle of a contract, while VERISOL and MYTHRIL can produce CEXs only up to
given length, and SOLC-VERIFY does not produce CEXs at all; VERISOL has a hy-
brid approach, first attempting to establish unbounded safety, and if that is not
successful it performs a bounded check.

The features implemented in SOLICITOUS vary by language version, with the
description in Section 4.2 reflecting the current status of the v0.8 implementa-
tion. The support for language features is smaller for previous versions, with
the v0.5 and v0.6 implementations not producing CEXs. This variation between
versions is assumed to also hold for the other tools. SOLICITOUS supports the full
range of Solidity versions from v0.5 to v0.8, as does MYTHRIL, but SOLC-VERIFY

is restricted to v0.5, v0.7, and v0.8, while VERISOL only supports v0.5. Version
4.8.10 of Z3 [de Moura and Bjørner, 2008b], which contains SPACER, was used as
the back end for all tools and the tools’ encodings were set to modular arithmetic
mode in order to properly capture the behaviour of arithmetic types.
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4.3.1 Benchmarks

The benchmarks consist of real-world smart contracts deployed on the Ethereum
blockchain over a period of 27 months. All contract deployment transactions
present from block 7 million, mined on the 2nd of January 2019, to block 12
million, mined on the 8th of March 2021, were gathered and the Etherscan block
explorer3 queried for their respective source codes. The source code of 224186
contracts was obtained, of which 73614 were unique: 355 v0.8, 2617 v0.7,
16981 v0.6, 25306 v0.5, and 28355 of versions older than 0.5.

In the experiments only contracts containing assert statements were used,
which were selected in two complementary ways. The first way was to simply se-
lect contracts already containing asserts, with these contracts being used as they
were deployed. The second way involved contracts containing only asserts that
were commented, with these contracts having their asserts uncommented. Com-
mented asserts are of interest because developers might have commented them
before deployment in order to reduce deployment and execution costs, believing
them to hold. In total, 22446 contracts were used in the evaluation: 38 v0.8, in-
cluding 61 asserts, 870 v0.7, including 1110 asserts, 9136 v0.6, including 11114
asserts, and 12402 v0.5, including 20912 asserts; older versions were not in-
cluded due to lack of tool support. All benchmarks are publicly available4.

4.3.2 Results

The summary of the results can be seen in Table 4.1, with the number of bench-
marks available for each tool being derived from the Solidity versions it supports.
A breakdown of results per Solidity version can be seen in Table 4.2. Safe con-
tracts are those for which all asserts are proved safe by safe inductive invariants.
Unsafe contracts are those for which a CEX was produced. Inconclusive results
arise when the tool fails to either establish safety or produce a CEX. Timeout for
each individual tool execution is 60 seconds. The difference between an incon-
clusive result and a timeout is that in the former the tool terminates successfully
but is unable to classify the contract, while in the latter the process running the
tool is killed upon reaching the time limit; in the case of a timeout a developer
can run the tool for longer, which is not applicable for inconclusive results, aris-
ing due to fundamental limitations of the tool’s approach. Crashes happen when
language elements not handled by the tool are in the contract, e.g., inlined as-
sembly code. A contract is considered verified if it is classified as safe or unsafe.

3See https://etherscan.io.
4Available at https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git.

https://etherscan.io
https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git
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Table 4.1. Summary of experimental results. The best results are highlighted.

SOLICITOUS (SOL) SOLC-VERIFY (SV) VERISOL (VS) MYTHRIL (M)

Benchmarks 22446 13310 12402 22446

Safe 6651 103 201 0
Unsafe 8 0 9 21
Inconclusive 2970 5601 230 728
Timeout 9058 3163 4032 19511
Tool crash 3759 4443 7930 2186

Verified ∼29% ∼0.7% ∼1% ∼0.09%

SOLICITOUS was able to guarantee one order of magnitude more contracts to
be safe, in comparison with SOLC-VERIFY and VERISOL. Regarding catching asser-
tion errors, SOLICITOUS was the most performant tool for the versions in which it
produces CEXs, v0.7 and v0.8, with MYTHRIL having the best result overall, prob-
ably due to the percentage of version 0.5 and 0.6 instances. The large number
of benchmarks that lead to an inconclusive result or a timeout, among all tools,
indicates the highly nontrivial nature of smart contracts verification. Regarding
crashes, MYTHRIL has shown itself to be the more stable tool, as expected, with
SOLICITOUS having the least crashes among the unbounded verification tools.

To compare the performance of the tools the runtimes of the executions that
produced safe inductive invariants were gathered. The results are summarised
in Figure 4.4. SOLICITOUS was able to verify more than 4000 contracts in less
than 10 seconds, and more than 6000 in less than 30 seconds, which highlights its
applicability for contract developers. SOLC-VERIFY’s runtimes are also distributed
throughout the time axis, with most of the 103 contracts classified as safe being
done so in less than 40 seconds. VERISOL achieved all its 201 safe results in less
than 10 seconds. The fact that the majority of the contracts were classified as safe
in less than half the allocated time indicates that, for all tools, practical results
can be achieved with small timeouts. We can also conclude that increasing the
timeout can be beneficial for both SOLICITOUS and SOLC-VERIFY, but may not be
for VERISOL. Given the positive results, aligned with the practical nature of the
benchmarks, SOLICITOUS stands as a valuable tool for developers.

4.3.3 Manual Inspection and Vulnerabilities Found

To understand the types of vulnerabilities found by each tool and the contracts
in which they occur, all thirty-eight contracts that were classified as unsafe in the
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Table 4.2. Experimental results detailed per Solidity version. SOL, SV, VS,
and M stand, respectively, for Solicitous, Solc-Verify, VeriSol, and Mythril. A
dash means that the corresponding tool does not support the specific Solidity
version. The best results are highlighted.

SOL SV VS M

Safe 3689 95 201 0
Unsafe 0 0 9 13
Inconclusive 2383 5327 230 279
Timeout 4101 3045 4032 9935
Tool crash 2229 3935 7930 2175

Verified ∼29% ∼0.7% ∼1% ∼0.1%

(a) Version 0.5, totalling 12402 instances.

SOL SV VS M

Safe 2877 - - 0
Unsafe 0 - - 7
Inconclusive 583 - - 413
Timeout 4159 - - 8706
Tool crash 1517 - - 10

Verified ∼31% - - ∼0.07%

(b) Version 0.6, totalling 9136 instances.

SOL SV VS M

Safe 72 8 - 0
Unsafe 7 0 - 1
Inconclusive 4 268 - 35
Timeout 775 118 - 833
Tool crash 12 476 - 1

Verified ∼9% ∼0.9% - ∼0.1%

(c) Version 0.7, totalling 870 instances.

SOL SV VS M

Safe 13 0 - 0
Unsafe 1 0 - 0
Inconclusive 0 6 - 1
Timeout 23 0 - 37
Tool crash 1 32 - 0

Verified ∼36% 0% - 0%

(d) Version 0.8, totalling 38 instances.

experiments were manually inspected. In addition, all v0.8 contracts classified
as safe by SOLICITOUS were also inspected, in order to understand how complex
are the contracts for which SOLICITOUS can ensure safety.

Of the eight contracts classified as unsafe by SOLICITOUS, five are governance
contracts based on ERC20, one is a token exchange contract based on ERC20 and
ERC165, one is token sale contract, and one is a voting contract. These contracts
have 584 lines of code on average, with the smallest having 97 lines of code and
the largest having 1325 lines of code. The vulnerabilities found are caused by
reentrant calls, affecting one contract, overflow, also affecting one contract, and
unexpected inputs, affecting the remaining six contracts. Regarding the assertion
failures caused by unexpected inputs, one is simply due to using assert for input
validation instead of require, one is a contract owner call to a function containing
the selfdestruct statement, which is guarded by assert(balance > 0), with the
implicit assumption being that the owner will transfer all funds from the contract
before making such a call, and four are asserting properties on values returned
from calls to external contracts. The vulnerabilities caused by unexpected inputs,
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Figure 4.4. Number of contracts classified as safe by allocated time.

although less severe, are still problematic, since they lead to execution fees not
being refunded depending on the Solidity version being used.

Of the nine contracts classified as unsafe by VERISOL, seven are governance
contracts based on ERC20, one is a token sale contract, and one is a simple token
transfer contract. These contracts have 229 lines of code on average, with the
smallest having 37 lines of code and the largest having 397 lines of code. The
vulnerabilities found are caused by overflow, affecting five contracts, unexpected
inputs, affecting two contracts, and asserting a transfer statement, also affecting
two contracts. Both assertions failures caused by unexpected inputs are due to
using assert for input validation instead of require. Funds transferring can fail
for various reasons pertaining to the target address and should thus be avoided.

Of the twenty-one contracts classified as unsafe by MYTHRIL, four are gov-
ernance contracts based on ERC20, four are token sale contracts, two are to-
ken time lock contracts, four are wallet management contracts, two are airdrop
contracts, three are logging contracts, which store hashes associated with times-
tamps, one is a signature contract, and one is a simple contract that delegates
calls to a specified address. These contracts have 390 lines of code on average,
with the smallest having 23 lines of code and the largest having 990 lines of code.
The vulnerabilities found are caused by overflow, affecting thirteen contracts, un-
expected inputs, affecting seven contracts, and unexpected branch execution, af-
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fecting one contract. The assertion failures caused by unexpected inputs are due
to validation of functions’ inputs, two occurrences, and owner privileges check-
ing, five occurrences. The assertion failure caused by an unexpected branch ex-
ecution consists of an assert(false) statement in a part of the code that should
not be reachable.

Of the thirteen v0.8 contracts classified as safe by SOLICITOUS, nine are gov-
ernance contracts based on ERC20, two are token exchange contracts based on
ERC20, ERC165, and ERC1363, one is a betting contract, and one is a vesting
contract. These contracts have 565 lines of code on average, with the smallest
having 233 lines of code and the largest having 721 lines of code. An interesting
point is that three of those contracts contain comments stating that they were
independently audited.

4.4 Related Work

There is much interest in formally verifying smart contracts. With Ethereum
being one of the most used platforms for smart contract applications currently,
most verification works target either EVM bytecode, which is deployed directly
on the blockchain, or Solidity source code, which is compiled to EVM bytecode.
Verification approaches vary in both their scope and the manner in which they
are carried out. The scope ranges from the checking of specific vulnerabilities,
usually selected from among high-profile documented exploits, to the use of dif-
ferent forms of specification languages, be they code assertions, design patterns,
or behavioural descriptions. The manner can be either fully automated verifica-
tion, aimed at developers, or manually intensive checking, usually intended to
be used as auditing aid.

Automated Verification of Specific Vulnerabilities

OYENTE [Luu et al., 2016] is one of the pioneers in the field, using symbolic
execution of EVM bytecode, underpinned by SMT solving, to check for common
pre-defined vulnerabilities. MAIAN [Nikolić et al., 2018] uses symbolic execution
to check for specific types of trace vulnerabilities in EVM bytecode, i.e., vulnera-
bilities that manifest themselves over many transactions, and also relies on SMT
solving. MANTICORE [Mossberg et al., 2019] is based on a symbolic execution
engine for EVM that searches for pre-defined vulnerabilities using SMT solving.
SLITHER [Feist et al., 2019] is a static analysis framework for the verification of
Solidity contracts containing several vulnerability detectors based on bounded
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model checking. ETHAINTER [Brent et al., 2020] is a static analysis tool focused
on tainted information detection on EVM bytecode, it relies on Datalog and can
catch vulnerabilities such as free access to a contract’s selfdestruct instruction.
VERISMART [So et al., 2020] follows a counter-example guided inductive syn-
thesis approach to verify arithmetic properties. Safety of arithmetic operations
is also the target of SOLID [Tan et al., 2022], which uses a novel type system to
achieve its goal. The issue of smart contract gas consumption, i.e., the payment
of fees for the execution of contracts, and its related vulnerabilities, is consid-
ered by Marescotti et al. [2018], who use SMT solving as a means to estimate
gas consumption. An approach aimed at preventing vulnerabilities from being in-
troduced in the first is place is that of SCILLA [Sergey et al., 2019], an alternative
programming language based on System F [Reynolds, 1974] built with contract
safety as a principal concern. SCILLA’s type system prevents a number of runtime
vulnerabilities from being implemented and the language is accompanied by a
framework for static analyses capable of checking specific properties, including
the estimation of gas consumption. In contrast to previously mentioned works,
however, SCILLA targets Zilliqa [Zilliqa Team, 2017] instead of Ethereum.

Compared to the approach described in this chapter, these techniques are
restricted in terms of the scope of their verification. SOLICITOUS differs from them
by not constraining the verification to predefined properties, allowing developers
instead to check any properties that can be expressed via code assertions.

Automated Verification using Specification Languages

A verification framework based on F* [Swamy et al., 2016] as an intermediary
language, enabling the translation of both EVM and Solidity code to F* and the
subsequent checking of error patterns via SMT solving, is proposed by Bhargavan
et al. [2016]. It allows for the definition of different patterns in F*, but lacks sup-
port for many important language features, such as loops. SECURIFY [Tsankov
et al., 2018] encodes EVM bytecode into Datalog and checks for defined bytecode
patterns, with a set of patterns being pre-defined and a specification language be-
ing provided for the definition of additional ones. ETHBMC [Frank et al., 2020]
is a bounded model checker based on SMT solving targeting EVM bytecode. It
can define a precise model of a contract’s memory and is capable of checking a
set of relevant properties, including access to the selfdestruct instruction. Ex-
tension of the checking capabilities is possible by encoding additional properties
as constraints to be checked. ZEUS [Kalra et al., 2018] is a framework to check
the correctness and fairness of smart contracts targeting the Ethereum or Fab-
ric [Androulaki et al., 2018] blockchain platforms, with a fairness specification
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language being defined, from which assertions are injected into the source code
prior to verification. It translates high-level source code into LLVM [Lattner and
Adve, 2004] bitcode, from which CHC are generated and discharged to a solver,
using either the SEAHORN [Gurfinkel et al., 2015] or SMACK [Carter et al., 2016]
model checkers. SMARTACE [Wesley et al., 2022] also translates high-level source
code into LLVM, from which point it can use the aforementioned SEAHORN model
checker, as well as the KLEE [Cadar et al., 2008] symbolic execution engine and
the LIBFUZZER [LLVM Team, 2017] fuzzer. It is capable of checking assertions and
Scribble annotations. SAFEVM [Albert et al., 2019] translates EVM bytecode to
C, and then uses C verifiers to check properties such as invalid array access and
division by zero, as well as assertion violations. ETHOR [Schneidewind et al.,
2020] is a static analysis tool targeting EVM bytecode. It abstracts the bytecode
into CHC via its HoRSt framework and uses reachability checking to verify the ab-
sence of vulnerabilities such as reentrancy. It can also check assertion failures by
verifying the reachability of the INVALID EVM instruction. SMARTPULSE [Stephens
et al., 2021] allows for the checking of safety and liveness properties in Solidity
contracts. The desired properties need to be specified in the SmartLTL language
and be provided to SMARTPULSE together with the contract’s source code and
a model of the environment in which it is expected to operate. SMARTPULSE

instruments the contract’s code based on the properties specified, translates it
to the BOOGIE intermediary language, and then performs verification based on
counter-example guided abstraction refinement.

The three tools used for comparison in the evaluation also fall in this cate-
gory. SOLC-VERIFY [Hajdu and Jovanovic, 2020] translates Solidity source code
to the BOOGIE intermediary language and then generates verification conditions
that can be discharged to SMT solvers. In addition to checking for issues such
as overflow and underflow, and assertion violations, it also provides support for
code annotations that can complement assertions. VERISOL [Wang et al., 2020]
also translates Solidity source code to the BOOGIE intermediary language, check-
ing assertion violations first in an unbounded manner and, if that does not yield
a result, in a bounded fashion. MYTHRIL [ConsenSys, 2021] is a tool capable
of symbolic execution of EVM bytecode to check assertion violations and some
specific properties. It relies solely on bounded analysis over a number of transac-
tions, leaving undisclosed bugs that happen only after extended contract usage.
In contrast to this chapter’s approach, these techniques tend to rely on existing
frameworks, e.g., BOOGIE, and provide weaker guarantees, e.g., MYTHRIL.

The fundamental problem that all cited tools attempt to tackle, that of veri-
fying that a contract complies with a user-made specification, is also the target
of SOLICITOUS. The difference here comes from how the problem is approached.
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The cited works all rely on indirect representation in one way or another, even
when CHC are involved, as is the case of ZEUS and ETHOR, while SOLICITOUS

models the contracts directly in the formalism suitable for solving.

Manually Supported Verification

K [Roşu and Şerbănuţă, 2010] is a semantic framework that has specific support
for EVM [Hildenbrandt et al., 2018], as well as Solidity [K Framework, 2018a]
and Vyper [K Framework, 2018b], but is time-consuming and difficult for non-
expert users to interact with, since it relies on manual intervention for verifica-
tion. Deductive verification using WHY3 is proposed by Nehaï and Bobot [2020].
Their approach involves crafting and verifying smart contracts in Why3’s lan-
guage, WhyML, and then compiling them to EVM, but it was evaluated only on
a single case study. VERX [Permenev et al., 2020] verifies functional properties
of Solidity contracts written using its own specification language, it uses SMT
solving and has a certain degree of push-button automation, but may require
user input during the verification. The cited tools differ fundamentally from
SOLICITOUS by requiring human intervention during the verification process, in
addition to the specification of properties. Compared to the approach described
in this chapter, these techniques have the obvious drawback of not being fully
automated, with their target audience comprising mainly of highly specialized
users, and should thus be considered orthogonal.

Usage of Constrained Horn Clauses in Other Domains

There have been many successful uses of CHC for verification in other domains.
SEAHORN [Gurfinkel et al., 2015] has been used to verify programs targetting
LLVM, prominently those written in C/C++, with one important feature being
that it is modular w.r.t. the encoding, allowing, for instance, for encodings that
consider or that abstract features such as memory usage. JAYHORN [Kahsai et al.,
2016] and RUSTHORN [Matsushita et al., 2021] target programs written in Java
and Rust, while HORNDROID [Calzavara et al., 2016] targets Android applica-
tions, with each tool catering for the different specificities of its target.

4.5 Conclusions and Future Work

In this chapter an approach for the automated verification of smart contracts
based on direct modelling, which allows us to bypass intermediary steps com-
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monly found in current verification approaches, was presented. The approach
is instantiated to the Solidity language and targets the CHC formalism, leading
to CHC models that (a) formally capture the semantic features specific of smart
contracts, (b) enable efficient fully automated verification of contracts’ proper-
ties, and (c) can directly exploit powerful CHC solvers for the production of both
safe inductive invariants and CEXs. The approach was implemented in SOLIC-
ITOUS, the CHC model checking engine of the Solidity compiler’s formal veri-
fication module SOLCMC. An extensive evaluation involving 22446 real-world
contracts specifying in total 33197 properties was performed, comparing SO-
LICITOUS against three state-of-the-art tools. The results obtained demonstrate
the benefits of the approach, with an order of magnitude improvement in the
percentage of verified contracts. In light of the evaluation, it is believed that the
approach represents an effective and highly promising avenue for the verification
of smart contracts.

Directions for future work include (i) the further enhancement of the mod-
elling, (ii) validation of the verification, and (iii) instantiation to other languages.
For the first direction, enhancements could be made by considering both known
external code during the verification, e.g., a call to a previously deployed con-
tract written by the same development team, in order to increase precision, and
the gas consumption of the contract’s functions, to predict their execution fees.
For the second direction, lightweight correctness certificates that can be used to
independently and automatically validate the safety of smart contracts are envi-
sioned, with their practical goal being to provide assurances to third parties about
the contracts they interact with. Concretely, such certificates would validate the
results of CHC solvers in a similar manner to what is already done with solvers
for SAT and SMT, as discussed in the two following chapters. For the third di-
rection, the approach could be instantiated to other languages for smart contract
development to investigate its generality and extend its practical application.

One last point of interest is the relation between the formal semantics of
Solidity and verification approaches, since an understanding of the language se-
mantics is a necessity when providing correctness guarantees. To the best of our
knowledge, no official semantics currently exists for Solidity, probably due to fast
pace in which the language is evolving. Suggestions have been put forward by in-
dependent researchers, including formalisations based on the K framework [Jiao
et al., 2020] and on ISABELLE/HOL [Marmsoler and Brucker, 2021]. It is un-
clear, however, how to best handle language semantics, besides closely following
updates to the language documentation.



Chapter 5

Theory-Specific Proof Steps Witnessing
Correctness of SMT Executions

Automated reasoning engines for FOL are a core component of a vast range of dif-
ferent approaches for symbolic model checking. The aim of these approaches is
to leverage techniques from computational logic to efficiently traverse immense
search spaces in order to determine whether hardware or software implementa-
tions conform to their specifications. Many model checkers ultimately reduce the
verification problem to satisfiability queries in FOL expressed in a form suitable
for SMT solvers [Kroening and Strichman, 2016]. As this becomes more com-
mon, the correctness of solver reasoning becomes critical. Efficient reasoning
algorithms are, however, nontrivial to implement and might themselves contain
bugs, as is often uncovered during the annual SMT competition. Some SMT
solvers, e.g., Z3 [de Moura and Bjørner, 2008a], CVC4 [Katz et al., 2016], and
VERIT [Besson et al., 2011], offer the capability of producing proofs in a given
proof system [Barrett et al., 2015], that, among other uses, can partially re-
spond to the need of increasing the trust in SMT solvers. The idea is that the
proofs can be replayed with an external checker, which initially were mainly
theorem provers such as COQ [Armand et al., 2011; Ekici et al., 2017] and IS-
ABELLE/HOL [Böhme and Weber, 2010; Blanchette et al., 2016; Barbosa et al.,
2017], that may accept or reject the proofs.

This chapter focuses on SMT unsatisfiability proofs that are compact and can
be efficiently checked by lightweight checkers. The goal is to make it simple for
interested parties, be they end users or model checkers, to ensure the correctness
of results. The mathematical and logical foundations of the SMT algorithms were
used to produce proof certificates that are simple enough to allow an auditor to
write checkers for them with little effort, e.g., in a matter of hours or days. By
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aiming at simplicity, proofs were able to be produced that are more compact on
average than those of existing formats and that can be efficiently checked.

5.1 State of the Art

In this chapter the concerns on the correctness of SMT solvers previously iden-
tified by Van Gelder [2012] for solvers for Boolean satisfiability are addressed.
The annual SAT competition requires competitors to produce proofs for ensur-
ing the correctness of unsatisfiability results since its 2013 edition [Balint et al.,
2013], and since 2014 it has adopted the deletion RAT (DRAT) format [Wetzler
et al., 2014] as its standard proof format. DRAT is based on the property of
SAT solvers that inserted clauses result in contradiction as a result of a limited
polynomial-time computation, called unit propagation. The format is designed
to express most current SAT solving techniques compactly and is a generalisation
of the deletion reverse unit propagation (DRUP) [Heule et al., 2013a] and the
resolution asymmetric tautology (RAT) [Heule et al., 2013b] formats. A variant,
linear RAT (LRAT) [Cruz-Filipe et al., 2017], allows proof-checking in strictly
linear time by decorating the DRAT format with indices serving as hints for unit
propagation, with the price of an additional logging overhead during the search.
While there is no widely accepted format for SMT proofs [Barrett et al., 2015], a
subset of the DRAT format is used for the underlying SAT reasoning in the format
proposed in this chapter.

The approach closest to the one proposed in this chapter is that of the SMT
solver CVC4 [Barrett et al., 2011], which produces proofs in the LFSC meta-
logic [Stump et al., 2013] that can be checked by the automated LFSC checker.
Similar to us, this system uses DRAT to validate the steps of the back-end SAT
solver. The DRAT proofs, however, need to be translated into LFSC, creating
a bottleneck both for proof production and for proof checking [Ozdemir et al.,
2019]. CVC4’s proofs can further be reconstructed in COQ [Ekici et al., 2017].
The VERIT SMT solver [Bouton et al., 2009] is specifically designed for pro-
ducing proofs and its proof format is being developed alongside the solver it-
self [Besson et al., 2011]. Unlike in our system, there was, until very recently,
no independent checker for VERIT proofs1, but instead proofs could only be
checked by using interactive theorem provers. A common workflow for SMT
is to tune and replay a solver-specific proof in an interactive theorem prover
such as COQ [Armand et al., 2011] and ISABELLE/HOL [Blanchette et al., 2016].
The SMT solver Z3 [de Moura and Bjørner, 2008b] produces proofs in its own

1The new checker CARCARA [Andreotti et al., 2023] is discussed in Chapter 6.
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Figure 5.1. Overview of the system. The SMT solver and the artefacts related
to certificate production and checking are shown in yellow, green and blue.

proof format [de Moura and Bjørner, 2008a], which can be reconstructed in IS-
ABELLE/HOL [Böhme and Weber, 2010]. Currently, Z3 is capable of producing
proofs, but to the best of our knowledge no independent automated checker ex-
ists that can check proofs in its format.

5.2 SMT Unsatisfiability Proofs

Deriving new clauses from current ones is a key aspect of solving procedures, with
this derivation happening in one of two ways: either as learned clauses, through
resolution on previous clauses, or as theory clauses, when a theory solver reports
that a set of theory (in)equalities is unsatisfiable. One way to obtain a proof
certificate for the correctness of an SMT execution determining unsatisfiability
is thus to produce partial certificates connecting an input formula FDAG to the
step in a propositional proof system deriving false. This includes proving the
derivation of the learned clauses, the theory clauses, and the transformation into
FCNF. In this section each step is covered in detail, including how to connect the
individual certificates.

The formula FDAG is constructed by the SMT parser from an input SMT2 file,
or directly by the model checker. The instrumentation added to an SMT solver
produces the certificates and a DAG file, a serialization of FDAG, that in the case of
unsatisfiability can be checked by the certificate checker, using different checker
modules, and a DAG checker, that can be used to ensure the correctness of the
construction of FDAG from F with a straight-forward traversal. Figure 5.1 shows
the components of the proposed system.
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The core of the system is the SAT solving certificates, where clauses derived
from both CNF conversion and theory solving are provided to the DRAT proof
checker. It thus suffices to produce and check certificates for said clauses. In
the following certificate production and checking for CNF conversion and the
theories of linear arithmetics, for reals and integers, and uninterpreted functions
with equality are discussed.

Input. The original formula F is transformed to its simplified version FDAG.
To validate the conversion, it suffices to traverse the representation of F and
compare it to FDAG.

CNF conversion. Certifying the CNF conversion consists of reproducing the
standard way in which modern SMT solvers perform CNF conversion by applying
the Tseitin transformation and the De Morgan rules. The certificate consists of a
sequence of rule applications that maps the nodes NB of FDAG having the Boolean
return sort to clauses in FCNF, together with a bijection L between NB and a set of
literals. The checker verifies that L is a bijection, traverses FDAG and, at each node
in NB, applies the appropriate rule based on the node’s symbol’s name and verifies
that the correct set of clauses appears in FCNF. This is done by applying L−1 to
each literal in the candidate clauses and checking that they match correctly the
node and its children. Identifiers can be used to point to clauses in the certificate
to avoid the worst-case quadratic blow-up in the size of the CNF formula in cases
where many nodes produce a shared clause.

SAT solving. To validate the computations done by the back-end SAT solver
the DRAT proof format is used, which is based on the concept of clause redun-
dancy. Having a CNF formula as input, a DRAT proof sequentially adds and
deletes clauses from the formula while preserving unsatisfiability, with the last
addition of a valid proof being that of the empty clause, interpreted as false.

Linear real arithmetic solving. To validate the theory clauses in linear real
arithmetic contained in the CNF formula the conflicts that originated them are
recreated. To do so, the conflict’s explanations, i.e., the conjunction of literals
that led to the conflict, are logged in the linear real arithmetic certificate, with
the literals representing inequalities derived from the original formula F . Using
the Farkas’ lemma, a linear combination of the inequalities must lead to an in-
consistency of form 1 ≤ 0 in a correct witness. The corresponding conjunction
of inequalities is then negated and matched to the theory clause.

Linear integer arithmetic solving. The theory clauses in linear integer arith-
metic can be validated by two different methods. The first method involves recre-
ating the conflicts that happen in the real domain, using the same approach as
done for real arithmetic, since an unsatisfiable result in the real domain implies
the same result in the integer domain. The second method validates the tauto-
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logical theory clauses of the form of integer bounds, given when a non-integer
assignment is found, in order to restrict the search space. Since tautological
clauses do not interfere with the satisfiability of the formula, we only check if
they are well-formed bounds of the form x ≤ n∨ x ≥ n+ 1, where n ∈ Z and x
is a variable in FDAG.

Uninterpreted functions solving. The clauses of the theory of uninterpreted
functions have a specific form, which corresponds to a conflict of a single dise-
quality t1 ̸= t2 and a set of equalities P from which an equality t1 = t2 can
be derived. Moreover, this equality can be derived using the basic properties of
logical equality: symmetry, transitivity and congruence. The uninterpreted func-
tions certificate records the applications of the transitivity and the congruence
rule in the derivation of the equality t1 = t2. It is possible to record the whole
derivation in the run of the Explain procedure of the state-of-the-art congruence-
closure algorithm of Nieuwenhuis and Oliveras [2005] with minimal changes.
To validate the certificate it is sufficient to (recursively) check that the equality
t1 = t2 is well-derived, where an equality is well-derived if it or its symmetrical
counterpart (i) is an element of P, or (ii) has been derived using congruence or
transitivity from well-derived equalities.

5.3 Implementation

The certificate production and the certificate checking parts of the approach were
both implemented, as per Figure 5.1. The instrumentation was done on the freely
available, MIT licensed, SMT solver OPENSMT [Bruttomesso et al., 2010]. The
OPENSMT solver won the QF_LRA track of the 2020 edition of the annual SMT
competition and is also competitive in the instances from the logics of QF_LIA
and QF_UF. The instrumentation size, as reported by GIT-DIFF, is 1795 lines,
excluding regression and unit tests. The certificate checking was implemented
in the automated Theory-Specific Witness Checker, TSWC for short; both tools
are available online2.

Certificate production. The instrumented version of OPENSMT, which is
called OPENSMT-C, accepts instances in the SMT-LIB standard [Barrett et al.,
2021] and produces correctness certificates for each checker module, i.e., CNF
conversion, SAT solving, and theory solving for QF_LRA, QF_LIA, and QF_UF,
that can then be forwarded to a checker. A key point to avoid the introduction of
a memory overhead due to certificate production is that all information relevant
to the certificate is written to the disk immediately, instead of being stored in

2Available at http://verify.inf.usi.ch/certificate-producing-opensmt2.

http://verify.inf.usi.ch/certificate-producing-opensmt2
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Figure 5.2. TSWC architecture. The nine components are represented as solid
rectangles, and are grouped by checker modules they belong to; the components
in blue were developed by us, and the one in purple is off-the-shelf. All the
files used by TSWC are also shown, in green, with the lines indicating which
files are used by each component.

an internal data structure of the solver. In the current implementation certain
simple rewriting steps that OPENSMT performs while transforming F to FDAG are
omitted. These steps are thus currently left for the DAG checker. Great care was
taken so that all the simplifications that are not validated can be performed by
the DAG checker in the sense that checking them does not require knowledge of
the SMT solver’s data structures.

Certificate checking. The TSWC tool consists of nine independent compo-
nents, one of them being the DRAT-TRIM proof checker [Wetzler et al., 2014] for
certifying the results of the SAT solver, and the other eight being Python scripts
with less than 300 lines of code each. It is believed that the compact and modu-
lar checker design makes the code base easier to inspect both manually and, in
the future, in an automated fashion. An overview of TSWC can be seen in Fig-
ure 5.2. Starting with the CNF conversion, its checker receives the DAG, the CNF
conversion certificate, and the CNF formula used by DRAT-TRIM, and it applies
the rules listed by the certificate in order to validate the clauses on the CNF for-
mula that are derived from the DAG. The remaining clauses in the CNF formula
are theory clauses, with the purpose of the checkers for each theory being to
validate them. Each theory has both a theory checker, that validates the theory
certificate, and a containment checker, that checks if all theory clauses added to
the CNF formula are certified; for QF_LIA both the checkers for real and integer
arithmetics are used, since it has solving procedures from both domains. With
the clauses derived from both the CNF conversion and the theory solving vali-
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Table 5.1. Proof production comparison. For each theory, the number of
instances classified as unsatisfiable, timeouts, memouts, and errors given by
the solvers is reported; an error refers to an exception being thrown during
execution. Each cell contains the result for standard mode on the left and for
proof producing mode on the right, with the exception of those for % change,
which report the variation on the number of instances classified as unsatisfiable.

UNSAT % change Timeout Memout Error

QF_LRA
(1648 instances)

OPENSMT-C 636/633 99.5% 151/156 0/0 0/0
CVC5 583/570 97.7% 274/289 0/0 0/0
VERIT 580/561 96.7% 249/268 0/0 10/10

Z3 570/558 97.8% 253/264 0/0 0/0

QF_LIA
(6947 instances)

OPENSMT-C 2023/1519 75.0% 3341/3892 0/0 0/0
CVC5 1398/928 66.3% 3147/3620 0/0 0/0
VERIT 1002/953 95.1% 4198/4247 0/0 1/1

Z3 2238/2340 104.5% 1786/1685 1/1 0/0

QF_UF
(7457 instances)

OPENSMT-C 4326/4311 99.6% 24/39 0/0 0/0
CVC5 4321/4220 97.6% 34/135 0/0 0/0
VERIT 4347/4176 96.0% 3/166 0/0 0/8

Z3 4341/4236 97.5% 9/114 0/0 0/0

dated, DRAT-TRIM can then ensure unsatisfiability at the SAT level. All auxiliary
data is stored in the literals, inequalities, and terms files. The literals file contains
a mapping between literals and nodes of FDAG, the inequalities file contains the
linear arithmetic literals, and the terms file contains the uninterpreted functions
and their arguments.

5.4 Evaluation

In the evaluation the non-incremental benchmark sets of each theory supported
by OPENSMT-C available in the SMT-LIB benchmark repository3 were used. For
proof production OPENSMT-C was compared against three proof producing solvers,
namely CVC4 1.8, VERIT 09a24ff-rmx, and Z3 4.8.9. The number of proofs
produced and their sizes were measured, as well as the proof production time
and overhead, in terms of runtime and memory use. For proof checking TSWC
was compared against the LFSC checker, which can automatically check CVC4’s
proofs, and was, until recently, the only tool comparable to TSWC4, in terms of

3See http://smtlib.cs.uiowa.edu/benchmarks.shtml.
4Recent developments are discussed in Section 6.2.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Table 5.2. Proof production comparison. For each theory, the solvers’ average
runtime, in seconds, and memory use and proof size, in kilobytes, is reported.
Each cell contains the result for standard mode on the left and for proof pro-
ducing mode on the right, with the exception of those for average proof size,
whose results are only relevant in proof producing mode.

Avg. runtime Avg. mem. use Avg. proof size

QF_LRA
(1648 instances)

OPENSMT-C 3.91/4.31 30532/26603 3956
CVC5 5.73/6.61 35877/76953 13684
VERIT 4.12/5.22 19227/44358 69438

Z3 5.17/5.30 36472/76929 3546

QF_LIA
(6947 instances)

OPENSMT-C 10.07/9.99 113622/51443 13018
CVC5 6.30/1.30 63127/37728 18883
VERIT 1.82/4.05 12028/20277 165914

Z3 5.17/6.62 58325/276318 24876

QF_UF
(7457 instances)

OPENSMT-C 0.95/1.14 9416/9563 6730
CVC5 0.39/1.83 17517/28316 6854
VERIT 0.10/0.79 5931/23940 20102

Z3 0.22/1.26 15474/49355 12601

runtime and memory use. The experiments were done with a 60 seconds timeout
and a 10 gigabytes memory limit; all results are available online5.

Proof production. All solvers were ran in both standard and proof produc-
ing modes. The results are compiled in tables 5.1 and 5.2. For the number of
proofs produced, OPENSMT-C had the best result for QF_LRA and QF_UF, also
having the smallest overhead in number of proofs, while Z3 had by far the best
results for QF_LIA. Regarding runtime, OPENSMT-C and VERIT had the best per-
formances for QF_LRA and QF_UF, respectively, while for QF_LIA CVC4 had the
shortest runtime in proof producing mode. CVC4’s average runtime for QF_LIA
has, however, to be taken with a grain of salt, since its apparent increase in per-
formance when proof production is enabled may be due to the sharp increase in
the number of timeouts, which are not part of the computed average. When com-
paring memory use, OPENSMT-C had the best results in proof producing mode
for QF_LRA and QF_UF, while VERIT had the smallest use for QF_LIA. In terms
of proofs sizes, OPENSMT-C had the best results for QF_LIA and QF_UF, while
also having a competitive result for QF_LRA, with an average proof size close to
that of Z3, which had the best result. A runtime, memory use, and proof size

5Available at https://scm.ti-edu.ch/repogit/verify-witness-evaluation.git.

https://scm.ti-edu.ch/repogit/verify-witness-evaluation.git
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Figure 5.3. QF_UF results; squares
and crosses stand for UNSAT and
SAT, the top and right lines represent
value limit, timeout, and memout.

comparison of the two solvers with
most proofs produced, for each the-
ory, can be seen in figures 5.3, 5.4,
and 5.5; all pairwise comparisons are
in proof producing mode and are avail-
able online5.

Proof checking. For all proofs pro-
duced by OPENSMT-C and CVC5 their
respective checkers were ran, with the
results being compiled in Table 5.3; no
proof was rejected by either tool, nor
did any memouts were registered. We
can see that TSWC was able to verify
more proofs for every theory. For run-
time and memory use, LFSC had bet-
ter results for two of the three theories,
but this can be mainly attributed to the
high number of errors it had, which are
not part of the computed average.

5.5 Conclusions and Fu-
ture Work

In this chapter it was showed that when
a SMT solver claims that a query on
an instance is unsatisfiable, the correct-
ness of that claim can be checked using
the data structures that the core solving
algorithms of SMT are already main-
taining, by connecting them to their
underlying mathematical and logical
foundations. In addition, it was also
showed that it is easy to write check-
ers for these certificates, and produc-
ing them has a comparable or smaller
overhead when contrasted with more
traditional proofs.
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Table 5.3. Proof checking comparison. For each theory, the number of verified
proofs, timeouts, and errors given by the checkers is reported, as well as the
checkers’ average runtime, in seconds, and memory use, in kilobytes; an error
refers to an exception being thrown during execution. The instances used are
those for which both OpenSMT-C and CVC4 produced a proof.

Verified Timeout Error Avg. runtime Avg. mem. use

QF_LRA
(567 instances)

TSWC 564 3 0 3.15 67372
LFSC 471 8 88 2.85 102861

QF_LIA
(913 instances)

TSWC 903 10 0 1.37 65039
LFSC 128 0 785 0.12 26609

QF_UF
(4218 instances)

TSWC 4217 1 0 1.44 69507
LFSC 4157 50 11 4.01 28454

Directions for future work include (i) the extension of the approach to other
SMT theories, (ii) the integration of proof producing solvers into SMT-based tool-
ing, and (iii) the creation of a standard format for SMT unsatisfiability proofs.
For the first direction it is believed that more applied theories, like the theory of
arrays, are a suitable next step, with another possibility being the combination of
already supported theories. For the second direction possibilities include integra-
tion into model checkers and CHC solvers. For the third direction a community
effort is required for the establishment of a standard, which needs to both be
expressive and lead to efficient proof production and checking.
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Chapter 6

CHC Model Validation with Proof
Guarantees

Different fragments of FOL are suitable to aid in specific verification tasks, with
one fragment of particular practical interest being CHC [Gurfinkel and Bjørner,
2019], which has been used to aid in reasoning about the behaviour of procedu-
ral [Bjørner et al., 2015] and functional [Grebenshchikov et al., 2012] programs,
as well as concurrent systems [Hojjat et al., 2014] and smart contracts [Marescotti
et al., 2020]. CHC solvers, e.g., ELDARICA [Hojjat and Rümmer, 2018], GOLEM

[Blicha et al., 2023], and SPACER [Komuravelli et al., 2016], serve, for instance,
as the back-end reasoning engines of verification tools targeting programs writ-
ten in C/C++ [Gurfinkel et al., 2015], Java [Kahsai et al., 2016], Rust [Mat-
sushita et al., 2021], and Solidity [Alt et al., 2022], as well as Android applica-
tions [Calzavara et al., 2016].

Despite their extensive usage in verification, logic solvers are themselves not
immune to bugs. When it comes to CHC solvers, the annual CHC competition,
CHC-COMP, encountered similar issues to its SAT and SMT counterparts, with
competing solvers disagreeing on certain benchmarks, and its organizers having
the validation of results as a goal [de Angelis and Govind V. K., 2022]. For CHC,
a witness for an UNSAT result, called an UNSAT proof, should contain an expla-
nation of how false can be derived, while a witness for a SAT result, called a SAT
model, should contain interpretations for all the predicates in such a way that
all clauses evaluate to true, entailing that false cannot be derived; from now on
UNSAT proofs and SAT models will be referred to simply as proofs and models.

This chapter focuses on the validation of CHC models. While the production
of witnesses, be they models or proofs, is a common feature of modern CHC
solvers, efforts in witnesses validation are limited at present. The validation of
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models is done via SMT queries, and is currently supported only by an ad hoc
validator tied to the SMT solver Z31. A novel proof-backed validation approach
for CHC models is proposed, that, in addition to providing additional correctness
guarantees, is solver independent. The ATHENA framework was developed to
implement the approach and a large scale evaluation involving twelve tools in
total was carried out, in order to showcase its practicality and benefits.

6.1 Overview

Since CHC model validation is underpinned by SMT solving, the same concern
regarding the correctness of CHC solvers’ results is put on the validation itself,
i.e., on the correctness of SMT solvers’ results. To address this, a two-layered val-
idation approach is proposed to provide additional guarantees about the results
obtained, illustrated in Figure 6.1. The first layer, consisting of the SMT queries

CHC input

End user Verification tool

CHC solver

SAT result UNSAT result
Model Proof

Model validator

Invalid model Valid model
Proof

Proof checker

Valid proof Invalid proof

Verification environment

Witness production

Layer 1

Layer 2

Result

Figure 6.1. The two-layered validation approach
for CHC models. Although capable of being pro-
duced, CHC proofs cannot be checked currently.

responsible for model val-
idation, is enhanced by a
second layer, consisting of
the production and check-
ing of SMT proofs, with the
result obtained being for-
warded to the user or tool
interacting with the CHC
solver. The approach is
generic w.r.t. FOL theo-
ries and solvers, and is also
very modular, enabling dif-
ferent SMT solvers to be
used in the validation, fur-
ther increasing assurances.

To asses the viability
of practical model valida-
tion the modular evalua-
tion framework ATHENA
was developed, capable of
catering to different com-
binations of state-of-the-
art CHC and SMT solvers,

1See https://github.com/chc-comp/chc-tools/blob/master/chctools/chcmodel.py.

https://github.com/chc-comp/chc-tools/blob/master/chctools/chcmodel.py
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Table 6.1. Brief descriptions of the bugs found during the evaluation.

Bug Effect

CHC solvers

ELDARICA Invalid model produced6

SPACER Invalid model produced8

GOLEM Syntactically malformed model produced5

GOLEM Crash during model production4

SMT solvers
CVC5 Invalid proof produced11

CVC5 Crash during proof production10

OPENSMT Crash during sort inference9

Proof checkers
CARCARA Parsing error due to unknown attribute12

LFSC checker Crash during type inference13

and a large scale evaluation was conducted. Concretely, the framework was used
to validate the models produced by three CHC solvers, ELDARICA [Hojjat and
Rümmer, 2018], GOLEM [Blicha et al., 2023], and SPACER [Komuravelli et al.,
2016], with each model produced being separately validated, in Layer 1, by five
proof producing SMT solvers, CVC5 [Barbosa et al., 2022a], OPENSMT [Brut-
tomesso et al., 2010], SMTINTERPOL [Christ et al., 2012], VERIT [Bouton et al.,
2009], and Z3 [de Moura and Bjørner, 2008b]. In addition, all the proofs pro-
duced in the proof formats currently supported by automated proof checkers
were checked, in Layer 2, by using the checkers CARCARA [Andreotti et al.,
2023], LFSC checker [Stump et al., 2013], SMTINTERPOL checker [Hoenicke and
Schindler, 2022], and TSWC [Otoni et al., 2021].

To have a focused evaluation the experiments were conducted on bench-
marks from one specific FOL theory, the LIA theory. All 955 LIA benchmarks
from CHC-COMP 2022 were used in the evaluation, 499 containing only linear
Horn clauses, i.e., implications with a single uninterpreted predicate in the impli-
cant, and 456 containing nonlinear Horn clauses, i.e., implications with multiple
uninterpreted predicates in the implicant. The benchmarks led to 91626 SMT
instances and 385303 SMT proofs being produced during the validation process.

Three observations can be made from the results obtained. First, the proof-
backed model validation approach proposed is viable in practice, with the ma-
jority of the models being validated with available tooling. This means that any
CHC-based tool, e.g., the SEAHORN [Gurfinkel et al., 2015] and SOLCMC [Alt
et al., 2022] model checkers, can in principle benefit from the guarantees pro-
vided by model validation. Second, model and proof sizes, which were in the
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order of hundreds of megabytes in the experiments and can potentially require
gigabytes of storage, are a concern and a potential limitation to the practical use
of validation. Producing compact models and proofs is thus an important goal,
with compression, recently investigated in the context of unsatisfiability proofs
for SAT solvers by Reeves et al. [2023], being a potential complementary goal.
Lastly, model validation provides a useful way to generate new and interesting
SMT instances. The evaluation uncovered bugs not only in the selected CHC
solvers, which are the main focus, but also in two SMT solvers and two proof
checkers for SMT proofs. The bugs found, listed in Table 6.1, range from parsing
errors to invalid models being produced. They were all acknowledged by the
developers and are detailed in Section 6.5. In addition to aiding in tool develop-
ment, these bugs confirm the need for additional guarantees to be provided to
modern verification tooling.

6.2 Related Witness Validation Approaches

As logic solvers became more powerful they were quickly adopted as the back-
end reasoning engines of many verification tools. The need to validate the an-
swers from these solvers arose soon after, with the complexity of the validation
increasing hand-in-hand with the expressiveness of the underlying formalism.

In line with its relative simplicity, witness validation in the context of Boolean
satisfiability was the first to be investigated. Validating a satisfying model is an
easy task: one simply substitutes the variables of the formula with their values
from the model and checks if the resulting Boolean expression over constants
true and false simplifies to true. The validation of unsatisfiability proofs, how-
ever, is far from trivial, even in such a restricted domain. Many proof formats
have been proposed, offering different trade-offs between proof compactness and
checking efficiency. Initial formats were based on resolution [Sinz and Biere,
2006] and clausal proofs [Heule et al., 2013a], with resolution asymmetric tau-
tology (RAT) [Heule et al., 2013b] being a base for many recent developments,
e.g., deletion RAT (DRAT) [Wetzler et al., 2014], linear RAT (LRAT) [Cruz-Filipe
et al., 2017], and flexible RAT (FRAT) [Baek et al., 2021]. The production of
proofs in the DRAT format has been a requirement in the SAT competition since
its 2014 edition, with DRAT-TRIM [Wetzler et al., 2014] being the standard proof
checker for proofs following this format.

In regards to satisfiability modulo theories, witness validation is complicated
by the presence of theories and quantifiers. No standard way of representing
SMT models currently exists, with a consistent push by the SMT competition or-
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ganizers having been made in recent years for the adoption of a unified format
in line with the SMT-LIB standard [Barrett et al., 2021]. A separate, experi-
mental, model validation track has been established and has seen a steady in-
crease in the SMT-LIB logics supported, with PYSMT [Gario and Micheli, 2015]
and DOLMEN [Bury, 2021] used as validating tools. Despite recent advances,
model validation is still restricted to quantifier-free formulas. For unsatisfiability
proofs, different formats, often attached to a specific solver, have been proposed.
The ALETHE format [Schurr et al., 2021] was initially supported by VERIT, but
has since also being integrated into CVC5’s proof production. CVC5 also caters
for proofs based on the logical framework with side conditions (LFSC) [Stump
et al., 2013], with LFSC support preceding ALETHE’s integration and dating back
to the CVC3 version of the tool. SMTINTERPOL [Hoenicke and Schindler, 2022],
OPENSMT [Otoni et al., 2021], and Z3 [de Moura and Bjørner, 2008a] also sup-
port their own, unnamed, proof formats. Each format has one or more associate
tools that can consume the proofs produced, with said tools being either inter-
active or automated. In the interactive side, proof assistants discharge some
verification conditions to external logic solvers as a way to increase their level
of automation, with the proofs produced providing new theorems to be checked
by the proof assistant’s internal engine, as it has been done with COQ [Armand
et al., 2011; Ekici et al., 2017] and ISABELLE/HOL [Fontaine et al., 2006; Böhme
and Weber, 2010; Blanchette et al., 2016; Barbosa et al., 2020]. When it comes
to automated checkers, their goal is mainly to serve as independent lightweight
validators, with potential to be integrated into tools such as model checkers.
Automated checkers are available for a variety of formats [Stump et al., 2013;
Wetzler et al., 2014; Otoni et al., 2021; Hoenicke and Schindler, 2022; Andreotti
et al., 2023]. As of the time of writing, no proof format is enforced by the SMT
competition, with an experimental track being available as a way to showcase
the strengths of existing formats.

In addition to logic solving, witness validation is also pursued in other con-
texts. A good example of this is the use of validation in the annual competition
on software verification [Beyer, 2023]. Software verification witnesses are dif-
ferent from those used by logic solvers, being categorizes as either correctness
or violation witnesses, with their own formats2 and limitations [Beyer and Stre-
jček, 2022]. The tool that maybe best illustrates usage of witness is Korn [Ernst,
2023], a participant in the software verification competition that relies on Horn
solvers as its back-end and produces witnesses for its reasoning about C pro-
grams’ properties from the witnesses produced by the underlying solvers.

2See https://gitlab.com/sosy-lab/benchmarking/sv-witnesses.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
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6.3 Validation of CHC Models

A CHC solver is a complex piece of software, often implementing sophisticated
algorithms relying on decision and interpolation procedures, which allows for
subtle bugs to occur and lead to incorrect answers. In addition to providing much
needed stronger guarantees in regards to SAT or UNSAT results, model valida-
tion also ensures the correctness of the models themselves, which are commonly
relied upon by verification tools to, for instance, establish inductive invariants of
programs. Model validation is therefore critical for assurance not only of solvers’
results, but also of all structures derived from models presented to end users.

A two-layered validation approach for CHC models was proposed, detailed in
Figure 6.2; since the focus is on models, the illustration assumes the benchmark is
satisfiable. The first of the two layers in the approach handles model validation
via SMT solving. Following the CHC definition laid out in Section 2.5, model

CHC benchmark

CHC model

End user Verification tool

CHC solver

Instance generator

SMT instanceSMT instanceSMT instance

SMT solver

SAT result UNSAT result
Proof

Proof checker

Valid proof Invalid proof

Verification environment

Model
production

Layer 1

Layer 2

Result

Figure 6.2. Breakdown of the two-layered vali-
dation approach for CHC models. A valid model
will have all the SMT instances generated from it
yield an UNSAT result backed by a valid proof.

validation can be done via
a number of SMT queries
which is linear w.r.t. to
the amount of Horn clauses
present in the input. Each
such query checks if a spe-
cific Horn clause is logically
valid in the theory T after
its uninterpreted predicates
are substituted by their in-
terpretations given by the
model. This is done by
checking if the negation of
the Horn clause, augmented
with the interpretations, is
satisfiable, i.e., if a satisfying
assignment for φ∧P1∧ . . .∧
Pn∧¬H exists. This check is
well suited for SMT solving,
with a valid model leading
to all queries being unsatis-
fiable. An important note is
that, depending on the the-
ory T , the query checking
might be intractable for ex-
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isting SMT solvers, and in some cases even undecidable.

As an example, consider the following CHC system, consisting of three Horn
clauses and a single uninterpreted predicate Inv:

Inv(x)← x ≤ 0

Inv(x ′)← Inv(x)∧ x < 5∧ x ′ = x + 1

false← Inv(x)∧¬(x < 10)

This system is satisfiable with a potential model being one that contains the in-
terpretation Inv(x)≡ x ≤ 5. To validate this model we need to establish that the
following three formulas are logically valid in the LIA theory:

x ≤ 5← x ≤ 0

x ′ ≤ 5← x ≤ 5∧ x < 5∧ x ′ = x + 1

false← x ≤ 5∧¬(x < 10)

The validation can be done by showing that the three formulas below are unsat-
isfiable, which can be trivially seen for this small example:

¬(x ≤ 5)∧ x ≤ 0

¬(x ′ ≤ 5)∧ x ≤ 5∧ x < 5∧ x ′ = x + 1

¬false∧ x ≤ 5∧¬(x < 10)

While it can be easy to validate models such as the one above, this is far from
the case when dealing with real world examples. As a consequence, SMT solvers
are, like their CHC counterparts, very complex tools that are susceptible to bugs.
The second layer in the proposed approach tackles this issue via the validation
of SMT solvers’ results. A number of SMT solvers produce unsatisfiability proofs
that can be independently checked. These proofs provide much needed guar-
antees regarding unsatiafiability results, which are at the core of the validation
done in Layer 1. By relying on the currently untapped power of SMT proofs
additional correctness guarantees can be provided for CHC model validation.

The approach is theory independent and can be applied to any CHC, with the
only requirement being that a proof producing SMT solver and a proof checker
are available for the theory in question. In addition to validating direct end
user usage of CHC solvers, the approach can also be embedded into CHC-based
verification tools, enhancing their own guarantees.
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6.4 Implementation

To enable the practical use of the approach, with the immediate goal of ascertain-
ing the capabilities of state-of-the-art CHC and SMT solvers, we developed the
modulAr consTrained Horn clauses modEl validatioN frAmework, ATHENA for
short. The framework is capable of validating CHC models via SMT solving while
using different solver combinations. ATHENA also handles the production and
checking of SMT proofs, for the SMT solvers with proof production capabilities.
In addition, metrics such as model and proof sizes can be gathered and analysed.
The framework consists of 2535 lines of shell and Python code in total, is fully
automated, and uses GNU PARALLEL [Tange, 2011] to achieve a large degree of
parallelisation in order to better tackle the high computation cost. ATHENA is
open-source3, enabling third-parties to make full use of it, with one of the goals
being to provide the groundwork for model validation at CHC-COMP.

6.5 Evaluation

We first describe the benchmarks and tools used, in Section 6.5.1, and then dis-
cuss the results obtained related to CHC model validation, in Section 6.5.2, and
SMT proof checking, in Section 6.5.3. A machine with 64 AMD EPYC 7452 pro-
cessors and 256 GB of memory was used for the evaluation. All individual tool
executions had a timeout of 60 seconds and a memory limit of 5 gigabytes.

6.5.1 Benchmarks and Tools

The benchmarks of the two LIA tracks of CHC-COMP 2022 [de Angelis and
Govind V. K., 2022] were used, the LIA-lin track, consisting of benchmarks con-
taining only linear Horn clauses, and the LIA-nonlin track, consisting of bench-
marks containing nonlinear Horn clauses. It was decided to use LIA benchmarks
for two reasons: first, the LIA tracks are the most traditional in CHC-COMP, be-
ing present in every edition of the competition and having the most competing
solvers, and second, the LIA theory is covered by all proof producing SMT solvers
available, even if for some only in its quantifier-free fragment.

For model production the current three best performing CHC solvers in the
LIA tracks were chosen for comparison, which are, in alphabetical order, ELDAR-
ICA [Hojjat and Rümmer, 2018], GOLEM [Blicha et al., 2023], and SPACER [Ko-
muravelli et al., 2016]. For model validation all SMT solvers that competed in

3Available at https://github.com/usi-verification-and-security/athena.

https://github.com/usi-verification-and-security/athena
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Table 6.2. Results for solving the CHC benchmarks of the two LIA tracks.

SAT UNSAT Unknown Timeout Memout Error

LIA-lin
(499 benchmarks)

ELDARICA 141 51 0 307 0 0
GOLEM 165 80 0 254 0 0
SPACER 182 89 0 212 16 0

LIA-nonlin
(456 benchmarks)

ELDARICA 117 56 0 283 0 0
GOLEM 209 118 0 129 0 0
SPACER 244 130 1 74 7 0

the proof exhibition track of the 2022 SMT competition were used, which are, in
alphabetical order, CVC5 [Barbosa et al., 2022a], OPENSMT [Bruttomesso et al.,
2010], SMTINTERPOL [Christ et al., 2012], and VERIT [Bouton et al., 2009], as
well as Z3 [de Moura and Bjørner, 2008b], which can produce proofs but did
not compete in the track. To check the SMT proofs the fully automated check-
ers CARCARA [Andreotti et al., 2023], for ALETHE proofs produced by CVC5 and
VERIT, LFSC checker [Stump et al., 2013], for LFSC proofs produced by CVC5,
SMTINTERPOL checker [Hoenicke and Schindler, 2022], for proofs produced by
SMTINTERPOL, and TSWC [Otoni et al., 2021], for proofs produced by OPENSMT,
were used; to the best of our knowledge there is currently no independent auto-
mated checker for proofs produced by Z3.

6.5.2 Model Validation Results

To produce the CHC models the selected CHC solvers were executed with all
benchmarks; the results are summarised in Table 6.2. All tools were executed
with their default engine configurations. The performance of the tools is in line
with the CHC-COMP results, with SPACER solving the most benchmarks, followed
by GOLEM and ELDARICA. Only one execution, with SPACER, yielded an unknown

result, meaning that the solver terminated within the allocated time frame but
was not able to decide if the benchmark was satisfiable or not. A number of er-
rors, i.e., tool crashes, were observed with GOLEM while testing the framework4,
as well as syntactically malformed models being produced by it5, with the un-
derlying causes of both issues being addressed before the full-scale evaluation.
Regarding the models’ sizes, ELDARICA’s models tended to be the most compact,
followed by GOLEM’s, with SPACER producing most of the larger models, as can

4See https://github.com/usi-verification-and-security/golem/issues/29.
5See https://github.com/usi-verification-and-security/golem/issues/27.

https://github.com/usi-verification-and-security/golem/issues/29
https://github.com/usi-verification-and-security/golem/issues/27
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Figure 6.3. Sizes of the CHC models produced. The models are ordered ac-
cording to their size, the x-axis indicates their position in the order and the
y-axis indicates their size.

be seen in Figure 6.3; the single largest model is an outlier produced by GOLEM,
with a size exceeding 100 MB. The last point of note is that all models produced
by GOLEM are quantifier-free, while ELDARICA produced 1 quantified model, for
1 nonlinear benchmark, and SPACER produced 281 quantified models in total, 90
from linear benchmarks and 191 from nonlinear benchmarks.

To validate each model the SMT instances generated from it were executed
with the selected SMT solvers; in this section all the reported SMT solvers’ execu-
tions were done with proof production disabled. One SMT instance is generated
for each Horn clause in the CHC benchmark for which the model was produced,
thus many SMT instances, sometimes hundreds, can be generated for a single
model. The SMT instances generated for the models produced by each CHC
solver are considered, by track, as separate instance sets, thus there are three
instance sets per track. The results for the LIA-lin and LIA-nonlin instance sets
can be seen in tables 6.3 and 6.4; the number of SMT instances generated for
each CHC solver is related to the amount of models it produced.

The validation results provide a useful insight into the quality of the models
produced by each CHC solver. The models produced by GOLEM are the only ones
for which no invalid result, i.e., a SAT output, was observed. Both ELDARICA and
SPACER produced invalid models, although the latter to a significantly higher de-
gree. ELDARICA’s invalid models are due to the embedding of Boolean values into
arithmetic operations6, which leads to an error in most SMT solvers, but can be
solved by Z3 via unit propagation7. SPACER’s invalid models are due to problem-

6See https://github.com/uuverifiers/eldarica/issues/51.
7See https://github.com/Z3Prover/z3/issues/6719.

https://github.com/uuverifiers/eldarica/issues/51
https://github.com/Z3Prover/z3/issues/6719
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Table 6.3. Results for solving the SMT instances generated from the LIA-lin
models. Due to the space limitation, unknown, timeout, memout, and error are
shortened to UNK, TO, MO, and ERR. UNS stands for unsupported, meaning
that the solver is not equipped to handle some features of the instance.

SAT UNSAT UNK TO MO ERR UNS

LIA-lin
ELDARICA

(5050 instances)

CVC5 0 5041 0 0 0 9 0
OPENSMT 0 4970 0 0 0 80 0

SMTINTERPOL 0 5041 0 0 0 9 0
VERIT 0 4986 0 0 0 9 55

Z3 3 5047 0 0 0 0 0

LIA-lin
GOLEM

(5268 instances)

CVC5 0 5268 0 0 0 0 0
OPENSMT 0 5268 0 0 0 0 0

SMTINTERPOL 0 5265 0 3 0 0 0
VERIT 0 5216 0 0 0 0 52

Z3 0 5268 0 0 0 0 0

LIA-lin
SPACER

(16232 instances)

CVC5 695 15464 0 73 0 0 0
OPENSMT 7 700 0 0 0 912 14613

SMTINTERPOL 105 11909 28 4190 0 0 0
VERIT 19 1543 0 0 0 0 14670

Z3 690 15026 0 516 0 0 0

atic internal transformations8. Another aspect of model quality is the presence of
quantifiers, which can make solving harder and is unsupported by both OPENSMT
and VERIT. Two last points of note are the high number of OPENSMT errors, i.e.,
crashes, when handling instances generated from ELDARICA and SPACER models,
which is due to a limitation in scoping in the presence of different sorts9, and the
small, but consistent, number of instances unsupported by VERIT. After a man-
ual inspection, it was discovered that the lack of support observed with VERIT is
due to the LIA tracks containing some benchmarks that, although semantically
belonging to the LIA fragment of FOL, use operators reserved for the nonlinear
integer arithmetic (NIA) logic of the SMT-LIB standard; the competition organiz-
ers were informed of this finding and stated that this will be addressed.

8See https://github.com/Z3Prover/z3/issues/6716.
9See https://github.com/usi-verification-and-security/opensmt/issues/613.

https://github.com/Z3Prover/z3/issues/6716
https://github.com/usi-verification-and-security/opensmt/issues/613
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Table 6.4. Results for solving the SMT instances generated from the LIA-
nonlin models. Due to the space limitation, unknown, timeout, memout, and
error are shortened to UNK, TO, MO, and ERR. UNS stands for unsupported,
meaning that the solver is not equipped to handle some features of the instance.

SAT UNSAT UNK TO MO ERR UNS

LIA-nonlin
ELDARICA

(6216 instances)

CVC5 0 6216 0 0 0 0 0
OPENSMT 0 2493 0 0 0 3706 17

SMTINTERPOL 0 6216 0 0 0 0 0
VERIT 0 6195 2 0 0 0 19

Z3 0 6216 0 0 0 0 0

LIA-nonlin
GOLEM

(22458 instances)

CVC5 0 22458 0 0 0 0 0
OPENSMT 0 22458 0 0 0 0 0

SMTINTERPOL 0 22458 0 0 0 0 0
VERIT 0 22449 0 0 0 0 9

Z3 0 22458 0 0 0 0 0

LIA-nonlin
SPACER

(36402 instances)

CVC5 147 36254 0 1 0 0 0
OPENSMT 0 961 0 0 0 1326 34115

SMTINTERPOL 97 34095 764 1446 0 0 0
VERIT 0 2286 0 0 0 0 34116

Z3 147 36230 0 25 0 0 0

6.5.3 Proof Checking Results

To validate the UNSAT results given by the SMT solvers we rely on the proofs
produced by them. For each SMT instance generated from a CHC model the
selected SMT solvers were executed in proof production mode. The number
of proofs produced by each SMT solver can be seen in Table 6.5. Since proof
production adds an overhead to solver execution, the number of proofs produced
is expected to be lower than the amount of UNSAT results reported in tables 6.3
and 6.4. Concretely, the combined percentage of proofs produced in relation
to the previous UNSAT results, for the six instance sets, is: 95.59% for CVC5-
ALETHE, 99.27% for CVC5-LFSC, 100% for OPENSMT, 96.05% for SMTINTERPOL,
0% for VERIT, and 99.76% for Z3. The reduction in performance is overall small,
with OPENSMT showing no performance degradation and CVC5-LFSC and Z3
having less than 1% reduction. Two points of note are that ALETHE proofs led
to more than six times the overhead than LFSC proofs in CVC5, and that VERIT
was not able to produce any proofs. The reason for the behaviour observed
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Table 6.5. Number of proofs produced by the selected SMT solvers; CVC5 has
separate results for its two proof formats. Each column shows the amount of
proofs produced from a given instance set, with the total amount of instances
in each set shown below the CHC solver that produced the models for it.

Proofs Produced

LIA-lin LIA-nonlin

ELDARICA

(5050)
GOLEM

(5268)
SPACER

(16232)
ELDARICA

(6216)
GOLEM

(22458)
SPACER

(36402)

CVC5-ALETHE 4992 5169 12719 6116 22282 35419
CVC5-LFSC 5028 5226 14873 6216 22454 36234
OPENSMT 4970 5268 700 2493 22458 961

SMTINTERPOL 5010 5222 9548 6062 22299 33486
VERIT 0 0 0 0 0 0

Z3 5047 5268 14807 6216 22458 36230

with VERIT is that the define_fun construct of the SMT-LIB standard, present
in the models produced by all CHC solvers, is supported by VERIT in its default
configuration, but not in its proof production mode. In addition, 117 new errors
were observed with CVC5, which only happened in proof production mode, due
to an unexpected free assumption leading to a fatal failure10.

The proof formats used by each SMT solver can be quite different, not only
in shape, but also in the amount of information stored, with the choice of finer
or coarser proofs potentially having a significant effect on proof size. The sizes
of all proofs produced in the evaluation can be seen in Figure 6.4. Overall, CVC5
produced the largest proofs, in both of its proof formats, in some cases with an or-
der of magnitude difference with the proofs produced by the solver with the third
largest proofs. The ranking between OPENSMT, SMTINTERPOL, and Z3 depends
on which CHC solver’s models the instances are generated from. A large number
of Z3 proofs, all with a size of 50 B, consisted of (proof (asserted false)),
showcasing how coarse proofs can be; although very compact, these extreme
examples make checking essentially degenerate into solving the instance again.
Regarding the CHC solvers themselves, ELDARICA’s models led to the majority of
the largest proofs for LIA-lin instances and SPACER’ models led to the majority of
the largest proofs for LIA-nonlin instances. The single largest proof produced, by
CVC5-ALETHE from an instance generated from a SPACER LIA-nonlin model, had

10See https://github.com/cvc5/cvc5/issues/9770.

https://github.com/cvc5/cvc5/issues/9770
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Figure 6.4. Sizes of the SMT proofs produced. The proofs are ordered according
to their size, the x-axis indicates their position in the order and the y-axis
indicates their size; the scale of the x-axis changes between the plots, due to
the high variation on the number of proofs produced.

a size of 699 MB, which is a good illustration of the need of compact proofs.

To check the proofs the available automated checkers suitable for each proof
format are used, namely CARCARA and TSWC for the proofs produced by CVC5-
ALETHE and OPENSMT, and the LFSC and SMTINTERPOL checkers for the proofs
produced by CVC5-LFSC and SMTINTERPOL. The results for the proofs produced
for the LIA-lin and LIA-nonlin instance sets can be seen in tables 6.6 and 6.7.
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Table 6.6. Results for checking the proofs produced by solving the SMT in-
stances generated for the LIA-lin benchmarks; LFSC and SMTInterpol stand
for their respective checkers. In addition to the raw number of proofs verified,
the percentage relation to the total number of proofs is in parentheses.

Valid Invalid Timeout Memout Error

LIA-lin
ELDARICA

CARCARA 4992 (100%) 0 0 0 0
LFSC 5026 (99.9%) 0 2 0 0

SMTINTERPOL 5010 (100%) 0 0 0 0
TSWC 4970 (100%) 0 0 0 0

LIA-lin
GOLEM

CARCARA 5038 (97.4%) 131 0 0 0
LFSC 5214 (99.7%) 0 7 3 2

SMTINTERPOL 5222 (100%) 0 0 0 0
TSWC 5268 (100%) 0 0 0 0

LIA-lin
SPACER

CARCARA 1478 (11.6%) 109 0 0 11132
LFSC 11295 (75.9%) 0 7 3570 1

SMTINTERPOL 9542 (99.9%) 0 6 0 0
TSWC 700 (100%) 0 0 0 0

Overall, the four checkers were able to validate most of the proofs produced, with
the LFSC checker being the only tool to be significantly affected by the resource
constraints, specifically the memory limit of 5 gigabytes. An important discovery
is that CVC5-ALETHE produced 562 invalid proofs, due to incorrect proof steps11.
While not implying that the UNSAT results the proofs are supposed to validate are
incorrect, since the problem can be in the proof production itself, this is a serious
issue. Still in regards to ALETHE proofs, CARCARA had 44282 errors when check-
ing proofs produced for SMT instances generated from SPACER models, due to
the presence of attribute annotations in models containing quantifiers12. Lastly,
3 errors were also observed with the LFSC checker, due to a type mismatch13.

6.6 Conclusions and Future Work

In this chapter a novel two-layered approach for CHC model validation that relies
on SMT proofs to provide additional correctness guarantees was presented. The

11See https://github.com/cvc5/cvc5/issues/9760.
12See https://github.com/ufmg-smite/carcara/issues/12.
13See https://github.com/cvc5/LFSC/issues/87.

https://github.com/cvc5/cvc5/issues/9760
https://github.com/ufmg-smite/carcara/issues/12
https://github.com/cvc5/LFSC/issues/87
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Table 6.7. Results for checking the proofs produced by solving the SMT in-
stances generated for the LIA-nonlin benchmarks; LFSC and SMTInterpol
stand for their respective checkers. In addition to the raw number of proofs
verified, the percentage relation to the total number of proofs is in parentheses.

Valid Invalid Timeout Memout Error

LIA-nonlin
ELDARICA

CARCARA 6115 (99.9%) 1 0 0 0
LFSC 6216 (100%) 0 0 0 0

SMTINTERPOL 6062 (100%) 0 0 0 0
TSWC 2493 (100%) 0 0 0 0

LIA-nonlin
GOLEM

CARCARA 21999 (98.7%) 283 0 0 0
LFSC 22453 (99.9%) 0 1 0 0

SMTINTERPOL 22299 (100%) 0 0 0 0
TSWC 22458 (100%) 0 0 0 0

LIA-nonlin
SPACER

CARCARA 2231 (6.2%) 38 0 0 33150
LFSC 36222 (99.9%) 0 3 9 0

SMTINTERPOL 33468 (99.9%) 0 18 0 0
TSWC 961 (100%) 0 0 0 0

approach is supported by a modular evaluation framework, ATHENA, that en-
ables models to be validated by many different SMT solvers and the SMT solving
results to be validated by available proof checkers. A large scale evaluation was
conducted using all LIA benchmarks from CHC-COMP 2022 to compare three
CHC solvers, five SMT solvers, and four proof checkers. The results indicate that
the approach is feasible in practice, with potential to benefit CHC-based verifica-
tion tools, and also highlight model and proof sizes as a crucial practicality fac-
tor. A final important point is that many bugs were found in the tools compared,
including invalid models being produced by two state-of-the-art CHC solvers,
which confirms the need to provide modern verification tooling with additional
correctness guarantees.

Directions for future work include (i) the evaluation of the approach with
other FOL theories, (ii) the embedding of the approach into CHC-based verifi-
cation tooling, and (iii) the designing of a complementary approach to validate
CHC proofs. For the first direction, enhancements can be made to the frame-
work’s implementation to cater to theories other than LIA, with a point of inter-
est being the checker support for SMT proofs not involving arithmetics. For the
second direction, the use of proof-backed model validation in CHC-based model
checkers is a direct application. For the third direction, one possibility is to use
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the ALETHE format to represent and check CHC proofs, since it is rich enough to
describe the necessary proof steps. An important unknown regarding potential
ALETHE CHC proofs is the correct level of granularity, as it is unclear if coarse
proofs can be efficiently checked, either by CARCARA or any future checker, or if
additional burden needs to be put on the solvers to produce fine-grained proofs.
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Chapter 7

Conclusions

This dissertation addressed the need for automated verification of blockchain
technologies with correctness guarantees. The blockchain space was approached
both at the platform and the application level and investigated the use of veri-
fication techniques based on first-order logic to tackle the growing need of cor-
rectness guarantees in this domain. To strengthen the guarantees provided, the
use of correctness witnesses to validated the results of logic solvers dedicated to
logic fragments of interest was also investigated.

In Chapter 3 a novel symbolic model checking approach for TLA+ was pro-
posed, with the goal of improving performance. The essence of the approach
is the encoding of structural information of TLA+ data structures into SMT, by
usage of the theory of arrays, which leads to SMT formulas that are smaller
and whose solving can be done more efficiently. This was implemented in the
APALACHE model checker and allowed the automated reasoning of complex pro-
tocols written in TLA+ to be tractable within reasonable resource constraints.

In Chapter 4 the symbolic model checking approach for Solidity of Marescotti
et al. [2020] was evaluated and extended, with the goal of analysing and im-
proving it. The evaluated approach is based on an encoding of Solidity into con-
strained Horn clauses which allows for unbounded model checking, but at the
same time relies on a solving procedure that is undecidable in the general case.
The results of the extensive experimentation done showed that the approach can
establish safety and detect vulnerabilities in many real world smart contracts and
outperforms comparable tools. In addition to the evaluation, an extension of the
encoding to improve counterexample generation was also proposed.

In Chapter 5 a novel format for SMT unsatisfiability proofs was proposed,
with the goal of producing compact proofs. The format builds on the DRAT for-
mat for unsatisfiability proofs for formulas in propositional logic by extending
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it with proofs certificates for QF_LRA, QF_LIA, and QF_UF. The SMT solver
OPENSMT was instrumented to produce proofs in the format and an indepen-
dent proof checker capable of consuming proofs in the format, called TSWC, was
implemented. The evaluation indicates that the format leads to smaller proofs
that can be produced with a low overhead during solving, relative to other proof
producing solvers, and can be efficiently checked.

In Chapter 6 a novel proof-backed approach for the validation of constrained
Horn clauses models was proposed, with the goal of providing additional guar-
antees about the results obtained. The approach relies on proof producing SMT
solvers, and the proof checker for their respective proof formats, to strengthen
the guarantees provided by model validation. In addition, the approach is generic
w.r.t. FOL theories and solvers, and is also very modular, enabling different SMT
solvers to be used in the validation. The evaluation framework ATHENA was
developed to asses the approach, in special the effect of different solver combi-
nations. The results obtained indicate that using SMT proofs does not add sig-
nificant overhead to model validation, with the sizes of the models themselves
being a more significant obstacle to practical use.

The two main observations that can be made from the dissertation’s results
are, first, that applying formal verification to blockchain technologies can be
made both practical and scalable, and, second, that the validation of logic solvers
results can be efficiently done in an automated and lightweight manner.

Many interesting research avenues stem from the work presented in this dis-
sertation. For the model checking approach for TLA+, its enhancement to encode
the remaining data structures in a structure preserving way, together with imple-
mentation support to cater for additional back-end solvers, are potential direct
follow-ups. Another direction, which might require substantially more effort, is
the development of an efficient unbounded model checking approach for TLA+.
For the model checking approach for Solidity, direct follow-ups include the en-
hancement of the encoding to handle scenarios such as calls to known external
code and its instantiation to languages other than Solidity. A complementary
direction is the embedding of CHC witnesses into the model checking approach.
For the SMT unsatisfiability proofs, the addition of support for other theories is
a clear direction. For the CHC model validation, the support for other theories
is also a clear direction, with a complementary direction being the design of an
approach for the validation of CHC unsatisfiability proofs. Lastly, the embedding
of witness production and validation into verification tooling, both in the case of
proofs and models, is a direction as interesting as it is unexplored.



Appendix A

Definition of the KerA+ Language

The syntax of the KerA+ language proposed by Konnov et al. [2019] and dis-
cussed in Section 3.1.1 is shown in Table A.1. The operators derived from TLA+

preserve their semantics. The semantics of the non-TLA+ based operators are
described in the bullet points below.

Table A.1. Syntax of the KerA+ language. The operators that do not have a
counterpart in pure TLA+ are highlighted .

Literals: true, false 0,1,-1,2,-2,. . . c1, . . . , cn (constants)
Integers: i1 • i2 where • is one of +,−,∗,÷,%,<,≤,>,≥,=, ̸=
Sets: {e1, . . . , en} {x ∈ S : p} {e : x ∈ S} UNION S

i1 .. i2 Cardinality(S) x ∈ [S1→ S2] x ∈ subset S
Control: ITE(p, e1, e2)

e1 ⊕ . . .⊕ en x ′DS x ′D [S1→ S2] x ′D subset S

Quantifiers: ∃x ∈ S . p choose x ∈ S : p FROM e1, . . . , en BY θ
Functions: [x ∈ S 7→ e] f [e] DOMAIN f [ f except ![e1] = e2]
Records: [nm1 7→ e1, . . . , nmn 7→ en] DOMAIN r e.nm
Tuples: 〈e1, . . . , en〉 t[i] DOMAIN t
Sequences: 〈e1, . . . , en〉 s[i] DOMAIN s [s except ![i] = e]

Len(s) s ◦ t Head(s), Tail(s) SubSeq(s, i, j)

• Assignments x ′DS, x ′D [S1→ S2], and x ′D subset S. Following TLC, under
the conditions given by Kukovec et al. [2018], an expression x ′ ∈ S is
treated as an assignment of a value from the set S to the variable x ′. Note
that an expression x ′ = e is a special case of this rule, which can be written
as x ′ ∈ {e}. Such assignments are labelled with x ′DS, to distinguish them
from membership tests x ′ ∈ S.
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• Nondeterministic disjunction φ1 ⊕ . . .⊕φn. This operator formalises TLC’s
special disjunction. It evaluates to true iff the disjunction φ1 ∨ · · · ∨ φn

evaluates to true. Nondeterministic disjunction, however, adds constraints
on the variable assignments, i.e., for every i, j ∈ 1..n and i ̸= j, formula
φi contains an assignment to a variable x ′ iff formula φ j also contains an
assignment to x ′.

• Choice with an oracle FROM e1, . . . , en BY θ . This operator returns expres-
sion ei when θ = i and 1 ≤ i ≤ n. Otherwise, it returns an arbitrary value
of the same type as e1, . . . , en.



Appendix B

ARS Rules as Inferences

All reduction rules described in Chapter 3 are shown below as inferences. Com-
plex rules require the stacking of premisses and may have other inferences as
premisses. If multiple arenas are present in a rule →A is used to represent an
edge in the arena A.

• Inference rule for integer literal reduction, described in Section 3.1.2.



num : Int |A | ν | Φ
�

num is one of 0, 1,−1, ...



cnum |A, cnum : Int | ν | Φ, cnum = num
� (INT)

• Inference rule for picking, described in Section 3.1.2.




FROM c1, ..., cn BY θ : τ |A | ν | Φ
�

c1 : τ, ..., cn : τ
τ is basic




cpick |A, cpick : τ | ν | Φ,
∧

1≤i≤n

(θ = i→ cpick = ci)
� (FROMBASIC)

• Inference rule for branching, described in Section 3.1.2.



ITE(cp, c1, c2) : τ |A1 | ν1 | Φ1

�




FROM c1, c2 BY θ : τ |A1,θ : Int | ν1 | Φ1, 1≤ θ ≤ 2
�




cres |A2 | ν2 | Φ2

�




cres |A2 | ν2 | Φ2,θ = 1↔ cp

� (ITE)
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• Inference rule for set enumeration, described in Section 3.2.1.



{c1, . . . , cn} : Set[τ] |A | ν | Φ
�




cset |A, cset : Set[τ], cset→c1, . . . , cn | ν | Φ, EnumCtr
� (ENUM)

• Inference rule for set filter, described in Section 3.2.1.



{x ∈ cS : p} : Set[τ] |A | ν | Φ
�

cS→Ac1, . . . , cn



p[c1/x] : Bool, . . . , p[cn/x] : Bool |A | ν | Φ
�




cp
1, . . . , cp

n |A
′ | ν′ | Φ′
�




cF |A′, cF : Set[τ], cF→c1, . . . , cn | ν′ | Φ′, FilterCtr
� (FILTER)

• Inference rule for set map, described in Section 3.2.1.



{e : x ∈ cS} : Set[τ] |A | ν | Φ
�

cS→Ac1, . . . , cn



e[c1/x] : τ, . . . , e[cn/x] : τ |A | ν | Φ
�




ce
1 :, . . . , ce

n |A
′ | ν′ | Φ′
�




cM |A′, cM : Set[τ], cM→ce
1, . . . , ce

n | ν
′ | Φ′, MapCtr
� (MAP)

• Inference rule for function application, described in Section 3.2.2.



cF[carg] : τ |A | ν | Φ
�

cF
1
−→AcFdom

→Acd
1 , . . . , cd

n
cF

2
−→AcFpairs

→Acp
1, . . . , cp

n



FROM cp
1, . . . , cp

n BY θ : 〈τarg,τ〉 |A,θ : Int | ν | Φ, 0≤ θ ≤ n
�




cp |A′ | ν′ | Φ′
�

cp[2]→A′c1, . . . , cm



cres |A′, cres : τ, cres→c1, . . . , cm | ν′ | Φ′, FunAppCtr
� (FUNAPP)



Appendix C

SMT Constraints Generated by
Apalache’s Constants Encoding

The constraints generated by APALACHE’s constants encoding for the rules in Sec-
tion 3.2 are shown below. Rule applications are also illustrated for both the arrays
and the constants encodings.

Set Enumeration. The constraints added by the constants encoding to model
set enumeration represent set membership and are Boolean constants of form
en〈cset, i, ci〉, with 1 ≤ i ≤ n. Each constant explicitly represents an arena edge,
with this approach encoding multisets due to the lack of a guarantee of unique-
ness of the enumerated elements. The cell cset itself is uninterpreted and remains
unconstrained. The constants encoding version of EnumCtr is the following:

∧

1≤i≤n

en〈cset, i, ci〉 (EnumCtrC)

The constraints generated by both encodings for the definition of set Proc in
Figure 2.1 are shown below, assuming we have a configuration containing three
processes; 1..N is a shorthand for {1, ..., N}.

a0
cProc
= KInt(⊥) ∧

a1
cProc
= store(a0

cProc
, c1,⊤) ∧

a2
cProc
= store(a1

cProc
, c2,⊤) ∧

a3
cProc
= store(a2

cProc
, c3,⊤) ∧

cProc = a3
cProc

en〈cProc, 1, c1〉 ∧
en〈cProc, 2, c2〉 ∧
en〈cProc, 3, c3〉
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Set Membership. The constants encoding checks if cx is equal to one of c1, ..., cn.
The constants encoding version of the membership constraints shown in Sec-
tion 3.2.1 are the following:

∨

1≤i≤n

cx = ci
︸ ︷︷ ︸

cell equality

∧ en〈cset, i, ci〉
︸ ︷︷ ︸

cell membership

(MembershipCtrC)

The constraints generated by both encodings for checking if process 2 in Fig-
ure 2.1 is correct are shown below.

cCorr[c2] c2 = c1 ∧ en〈cCorr, 1, c1〉 ∨
c2 = c2 ∧ en〈cCorr, 2, c2〉 ∨
c2 = c3 ∧ en〈cCorr, 3, c3〉

The arrays encoding adds a single constraint, while the constants encoding
adds a linear amount of constraints and, due to the arena being an overapprox-
imation, has to check not only that cx is equal to one of the elements pointed
to by cset, but also that the Boolean constant encoding the edge to said element
evaluates to true.

Set Filter. The constraints added by the constants encoding equate member-
ship in F to membership in S and the predicate evaluation, as shown below. In a
similar fashion to EnumCtrC , and in contrast to FilterCtr, these constraints encode
multisets and cF remains unconstrained.

∧

1≤i≤n

en〈cF , i, ci〉= (en〈cS, i, ci〉 ∧ cp
i ) (FilterCtrC)

Invariant NoDecide in Figure 2.1 can also be written using a set filter, as the
expression {p ∈ Corr : pc[p] = “AC”} = ;. The constraints generated by both
encodings for this set filter are shown below.

ite
�

cp
1, a0

cND
[c1],¬a0

cND
[c1]
�

∧
ite
�

cp
2, a0

cND
[c2],¬a0

cND
[c2]
�

∧
ite
�

cp
3, a0

cND
[c3],¬a0

cND
[c3]
�

∧
a3

cND
= map∧(cCorr, a0

cND
) ∧

cND = a3
cND

en〈cND, 1, c1〉= (en〈cCorr, 1, c1〉 ∧ cp
1) ∧

en〈cND, 2, c2〉= (en〈cCorr, 2, c2〉 ∧ cp
2) ∧

en〈cND, 3, c3〉= (en〈cCorr, 3, c3〉 ∧ cp
3)

Both encodings generate a linear amount of constraints, since n p[ci/x] pred-
icates have to be considered. Unlike is the case with EnumCtr, FilterCtr does not
contain a sequence of store operations due to the usage map f , which avoids the
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creation of intermediary arrays; this is not possible in EnumCtr because it starts
from a constant array.

Set Map. The constants encoding equates membership in M to membership in
S. The constants encoding version of MapCtr is the following:

∧

1≤i≤n

en〈cM , i, ce
i 〉= en〈cS, i, ci〉 (MapCtrC)

Invariant NoDecide in Figure 2.1 can be written using a set map, as the
expression “AC” /∈ {pc[p] : p ∈ Corr}. The constraints generated by both en-
codings for this set map are shown below.

a0
cND
= KInt(⊥) ∧

ite
�

cCorr[c1], a1
cND
= store(a0

cND
, ce

1,⊤), a1
cND
= a0

cND

�

∧
ite
�

cCorr[c2], a2
cND
= store(a1

cND
, ce

2,⊤), a2
cND
= a1

cND

�

∧
ite
�

cCorr[c3], a3
cND
= store(a2

cND
, ce

3,⊤), a3
cND
= a2

cND

�

∧
cND = a3

cND en〈cND, 1, ce
1〉= en〈cCorr, 1, c1〉 ∧

en〈cND, 2, ce
2〉= en〈cCorr, 2, c2〉 ∧

en〈cND, 3, ce
3〉= en〈cCorr, 3, c3〉 ∧

Function Definition. The constants encoding adds only one edge to the func-
tion cell cF in the arena, cF

1
−→cFpairs

. The cell cFpairs
is fully encoded into SMT by

the constants encoding, as the set of pairs {〈x , f (x)〉 : x ∈ DOMAIN f }. The con-
straints generated are thus the same as those of set map.

Function Domain. Accessing a function’s domain in the constants encoding re-
quires the domain set to be constructed by compiling the first element of each
pair in cFpairs

. The constraints generated are thus the same as those of set map.

Function Update. The constants encoding treats the update as the expression
{ite(p[1] = arg, 〈arg, v〉, p) : p ∈ cFpairs

}, relying thus on set map; p[1] stands for
the first element of pair p.

Function Application. The constants encoding has the result cell simply as the
second element of the pair chosen by the oracle, with any edges it might have
already being present in A′. Below we can see its version of rule FunApp, with
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the constraints that are associated with it.

cF[carg] : τ and cF
1
−→cFpairs

→cp
1, . . . , cp

n

↣
�

FROM cp
1, . . . , cp

n BY θ : 〈τarg,τ〉 | θ : Int | 0≤ θ ≤ n↣ cp
�

↣ cp[2] | FunAppC t rC
(FunAppC)

∧

1≤i≤n

∧
(θ = i→ (carg = cp

i [1]∧ en〈cFpairs
, i, cp

i 〉)
(θ = 0→ (carg ̸= cp

i [1]∨¬en〈cFpairs
, i, cp

i 〉)
(FunAppCtrC)

For the function application pc[p] = “RD” in line 34 of Figure 2.1 we have:

cres = cpc[cp] (θ = 1→ (cp = cp
1[1]∧ en〈cFpairs

, 1, cp
1〉) ∧

(θ = 2→ (cp = cp
2[1]∧ en〈cFpairs

, 2, cp
2〉) ∧

(θ = 3→ (cp = cp
3[1]∧ en〈cFpairs

, 3, cp
3〉) ∧

(θ = 0→ (cp ̸= cp
1[1]∨¬en〈cFpairs

, 1, cp
1〉) ∧

(θ = 0→ (cp ̸= cp
2[1]∨¬en〈cFpairs

, 2, cp
2〉) ∧

(θ = 0→ (cp ̸= cp
3[1]∨¬en〈cFpairs

, 3, cp
3〉)

Both encodings generate a linear amount of constraints in the general case, as
shown by FunAppCtr and FunAppCtrC . The arrays encoding, however, can have
its constraints simplified to cres = cF[carg] when handling exclusively basic types,
providing an efficiency benefit.
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Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. (2012). Model Checking
and the State Explosion Problem, pages 1–30. Springer Berlin, Heidelberg.

ConsenSys (2021). Mythril. https://github.com/ConsenSys/mythril.

Cruz-Filipe, L., Heule, M. J. H., Hunt, W. A., Kaufmann, M., and Schneider-Kamp,
P. (2017). Efficient Certified RAT Verification. In Proceedings of the 26th Inter-
national Conference on Automated Deduction, pages 220–236.

de Angelis, E. and Govind V. K., H. (2022). CHC-COMP 2022: Competition
Report. In Proceedings of the 9th Workshop on Horn Clauses for Verification and
Synthesis, pages 44–62.

de Moura, L. and Bjørner, N. (2008a). Proofs and Refutations, and Z3. In Proceed-
ings of the 7th International Workshop on the Implementation of Logics, pages
123–132.

de Moura, L. and Bjørner, N. (2008b). Z3: An Efficient SMT Solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340.

de Moura, L. and Bjørner, N. (2009). Generalized, Efficient Array Decision Pro-
cedures. In Proceedings of the 9th Conference on Formal Methods in Computer-
Aided Design, pages 45–52.

Dobre, D. and Suri, N. (2006). One-step Consensus with Zero-Degradation. In
Proceedings of the 36th International Conference on Dependable Systems and
Networks, pages 137–146.

Egelund-Müller, B., Elsman, M., Henglein, F., and Ross, O. (2017). Automated
Execution of Financial Contracts on Blockchains. Business & Information Sys-
tems Engineering, 59(6):457–467.

Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., and Barrett, C.
(2017). SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In Proceed-
ings of the 29th International Conference on Computer Aided Verification, pages
126–133.

https://github.com/ConsenSys/mythril


113 Bibliography

Ernst, G. (2023). Korn - Software Verification with Horn Clauses (Competition
Contribution). In Proceedings of the 29th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 559–564.

Fedyukovich, G., Sery, O., and Sharygina, N. (2013). eVolCheck: Incremental
Upgrade Checker for C. In Proceedings of the 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 292–
307.

Feist, J., Grieco, G., and Groce, A. (2019). Slither: A Static Analysis Frame-
work For Smart Contracts. In Proceedings of the 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain, page 8–15.

Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L. P., and Tiu, A. (2006). Expres-
siveness + Automation + Soundness: Towards Combining SMT Solvers and
Interactive Proof Assistants. In Proceedings of the 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages
167–181.

Frank, J., Aschermann, C., and Holz, T. (2020). ETHBMC: A Bounded Model
Checker for Smart Contracts. In Proceedings of the 29th USENIX Security Sym-
posium, page 2757–2774.

Gario, M. and Micheli, A. (2015). PySMT: a Solver-agnostic Library for Fast
Prototyping of SMT-based Algorithms. In Proceedings of the 13th International
Workshop on Satisfiability Modulo Theories, pages 1–10.

Goel, A. and Sakallah, K. A. (2021a). On Symmetry and Quantification: A New
Approach to Verify Distributed Protocols. In Proceedings of the 13th NASA For-
mal Methods International Symposium, page 131–150.

Goel, A. and Sakallah, K. A. (2021b). Towards an Automatic Proof of Lamport’s
Paxos. In Proceedings of the 21st Conference on Formal Methods in Computer-
Aided Design, pages 112–122.

Gordon, W. J. and Catalini, C. (2018). Blockchain Technology for Healthcare:
Facilitating the Transition to Patient-Driven Interoperability. Computational
and Structural Biotechnology Journal, 16(1):224–230.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. (2012). Synthe-
sizing Software Verifiers from Proof Rules. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, page
405–416.



114 Bibliography

Guerraoui, R. (2001). On the Hardness of Failure-Sensitive Agreement Problems.
Information Processing Letters, 79(2):99–104.

Gurfinkel, A. and Bjørner, N. (2019). The Science, Art, and Magic of Constrained
Horn Clauses. In Proceedings of the 21st International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, page 6–10.

Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. A. (2015). The SeaHorn
Verification Framework. In Proceedings of the 27th International Conference on
Computer Aided Verification, pages 343–361.

Hajdu, Á. and Jovanovic, D. (2020). Solc-Verify: A Modular Verifier for Solidity
Smart Contracts. In Proceedings of the 11th International Conference on Verified
Software: Theories, Tools, and Experiments, pages 161–179.

Heule, M., Hunt, W., Kaufmann, M., and Wetzler, N. (2017). Efficient, Verified
Checking of Propositional Proofs. In Proceedings of the 8th International Con-
ference on Interactive Theorem Proving, pages 269–284.

Heule, M. J. H., Hunt, W. A., and Wetzler, N. (2013a). Trimming While Checking
Clausal Proofs. In Proceedings of the 13th Conference on Formal Methods in
Computer-Aided Design, pages 181–188.

Heule, M. J. H., Hunt, W. A., and Wetzler, N. (2013b). Verifying Refutations with
Extended Resolution. In Proceedings of the 24th International Conference on
Automated Deduction, pages 345–359.

Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Moore,
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Roşu, G. and Şerbănuţă, T. F. (2010). An Overview of the K Semantic Framework.
Journal of Logic and Algebraic Programming, 79(6):397–434.

Rouhani, S. and Deters, R. (2019). Security, Performance, and Applications of
Smart Contracts: A Systematic Survey. IEEE Access, 7(1):50759–50779.

Sandberg Ericsson, A., Myreen, M. O., and Åman Pohjola, J. (2019). A Verified
Generational Garbage Collector for CakeML. Journal of Automated Reasoning,
63(2):463–488.

Schmidt, J. and Leuschel, M. (2021). Improving SMT Solver Integrations for the
Validation of B and Event-B Models. In Proceedings of the 26th International
Conference on Formal Methods for Industrial Critical Systems, pages 107–125.

Schneidewind, C., Grishchenko, I., Scherer, M., and Maffei, M. (2020). EThor:
Practical and Provably Sound Static Analysis of Ethereum Smart Contracts. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, page 621–640.

Schultz, W., Dardik, I., and Tripakis, S. (2022). Plain and Simple Inductive In-
variant Inference for Distributed Protocols in TLA+. In Proceedings of the 22nd
Conference on Formal Methods in Computer-Aided Design, pages 273–283.

Schurr, H.-J., Fleury, M., Barbosa, H., and Fontaine, P. (2021). Alethe: Towards
a Generic SMT Proof Format. In Proceedings of the 7th Workshop on Proof
eXchange for Theorem Proving, pages 49–54.

Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., and Hao, K. C. G.
(2019). Safer Smart Contract Programming with Scilla. Proceedings of the ACM
on Programming Languages, 3(OOPSLA):1–30.

Sery, O., Fedyukovich, G., and Sharygina, N. (2012). FunFrog: Bounded Model
Checking with Interpolation-Based Function Summarization. In Proceedings of
the 10th International Symposium on Automated Technology for Verification and
Analysis, pages 203–207.



120 Bibliography

Sinz, C. and Biere, A. (2006). Extended Resolution Proofs for Conjoining BDDs.
In Proceedings of the 1st International Symposium on Computer Science in Russia,
pages 600–611.

So, S., Lee, M., Park, J., Lee, H., and Oh, H. (2020). VeriSmart: A Highly Precise
Safety Verifier for Ethereum Smart Contracts. In Proceedings of the 41st IEEE
Symposium on Security and Privacy, pages 1678–1694.

Stephens, J., Ferles, K., Mariano, B., Lahiri, S., and Dillig, I. (2021). SmartPulse:
Automated Checking of Temporal Properties in Smart Contracts. In Proceedings
of the 42nd IEEE Symposium on Security and Privacy, pages 555–571.

Stoilkovska, I., Konnov, I., Widder, J., and Zuleger, F. (2022). Verifying Safety of
Synchronous Fault-Tolerant Algorithms by Bounded Model Checking. Interna-
tional Journal on Software Tools for Technology Transfer, 24(1):33–48.

Stump, A., Barrett, C., Dill, D., and Levitt, J. (2001). A Decision Procedure
for an Extensional Theory of Arrays. In Proceedings of the 16th Annual IEEE
Symposium on Logic in Computer Science, pages 29–37.

Stump, A., Oe, D., Reynolds, A., Hadarean, L., and Tinelli, C. (2013). SMT
Proof Checking Using a Logical Framework. Formal Methods in System Design,
42(1):91–118.

Swamy, N., Hri̧tcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.-Y., Kohlweiss, M., Zinzindohoue, J.-K.,
and Zanella-Béguelin, S. (2016). Dependent Types and Multi-monadic Effects
in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, page 256–270.

Tan, B., Mariano, B., Lahiri, S. K., Dillig, I., and Feng, Y. (2022). SolType: Re-
finement Types for Arithmetic Overflow in Solidity. Proceedings of the ACM on
Programming Languages, 6(POPL):1–29.

Tange, O. (2011). GNU Parallel - The Command-Line Power Tool. ;login: The
USENIX Magazine, 36(1):42–47.

Tran, T.-H. (2023). Symbolic Verification of TLA+ Specifications with Applications
to Distributed Algorithms. PhD thesis, Technische Universität Wien. Upcoming
thesis.



121 Bibliography

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., and Vechev, M.
(2018). Securify: Practical Security Analysis of Smart Contracts. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
page 67–82.

Van Gelder, A. (2012). Producing and Verifying Extremely Large Propositional
Refutations - Have Your Cake and Eat it Too. Annals of Mathematics and Arti-
ficial Intelligence, 65(4):329–372.

van Steen, M. and Tanenbaum, A. S. (2017). Distributed Systems. CreateSpace
Independent Publishing Platform.

Wang, X., Yang, W., Noor, S., Chen, C., Guo, M., and van Dam, K. H. (2019).
Blockchain-Based Smart Contract for Energy Demand Management. Energy
Procedia, 158(1):2719–2724.

Wang, Y., Lahiri, S. K., Chen, S., Pan, R., Dillig, I., Born, C., Naseer, I., and
Ferles, K. (2020). Formal Verification of Workflow Policies for Smart Contracts
in Azure Blockchain. In Proceedings of the 11th International Conference on
Verified Software: Theories, Tools, and Experiments, pages 87–106.

Wesley, S., Christakis, M., Navas, J. A., Trefler, R., Wüstholz, V., and Gurfinkel, A.
(2022). Verifying Solidity Smart Contracts via Communication Abstraction in
SmartACE. In Proceedings of the 23rd International Conference on Verification,
Model Checking, and Abstract Interpretation, pages 425–449.

Wetzler, N., Heule, M. J. H., and Hunt, W. A. (2014). DRAT-trim: Efficient
Checking and Trimming Using Expressive Clausal Proofs. In Proceedings of
the 17th International Conference on Theory and Applications of Satisfiability
Testing, pages 422–429.

Wood, G. (2015). Ethereum: A Secure Decentralised Generalised Transaction
Ledger. https://github.com/ethereum/yellowpaper.

Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. (2009). Formal
Methods: Practice and Experience. ACM Computing Surveys, 41(4):1–36.

Yu, Y., Manolios, P., and Lamport, L. (1999). Model Checking TLA+ Specifi-
cations. In Proceedings of the 10th Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, pages 54–66.

https://github.com/ethereum/yellowpaper


122 Bibliography

Zhang, P., White, J., Schmidt, D. C., Lenz, G., and Rosenbloom, S. T. (2018).
FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data.
Computational and Structural Biotechnology Journal, 16(1):267–278.

Zilliqa Team (2017). Zilliqa Technical Whitepaper. https://docs.zilliqa.

com/whitepaper.pdf.

https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf

	Contents
	Introduction
	Blockchain Technologies
	Automated Verification
	Correctness Guarantees
	Challenges and Contributions
	Model Checking of TLA+ Specifications
	Model Checking of Solidity Programs
	Validation of SMT Solvers' Unsatisfiability Results
	Validation of CHC Solvers' Satisfiability Results

	Outline

	Background
	Symbolic Model Checking
	The TLA+ Language
	The Solidity Language
	Satisfiability Modulo Theories
	Constrained Horn Clauses

	Symbolic Model Checking for TLA+ Made Faster
	Symbolic Model Checking Approach
	The KerA+ Language
	Abstract Reduction System

	Encoding TLA+ using Arrays
	Encoding TLA+ Sets using Arrays
	Encoding TLA+ Functions using Arrays
	Correctness of the Reduction to Arrays

	Implementation and Evaluation
	Benchmarks
	Results

	Related Work
	Conclusions and Future Work

	A Solicitous Approach to Smart Contract Verification
	Encoding Smart Contracts using CHC
	Control-Flow Graphs
	Basic Definitions and Notation
	Contract's Functions
	Function Calls
	Contract's External Behaviour
	Contract's Complete Behaviour
	Checking Contract Safety
	Counterexample Production

	Implementation
	Evaluation
	Benchmarks
	Results
	Manual Inspection and Vulnerabilities Found

	Related Work
	Conclusions and Future Work

	Theory-Specific Proofs Witnessing Correctness of SMT Executions
	State of the Art
	SMT Unsatisfiability Proofs
	Implementation
	Evaluation
	Conclusions and Future Work

	CHC Model Validation with Proof Guarantees
	Overview
	Related Witness Validation Approaches
	Validation of CHC Models
	Implementation
	Evaluation
	Benchmarks and Tools
	Model Validation Results
	Proof Checking Results

	Conclusions and Future Work

	Conclusions
	Definition of the KerA+ Language
	ARS Rules as Inferences
	SMT Constraints Generated by Apalache's Constants Encoding
	Bibliography

