
Effective and flexible SMT-streamlined
software model checking

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Sepideh Asadi

under the supervision of

Prof. Natasha Sharygina

April 2023

Dissertation Committee

Prof. Kenneth McMillan University of Texas at Austin, USA
Prof. Roberto Sebastiani University of Trento, Italy
Prof. Evanthia Papadopoulou Università della Svizzera Italiana, Switzerland
Prof. Kai Hormann Università della Svizzera Italiana, Switzerland

Dissertation accepted on 6 April 2023

Research Advisor PhD Program Director

Prof. Natasha Sharygina Prof. Walter Binder and Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Sepideh Asadi
Lugano, 6 April 2023

ii

To my best friend and beloved husband, Masoud.

I also dedicate this work to all brave women of IRAN who
stand for freedom, equality, and peace.

"Women, Life, Freedom"

iii

Abstract

Formal verification by model checking is an award-winning (Turing award, 2007)
technology to verify systems exhaustively and automatically in order to increase
the degree of confidence that a program would perform correctly. Symbolic veri-
fication techniques such as bounded model checking (BMC) supported by highly
efficient Boolean satisfiability (SAT) solvers have advanced the state of the art
in model checking substantially. Nevertheless, scalability issues persist in these
techniques due to the state-space explosion problem.

The goal of this thesis is to address such scalability issues of model checking
of software. We base the proposed solutions on Satisfiability Modulo Theories
(SMT) as a logical representation of programs. Although SMT reasoning frame-
work is one of the most successful approaches to verifying software in a scalable
way, it poses new challenges to verification. The main issue of SMT is that it of-
fers little direct support for adapting the constraint language to the task at hand.
Another issue with SMT encoding of programs is that the light-weight theories
are often imprecise. This means if a program is encoded in SMT, it may not
be a ready-to-use solution for verification; it would require various (sometimes
major) tuning to find a level of abstraction suitable for efficient symbolic model
checking. This thesis addresses such challenges and trade-offs.

This thesis draws together a range of techniques and combines them in a
novel way so that not only improves scalability but also enables flexibility by al-
lowing different levels of SMT abstractions. A new verification technique is pro-
posed based on SMT-based model checking that verifies programs incrementally,
reusing the computational history of a program, namely function summaries. In
addition to the provided reusability supported by the incremental approach, the
technique allows adjusting the precision with different levels of SMT encodings.
Overall, this thesis extends the state of the art by (i) designing a verification
technique that interleaves the SMT reasoning with model checking, (ii) intro-
ducing an incremental verification approach where it reuses the computation
history of related verification tasks, and (iii) exploring the trade-offs between
program encoding precision and solving efficiency using a novel theory-aware ab-

v

vi

straction refinement approach that models a program using the lightest theories
and strengthens locally on demand if the precision is not sufficient for verification
needs.

This thesis considers two application domains: (i) efficiently verifying a sin-
gle program with a sequence of safety properties (i.e., no assertion failure in
the program), and (ii) incrementally verifying program revisions with respect
to the same safety property. The effectiveness of the proposed approaches has
been validated by developing two new SMT-based model checking frameworks:
HiFrog and UpProver. These frameworks have been integrated into the inter-
polating SMT solver OpenSMT. This thesis presents real-world model checking
experiments using the proposed verification tools, demonstrating the viability
and strengths of the techniques.

Acknowledgements

This thesis represents the culmination of a six-year-long memorable journey,
where hard work and pure joy have been constantly intertwined. I believe that
these were the years of my greatest personal and professional growth, and I feel
a strong desire to express my gratitude to all those who have contributed to this
journey in any way, whether scientifically or privately.

First and foremost, I would like to thank my PhD advisor, Natasha Sharygina,
for her guidance, support, and supervision throughout my doctoral studies. She
has always been full of insights and vision that have not only advised me in
my scientific path but also in my life. A true role model, she believed in me even
when I did not. I am honored to have had the opportunity to work in her research
group at USI Formal Verification and Security Lab.

Throughout my PhD studies, I had the privilege of collaborating with and
learning from many wonderful and brilliant people, for which I am sincerely
grateful. I would like to extend a special thanks to Prof. Grigory Fedyukovich,
whose insights were invaluable when I felt stuck in my work. I would also like
to express my sincere gratitude to Dr. Antti Hyvärinen and Dr. Martin Blicha for
their valuable contributions to my work and for our many insightful and enjoy-
able discussions. I truly enjoyed working with them and learning from them, and
much of my work would not have been completed without their contributions.

Six years ago, studying computer science at Università della Svizzera italiana
(USI Lugano) was just a dream for me. USI Lugano is a great place to be, and
I enjoyed both the location and the people there, from various research groups.
My colleagues were supportive, helpful, and good people to be around, especially
Dr. Leonardo Alt, Dr. Matteo Marescotti, Rodrigo Otoni, Konstantin Britikov, and
Masoud Asadzadeh. I would also like to thank my collaborators, Professor Hana
Chockler and Dr. Karine Even-Mendoza, for our many insightful discussions and
the opportunity to visit them at the University of King’s College London.

I am deeply grateful to the reviewers of this thesis and my papers, who took
the time to thoroughly analyze this work and provide valuable feedback and
insightful questions. In particular, I would like to express my appreciation to

vii

viii

Professor Kenneth McMillan for his insightful feedback on theory refinement. It is
fascinating to note how even the smallest observation, insight, recommendation,
or criticism can easily turn into great guidance.

I am also grateful for the generous financial support provided by the Swiss
National Science Foundation (projects 200021_185031. I also acknowledge my
funding source from USI Lugano.

This entire journey would have been unimaginable without my husband, Ma-
soud. I can never forget that he moved to Lugano because of me and believed in
me every step of the way. The transition from undergraduate studies in Electrical
Engineering to graduate studies in Computer Science could not have been made
easy without his unwavering support. He has always been excited to hear about
my work and has always been proud of me. Masoud is my source of energy, my
complement, and my best friend.

I would like to conclude this by expressing a few words in Persian, to let my
parents and sisters know how grateful I am for their lifelong unconditional love
and support, for raising me with true values, and for giving me wings to fly freely.
I am what I am today thanks to them!

Sepideh Asadi, April 2023

Contents

Contents ix

List of List of Figures xiii

List of List of Tables xv

1 Introduction 1
1.1 Preface . 1

1.1.1 Symbolic model checking . 2
1.1.2 Abstraction in model checking 4
1.1.3 Interpolation-based model checking 5

1.2 Challenges and Contributions . 6
1.2.1 SMT-based BMC by means of function summarization . . . 9
1.2.2 SMT-based incremental verification of program revisions . 11
1.2.3 Model checking by theory transformation 13
1.2.4 Counterexample-guided theory-aware refinement 14
1.2.5 Outline . 16

2 Background 17
2.1 Formal modeling and properties . 17
2.2 Abstraction . 18

2.2.1 Abstract interpretation . 18
2.2.2 Predicate abstraction . 18
2.2.3 Counterexample-guided abstraction refinement (CEGAR) . 19
2.2.4 Abstraction using interpolation 19

2.3 Interpolation-based function summarization 20
2.3.1 Function summaries . 21

2.4 Satisfiability Modulo Theories . 23
2.4.1 SMT notational conventions 23
2.4.2 Theories of SMT . 25

ix

x Contents

2.4.3 Theories of interest . 25
2.5 Programs and Summaries . 26

3 SMT-based BMC by means of function summarization 29
3.1 Program modeling . 30

3.1.1 Monolithic program encoding into SMT formula 31
3.1.2 PBMC formula construction for summarization 32

3.2 Obtaining function summaries . 33
3.2.1 Interpolation algorithms used in the proposed framework 35

3.3 SMT-based incremental verification for verifying multiple properties 36
3.3.1 Applying function summaries during formula construction 36
3.3.2 Summary refinement . 39

3.4 HiFrog: SMT-based incremental verification via function summaries 39
3.5 Evaluation . 43
3.6 Related work . 45

3.6.1 Related work on interpolation in verification 45
3.6.2 Related work on function summaries 46
3.6.3 Related work on SMT-based verification 49

3.7 Synopsis . 50
3.8 Limitation and future work . 51

4 Incremental verification of program changes 55
4.1 Motivating example . 56
4.2 Incremental verification of program changes 59

4.2.1 Basic algorithm of summary validation 59
4.2.2 Algorithm with summary repair 61
4.2.3 Summary weakening . 64
4.2.4 Summary refinement . 65

4.3 Correctness of the algorithm . 67
4.3.1 Tree interpolation property 67
4.3.2 Correctness of the algorithm 68
4.3.3 Interpolation algorithms in a concrete theory 69

4.4 Tool architecture and implementation 72
4.5 Experimental evaluation . 74

4.5.1 Demonstrating usefulness of different theories 74
4.5.2 Demonstrating the effect of summary reuse 76

4.5.2.1 Incremental BMC vs monolithic BMC 76
4.5.2.2 Number of repaired summaries 79
4.5.2.3 Overhead of summary repair 81

xi Contents

4.5.3 Comparison of UPPROVER and CPACHECKER 83
4.6 Related work . 84
4.7 Synopsis . 86
4.8 Limitation and Future work . 87

5 Model checking by theory transformation 89
5.1 Overview of the technique . 90
5.2 Motivating example . 91
5.3 Theory-based model refinement . 93

5.3.1 Theory Interface . 94
5.3.2 Encoding of theory interface into specific theories 96
5.3.3 Decoding theories to the Theory Interface 98

5.4 Summary and theory-aware model checking 99
5.5 Implementation and evaluation . 102

5.5.1 Results . 103
5.6 Related Work . 106
5.7 Synopsis . 108
5.8 Limitation and future work . 109

6 Theory-aware abstraction refinement 111
6.1 Preliminaries . 113
6.2 Combination of theories in theory refinement 114

6.2.1 Bit Vectors for programs . 115
6.2.2 Uninterpreted functions for programs 116
6.2.3 Combination of UFP and BVP 117

6.3 Overview and motivating examples 118
6.4 Counterexample-guided theory refinement 120
6.5 Implementation of theory refinement algorithm 123

6.5.1 The Solver for UFP . 123
6.5.2 The Solver for BVP . 124
6.5.3 Theory Refinement in Model Checking 125

6.6 Experimental results . 125
6.6.1 Experiments on Refinement Heuristic 127

6.7 Related Work . 128
6.8 Synopsis . 130
6.9 Limitation and future work . 131

7 Contribution Summary 133

A Transformation rules for BV and NRA 137

xii Contents

B List of Publications 141
B.1 List of publications related to this thesis 141

B.1.1 Journals . 141
B.1.2 Main conference proceedings 141
B.1.3 Poster presentation . 142

B.2 Other collaborative publications . 142

Bibliography 143

List of Figures

1 . viii

1.1 Main contributions of the dissertation addressing three unresolved
problems in symbolic model checking. The solutions proposed
in chapters 3, 5, and 6 target the verification of multi-properties
in a single program. The solution proposed in chapter 3 targets
verifying several program revisions w.r.t a single property. 7

3.1 Program encoding in classical BMC 32
3.2 HiFrog overview. Grey and black arrows connect different mod-

ules of the tool (dashed - optional). Blue arrows represent the
flow of the input/output data. 40

3.3 Running time of HIFROG by propositional (Prop) encoding against
EUF and LRA encoding. 44

4.1 Two versions of a C program with call tree and function sum-
maries. 57

4.2 Overview of the UPPROVER architecture. UPPROVER operates at
one particular level of precision at each run. 72

4.3 Demonstrating the impact of theory encoding by comparing tim-
ings of LRA/EUF encodings in UPPROVER vs. Prop encoding. The
inner lines TO and MO refer to the time and memory limit. The
outer lines PS refer to the results that are potentially spurious due
to the use of abstract theory. 75

4.4 Incremental verification time of UPPROVER versus non-incremental
verification time of HIFROG on (a) EUF, (b) LRA, and (c) PROP en-
coding. 77

4.5 Number of repaired summaries in LRA. 80
4.6 Incremental verification time of UPPROVER with LRA decomposed

interpolants with and without weakening (W). 81

xiii

xiv List of Figures

4.7 Incremental verification time of UPPROVER with EUF with and
without weakening (W). 81

4.8 Speedup in UPPROVER with LRA summary reuse vs. speedup in
CPACHECKER with precision reuse. 83

5.1 Program in C with non-linear arithmetic. 92
5.2 Theory interface between EUF, LRA, NRA, and BV. The horizontal

arrows demonstrate the relation among these theories from the
perspective of over-approximation. This relation is a part of the
contribution of this study. 94

5.3 HIFROG vs CBMC. The outer horizontal and vertical lines refer to
memory limit of 2GB, and the inner lines refer to timeout at 200 s. 105

6.1 (Left) a sequence of statements and (right) the corresponding en-
coding in combined UFP and BVP (to be described in Sect. 6.2.3).
On the left all the variables are of sort Sz, and e and f are unbound.115

6.2 A symbolic encoding of a program and the corresponding SMT for-
mula. In the schematic example most of the program is encoded
using UFP, while certain critical parts are encoded in BVP and
made to communicate with the UFP encoding using the binding
formula FB. 118

6.3 Example written in C with multiplication and modulo operators. . . 119
6.4 A C example with addition, multiplication, and modulo operators. 120
6.5 The SMT-based model checking framework implementing a theory

refinement approach used in the experiments. 123
6.6 Timings of CBMC (left) and HIFROG’s flattening (right) against

HIFROG’s theory refinement for the safe instances. 126
6.7 Timings of CBMC (left) and HIFROG’s flattening (right) against

HIFROG’s theory refinement for the unsafe instances. 126
6.8 The number of refined statements using the Min heuristic with

respect to the total number of statements. 128

List of Tables

3.1 Number of solved instances in HIFROG using different theories. . . 43

4.1 Number of benchmarks solved by each encoding in UPPROVER. . . 78
4.2 Detailed verification results for four setups in LRA 82

5.1 HIFROG against CBMC, and the original version of HIFROG with
respect to pure EUF, LRA, and BV solving, where #sv is the number
of benchmarks from SV-COMP, and #craft is the number of our
tricky hand-crafted benchmarks. 104

6.1 The functions used in the encoding we consider. Note that un-
signed and signed sum coincide. 114

6.2 Comparison of the heuristics against Min on instances requiring
refinement. 127

xv

Chapter 1

Introduction

1.1 Preface

Nowadays with the prevalence, reliance, and ubiquity of software in our everyday
lives, the importance of ensuring the correctness of software gets more acute. In
practice, software quality usually does not refer to total correctness of a design,
since ensuring the absence of all bugs is too expensive for most applications. In
contrast, a guarantee of the absence of specific flaws is achievable and is a good
metric of quality. Formal verification by model checking [Clarke and Emerson,
1981; Queille and Sifakis, 1982] exhaustively checks whether a given property
(e.g., assertions in the program code) is satisfied by the program for all possible
inputs (not just a limited set of inputs as in traditional testing).

Model Checking, an award-winning (Turing award, 2007) paradigm, is the
collection of strategies that provides a formal and algorithmic way to verify the
program in a fully automated manner. These approaches present a cost and a
benefit: the system and its specification (properties) are modeled in restricted
forms, but in exchange for this, proofs and counterexamples are produced auto-
matically. The main issue for model checking is its high computational burden,
which is known as the state-space explosion (SSE) problem.

Although formal verification is widely thought to be one of the grand chal-
lenges (in general it is undecidable) for computer science, it has benefited from a
myriad of solutions to combat the SSE problem. This chapter gives an overview
of the state-of-the-arts in verification by model checking which are proposed for
mitigating SSE, and highlights their limitations that are the motivation for the re-
search conducted. We then outline the contributions of the thesis as the solutions
to some of the limitations.

1

2 1.1 Preface

1.1.1 Symbolic model checking

Symbolic model checking was first introduced by McMillan in his thesis [McMil-
lan, 1993]. This breakthrough technique represented the state space symbolically
by using binary decision diagrams (BDD) [Bryant, 1986] as a data structure to
store and manipulate a set of reachable states implicitly, instead of doing it ex-
plicitly proposed by the original model checking approach. The introduction
of symbolic representation permitted verifying properties of finite state systems
that had more than 1020 states [Burch et al., 1990]. However, the use of BDDs
does not prevent a state explosion in all cases. Even though BDD-based symbolic
model checking was integrated into the quality assurance process of several ma-
jor hardware design companies, the main bottleneck was its exponential growth
and large memory usage that would hinder its wide usage to different applica-
tions, such as software verification.

An advanced variant of symbolic verification technique was inspired by im-
provements in the constraint-solving techniques with the ability to efficiently
solve propositional satisfiability problems (or SAT, the “classic” NP-complete ex-
ample) [Biere et al., 2009]. SAT-based bounded model checking (BMC) introduced
in [Biere et al., 1999] allows us to represent a large set of program states in a
more compact way than previous techniques. BMC is mainly used for error de-
tection instead of an approach for full correctness proof. The key idea is to search
for counterexamples of bounded length k. The problem is translated to a Boolean
formula, such that the formula is satisfiable iff there exists a counterexample of
length k. If no such counterexample is found, k is increased. This process contin-
ues until either a longer counterexample is found, a predetermined upper bound
is reached, or the problem possibly becomes intractable due to hitting the time
or memory limits. In practice there is often just a time limit and the tool reports
the depth that it checked within that time.

With the improvements of Satisfiability Modulo Theories (SMT) solvers built
over efficient SAT solvers, there has been a renewed effort in developing logic-
based model checking tools that focus on satisfiability and scalability [Ramalho
et al., 2013; Armando et al., 2009; Cordeiro et al., 2012; Ganai and Gupta, 2006;
Gadelha et al., 2018; Xu, 2008]. SMT solvers can determine the satisfiability of
first-order formulas with respect to various background theories, which enable
them to reason about different data types and data structures. With SMT solvers
it is possible to use more natural translations for systems, have fewer limita-
tions on specifications, and often still have significant performance gains over
SAT-based tools. In principle, SMT can be interpreted as an extension of propo-
sitional SAT to first-order logic. In order to remain decidable, first-order theories

3 1.1 Preface

are typically restricted to decidable fragments, e.g. quantifier-free fragments.
Examples of the state-of-the-art SMT solvers are Z3 [de Moura and Bjørner,
2008], BOOLECTOR [Brummayer and Biere, 2009a], CVC5 [Barbosa et al., 2022],
YICES [Dutertre, 2014], MATHSAT SMT SOLVER [Cimatti et al., 2013], SMTINTER-
POL [Christ et al., 2012], OPENSMT [Bruttomesso et al., 2010]. The prosperity
of research on SAT- and SMT solvers is also supported by a wide range of com-
petition activities in the community [Bartocci et al., 2019].

Constrained Horn clauses (CHC) as a representation of software is another
trend in the application of logic to symbolic verification. Originally [Greben-
shchikov et al., 2012] proposed a unified format in the language of logical con-
straints to capture various verification tasks (e.g., safety, termination, and loop
invariants computation) from different domains such as transition systems, func-
tional programs, procedural and recursive programs, concurrent and distributed
systems [Gurfinkel and Bjørner, 2019; McMillan and Rybalchenko, 2013; Gurfinkel
et al., 2015; Kahsai et al., 2016; Dietsch et al., 2019]. In general, the satisfiability
of CHC modulo theory of arithmetic is undecidable. Thus, solving them is a very
complex task on its own.

Symbolic model checkers based on Property Directed Reachability (PDR/IC3)
[Bradley, 2011; Eén et al., 2011] is known for finding safe inductive invariants.
The key idea is to use a SAT/SMT solver to iteratively prove or disprove the reach-
ability of proof obligations, i.e. states that are guaranteed to reach an error state.
The iteration continues until the conjunction of all the learned IC3-lemmas is a
formula strong enough to block any other proof obligation inductively, making
it a safe inductive invariant [Beyer and Dangl, 2019; Marescotti et al., 2017].
The power of PDR algorithm is in how it is capable of constructing the invariant
incrementally, instead of the monolithic approaches. However, for the class of
unbounded systems, the inferred quantified invariant is not in the fragment of
first-order logic, and the unbounded check may not succeed using current SMT
solving techniques.

Since SAT-based approaches operate on the pure bit-level representation by
converting formulas into Boolean circuits, it is not expressive enough to model
most real-world problems, especially large-scale software. For this reason, the
solving process at propositional level is often computationally time and resource-
demanding, and sometimes not tractable at all. Compare to SAT, SMT offers a
much more expressive modeling language. The first-order logic over different
theories allows us to express the software with a natural and close formulation
to programming language statements. These formulations can also be signifi-
cantly more compact than propositional ones, since in bit-precise encoding all
the arithmetic operations need to be hard-coded into logical circuits, resulting in

4 1.1 Preface

some cases in quadratic growth in the representation size. Therefore, encoding
problem instances with first-order theories could be handled more efficiently by
SMT solvers. SMT is a prospering research topic for many researchers around
the world, both in industry and academia. For instance Z3 SMT solver is part of
crypto blockchain verification utilities, and LLVM toolsets [Bjørner, 2018]. The
companies Intel [Decision Procedure Toolkit, 2007], Meta [Dill et al., 2021], Mi-
crosoft [Ball et al., 2011], Ethereum Foundations [Grishchenko et al., 2018], and
Amazon [Backes et al., 2018] routinely apply decision procedures for verifying
their product. SMT solvers also play a central role in verifying compilers [Böhme
et al., 2010], operating systems [Nelson et al., 2017], distributed systems [Haw-
blitzel et al., 2015], and protocol designs Padon et al. [2016].

1.1.2 Abstraction in model checking
The rise of various techniques for symbolic reasoning made it easier for the
model checkers to establish over-approximations and under-approximations of
programs. As a result, various solutions of abstraction have taken a big step in
program verification [McMillan and Amla, 2003; Cook et al., 2005; Colón and
Uribe, 1998; Graf and Saïdi, 1997]. The key insight behind over-approximations
used in symbolic model checking is that they allow representing a large set of
program states in a more compact way. Abstraction techniques reduce the state
space of the system by mapping the set of states of the original system to an ab-
stract one, and a smaller set of states in a way that keeps the necessary relevant
information about the system required for proving the properties.

As the level of abstraction gets higher, we run the risk of missing some impor-
tant details of the system’s model. When model checking of the abstract model
fails, the reported counterexamples might not correspond to any concrete coun-
terexample of the actual system. This is called a spurious error. To recover from
the spurious errors in verification, the abstraction is accompanied by a refinement
process. In this regard, the paradigm of abstract-check-refine was first proposed
by Kurshan [Kurshan, 1994]. The basic idea is to build an abstract model, then
check the intended property, and if the check fails, refine the model and start
over. In other words, the abstraction refinement techniques are to create a new
abstract model which contains more detailed information in order to refute the
spurious counterexample. This process is iterated until the property is either
proved or disproved. It is known as the Counterexample-Guided Abstraction Re-
finement framework, or CEGAR for short [Clarke et al., 2000]. There are number
of successful techniques based on abstraction refinement [Heizmann et al., 2009;
Lahtinen et al., 2015]. However, in abstraction-based approaches finding the

5 1.1 Preface

right abstraction granularity remains an open challenge. The abstraction level
should have enough detail to allow verification but remain at the manageable
level.

1.1.3 Interpolation-based model checking
Craig (binary) interpolation [Craig, 1957] is widely acknowledged as one of the
fundamental approaches in computing abstraction. For any two formulas whose
conjunction is unsatisfiable, there exists an interpolant in the sense of the follow-
ing definition: given a partition of a set of clauses into a pair of subsets (A, B),
and a proof by resolution that the clauses are unsatisfiable, one can generate
an interpolant in linear time[Pudlák, 1997]. The Craig Interpolant for the pair
(A, B) is a formula I with the following properties: (i) A implies I , (ii) I ^ B is
unsatisfiable, and (iii) the symbols in I occur in both of A and B.

Interpolation and bounded model checking can be synergistically combined
to exploit their individual strengths. With interpolation, an over-approximation
is generated such that it then can be used efficiently in symbolic model check-
ing. This also provides the possibility for performing unbounded model checking.
In [McMillan, 2003a], McMillan presents the use of interpolants in order to ob-
tain a complete model checker based on a BMC-like reasoning engine. [McMil-
lan, 2004] also showed how the interpolation algorithm can be tuned to work
in SMT context. The algorithm computing partial interpolants for nodes in the
resolution proof is extended to the nodes representing theory lemmas (logical
tautologies with respect to the given background theory). For these nodes, a
theory-specific interpolation algorithm is required and McMillan gave examples
of these for the theory of linear arithmetic and the theory of equality and uninter-
preted functions. More work followed introducing various algorithms for com-
puting interpolants in SMT context, including [Kapur et al., 2006; Rybalchenko
and Sofronie-Stokkermans, 2007]. However, they had various limitations such
as dealing with a specific theory only (e.g. bit-vectors) or relying on algorithms
that became obsolete with the progress in SMT solvers.

Interpolants are used in several different ways in symbolic model check-
ing. One of the successful applications of interpolants is in function summariza-
tion [Henzinger et al., 2004; Sery et al., 2011; Albarghouthi et al., 2012b]. An
over-approximating function summary enables the reuse of information among
verification runs. Summaries are extracted using Craig interpolation after a suc-
cessful verification run for one property and used as a light-weight replacement of
the precise encoding of the corresponding functions while verifying other proper-
ties. Function summarization will be described in more detail in the next chapter

6 1.2 Challenges and Contributions

as it constitutes one of the basic abstraction mechanisms used for the develop-
ment of new techniques.

The existing leading software model checking algorithms such as PDR-, CEGAR-
or BDD-based model checkers which allow sound and complete model check-
ing are not guaranteed to terminate for programs with infinite state space. In
contrast, symbolic bounded model checking that under-approximates the set of
reachable states has shown to be efficient for quick finding of counterexamples,
as opposed to computing an unbounded proof [Cook et al., 2020; Mentel et al.,
2021]. Even though plain BMC is incomplete (it can only show existence of coun-
terexamples), it is a major building block of many complete model checking algo-
rithms, such as interpolation-based model checking [McMillan, 2003b; Vizel and
Grumberg, 2009; Vizel and Gurfinkel, 2014], and induction-based unbounded
model checker, (e.g., [Sheeran et al., 2000; Donaldson et al., 2010]) and more.
This approach to symbolic model checking, i.e., bounded model checking (BMC)
is the focus of this dissertation. The next section describes the open challenges
that this thesis aims to tackle and overviews the solutions of this research work.

1.2 Challenges and Contributions

Verifying software systems is a longstanding research goal. Throughout the past
four decades, hardware symbolic verification has been advancing, whereas verifi-
cation of large-scale software remains an open challenge. One of the main reason
for the success of hardware verification is the physical constraints in hardware
design that leads to better modularization of hardware designs. Software is more
complicated: it contains a variety of scalar and non-scalar data types: integers,
reals, arrays, collections, as well as user-defined data types and recursive func-
tions. Furthermore, software may contain a complex heap data structure which
destroys modularity by introducing a single global data structure that every line
of code can access. One can only regain modularity at a high cost or at the
price of losing automation, for example using separation logic in the specifica-
tions [O’Hearn et al., 2001; Lei et al., 2019]. Hence, the classical finite-state
model checking approaches that are performing well in the hardware domain
are not applicable to software.

Without detracting from the merits of the cutting-edge techniques of auto-
mated formal verification, there is a further demand for new methods to make
software verification workflow more efficient. This research thesis addresses the
following challenges that are hindrances to a broader application of symbolic
model checking techniques in verifying software: (P1) expensive bit-precise rea-

7 1.2 Challenges and Contributions

P2: Need for incremental
solution to avoid re-verification

P1: Costly bit-precise
reasoning

P3: Finding a right
level of abstraction

S2: Incremental re-use
of SMT-based summaries

S1: SMT-based
BMC

S3: Lazy theory-aware
abstraction refinement

Chapter 3

ÿ SMT-based BMC
ÿ SMT-based
interpolation-based
function
summarization
ÿ Different encoding
precisions through
SMT

[TACAS’17]

Chapter 4

ÿ Incremental
verification of
program changes by
summary repair
ÿ Identifying
suitable LRA tree
interpolants

[FMCAD’20, SAS’20,
FMSD Journal]

Chapter 5

ÿFunction
summarization
modulo theories
ÿ Increasing the
summary reuse by
theory
transformation and
exploiting trade-offs

[LPAR’18]

Chapter 6

ÿ Automatically
adjusting precision
in program modeling
ÿ Encoding with a
lightweight theory
and gradually
improving the
precision on-demand

[SAT’17, VSTTE’18]

Efficient and flexible SMT-streamlined software model checking

Challenges
in symbolic

model
checking

Solutions

Solutions
in detail

Figure 1.1. Main contributions of the dissertation addressing three unresolved
problems in symbolic model checking. The solutions proposed in chapters 3,
5, and 6 target the verification of multi-properties in a single program. The
solution proposed in chapter 3 targets verifying several program revisions w.r.t
a single property.

soning, (P2) need for incremental solution to avoid re-verification for closely re-
lated programs, and (P3) finding a right level of abstraction suitable for efficient
symbolic model checking. These challenges are naturally related to the complex-
ity problems within the model checking paradigm. To address these challenges,
this work enables the on-demand use of SMT technology and ultimately improves
the efficiency of symbolic model checking.

The overall contribution of this dissertation is a collection of novel verifica-
tion techniques that enable flexibility in symbolic verification and enhance the
efficiency of software verification. Figure 1.1 depicts the classification of the
individual contributions with respect to the open challenges in symbolic model
checking. This dissertation proposes three corresponding solutions S1, S2, and
S3 that address the three above-mentioned challenges P1, P2, and P3 respec-
tively: (S1) SMT-based BMC, (S2) incremental re-use of SMT-based summaries

8 1.2 Challenges and Contributions

and (S3) lazy theory-aware abstraction refinement. The proposed techniques are
highly interchangeable and have a degree of compatibility and interoperability
that allows the combination of diverse techniques to obtain a superior SMT-based
solution. Even though the solutions are presented in four chapters as individ-
ual and self-contained solutions, they are naturally related and one solution can
benefit from the others and ultimately are integrated into a unique framework
on-demand, as it was done, for example, in the model checkers developed as part
of this work: HIFROG [Alt, Asadi, Chockler, Mendoza, Fedyukovich, Hyvärinen
and Sharygina, 2017] and UPPROVER [Asadi et al., 2020b].

The solution S1, discussed in Chapter 3, proposes to prevent expensive bit-
precise reasoning by building bridges between model checking and SMT solving.
The challenge arises from the fact that SAT/SMT solvers are being used as a black
box in model checkers, preventing the utilization of their full potential. The so-
lution S1 suggests the seamless interaction between the model checker and the
underlying SMT solver. This integration of the SMT solver into the BMC is man-
ifested on the one hand in the artifacts required for computation of approxima-
tions, i.e., interpolation-based function summarization, and on the other hand –
in the refinement of program models and checking satisfiability. The interleaving
of SMT with BMC has been validated by implementing an integrated SMT-based
verification framework HIFROG and experimented for efficient verification of a
single program with a sequence of safety properties (i.e., no assertion failure
in the program). Notably, the proposed solution opens new opportunities for
enhancing scalability and forms the basis for the other solutions which will be
described in Chapters 4, 5, and 6.

The solution S2 is built on top of the solution S1, in order to reuse compu-
tation history across different verification tasks that are closely related, namely
program revisions. Chapter 4 investigates if it is beneficial to summarize a func-
tion precisely, or at least approximately, to help to avoid re-verification of the
same verification tasks over and over again. This solution proposes to employ
SMT-based function summaries across program versions to enhance the efficiency
of model checking. The effectiveness of S2 has been validated by implementing
a novel tool (on top of S1), UPPROVER, for the purpose of incremental verifica-
tion of program revisions with respect to the same safety property and will be
described in Chapter 4.

The solution S3 deals with the problem of rigid program modeling restricted
to one level of precision. In other words, the existing SMT-based model checkers
have no control whatsoever on the modeling precision to adjust the encoding if
it is not suitable in the initial phase. The proposed approach focuses on finding
a right level of abstraction to manage the scalability and precision. To explore

9 1.2 Challenges and Contributions

such trade-offs, this thesis proposes a lazy approach for theory-aware abstrac-
tion refinement which will be discussed in Chapters 5 and 6: the former focuses
on adjusting the precision through transforming function summarization across
theories, and the latter focuses on devising a solution that models a program
using the lightest possible (i.e., less expensive) theories that suffice to verify the
safety properties and strengthens locally on demand if the precision is not sat-
isfying the verification needs. Both approaches have been validated by major
implementation in HIFROG and will be discussed in Chapters 5 and 6.

The following sections discuss the challenges and the corresponding research
solutions in more detail.

1.2.1 SMT-based BMC by means of function summarization
As described before, BMC is one of the most successful formal methods in academia
and industry. As every solution creates new problems, the application of BMC
to software also poses new challenges. The majority of the state-of-the-art tech-
niques in software BMC are restricted to bit-precise reasoning. In effect, SAT-
based BMC translates a program into a propositional Boolean formulas that are
then fed directly to a SAT solver. The main issue of such approaches is that they
often do not scale to bigger programs as the size of the Boolean formulas grows
rapidly in the presence of large data-paths. Furthermore, when the verification
conditions are turned into Boolean logic, the high-level program-specific infor-
mation is lost, preventing potential optimizations to reduce the program state
space. Overall, due to the these complexity of bit-precise encoding, SAT-based
BMC techniques are not efficient especially in the context of large scale systems.

As a complementary approach, SMT offers a wide variety of light-weight theo-
ries based on first-order-logic that enhances expressiveness of program encoding
considerably. However, there is a foundational issue in software model checking
based on decision procedures. In particular, with a few notable exceptions (see,
e.g., [Ramalho et al., 2013; Armando et al., 2009; Cordeiro et al., 2012; Ganai
and Gupta, 2006; Gadelha et al., 2018; Xu, 2008]), the majority of research ef-
forts concentrate on separate development of sophisticated model checkers on
one hand and on impressively performing decision procedures for the logical
models on the other hand. The existing SMT-based symbolic model checking
solutions use SMT solvers as black-box and the research developments of SMT-
solving and model checking are quite disconnected and are traditionally being
developed by different scientific communities. This complexity of the interac-
tions between model checker and SMT solver is related to the sheer magnitude
of the task, as both fields are highly complex alone and require a significant

10 1.2 Challenges and Contributions

amount of in-depth knowledge in both theory and practice. Lacking fruitful in-
teraction of model checker with SMT solver gives verification techniques little
chance of further optimization and flexibility.

Another hindrance to the scalability of classic BMC is lack of modularity in the
way the formula is constructed. The classical BMC approach encodes a program
into a logic as a monolithic formula by full inlining and unwinding of the source
code through a pre-determined bound. By inlining the entire function bodies, the
resulting BMC formula becomes too large to handle. As a consequence, when a
program is supplied with a sequence of pre-defined assertions, full re-verification
of the formula from scratch for each property (properties could be represented as
assertions in the program code) becomes prohibitively expensive. As this thesis
suggests, searching for reusable specifications between verification runs is crucial
for scalability. Unlike CEGAR- or PDR-based model checking, BMC is not typically
driven by maintaining a safe inductive invariant. Hence, once the verification
run is successful, a reusable specification should be generated. The works [Sery
et al., 2011, 2012b] address this issue of finding a reusable computation history
formalized for the SAT reasoning. They proposed a solution that exploits the
fact that the bounded safety of the program is indicated by the unsatisfiability
of the BMC formula. From the proof of unsatisfiability, their algorithm discovers
over-approximating constructs, i.e., SAT-based function summaries that gather all
important information of the function’s behavior relevant to prove the bounded
safety. Even though this idea of extracting and reusing SAT-based function sum-
marization has been shown useful in BMC, the choice of bit-precise encoding with
the direct use of a SAT solver, sometimes causes major problems due to the large
sizes of the corresponding formulas. The large formulas often are expensive to
solve making the overall verification procedure impractical in such cases.

This thesis proposes employing first-order solver to construct more efficient
summaries, without sacrificing the precision of program encoding. Compared
to the earlier propositional tool FUNFROG [Sery et al., 2011, 2012a], the SMT
summaries in the proposed framework are smaller and more efficient in verifi-
cation. They are also often significantly more human-readable, enabling their
easier reuse.

Motivated by constructing function summaries of a better quality, we formu-
lated two research questions that this dissertation addresses:

RQ1 How SMT can be used in summarization, one of the successful approaches
making iterative model checking scale well?

RQ2 How to effectively reuse SMT-based function summaries for verification of

11 1.2 Challenges and Contributions

a program with multiple properties?

Research contribution. Chapter 3 of this thesis proposes a verification ap-
proach in which bounded model checking is interleaved with SMT reasoning
for various computational tasks. In particular, to prevent expensive bit-precise
reasoning the proposed verification framework leverages the natural and suc-
cinct encodings of SMT, SMT solving, and various SMT interpolating procedures
for verification and program abstraction. The key distinguishing feature of the
proposed verification framework is its capacity to re-use SMT-based summaries
across properties in a single program. The proposed solution, SMT interpolation-
based function summarization is used as a means of incremental verification
based on the structure of the program. Based on the natural reliance of the
summaries on the safety properties, the proposed framework performs function
summarization iteratively, i.e., checking each safety property at a time and refin-
ing the imprecise summaries on demand. The proposed verification framework
supports three encoding precisions through SMT: equality with uninterpreted
functions (EUF), linear real arithmetic (LRA), and propositional logic. This work
advocates the necessity to offer various encoding options to the user. Therefore,
in addition to the provided SMT-level light-weight modeling and the correspond-
ing SMT-level summarizations supported by the proposed incremental verifier,
the framework would allow adjusting the precision and efficiency with differ-
ent levels of encodings. We have developed HIFROG, a summarization-based
bounded model checker that uses interpolants to represent function summaries.
The extensive evaluations on the practical impact of different SMT precisions on
model checking demonstrate that the use of SMT speeds up the calculation and
allow scaling the model checking applications to verify large C programs.

The results of this work have been published in [Alt, Asadi, Chockler, Men-
doza, Fedyukovich, Hyvärinen and Sharygina, 2017] and [Alt, Hyvärinen, Asadi
and Sharygina, 2017], and are presented in Chapter 3.

1.2.2 SMT-based incremental verification of program revisions
As a continuation of studies described in Section 1.2.1, this thesis further studies
the applicability of the proposed SMT-based function summarization approach
to another application domain, i.e., verifying frequent changes that can occur
during software evolution. In fact the programs are often developed in an itera-
tive way, by successive improvement of the last version. However, most software
verification techniques are not designed to support sequences of program ver-
sions, and they force each changed version to be verified from scratch which

12 1.2 Challenges and Contributions

makes re-verification computationally demanding or even impractical. Contrary
to verifying the programs in isolation, incremental verification is an approach
that aims to reuse the invested efforts between verification runs and consequently
can achieve speedup in the subsequent analysis of the other versions. While this
line of research is promising, and already included results on SAT-based incre-
mental update checking [Sery et al., 2012b; Fedyukovich et al., 2013], bit-precise
reasoning poses yet another scalability challenge. This work addresses this prob-
lem and produces an SMT-based solution for efficient analysis of a program after
a change in the code.

Then further study concentrates on finding suitable interpolation algorithms
to support the incremental verification of program revisions. There exist var-
ious Craig (binary) interpolation algorithms for the theory of LRA with flexi-
bility in strength and size which are important for efficient over-approximation
and convergence of program verification [McMillan, 2004; Alt, Hyvärinen and
Sharygina, 2017; Blicha et al., 2019], and its practical success has motivated a
line of research on tree interpolation [Rümmer et al., 2013; Blanc et al., 2013;
Heizmann et al., 2010a; McMillan and Rybalchenko, 2013; Gupta et al., 2011].
However, applications requiring the tree interpolation property (e.g. incremental
verification of program revisions) have limited choice for LRA interpolation al-
gorithms. we are interested in efficient tree interpolation (i.e., without solving
new SMT or SAT problems as in [Henzinger et al., 2004].)The goal of this work
is to investigate Craig binary interpolation algorithms in LRA and propositional
logic to guarantee tree interpolation property which is suitable for incremental
verification of program revisions.

The study concentrates on the following two research questions:

RQ3 Is the use of SMT instead of SAT beneficial for incremental verification of
real-world program revisions? If so, how the reuse SMT-based function
summaries between program versions could be effectively enabled?

RQ4 Which interpolation algorithms can be used to support update checking?
In other words, lifting function summaries from one program version to an-
other version requires generalizations of Craig binary interpolants, namely
tree interpolants. This means that the study of SMT-interpolation algo-
rithms is required to understand how they can adequately guarantee the
computation of tree interpolants.

Research contribution. Chapter 4 of this thesis proposes a model checking
technique for incrementally verifying software while it is being gradually changed.

13 1.2 Challenges and Contributions

The goal is to make software analysis more efficient and scalable by reusing
invested efforts between verification runs. This research suggests to reuse or
adapt SMT-based function summaries across program versions and to exploit
first-order theories available in SMT solvers, thus enabling flexibility. In ad-
dition to the provided SMT-level light-weight modeling and the corresponding
SMT-level summarizations supported by the proposed incremental verifier, the
proposed BMC framework allows adjusting the precision and efficiency with dif-
ferent levels of encodings. This approach not only allows the reuse of summaries
obtained from SMT-based interpolation, but also provides an innovative capabil-
ity of repairing them automatically and using them in the subsequent verification
runs. The extensive experimental evaluations demonstrate that the proposed al-
gorithm achieves an order of magnitude speedup compared to prior approaches.
The further study investigates the known SMT interpolation algorithms in lin-
ear real arithmetic and classify them based on whether they guarantee the tree
interpolation property. This work extends the state-of-the-art LRA interpolation
algorithms by identifying the Craig binary LRA interpolation algorithms that can
be used as a basis for tree interpolation and thus are suitable for update check-
ing. The details of this contribution have been published in [Asadi et al., 2020b]
and [Asadi et al., 2020a], and FMSD journal [Asadi et al., 2023], and are pre-
sented in Chapter 4.

1.2.3 Model checking by theory transformation
Another track of the thesis builds on the observation that different theories in
SMT have interesting properties with respect to over-approximating program
behavior. While the most precise encoding in case of model checking is to ex-
press the algorithm as a bit-precise propositional formula, this thesis suggests
that modeling a verification problem with less expensive theories of SMT reduces
the verification cost and improves the scalability.

The previous tracks concentrate on building the incremental SMT-based BMC.
However, the use of SMT in BMC poses new challenges. SMT offers little direct
support for adapting the constraint language to the task at hand. The main is-
sue with SMT encoding of programs is that the light-weight theories are often
imprecise. This means if a program is encoded in SMT, it may not be a ready-
to-use solution for verification and might introduce a spurious result; it would
require various (sometimes major) tuning to be reliable. Exploring such trade-
offs between precision and a right level of abstraction is a challenge in program
verification to which this track provides a solution.

This work addresses the problem of finding a suitable level of abstraction in

14 1.2 Challenges and Contributions

modeling the program that is sufficiently accurate to prove the correctness of pro-
grams and not to be expensive to reason on. Given that SMT offers light-weight
theories, it is of utmost importance to allow flexibility in tuning the modeling
precision to find a balance in theory encoding. This challenge marks a salient mo-
tivation for this research. Consequently, we formulated the following research
questions:

RQ5 To manage the scalability how can one find a safe over-approximation of
the program with SMT that is sufficiently precise but not too expensive
to reason on? In other words, how can one manage trade-offs between
modeling precision and performance of model checkers?

RQ6 How to deal with undesirable false alarms introduced through the use of
SMT abstractions? How to extract useful information from unsuccessful
verification runs to guide the consecutive runs?

Research contribution. The proposed approach in Chapter 5 alternates preci-
sion of the program modules on demand. The idea is to model a program using
the lightest possible (i.e., less expensive) theories that suffice to verify the desired
property. This work employs safe over-approximations for the program based on
both function summaries and light-weight SMT theories. If during verification it
turns out that the precision is too low, the proposed approach lazily strengthens
all affected summaries or the theory through an iterative refinement procedure.
The resulting summarization framework provides a natural and light-weight ap-
proach for carrying information between different theories. In order to make
the full advantage of already generated abstract models we propose a technique
for tuning the abstractions via transformation of one theory to another one. De-
signing the theory interface enables migrating information among formulas in
different theories. An experimental evaluation with a bounded model checker
for a subset of C program on a wide range of benchmarks demonstrates that
the proposed technique scales well, often effortlessly solving instances where for
example the state-of-the-art model checker CBMC runs out of time or memory.

The results of this work have been published in [Asadi et al., 2018] and are
presented in Chapter 5.

1.2.4 Counterexample-guided theory-aware refinement

The last track of the thesis builds on the observation that different statements of
the program may exhibit different degrees of precision. Thus mixing different

15 1.2 Challenges and Contributions

abstraction layers would provide more granularity and flexibility in the program
modeling, as this work suggests, this would increase the scalability of model
checking to a great extent. Motivated by finding a balance in program modeling,
this work proposes theory-aware abstraction refinement which considers mixing
two theories that are known as two opposite extremes of precision, namely EUF
and bit-precise encoding.

This requires a fundamental study to understand how to automatically iden-
tify statements whose exact semantics can be ignored in model checking. This
shift of viewpoint has several advantages: (i) the guidance from the source code
allows the use of more powerful heuristics for choosing which statements should
remain abstract; (ii) the approach can be used both to obtain speed-up in solv-
ing, and as a means for synthesis and finding fix-points for transition relations;
and (iii) the refinement takes place on the level of the program, not at the level
of the theory query, an approach potentially more natural from the point of view
of the semantics of the program.

Research contribution. Chapter 6 presents a new approach for abstraction re-
finement in software verification. In the proposed approach a program is en-
coded using less precise theories and it is encoded to precise theories only when
necessary. The building block of theory refinement has a CEGAR loop, and the
main contribution is the process of gradually encoding a program using the most
precise theory only for a critical subset of the program statements, while keep-
ing lower precision for the rest of the program. The critical subset of program
statements is identified automatically based on counterexamples, and theories of
different precision are bound to each other through special identities. One im-
portant feature of the contributed algorithm is that it employs several heuristics
for refinement to point the model checker at which exact statement strengthen-
ing is required. To demonstrate the advantages of the theory-aware abstraction
refinement, the idea of theory refinement approach was implemented in HIFROG

and compared against flattening approach (EAGAR) and CBMC model checker
on a large set of C programs. The experiments show promising results both with
respect to speed and the number of refined program statements. The experiments
demonstrate that the approach has a potential of several orders of magnitude of
improvement over the approach based solely on flattened bit-vectors, as imple-
mented in the state-of-the-art tool for example CBMC and in HIFROG. The results
of this work have been published in [Hyvärinen et al., 2017] and are presented
in Chapter 6 in detail.

16 1.2 Challenges and Contributions

1.2.5 Outline
The dissertation is structured as follows. Chapter 2 introduces the required
concepts and notation. Chapter 3 presents a technique for interleaving SMT-
reasoning with BMC. Chapter 4 describes incremental verification of program
revisions via summary repair and discusses the practical applicability of LRA
interpolation algorithms in incremental verification. The proposed verification
framework is extended in Chapter 5 and 6 to support finding a right level of ab-
straction suitable for efficient symbolic model checking. Related work, limitation
of the proposed approach, and possible future work ideas are discussed at the
end of each chapter. Finally, Chapter 7 states the conclusion of the work.

Chapter 2

Background

This chapter introduces background concepts and terminology that is used in the
rest of the thesis.

2.1 Formal modeling and properties
To reason formally about a software system automatically, one should first build
a formal model of it. Once a system model and a property are defined, the veri-
fication procedure can be performed.

Transition systems. Transition systems (TS) are the most common formal mod-
els used for the faithful representation of system behavior. Intuitive understand-
ing of a transition system is quite simple: it is a directed graph with nodes that
represent program states and edges that reflect transitions among states.

Program graph. Another program modeling structure – program graph – al-
lows explicit reasoning about the program states to be avoided. Instead, it uses
program locations as nodes and program commands as edges that connect loca-
tions. A program graph is often used as an intermediate modeling structure in
program analysis. In particular, it is used to represent a control-flow graph of a
program.

Properties specification. After the system behavior is formalized and prior to its
analysis, we need to define an important element of the verification process — a
property of interest. Once a system model and a property are defined, the verifi-
cation itself can be performed. The specified property answers a question: what

17

18 2.2 Abstraction

does it mean for the system to be correct? System correctness (or equivalently in-
correctness) is then defined with regard to properties, which hold (or may not)
for the analyzed system. In this thesis the main focus is verifying the particu-
lar class of properties namely safety properties. Assertions are properties of the
state of the program when the program reaches a particular program location.
Assertions are often written by the programmer using the assert macro. Reach-
ability properties are in the form “Is there a path through the program such that
some property is violated?”; instances are buffer overflows, arithmetic overflow,
pointer safety (check for NULL-pointer dereferences), memory leaks, division by
zero, Not-a-Number, etc. Most of these properties relate to behaviors that are left
undefined by the C language semantics. This thesis only concentrates on safety
reachability properties that are already included in C program as user-specified
assertions.

2.2 Abstraction
From the various of approached introduced for abstraction computation we elab-
orate on those that are relevant to the algorithms developed in this dissertation.
The techniques are abstract interpretation, predicate abstraction and predicate
abstraction-based counterexample-guided abstraction refinement.

2.2.1 Abstract interpretation

Abstract interpretation [Cousot and Cousot, 1977] is a theory of sound approx-
imation of program models. It constructs an abstraction of a program with re-
gards to values from an abstract domain by iteratively applying the instructions
of a program to abstract values until the fixpoint is not reached.

2.2.2 Predicate abstraction

Predicate abstraction [Graf and Saïdi, 1997; Colón and Uribe, 1998] is one of
the widely applied methods for abstracting data by only keeping track of certain
predicates on the states. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. Verifi-
cation of a software system with predicate abstraction consists of constructing
and evaluating a finite-state model that is an abstraction of the original system
with respect to a set of predicates. Predicate abstraction techniques have been
shown to be a powerful technique for verifying imperative programs, which can

19 2.2 Abstraction

solve the problem of state space explosion pretty well. However, despite its high
efficiency, it fails to work out some kinds of the programs because the predicates
produced are so bad to make the verification divergent.

2.2.3 Counterexample-guided abstraction refinement (CEGAR)

In a high-level view the paradigm of counterexample-guided abstraction refine-
ment Kurshan [1994]; Balarin and Sangiovanni-Vincentelli [1993] is as follow-
ing:

1 Initial abstraction: Create an oversimplified model.

2 Verification: Verify the task. If the verification is successful, terminate with
success. Else go to the next step.

3 Analyze the failure: Analyze the failure report from model checker and
determine whether the failure is inherent in the original program or it is
unfeasible due to the oversimplification. If the former, terminate with
violation of the property. If the latter, go to the next.

4 Counterexample-driven refinement: Refine the abstract model in a way
that the unfeasible reported error is eliminated. Then go to Verification
step.

As an analogy, the abstraction-refinement methodology proposed in this dis-
sertation relates to the above technique in essentially the same way as it follows
four main steps. However, a fundamental problem in the classical CEGAR ap-
proach is that sometimes the entire program needs to be presented in the most
precise way, resulting in considerable overhead. Instead, the proposed approach
in this thesis uses different theories of SMT to adjust the level of abstraction.

2.2.4 Abstraction using interpolation

The notion of interpolant goes back to Craig’s interpolation theorem for first-
order logic. Nowadays interpolation is widely acknowledged as one of the fun-
damental instruments in computing abstraction [McMillan, 2003a].

This thesis considers approaches where interpolants are constructed from
proofs of unsatisfiability. For any two logical formulas whose conjunction is un-
satisfiable, there exists always an interpolant.1

1This is the interpolation property, which holds for first-order logic, and for certain fragments
and theories, but not others. Sometimes a theory can be extended to provide the interpolation
property.

20 2.3 Interpolation-based function summarization

Definition 1 (Craig binary interpolation) Given an unsatisfiable CNF formula
� partitioned into two disjoint formulas A and B, we denote a binary interpolation
instance by (A |B). An interpolation algorithm Itp is a procedure that maps an
interpolation instance to a formula I = Itp(A |B) such that (i) A =) I , (ii) I =)
¬B, and (iii) symb(I) ✓ symb(A)\ symb(B).

If I is an interpolant for (A |B), then ¬I is an interpolant for (B |A). This inter-
polant is called dual interpolant of (B |A). Intuitively interpolant can be seen as
a formula that is weaker than A, so it over-approximates A while it is still con-
flicting with B. This type of problems shows up naturally in various verification
approaches. For instance, assume that A^ B is a symbolic encoding of the pro-
gram P. If A describes a set of states and B encodes an example of error-free
behavior, the interpolant I is an over-approximation of the part of program de-
scribed in A but still sufficiently detailed to guarantee unsatisfiability with the
problem description in B.

In the next section we describe one abstraction technique for over-approximation
of program functions.

2.3 Interpolation-based function summarization

One of the successful applications of interpolation in model checking is comput-
ing a summary for the functions of the program being verified, called a function
summary [Sery et al., 2011; Albarghouthi et al., 2012b]. Function summarization
is a generic technique for abstracting programs which allows both propositional
and first-order instantiation. The main idea of this approach is to construct ab-
stractions for some parts of programs, namely functions. In a program P, let
A-part consist of a description of a specific function f , and B-part consist of the
rest of the program together with negation of a property being checked. The re-
sulting interpolant I can be interpreted as an over-approximation of the function
f satisfying the property.

Function summaries are computed as over-approximations to preserve the
most relevant information of the function bodies to the property being checked. If
such an over-approximation of a function exists, it can be used instead of the orig-
inal encoding of function representation. Since summaries can be constructed to
be considerably smaller, it significantly speeds up the verification process.

The approach for extracting and reusing interpolation-based function sum-
maries in the context of BMC was proposed by [Sery et al., 2011]. This work
focuses only on propositional logic and does not consider the rich field of first-

21 2.3 Interpolation-based function summarization

order-logic over different theories available in modern SMT solvers. Conse-
quently, despite behaving in an incremental manner, in practice it is computa-
tionally expensive, and intractable in large-scale programs.

2.3.1 Function summaries

A function summary relates input and output arguments of a function. Therefore,
a notion of arguments of a function is necessary. For this purpose, we expect to
have a set of program variables V and a domain function D which assigns a
domain (i.e., set of possible values) to every variable from V. In the following
we adopt the definitions from [Sery et al., 2011].

Definition 2 For a function f , sequences of variables argsf
in = hin1, ..., inmi and

argsf
out = hout1, . . . , outni denote the input and output arguments of f , where

ini, out j 2 V for 1 i m and 1 j n. In addition, argsf = hin1, . . . , inm, out1,
. . . , outni denotes all the arguments of f . As a shortcut, this thesis uses D(f) =
D(in1)⇥ · · ·⇥D(inm)⇥D(out1)⇥ · · ·⇥D(outn).

In the following, we assume that functions do not have arguments other than
input and output parameters, which include also the return value. Note that an
in� out argument (e.g., a parameter passed by reference) is split into one input
and one output argument. Similarly, a global variable accessed by a function
is rewritten into the corresponding input or/and output argument, depending
on the mode of access (i.e., read or/and write). Precise behavior of a function
can be defined as a relation over values of input and output arguments of the
function as follows.

Definition 3 (Relational Representation) Let f be a function, then the relation
Rf ✓ D(f) is the relational representation of the function f , if Rf contains exactly
all the tuples ~v = hv1, . . . , v|argsf |i such that the function f called with the input
values hv1, . . . , v|argsf

in|
i can finish with the output values hv|argsf

in|+1, . . . , v|argsf |i.

Note that Definition 3 admits multiple combinations of values of the output
arguments for the same combination of values of the input arguments. This
is useful to model nondeterministic behavior, and for abstraction of the precise
behavior of a function. In this thesis, the summaries are applied in BMC. For
this reason, the rest of the text in the section will be restricted to the following
bounded version of Definition 3.

22 2.3 Interpolation-based function summarization

Definition 4 (Bounded Relational Representation) Let f be a function and v
be a bound, then the relation Rf

v ✓ Rf is the bounded relational representation of
the function f , if Rf

v contains only the tuples representing computations with all
loops and recursive calls unwound up to v times.

Then a summary of a function is an over-approximation of the set of precise
behaviors of the given function under the given bound. In other words, each
bounded function behavior is captured by a summary, but not necessarily each
summary behavior belongs to the bounded function.

Definition 5 (Summary) Let f be a function and v be a bound, then a relation S
such that Rf

v ✓ S ✓ D(f) is a summary of the function f .

The relational view on a function behavior in Definition 5 is intuitive but
impractical for implementation. Definition 6 makes a connection between these
two views.

Definition 6 (Summary Formula) Let f be a function, v a bound, � f a formula
with free variables only from argsf , and S a relation induced by � f as S = {~v 2
D(f) | ~v |= � f }. If S is a summary of the function f and bound v, then � f is a
summary formula of the function f and bound v.

A summary formula of a function can directly substitute precise representa-
tion of the function. This way, the part of the program encoding corresponding
to the called function does not have to be created and converted to a part of the
BMC formula.

The important property of the resulting BMC formula with the use of sum-
maries is that if the formula is unsatisfiable, then the formula without summaries
is also unsatisfiable. Therefore, no errors are missed due to the use of summaries.

Lemma 1 Let � be a BMC formula of an unwound program P for a given bound
⌫, and let �0 be a BMC formula of P and ⌫, with some function calls substituted by
the corresponding summary formulas bounded by ⌫0, ⌫0 � ⌫. If �0 is unsatisfiable
then � is unsatisfiable as well.

Proof 1 Suppose that there is only one summary formula � f substituted in �0 for
a call to a function f . If multiple summary formulas are substituted, we can apply
the following reasoning for all of them.

For a contradiction, suppose that �0 is unsatisfiable and � is satisfiable. From
the satisfying assignment of �, we get values hv1, . . . , v|ar gs f |i of the arguments to

23 2.4 Satisfiability Modulo Theories

the call to the function f . Assuming correctness of construction of the BMC formula
�, the function f given the input arguments hv1, . . . , v|ar gs f

in|
i can finish with the

output arguments hv|ar gs f
in|+1, . . . , v|ar gs f |i and with all loops and recursive calls un-

wound at most ⌫ times. Therefore, by definition of the summary formula, the values
hv1, . . . , v|ar gs f |i also satisfy � f . Since the rest of the formulas � and �0 is the same,
the satisfying assignment of � is also a satisfying assignment of �0).

SMT offer a more intuitive and lightweight representation of logical expres-
sions than solely using propositional logic [de Moura and Bjørner, 2009]. This
makes it possible to generate more concise summaries in first-order logic as com-
pared to summaries based on propositional logic.

2.4 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) [Barrett et al., 2009; Detlefs et al., 2005]
plays a central role in various heterogeneous solutions for problem such as schedul-
ing, optimization, testing, synthesis, and verification [de Moura and Bjørner,
2011].

SMT solvers build on the success of solvers for propositional satisfiability
(SAT), which over the last two decades have become an invaluable tool for sym-
bolic reasoning. They represent a first-order formula by propositional abstraction
where the atoms are inequalities in a first-order theory such as the theory of lin-
ear arithmetic. The abstraction is handed to a SAT solver, which, once having
found a solution for the Boolean part, will query the satisfiability of the solution
from a solver specific to a theory. In the case of linear arithmetic, an altered
version of the Simplex algorithm [Dutertre and de Moura, 2006] could be used
to determine the satisfiability of a linear system.

2.4.1 SMT notational conventions

This dissertation relies heavily on concepts used in SMT solving. In the following,
we define the essential notations of SMT.

A signature ⌃ is a union of C,F,P, pairwise disjoint sets of constants, func-
tions, and predicate symbols, respectively. Each function in F is associated with
an arity n� 1.

A set of terms R⌃ is defined inductively comprising constants, variables, and
more complex expressions by applying function symbols on terms. The rules are

24 2.4 Satisfiability Modulo Theories

captured by the following grammar:

term ::= const
| var
| f (term, . . . , term)

where const 2 C is a constant, var is a variable, and f 2 F is a function symbol
with arity equal to the number of terms in parentheses.

The set P a set of predicate symbols, always contains the symbols > and ?
of arity 0, and = of arity 2. An application of a predicate symbol p with arity n
on n terms is called an atom. Given an atom At, we denote by symb(At) the set
of variables in At. A literal is either an atom At or its negation At. A clause cl is a
finite disjunction of literals, and a formula in conjunctive normal form (CNF) is a
conjunction of clauses. We interchangeably interpret a clause as a set of literals
and a CNF formula as a set of clauses. For a formula �, we denote by ¬� its
negation. We extend the notation s ymb to CNF formulas, writing symb(�) for
the set of atoms in �.

Similar to the above grammar a set of formulas S⌃ is built inductively using
the following grammar:

formula ::= Bvar
| p(term, . . . , term)
| term= term |> |? | ¬formula
| formula^ formula | formula_ formula

where Bvar is a Boolean variable, p 2 P is a predicate symbol with arity equal-
ing to the number of terms in parentheses, and > and ? are Boolean constants
denoting true and false respectively.

The context of the thesis is that of SMT on quantifier-free formulas. A quantifier-
free first-order theory T⌃ ✓ S⌃ is a set of formulas defined over the signature ⌃.
When T is clear from the context, we call a formula from S⌃ an SMT instance.

A CNF formula � is satisfiable if there exists an assignment to its variables so
that each clause in� contains a true literal. A resolution refutation (or refutation)
of a CNF formula � is a tree labeled with clauses. The root of the tree has the
empty clause?, and the leaves have either source clauses appearing directly in�,
or theory clauses that are tautologies in the background theory learned through an
unsatisfiable conjunctive query to the theory solver.The inner nodes are clauses

25 2.4 Satisfiability Modulo Theories

derived by the resolution rule

C1 _ p C2 _ p
C1 _ C2

where C1 _ p and C2 _ p are the antecedents, C1 _ C2 the resolvent, p is the pivot
of the resolution step.

2.4.2 Theories of SMT

Boolean satisfiability or SAT is the problem of deciding whether a propositional
logic formula can be satisfied, i.e., if there exist an appropriate values for the
variables that will make the formula equivalent to true. For example, the formula
x2 � 9 = 0 is satisfiable and a solution is x = 3. But in general the satisfiability
of formulas, e.g., x2 + 9 = 0, depends on what values x is permitted to range
over. This is where theories appear. A theory determines what values a variable
can have and what the symbols in the formula mean. For instance in the theory
of real arithmetic the equation x2 + 9 = 0 is not satisfiable because x must be a
real number.

The power of SMT comes from its ability to handle various kinds of theories.
SMT solvers are able to reason on Boolean operators (such as AND, OR), arrays,
arithmetic, strings, floating point numbers, and software data structures such as
lists and trees. SMT framework can also be extended by adding theories to ac-
commodate specific application domains. Another power of SMT is the ability to
combine different theories, e.g., an array of strings. Finding efficient integration
methods to combine various kind of theories and/or logics within the SAT solver
has become a significant subject of research nowadays.

To make use of an SMT solver to solve a problem, the statement of the prob-
lem must first be encoded as a logical formula. The SMT-LIB [Barrett et al., 2021]
library provides a standard input format for SMT solvers, and also maintains a
wide variety of benchmarks for all supported theories, and their combinations
as well. The prosperity of research on SMT-solving is also supported by a wide
range of competition activities in the community as SMT solver competitions
since 2005 [Bartocci et al., 2019].

2.4.3 Theories of interest

An interesting observation on proving the correctness of program is that in many
cases when verifying safety properties of a program, often precise encoding does

26 2.5 Programs and Summaries

not play any role in the correctness of the program and over-approximation is
sufficient to prove the correctness of the program with respect to the property.
Therefore this thesis exploits this case further whenever possible to allow the
verification process to scale to large problems.

The theories of interest in this thesis are Equality and Uninterpreted Functions
(EUF), Linear Real Arithmetic (LRA), and Linear Integer Arithmetic (LIA). Through
these different theories and bit-precise propositional logic (Prop) one can explore
different program encodings, resulting in different possibilities for abstraction of
the original program.

The theory of EUF extends propositional logic by adding equality (=) and dis-
equality (6=) to the logical symbols, and allowing functions and predicates as non-
logical symbols. The theory of EUF poses no restrictions on the interpretations of
constants, functions, or predicates. Most EUF solvers rely on the congruence clo-
sure algorithm Nelson and Oppen [Nelson and Oppen, 1980; Nieuwenhuis and
Oliveras, 2005] to decide the satisfiability of a set of equalities and disequalities.
The key idea of the algorithm is to compute equivalence classes, that is, sets of
terms that are equivalent.

In the theory of LRA, the universe consists of real numbers, the function sym-
bols are ⇤ and + of arity two restricted to expressing only linear terms, and the
predicate symbol and <; all them with their usual arithmetic interpretations.

2.5 Programs and Summaries

A loop-free program is a tuple P = (F, main), such that F is a finite set of non-
recursive functions, and main 2 F is an entry point. Let set F̂ gather all function
calls from F , where f̂ is a call of function f . In F̂ we distinguish different calls to
the same function f by enumerating them as f̂1, . . . , f̂n. A summary of a function
f is a relation over the input and output variables of f that over-approximates
the precise behavior of f . That is, if a formula fprecise encodes the body of f ,
and fsum encodes its summary, then fprecise =) fsum must hold. The resulting
interpolant fsum can be used in place of fprecise when creating the formula again
because by construction fsum over-approximates fprecise.

In this thesis, a program is encoded to a quantifier-free first-order formula in
a given theory T, which is then solved for satisfiability. Our intent is to substitute
function calls in the considered programs by summaries whenever applicable. If
the program encoding is inconsistent with the negation of safety property, then
the program is safe.

In the context of this thesis, unsatisfiable formulas originate from bug-free

27 2.5 Programs and Summaries

programs, and thus the summaries express that no trace allowed by the func-
tion body leads to a violation of the considered safety specification. In order to
construct and use function summaries in the context of BMC, we assume that a
BMC formula is a conjunction of encodings of individual function calls. Thus,
the problem of determining whether the program is safe with respect to a safety
assertion Q reduces to the problem of determining the satisfiability of the SMT
formula ^

f̂ 2F̂

ENCODE(f̂)^¬ENCODE(Q) =) ?.

Chapter 3

SMT-based BMC by means of function
summarization

BMC supported by highly-efficient Boolean satisfiability (SAT) solvers has ad-
vanced the state-of-the-art in model checking substantially. However, due to the
high complexity of the model checking problem, verification of large software
raises a challenge for SAT-based approaches. The major issue with the SAT-based
model checking is that the underlying SAT solvers rely on bit-precise encoding
and bit-blasting, which typically scales poorly on large programs.

This chapter proposes an approach to enable the on-demand use of SMT tech-
nology and ultimately improve the efficiency of symbolic model checking. To
further improve the scalability, the proposed SMT-based BMC is capable of em-
ploying one of the most successful abstraction techniques, namely interpolation-
based function summarization. This work presents the algorithm on how to com-
pute function summaries using Craig interpolation, and then to reuse them for
the subsequent analysis of the other properties. The novelty of the proposed
approach is in the unique way it combines function summaries with the expres-
siveness of SMT.

An unintended consequence of using the proposed summarization-based model
checking is that it can introduce spurious behaviors due to the use of coarse ap-
proximations in the summaries. To automatically rule out the spurious behav-
iors, the proposed solution employs the well-known paradigm of counterexample
guided refinement of the function summaries. In order to demonstrate the efficacy
of our proposed approach, we developed a novel framework for model checking
using SMT and implemented it in our tool HIFROG. Through this implementa-
tion, we showcased how varying levels of SMT encoding precision can impact
the efficiency of model checking in practice. The results of our extensive experi-

29

30 3.1 Program modeling

mentation confirm that using a combination of two abstraction techniques – SMT
encoding and SMT-based function summarization – shows great promise for ver-
ifying large-scale programs. The results reported in this chapter were published
in the following papers: [Alt, Asadi, Chockler, Mendoza, Fedyukovich, Hyvärinen
and Sharygina, 2017] and [Alt, Hyvärinen, Asadi and Sharygina, 2017].

3.1 Program modeling

Programs are modeled as loop-free through preprocessing of the programs. The
goal of preprocessing is to compile source code down to a simplified format that
is more amenable to conversion into logical formulae. As the first step, the source
code is parsed and transformed into control flow graph (CFG) as an intermedi-
ate representation goto-program. This transformation is done using the GOTO-
CC symbolic compiler developed by CPROVER team1. Then in the created CFG
the loops are unwound based on the pre-determined number of iterations. The
proposed solution, identifies the set of assertions from the source code, reads
the user-defined function summaries (if any) in the SMTLIB2-format, and makes
them available for the subsequent analysis.

We encode loop-free programs as tuples P = (F, fmain) where F represents
the finite set of (unique) function calls, i.e., function invocation with a unique
combination of a program location, a call stack, and a target function. fmain 2
F denotes the call of the entry point of the program. Interchangeably F also
corresponds to the set of functions in the call tree of the unrolled program. We
use f for function, and when it is clear from the context it can refer to the function
call as well. We use relations child ✓ F ⇥ F and subtree ✓ F ⇥ F , where child
relates each function f to all the functions invoked by f , and subtree is a reflexive
transitive closure of child. Since each node has at most one parent, we write
parent(n2) to refer to n1 if child(n1, n2) holds.

Next we first describe the classic BMC approach where a program is encoded
into a monolithic BMC formula by inlining all the function calls. and demonstrate
that it does not allow modular summary-based verification. Then Section 3.1.2
presents a partitioned-BMC technique in which the functions are encoded into
separate partitions. This allows modular verification and would be suitable for
function summarization.

1http://www.cprover.org/

http://www.cprover.org/

31 3.1 Program modeling

3.1.1 Monolithic program encoding into SMT formula
Assigning logical meaning to programs was pioneered in the sixties by Floyd [W.,
1967] and Hoare [Hoare, 1969]. Over the years many forms and enhance-
ments have been developed for connecting between logic and programs; among
which the current state-of-the-art includes symbolic model checking tools that
are characterized by building symbolic representations of the reachable program
states. These symbolic representations can be formulas that represent an over-
approximation of reachable program states. As a result, in this case there is a
direct mapping from programs to logical formula that retains the input-output
relations of the program.

Classical BMC encodes an unwound program to a BMC formula [Clarke,
Kroening and Lerda, 2004]. We discuss some of the key ideas of encoding pro-
gram to first-order-logic by taking a toy example written in an imperative lan-
guage of C. The main obstacle to encode imperative languages in first-order-
formula is inclusion of programs loops and recursion. This obstacle can be re-
solved by restricting the program bounded loops and recursion. Bounded means
posing a fixed number of iterations.

The encoding of a variable assignment follows the Single Static Assignment
(SSA) where each assignment to a program variable introduces a new SMT vari-
able that is assigned to only once. When a program variable is changed inside
different branches of execution, a new variable after the branch is created to
merge the different values after the branches. A so-called ite-function (cf. the �
function in SSA) is used to re-combine values from different branches of if-then-
else. We use ite(c, x1, x2) where c is the branch condition and x1 and x2 are
the two SSA variables corresponding to x at the ends of the branches. Functions
are expanded in the call site as if being inlined. Once the program is in the SSA
form, we can extract a logical formula by treating each assignment as equality.

Example 1 Figure 3.1 illustrates the above-mentioned process for generating SMT
formula as performed in the classic BMC. An unwound program is encoded into
a formula by inlining all the function calls. Figure (a) depicts a program in C,
Figure (b) shows its SSA form, and Figure (c) shows the corresponding (simplified)
encoding of the program into an SMT formula. The formula consists of three parts: a
conjunct representing function main, one equivalent (modulo renaming) conjuncts
representing calls of func, and one conjuncts representing the negated assertion.
As customary in BMC, each program variable has its indexed copies (induced by the
SSA form).

The resulting monolithic BMC formula in which all the function calls are in-

32 3.1 Program modeling

1 void main() {
2

3 int x = nondet();
4 int y = nondet();
5

6

7 if (x > 3)
8 y = func(x);
9 else

10 y = 2;
11

12 assert(y >= 0);
13 assert(y >= 1);
14

15 }
16

17 int func(int z) {
18 if (z <= 6)
19 return z;
20 else
21 return z - 6;
22 }

(a) Program in C

// main
x0 = nondet();
y0 = nondet();
if (x0 > 3) {
z0 = x0;
// func
if (z0 <= 6)
ret0 = z0;
else
ret1 = z0 - 6;
ret2 = phi(z0 <= 6,

ret0, ret1);
// end func
y1 = ret2;
}
else
y2 = 2;

y3 = phi(x0 > 3, y1, y2)
;

assert(y3 >= 0);
assert(y3 >= 1);

(b) SSA form

x0 = nondet0 ^
y0 = nondet0 ^
z0 = x0 ^

ret0 = z0 ^
ret1 = z0 - 6 ^

(x0 > 3 ^ z0 <= 6)
ret2 = ret0) ^

(x0 > 3 ^ z0 > 6)
ret2 = ret1) ^

y1 = ret2 ^

(x0 > 3) y3 = y1) ^
(x0 3) y3 = y2) ^

y3 < 0

y3 < 1

(c) SMT formula

Figure 3.1. Program encoding in classical BMC

lined is passed to an SMT solver. In case the formula is unsatisfiable, it implies
the assertion holds. Otherwise, a satisfying assignment manifests an error trace
in the program.

Note that the variable x0, highlighted in red, which is local in the function
main, appears in the encoding of the body of the function func. This is prob-
lematic for generating function summary in a modular manner. Next section
presents a partitioned-BMC technique in which the functions are encoded into
separate partitions. This would allow modular summary-based verification.

3.1.2 PBMC formula construction for summarization

This section uses the approach of the partitioned bounded model checking for-
mula (PBMC formula) construction [Sery et al., 2011] to create formulas in a
particular form. The PBMC formula construction approach partitions a program
into smaller segments namely functions, such that each function is encoded us-

33 3.2 Obtaining function summaries

ing only its own interface symbols and maintains the partition boundaries with
the rest of the functions. The interface symbols include input and output pa-
rameters, accessed global variables, and helper symbols. In particular, for each
function call f , there is a helper boolean variable, that evaluates to true when
an error (assertion violation) is reachable in that function given the valuation of
its input parameters.

Let � f be the BMC encoding of the body of a function f , i.e., the logical
formula obtained from the SSA form of the body of the function f . Note that
� f does not include inlining of called functions. A PBMC formula is constructed
recursively as

fprecise ⌘ PrecisePBMCformula(f)¨ � f ^
^

h2F :child(f ,h)

PrecisePBMCformula(h)

(3.1)
For each f 2 F , the formula is built by conjoining the partition � f and a separate
partition for all nested calls. The PBMC formula PrecisePBMCformula(fmain) is
conjoined with the negation of a safety property errorfmain

and it is called a safety
query. Typically errorfmain

represents disjunction of the negations of each of the
assertion in the program. A program is safe if the safety query is unsatisfiable.

Once the PBMC formula is unsatisfiable, it is straightforward to partition it for
the interpolant generation for each function call. The idea is that one part (call it
A) corresponds to the function implementation (including its callees and nested
functions) and the other part (call it B) corresponds to the calling context (rest of
the formula). After partitioning, Craig interpolation can be applied for the part
A and part B. The computed interpolants are then over-approximations of the
functions input/output behavior and expressed only over the interface variables
of the functions.

3.2 Obtaining function summaries
This section presents how interpolation can be used to construct over-approximation
of the function behaviors after a successful verification run. By exploiting the
proof of unsatisfiability for the safety query one can construct function summaries
for each function call f .

Algorithm 1 outlines interpolation-based SMT solving which is the core part
of function summarization in SMT-based BMC. The idea is if the BMC formula is
unsatisfiable, i.e., the program is safe, the algorithm proceeds with interpolation.
Algorithm 1 describes the method for constructing function summaries in BMC
using interpolating SMT solver. At line 1 once the safety query in a certain theory

34 3.2 Obtaining function summaries

Input: Program P = (F, fmain) with function calls F and main function
fmain; theory T.

Output: Verification result: {SAFE, UNSAFE}, summary mappings �T in
a particular theory T

Data: PBMC formula �fmain
, resolution refutation: ⇡

1 �fmain,T PrecisePBMCformula(fmain)^¬errorfmain
//create inlined

formula in theory T
2 hresult,⇡,✏i CheckSAT(�fmain

) ; // run SMT-solver

3 if result = SAT then
4 return UNSAFE, ExtractCex(✏) ;

5 foreach f 2 F do
6 �T(f) GetInterpolant(f ,⇡); // extract summaries

7 return SAFE, �T;

Algorithm 1: SMT-based BMC with function summarization (Bootstrapping)

T is created, it is sent to an SMT solver. If the result is unsatisfiable, i.e., the
program is safe, the method GetInterpolant (line 6) computes an interpolant
for each f 2 F from the proof of unsatisfiability.

Function summaries are constructed as interpolants from proof of unsatisfi-
ability of the BMC formula. In particular, for a function f , the PBMC formula
� is divided into two parts �subtree

f ^ �rest
f . The first, �subtree

f corresponds to the
partitions representing the function call f and its nested function calls:

�subtree
f ¨
^

h2F :subt ree(f ,h)

�h (3.2)

The second, �rest
f corresponds to the rest of the program including the negation

of safety properties:

�rest
f ¨ ¬errorfmain

^
^

h2F :¬subt ree(f ,h)

�h (3.3)

Then for each f , formula (3.2) is considered as A-part and formula (3.3) as B-
part for the interpolant construction. The GetInterpolant method generates an
interpolant I f for the interpolation instance (A |B), which acts as a summary for
the function f . We map functions to their summaries encoded in the theory T

with �T: F ! S such that �T(f) = I f .
We call the generated interpolant of function f (line 6) �T(f) which can be

35 3.2 Obtaining function summaries

used in place of fprecise when creating the formula again. This replacement is
sound because by construction fprecise =) �T(f).

3.2.1 Interpolation algorithms used in the proposed framework

The proposed framework relies on different interpolation algorithms for the dif-
ferent theories it supports.

The solutions in this thesis exploits an EUF-Interpolation framework proposed
in [Alt, Hyvärinen, Asadi and Sharygina, 2017], for generating interpolants for
the quantifier-free theory of EUF. In this interpolation system two EUF interpo-
lation algorithms are available: Strong and Weak. These algorithms generate in-
terpolants with the smallest number of equalities, guaranteeing, respectively, the
strongest and the weakest interpolants in the entire framework. This framework
computes interpolants that are much more compact and expressive compared to
SAT-based interpolants and it is able to generate a multitude of interpolants of
different strength. The strength of interpolants can be controlled by special la-
beling functions so that the strongest and weakest labeling functions of the EUF
interpolation framework generate the interpolants with the smallest number of
equalities among all the possible labeling functions.

The solutions in this thesis also exploits interpolation system for LRA imple-
mented following the technique presented in [McMillan, 2005]. The dual version
of this algorithm is also available, and can be sorted by the strenght of the cre-
ated interpolants. Thus, we call here Strong the interpolation algorithm given
in [McMillan, 2005], and Weak its dual. As a result the generation of LRA in-
terpolants can be controlled with respect to strength and size by the user-given
labeling. The LRA-interpolation system [Alt, Hyvärinen and Sharygina, 2017] al-
lows the generation of an infinite amount of interpolants from the same simplex
explanation by using a strength factor.

Another feature related to interpolants which is exploited in this thesis is
Proof Compression for propositional proofs. For propositional logic the Labeled
Interpolation Systems [D’Silva et al., 2010] is used including the Proof-Sensitive
(PS) interpolation algorithms [Rollini et al., 2013]. This framework supports
a range of techniques to reduce the size of the generated interpolants through
removing redundancies in propositional proofs. Reducing the proof has the con-
sequence of also reducing the size of the generated function summaries.

36 3.3 SMT-based incremental verification for verifying multiple properties

3.3 SMT-based incremental verification for verifying mul-
tiple properties

This chapter presents a technique to verify incrementally multiple safety proper-
ties.

To verify a single program against a list of safety properties Q1, . . . ,Qn, there
are two approaches. The first approach is to check each property individually,
which can be time-consuming and not very effective because it requires building
and solving formulas from scratch at each iteration. The second approach is to
check the properties incrementally, one by one, and reuse computation history
after each successful verification run. However, this approach has drawbacks. If
even just one property fails to hold, the failure has to be examined and confirmed.
Despite this, the overall cost of verification is often much less than verifying the
program from scratch for each individual property, even after several iterations.
In the worst case, the computational history while checking one property may
not be reusable for the next, forcing the verification procedure to run without
reuse.

Our solution to the verifying multiple properties in a single program is to
construct function summaries as a fundamental building block for storing the
computation history and to reuse them in subsequent verification runs. The pro-
posed solution by incremental verification avoids repeating the same tasks again
and over again. Consequently, the application of this approach would lead to
significant speed up in verification, and more importantly would scale to large
programs.

3.3.1 Applying function summaries during formula construction

This section proposes an algorithm to reuse function summaries between veri-
fication tasks when checking different assertions in the same program. While
constructing an SMT formula for checking a new assertion, if a summary of a
function call already exists, it can substitute the precise encoding the function
body. In the proposed solution a summary formula of a function can be applied
during construction of the BMC formula to represent a function call. This way,
the part of the SSA form corresponding to the called function does not have to be
created and converted to a part of the BMC formula. Consequently, the summary
formula tends to be smaller and removes the need of encoding the formula from
scratch.

Substitution of summaries might fit well and the verification might succeed

37 3.3 SMT-based incremental verification for verifying multiple properties

and lead to performance speedup, or due to an over-approximating nature of
summaries, spurious bugs might which have to be identified immediately. The
important property of the resulting BMC formula is that if it is unsatisfiable then
also the original representation of formula (function func in Figure 3.1) is unsat-
isfiable as well. Therefore, no errors are missed due to the use of the summaries.

Example 2 In the example in Figure 3.1 a possible function summary for func ob-
tained after verifying the assertion is (z0 > 0) =) (func_ret � 1). This
summary can successfully replace the call to func while verifying the second asser-
tion.

Algorithm 1 considers the case of checking a given program with respect to
a single assertion. Suppose, the program contains multiple properties which are
required to be checked: {error}n1. Instead of verifying the program assertions
in isolation and repeating the full re-verification over and over again, the thesis
proposes to reuse function summaries to reduce the amount of proofs required
during verification. The generated function summaries after a successful verifi-
cation of assertion errori are reused for checking assertion errori+1.

Recall that construction of the formulas by inlining as in precisePBMCformula
(Eq. 3.1) which results in a monolithic formula where the whole function bodies
are included. Contrary to such inlined construction of formulas, this chapter pro-
poses the construction of PBMC formula in the presence of function summaries
that can be substantially smaller compared to the inlining of the entire function
bodies since functions summaries tend to be more compact.

Consider function f as a root of a subtree of a program. Suppose in the
subtree of f there is a function h and its summary was already computed. Then
the summary of h can be substituted for body of h while building the PBMC
formula of f . This way, the PBMC formula � f corresponding to the encoding of
subtree of f can be considerably more succinct compared to the inlining of the
entire function bodies in subtree of f .

Algorithm 2 creates a PBMC formula for a subtree rooted at f , i.e., � f . The
algorithm initially accepts a substitution scheme for the function representations
and uses it while constructing formula � f .

Definition 7 A substitution scheme for program function calls is a mapping func-
tion Sb : F ! {precise, sum, nondet} determines how each function call should be
handled.

The level of approximation for each function f 2 F is determined as one of the
following three cases: (i) precise when the entire f is required to be processed,

38 3.3 SMT-based incremental verification for verifying multiple properties

Input: Program P with function calls F ; Summary mapping �T : F ! S;
A theory of SMT T; the function f for which a formula is created
for it and its subtree.

Output: � f : Encoding of subtree of f (PBMC formula)
Data: WL ✓ F , mapping of substitution scheme for function calls

Sb : F ! {precise, sum, nondet}
1 WL { f } , � f t rue;
2 while WL 6= ; do
3 pick g 2WL, and WL WL \ {g};
4 �g t rue;
5 foreach h s.t. child(g, h) // process children of g
6 do
7 switch Sb(h) do
8 case sum: do �g �g ^�T(h); // apply summary
9 case precise: do WL WL[{h}; // defer process of h

10 case nondet: do skip; // treat h nondeterministically

11 �g �g ^ �g; // create SMT formula
12 � f � f ^�g;

13 return � f

Algorithm 2: CreateFormula(P,�T,T, f , Sb)

(ii) sum when a pre-computed summary substitutes f , and (iii) nondet when f is
treated as a nondeterministic function. Since nondet abstracts away the function,
it is equivalent to using a summary formula true.

We define three substitution schemes: Sbprecise: F ! {precise} inlines all the
function bodies. Sbeager: F ! {sum, precise} inlines functions without summaries
and otherwise employs summaries:

Sbeager(g) =
⇢

sum, if g has summaries
precise, otherwise

(3.4)

Note that summary mapping �T is total and all functions initially have sum-
maries. Finally, Sblazy : F ! {sum, nondet} treats functions without summaries
as nondeterministic calls and the rest as sum, as follows:

Sblaz y(g) =
⇢

sum, if g has summaries
nondet, otherwise

(3.5)

39 3.4 HiFrog: SMT-based incremental verification via function summaries

This results in a smaller initial PBMC formula and leaves the identification of
the critical function calls to the refinement loop.

3.3.2 Summary refinement

Although function summaries are lightweight replacements for precise encod-
ings of corresponding functions, their loss of precision can sometimes lead to
spurious counterexamples as a result of over-approximation. In such cases, the
summaries must be refined; in simple cases, they may be discarded and replaced
with the direct encoding. To address false alarms that arise due to abstraction, we
propose a refinement procedure. Specifically, we employ the well-known tech-
nique of Counterexample-guided refinement (CEGR) to handle coarse function
summaries.

The summary refinement approach involves analyzing the error trace, which
is determined by a satisfying assignment from the solver. If the error trace in-
cludes any function summaries, they must be removed from the PBMC formula
and replaced with the precise representation of the full body of the correspond-
ing functions. In our proposed solution, we have implemented this approach by
adding the precise representation of a function f to the PBMC formula in case
the error trace contains a summary of f . Then the satisfiability check is repeated
to ensure accuracy. If no function summary appeared along the error trace, the
error is real.

3.4 HiFrog: SMT-based incremental verification via func-
tion summaries

This section presents the architecture of the proposed interpolating SMT-based
BMC for verifying different assertions of a program in an incremental way.

The proposed framework has been implemented in the tool HIFROG that is
based on function summarization and invokes the OpenSMT2 solver [Hyvärinen
et al., 2016] with support to the propositional logic, LRA, LIA, and EUF theories.
HIFROG is unique in its combination of function summarization and interleaving
with SMT, which provides numerous benefits both in efficiency of verification
and in readability of the proofs. In particular, the SMT-based representation
of function summaries preserves the structural information of the summaries.
This makes them reusable specifications, provides user-readable feedback, and
offers numerous verification features. The broad spectrum of features supported

40 3.4 HiFrog: SMT-based incremental verification via function summaries

summary
refiner

symbolic
execution

SSA
slicing

SMT encoder
QF_BOOL

QF_LRA

QF_UF

parser

summaries

*.c
*.h

sources +
assertions

assertion holds

assertion violated
& error trace

SAT

UNSAT

assertions
traversal

QF
BOOL

QF
LRA

QF
UF

user-defined
summaries

interpolation-
based

summaries

assertions
optimizer

Interpolating SMT solver
theory
solvers

proof
compressor

itp for
QF_UF

itp for
QF_BOOL

itp for
QF_LRA

proof

%

theory
refinerselection of

precision and size

selection

of theory

settings

Figure 3.2. HiFrog overview. Grey and black arrows connect different modules
of the tool (dashed - optional). Blue arrows represent the flow of the input/out-
put data.

by HIFROG exploits BMC verification and includes verification of recursive pro-
grams. It also supports the injection of user-defined summaries, allowing the
user to add known mathematical theorems to the theory (such as a program
computing trigonometric functions).

The tool provides an additional flexibility of the verification process, allow-
ing to construct interpolants of different strength. It also supports several op-
timizations, which we describe in more detail later. In particular, it supports
optimization of assertions by removing the redundant assertions from the verifi-
cation process. If the verification fails, the tool presents a counterexample in an
easy-to-understand way, with the direct mapping to the source code.

HIFROG consists of two main components: the SMT encoder and the interpo-
lating SMT solver; as well as the function summaries (see Figure 6.5). The com-
ponents are initially configured with the theory and the interpolation algorithms.
The tool then processes assertions sequentially using function summaries when
possible. The results of a successful assertion verification are stored as interpo-
lated function summaries, and failed verifications trigger a refinement phase or
the printing of a violation witness. This section details the tool features.

41 3.4 HiFrog: SMT-based incremental verification via function summaries

SMT encoding and Function Summarization. For a given assertion, the goto-
program is symbolically executed function-per-function resulting in the “modular”
Static Single Assignment (SSA) form of the unwound program, i.e., a form where
each variable is assigned at most once, and each function has its own isolated
SSA-representation. To reduce the size of the SSA form, HIFROG performs slicing
that keeps only the variables in the SSA form that are syntactically dependent on
the variables in the assertion.

When the SSA form is pruned, HIFROG creates the SMT formula in the pre-
determined logic (e.g., Prop, EUF or LRA). The modularity of the SSA form comes
in handy when the function summaries of the chosen logic (either user-defined,
interpolation-based, or treated non-deterministically) are available. If this is the
case, the call to a function with the available summary is replaced by the sum-
mary. The final SMT formula is pushed to an SMT solver to decide its satisfiability.

Due to over-approximating nature of function summaries, the program en-
coded with the summaries may contain spurious errors. The summary refiner
identifies and marks summaries directly involved in the detected error, and HIFROG

returns to the encoding stage to replace the marked summaries by the precise (up
to the pre-determined logic) function representations. Note that due to refine-
ment, HIFROG reveals nested function calls (including recursive ones) which are
again replaced by available summaries. When faced with an unsatisfiable SMT
formula, HIFROG employs interpolation to create function summaries. These
summaries are then serialized and stored in persistent storage, making them ac-
cessible for future runs of HIFROG.

Theories of SMT in HiFrog. HIFROG supports three different quantifier-free
theories in which the program can be modeled: bit-precise Prop, EUF and LRA.
The use of theories beyond Prop allows the system to scale to large problems
since encoding in particular the arithmetic operations using bit-precision can be
very expensive. As the precise arithmetic often do not play a role in the cor-
rectness of the program, substituting them with linear arithmetic, uninterpreted
functions, or even nondeterministic behavior might result in a significant reduc-
tion in model checking time. If a property is proved using one of the light-weight
theories EUF and LRA, the proof holds also for the exact BMC encoding of the
program. However, the loss of precision can sometimes produce spurious coun-
terexamples due to the over-approximating encoding. The light-weight theories
therefore need to be refined (i.e., using theory refiner) to Prop if the provided
counter-example does not correspond to a concrete counterexample.

42 3.4 HiFrog: SMT-based incremental verification via function summaries

Assertion Optimizer. In addition to incremental verification of a set of asser-
tions, HIFROG supports the basic functionality of classical model checkers to ver-
ify all assertions at once. For the cases when the set of assertions is too large,
it can be optimized by constructing an assertion implication relation and exploit-
ing it to remove redundant assertions [Fedyukovich et al., 2015]. In a nutshell,
the assertion optimizer considers pairs of spatially close assertions ai and aj and
uses the SMT solver to check if ai conjoined with the code between ai and aj

implies aj (if there is any other assertion between ai and aj then it is treated as
assumption). If the check succeeds then aj is proven redundant and its verifica-
tion can be safely skipped. Indeed, if ai holds then aj holds as well; and if there
is a counter-example to aj then it is a counter-example to ai as well.

Type constraints. To limit the domain to a specific range of values, HIFROG

provides an option -type-constraints to control the level of expressiveness of
type constrains. By default, it limits range of the variable values to the range
of their data type in C and the check is applied only to numerical data types
(e.g., int, long, double, unsigned). The type constraints check can be extended
to include overflow/underflow of numerical data types .

Verification outputs. In the end of each verification run, HIFROG either reports
VERIFICATION SUCCESSFUL or VERIFICATION FAILED accompanied by a viola-
tion witness. An error trace presents a sequence of steps with a direct reference
to the code and the values of variables in these steps. In most cases when EUF
and LRA introduce a spurious error, HIFROG outputs a warning, and thus the
user is advised to use HIFROG with a more precise theory. HIFROG also reports
the statistics on the running time and the number of the summary-refinements
performed.

Implementation. The major implementation effort has been devoted to devel-
oping the HIFROG framework, which serves as the platform for validating the
algorithms proposed in this thesis. The tool is available as an open-source soft-
ware. As a front-end of HIFROG, we use the infrastructure from CPROVER v5.11 to
transform C program to obtain a basic unrolled BMC representation that we use
as a basis for producing the final logical formula. Apart from the distinguishing
feature of HIFROG compared to its earlier version FUNFROG, note the difference
in the use of Prop summaries between FUNFROG and HIFROG. The former uses an
old version of CPROVER and is no longer maintained, which leads to many pars-
ing issues. In contrast, each component of HIFROG, from parsing to modeling to

43 3.5 Evaluation

Table 3.1. Number of solved instances in HiFrog using different theories.

C Benchmarks
total

#assertion

#EUF
correct
solved

#LRA
correct
solved

#Prop
solved /

holding assertion
token.c 54 34 34 34
s3.c 131 18 21 26
mem.c 149 96 96 96
disk.c 79 6 6 23
ddv.c 152 47 47 142
café.c 115 15 20 30
tcas_asrt.c 162 16 29 29
p2p.c 244 8 20 94
floppy1.c 18 15 16 18
floppy2.c 21 15 16 21
floppy4.c 22 11 13 22
floppy3.c 19 13 14 19
diskperf1.c 14 9 10 14
diskperf2.c 4 2 2 4
kbfilter1.c 10 10 10 10
kbfilter2.c 13 13 13 13
kbfilter3.c 14 11 11 14
Total 1221 339 378 609
Percentage of success 55% 62% 100%

solving procedures, has been significantly optimized compared to FUNFROG.

3.5 Evaluation

This section provides an experimental evidence of the performance of interpo-
lating SMT-based BMC. We evaluated the implemented algorithm on HIFROG on
a large set of C programs for verifying different assertions one after the other.

Benchmarks. Function summarizations allows HIFROG to efficiently verify C
code with many assertions. To demonstrate the tool’s capability, we use an in-
dependent suite taken from several resources: our crafted benchmarks, part of
benchmarks from Competition on Software Verification SV-COMP2, and modified
SV-COMP benchmarks with additional assert statements which were generated
with Daikon [Ernst et al., 2001]. All benchmarks contained multiple assertions

2Software Verification Competition, http://sv-comp.sosy-lab.org/

http://sv-comp.sosy-lab.org/

44 3.5 Evaluation

10
�2

10
�1

10
0

10
1

10
2

10
�2

10
�1

10
0

10
1

10
2

PropUb2+VX

E
U
F

Ub
2+

VX

10
�2

10
�1

10
0

10
1

10
2

10
�2

10
�1

10
0

10
1

10
2

PropUb2+VX

L
R
A

Ub
2+

VX

Figure 3.3. Running time of HiFrog by propositional (Prop) encoding against
EUF and LRA encoding.

to be checked.3

To demonstrate the advantages of the SMT-based summarization, Table 3.1
reports the number of solved instances (safe assertions) in HIFROG using dif-
ferent theories.4 The table provide data for analysis of benchmarks containing
1221 assertions from which 609 were proven safe using Prop(meaning that those
properties satisfy the system specifications). Among 609 shortlisted safe asser-
tions (verification tasks) solved by Prop, 339 assertions (55%) validated by EUF
and 378 assertions (62%) validated by LRA. Even with the over-approximating
nature of EUF and LRA theories, the experiments observed a large number of
properties that were also confirmed to be correct by employing the lightweight
theories of the HIFROG. The remaining cases were SAT indicating spurious re-
sults. In other words, the results of HIFROG with EUF and LRA are only reliable
for holding assertions (i.e., the counter-example may be spurious due to abstract
encoding). Therefore, we report on the success rate of the verification results to
ensure consistency.

Furthermore, the experiments revealed that model checking using the EUF
and LRA-based summarization was extremely efficient. Figure 3.3 presents two
logarithmic plots comparing SAT encoding against SMT-encoding. The left and
right plot depicts the comparison of running times5 of HIFROG with Prop to re-
spectively EUF and LRA. Each point represents a pair of verification runs of a

3The benchmarks set is available at http://verify.inf.usi.ch/hifrog/bench.
4The tool FUNFROG is not used in the comparison, and instead, HIFROG with Prop is used to

ensure that the comparison is not affected by unrelated implementation differences.
5The timing results were obtained on an Ubuntu 14.04.1 LTS server running two Intel(R)

Xeon(R) E5620 C PUs@2.40GHz and 16GB RAM.

http://verify.inf.usi.ch/hifrog/bench

45 3.6 Related work

holding assertion with the two corresponding theories using the interpolation-
based summaries. Note that for most of the assertions, the verification with EUF
and LRA is an order of magnitude faster than the verification with Prop.

This experimentation reveals that while the use of the theories speeds up the
model checking significantly, it comes with the obvious downside that sometimes
verification conditions that in reality hold for the program are identified as er-
rors due to the over-approximating encoding. The light-weight theories EUF and
LRA therefore need to be refined to propositional logic if the provided counter-
example does not correspond to a concrete counterexample. However, if a prop-
erty is proved with one of these theories, the proof holds also for the exact BMC
encoding of the program.

3.6 Related work

This section provides a brief overview of the application of interpolation in formal
verification, different approaches to construct function summaries, and different
verification approaches based on SMT.

3.6.1 Related work on interpolation in verification

The first application of interpolation to formal verification was employed in
the complete technique for finite-state model checking by [McMillan, 2003a],
where interpolants were used to over-approximate the sets of reachable states.
This work constructs fixed points of transition functions for programs encoded
as a satisfiability problem. In the later work (the IMPACT algorithm) [McMillan,
2006], this approach was adapted into the abstraction-refinement style [Clarke
et al., 2003], allowing for the verification of infinite-state systems, such as pro-
grams with loops. In the IMPACT algorithm, interpolation is applied on demand
in lazy fashion and only to individual program paths. Therefore, no unrolling
of the entire program is needed, and some paths could remain abstracted away
as long as it does not prevent proving safety. Generalizations of the IMPACT al-
gorithm to programs with functions are given in [Heizmann et al., 2010b] and
formulated using nested word automata and [Albarghouthi et al., 2012b].

Since McMillan’s first application of interpolants in formal verification, inter-
polation has been applied in algorithms with various extensions in model check-
ing [Cabodi et al., 2006; Vizel and Grumberg, 2009; Heizmann et al., 2010b;
Alberti et al., 2012; Rümmer et al., 2013; Albarghouthi and McMillan, 2013;

46 3.6 Related work

McMillan, 2014; Cabodi et al., 2014; Vizel et al., 2015; Fedyukovich, Sery and
Sharygina, 2017; Fedyukovich and Bodík, 2018; Iosif and Xu, 2018; Beyer and
Podelski, 2022; Vick and McMillan, 2023]. There are several techniques for in-
terpolant generation [Cimatti et al., 2008; Griggio et al., 2011] which help the
model checkers to leverage interpolants in some form to improve the perfor-
mance: CPACHECKER [Beyer and Keremoglu, 2011], SEAHORN [Gurfinkel et al.,
2015], ULTIMATE AUTOMIZER [Heizmann et al., 2018] and many others.

3.6.2 Related work on function summaries
Function summaries date back to Hoare logic [Hoare, 1971]. Since then a

wide variety of techniques for computing function summaries have been pro-
posed to achieve scalable inter-procedural analysis [Henzinger et al., 2004; En-
gler and Ashcraft, 2003; Gurfinkel et al., 2011]. Each function is processed only
once, its summary is created and applied for other calls of the function. [Reps
et al., 1995] proposes an algorithm for explicitly computing function summaries
using the data-flow analysis. The approach was further exploited in the tool
BEBOP [Ball and Rajamani, 2000] (a part of the framework SLAM [Ball et al.,
2011]) that uses BDDs to represent the program states. Later the work by [Basler
et al., 2007] which is another domain of function summaries in model checking
of pushdown systems (PDS) replaced BDDs by SAT- and QBF-based techniques.
However, as stated in [Basler et al., 2007], QBF queries still poses a major bottle-
neck. In contrast, our work proposes a procedure to efficiently reuse SMT-based
summaries across multiple properties.

There is another work presented in [McMillan, 2010] which supports han-
dling function calls and uses function summaries. It employs symbolic execution
to remember a reason for infeasibility of an execution path, i.e., a blocking anno-
tation. Blocking annotations are used to reject other execution paths as early as
possible. Compared to the proposed technique of this thesis, lazy annotation uses
interpolation to derive and propagate the blocking annotations backwards for ev-
ery program instruction. If the annotation is to be propagated across a function
call, a function summary merging blocking annotations from all paths through
the function is generated and stored for a later use. The proposed technique of
this thesis uses interpolation on the whole BMC formula and creates one function
summary from one interpolant and requires a single proof of unsatisfiability of
the whole program and generates all the summaries at once.

The research for computing over-approximation of function behaviors instead
of explicit enumeration of them has been fortified by the advent of SAT-based
model checking techniques. In particular, bounded model checkers SATURN [Xie

47 3.6 Related work

and Aiken, 2005b,a] and CALYSTO [Babic and Hu, 2008] compute summaries
for each function by an iterative discovery of modification of variable values in
the function behaviors. Such computation requires several calls to a SAT solver,
but can end up with more general summaries compared to [Reps et al., 1995].
This is conceptually different technique to the proposed Algorithm 1 that re-
quires a single proof of unsatisfiability of the whole program and generates all
the summaries at once. In spite of the difference in the methods for computing
summaries, they all advocate on the way of reusing them on demand.

The work [McMillan and Rybalchenko, 2013] proposed a technique to com-
pute function summaries using tree interpolants and use them as abstractions
of functions possibly with refinements. Their proposed approach was imple-
mented in the DUALITY model checker. In DUALITY, the computed summaries
are from bounded unfoldings, and summaries are used to replace function calls
and refined on demand. While DUALITY approach re-uses the summaries across
different call sites for proving the same property, HIFROG re-uses SMT-based sum-
maries across multiple properties in a single program. Duality also has a BMC
mode and it still could terminate before unfolding to the BMC bound if an in-
ductive invariant was found. Nevertheless DUALITY makes large interpolation
queries as more relations are unfolded and there remain significant challenges
in handling mutual recursion and in scalability. For improving scalability, we en-
sure that the SMT queries in our proposed method are always bounded in size
to speed up bounded model checking.

Regarding inter-procedural software model checking with interpolants, in the
context of predicate abstraction, the work [Jhala and McMillan, 2007] discusses
how well-scoped invariants can be inferred in the presence of function calls.
Another related approach are property-directed reachability (PDR)-based ap-
proaches SPACER [Komuravelli et al., 2016] that effectively compute summaries
and use interpolants as abstractions. However they compute summaries in a
different way and they do not perform BMC unfolding. There is another ap-
proach that synthesizes function summaries within the SEAHORN verification
framework. SEAHORN generates summaries by encoding and solving a system
of non-linear Horn clauses [Bjørner et al., 2012] which requires developing an
appropriate SMT solver that supports quantifier elimination [Loos and Weispfen-
ning, 1993] for each first-order theory. In contrast, the method of this thesis is
able to use off-the-shelf SMT-based techniques without the necessity to support
quantifier elimination.

While function summary is a non-inductive over-approximation of function
behavior (unless an upper bound is known), synthesizing an inductive safe invari-
ant is a key concept in automated proof-based verification [Komuravelli et al.,

48 3.6 Related work

2013; Albarghouthi et al., 2012a]. There are a number of successful approaches
for finding invariants for programs, e.g., CEGIS [Solar-Lezama et al., 2006], k-
induction [Sheeran et al., 2000], and PDR/IC3 algorithm. Nevertheless, syn-
thesizing invariants for programs is one of the most challenging problems in
verification today.

As another related work to this area is the approaches that are based on guess-
ing summaries such as HoIce [Champion et al., 2018], FreqHorn [Fedyukovich,
Kaufman and Bodík, 2017], and LinearArbitrary [Zhu et al., 2018]. All of these
approaches have trade-offs between scalability of the search space and expres-
sivity of guessed summaries.

Much less activity was observed for using the idea of function summaries in
concolic execution [Godefroid, 2007] and explicit-state model checking [Qadeer
et al., 2004]. For instance, the model checker ZING records explicit summaries
as a set of tuples of explicit input and output values that were observed during
state space traversal. The summaries employed in Zing also include lock-related
information required for synchronization of concurrent programs. In contrast,
in HIFROG algorithm each summary symbolically defines an over-approximation
of all explicit execution traces through a function, but currently without concur-
rency related information.

FUNFROGthe model checking algorithm HIFROG built on top of, used an ap-
proach for constructing and reusing interpolation-based function summaries in
the context of SAT-based bounded model checking. Unlike HIFROG, the work in
FUNFROG performs only on propositional logic and does not consider the rich
field of first-order theories available in modern SMT solvers. Hence, despite be-
having incrementally, FUNFROG was computationally expensive in many cases in
practice.

There are several tools that support reuse or exchange of verification results,
similar to our function summaries. In the last decade there has been progress
on standardized formats [Beyer et al., 2016] of exchange between analysis tools.
For instance CPACHECKER tool is able to migrate predicates across program ver-
sions [Beyer et al., 2013]. Deductive verification tools such as VIPER and DAFNY

offer modular verification [Müller et al., 2016] and caching the intermediate ver-
ification results [Leino and Wüstholz, 2015] respectively. CBMC [Kroening and
Tautschnig, 2014] is a symbolic bounded model checker for C that to a limited
extent exploits incremental capabilities of a SAT solver, but does not use or output
any reusable information like function summaries. Similar to HIFROG, ESBMC
also shares the CPROVER infrastructure and is based on an SMT solver. To the
best of our knowledge, it does not support incremental verification [Cordeiro and
de Lima Filho, 2016].

49 3.6 Related work

3.6.3 Related work on SMT-based verification

There is a large body of work on SMT-based verification of various domains such
as [Alt and Reitwießner, 2018], GPU kernel functions [Li and Gopalakrishnan,
2010], hybrid systems [Cimatti et al., 2012], concurrent programs (including the
verification of mutual exclusion, deadlocks) [Güdemann, 2022], Petri nets [Pól-
rola et al., 2014], distributed network control planes [Raghunathan et al., 2022],
security protocols [Szymoniak et al., 2021], cyber-physical system [Nigam and
Talcott, 2022], finding adversarial inputs in neural network [Huang et al., 2016]
and many more. SMT-based verification can be combined with other verifica-
tion techniques, such as theorem proving and abstract interpretation, to achieve
better results.

In the context of SMT-based symbolic model checking of C programs, the
closest body of work can be found in CBMC[Kroening et al., 2023] and ES-
BMC [Gadelha et al., 2018], which both to a limited extent exploit the capabilities
of an SMT solver as a black box. These tools are unable to tune the SMT solver
to efficiently decide formulas for symbolic model checking, nor are they able to
adapt the program encoding to find a suitable level of abstraction. Instead, they
delegate a big monolithic formula to the SMT solver without providing any mod-
ularity or the possibility of adjusting the level of precision of the analysis. On
the other hand, HIFROG provides support for adapting the constraint language
based on the program under verification, allowing for greater flexibility and con-
trol over the encoding process.

KIND (K-induction for Invariant Discovery) [Kahsai et al., 2012; Champion
et al., 2016] is an SMT-based model checker that allows the simultaneous verifi-
cation of multiple properties incrementally by saving and reusing the invariants
that were used by JKind [Gacek et al., 2018] to prove the properties of a model
in parallel. Unlike Kind, HIFROG has not been supporting simultaneous verifica-
tion of properties in parallel; however, we find this work interesting and relevant
to the work in this thesis, especially since OpenSMT2 had recently applied al-
gorithms for parallel and distributed solving [Asadzade et al., 2021; Marescotti
et al., 2018].

While the proposed approach differs from other SMT-based model checkers,
there are widely-used software verification tools that employ SMT solvers for spe-
cific tasks. Here we provide some examples of such model checkers which are
orthogonal to the proposed approach. ULTIMATE AUTOMIZER [Heizmann et al.,
2013] is a unified framework for unbounded verification and analysis of soft-
ware based on automaton and SMT. CPACHECKER Beyer and Keremoglu [2011]
in an SMT-based software verification tool that is based on the concept of con-

50 3.7 Synopsis

figurable program analysis. LLBMC [Falke et al., 2013] is based on the LLVM
compiler infrastructure which analyzes programs at the intermediate represen-
tation level. SEAHORN is a verification framework for LLVM-based languages
that works by iteratively constructing a sequence of inductive invariants, each of
which is used to prove the correctness of the next state in the system. It uses over-
and under-approximations to improve performance and detect convergence to a
proof. UFO [Albarghouthi et al., 2012a] is also built on top of the LLVM com-
piler infrastructure and allows definition of different abstract post operators, re-
finement strategies and exploration strategies, and exploits the power of SMT
solvers for enumerating paths. In particular it uses MATHSAT4 for SMTchecking
and interpolation, and Z3 for quantifier elimination. The DUALITY model checker
constructed tree-like SMT problems for unfoldings of recursive programs, and
computed functions summaries from tree interpolants. There are conceptually
different techniques to the proposed approaches in this thesis.

To wrap up the brief overview of related techniques, we emphasize the dis-
tinguishing features of our SMT-streamlined BMC which allows re-using SMT-
based summaries across various properties and exploits different SMT encoding
for symbolic abstraction.

3.7 Synopsis

This chapter addresses scalability issues in symbolic model checking, contribut-
ing to the verification of software. Solutions for enhancing scalability are pro-
vided by circumventing costly bit-precise reasoning (P1 in Figure 1.1) while veri-
fying multiple properties in a program. Additionally, the thesis proposes an incre-
mental approach that interleaves with SMT reasoning for various computational
tasks. This chapter presents a framework for generating a reusable computation
modules of the safe program, namely SMT-based function summaries (a solution
to problem P2 in Figure 1.1).

The proposed algorithm is a fully-featured function-summarization-based model
checker that uses SMT as the modeling and summarization language for verify-
ing a sequence of properties. By exploiting the interpolating SMT solver, it is
possible to construct function summaries after the initial successful verification
run. These summaries can then be used for more efficient subsequent analysis
of properties.

The effectiveness of the proposed approach has been validated by implement-
ing the SMT-based incremental BMC in a new tool HIFROG. To the best of our
knowledge, this is the first incremental SMT-based software model checker in

51 3.8 Limitation and future work

which a sequence of safety properties is verified. To examine the practical im-
pact of the different SMT precisions on model checking, we ran HIFROG on three
levels of encoding: EUF, LRA, and Prop. The results indicate that incorporating
SMT into the model checking enables the efficient verification of large C pro-
grams.

The results of this chapter were published in [Alt, Asadi, Chockler, Mendoza,
Fedyukovich, Hyvärinen and Sharygina, 2017] and [Alt, Hyvärinen, Asadi and
Sharygina, 2017].

3.8 Limitation and future work

A general note about soundness of the proposed SMT-based BMC is that it is
achieved by incrementing the bound until a witness is found, but completeness
can only be achieved when the number of steps to reach all states is finite.

Although BMC has found many industrial acceptance and has shown to be
efficient for bug catching, i.e., quick finding of counterexamples, BMC tools, in-
cluding HIFROG, have some inherent limitations that impede verifying the gen-
eral class of software (unbounded): (i) BMC is not capable of finding inductive
invariants which are necessary for unbounded proof. The functions summaries
computed by HIFROG is not inductive unless an upper bound is known. To shed
light on this issue, consider a program with a loop that scans all elements of
an array of size n where n is arbitrary. BMC tool requires a concrete bound to
unwind the arbitrary-size loop. For instance, by 10 unrolling steps, BMC can gen-
erate summary formulas that are only valid for arrays with at most size 10. This
is certainly restrictive and we are interested in more general over-approximative
summaries that are valid for an arbitrary length of the array. (ii) the performance
of HIFROG is negatively affected by the increase in the number of unrolling steps.
It suffers from an encoding that produces an exponential number of formulas in
the depth of the specification.

One possible future direction for addressing these problems is to base the
proposed approach of this chapter on Constrained Horn Clauses, which appears
to be a promising solution. As a high-level intermediate language, CHCs enable
concise expression of the verification problem. This would help one to focus on
the fundamental issues, abstracting away from low-level details and specifics of
practical programming languages. In fact, if a safe inductive invariant is identi-
fied, it would remain unaffected by the number of loop iterations.

Scalability continues to be a challenge in this thesis. The proposed tool,
HIFROG, accepts programs written in a subset of the C11 standards [C. , 2011]

52 3.8 Limitation and future work

with the purpose of checking the correctness of safety assertions. This limitation
is due to HIFROG’s reliance on the CPROVER framework for parsing, symbolic ex-
ecutions, and front-end modeling of programs, which involves translating C pro-
grams into GOTO programs. For instance, in cases where programs rely on arrays
for correctness, they are simply bit-blasted in our modeling language. Another
limitation is that HIFROG only uses OPENSMT SMT solver as a solving back-end
which supports a limited set of theories for program representation. This limi-
tation also may prevent HIFROG from proving substantial properties of complex
programs or achieving significant scalability in software model checking. There-
fore, exploring the possibility of supporting modeling via additional theories in
other interpolating SMT solvers, such as MATHSAT OR SMTINTERPOL, with the
theory of arrays, bit-vectors, floating points, and so on, and accordingly sup-
porting summarization in those theories, would be an interesting area for future
work.

Supporting non-trivial programs with dynamic memory allocation or heap
data structures remains as future work. Proving safety of heap-manipulating
programs and solving such combined constraints requires non-trivial interaction
between SMT solver and model checker. As the heap encoding is often one of
the most complex components of an SMT or CHC-based verification tool, verify-
ing heap data structure is known to be a difficult task. This is mainly due to the
fact that when designing verification tools for different programming languages,
and migrating a tool to a different style of heap encoding, it requires a massive
implementation effort. Current verification tools based on CHC tend to handle
heap either using the theory of arrays (e.g., as performed by SEAHORN which
encodes heap as a set of non-overlapping arrays, or employ bespoke encodings
of heap data using refinement types [Freeman and Pfenning, 1991], by using
invariants that summarize the possible states of a reference at a program loca-
tion (JayHorn [Kahsai et al., 2016]), prophecies (RustHorn [Matsushita et al.,
2021]), or theory of heaps in TRICERA [Esen and Rümmer, 2021]. In HiFrog, if
the property being verified depends on such complex data structures, the algo-
rithm would work with propositional encoding, similar to CBMC. Alternatively,
HiFrog can encode the problem into EUF. If the property being verified does not
rely on such complex constructs, the result will not be spurious. Otherwise, the
tool suggests choosing a more precise encoding, such as propositional encoding.

Another future direction is the use of machine learning techniques in SMT
modeling. In this thesis a user has to select an SMT theory in advance for mod-
eling the input program. It would be interesting to use data driven patterns to
inform the priorities that we pursue in SMT to find a suitable theories of SMT
to guide program modeling technique. We firmly believe that summarization-

53 3.8 Limitation and future work

based approach could be even more successful if it could make use of domain
knowledge, e.g., knowing before starting the verification process which program
variables are likely to be needed for reasoning over a given verification task.

Chapter 4

Incremental verification of program
changes

Modern software is developed in an iterative way, by successive improvement
of the last version. As a result, the software undergoes frequent minor changes,
e.g., bug fixes, introduction of new features, optimizations, refactoring, and so
on. The problem of updating software is that this might break existing features—
bugs might get introduced. The confidence of correctness can be increased by
rigorous verification before a new revision of a piece of software is checked in.
Model checking techniques verify program fully automatically and exhaustively.
However, most software verification approaches are not designed to support se-
quences of program versions, and they force each changed program to be verified
from scratch which often makes re-verification computationally impractical.

As a continuation of studies described in Chapter 3, this chapter further stud-
ies the applicability of the proposed SMT-based function summarization approach
to another application domain. In particular, this work addresses the problem of
efficient analysis of a program after it undergoes changes. As a viable solution to
this problem, incremental verification is a promising approach that aims to reuse
the invested efforts between verification runs. The previous work [Fedyukovich
et al., 2013] has shown that the idea of constructing and reusing function sum-
maries across program changes is useful in BMC when using the so called bit-
blasting approach, with the direct use of a SAT solver. However, due to the
known complexity of bit-precise encoding it suffers from scalability issues. Using
SAT-based function summaries also creates summaries that can be significantly
larger than the original formulas, and that are not human-readable, impeding
their reuse and maintainability.

This chapter presents an innovative approach for verification by model check-

55

56 4.1 Motivating example

ing of programs that undergo continuous changes. To tackle the problem of
repeating the entire model checking for each new version of the program, the
proposed approach verifies programs incrementally. It reuses computational his-
tory of the previous program version, namely function summaries. In particu-
lar, the summaries are over-approximations of the bounded program behaviors.
The proposed solution tackles scalability issues that arise due to verification of
industrial-size program versions by (i) modeling the program with fragments
of quantifier-free first-order logic, in particular in LRA and EUF) which allows
to leverage success of nowadays SMT solvers, and (ii) reusing and maintaining
pre-computed function summaries in SMT to localize the checks of changed func-
tions. Basing the proposed solution on SMT allows lightweight program model-
ing and at the same time to obtain concise function summarization. Whenever
reusing of summaries is not possible straight away, the proposed algorithm re-
pairs the summaries to maximize the chance of reusability of them for subsequent
runs.

We implemented our SMT-based incremental verification algorithm with the
new concept of summary repair in the UPPROVER tool. We advocate the neces-
sity to offer various encoding options to the user. Therefore, in addition to the
provided SMT-level light-weight modeling and the corresponding SMT-level sum-
marizations supported by our incremental verifier, the tool allows adjusting the
precision and efficiency with different levels of encodings. For this purpose UP-
PROVER enables the LRA and EUF theories (and in the future, more). This was not
possible in the previous-generation tools based on bit blasting (e.g., in its prede-
cessor EVOLCHECK [Fedyukovich et al., 2013]), and this distinguishes UPPROVER

from them. Furthermore, our approach not only allows the reuse of summaries
obtained from SMT-based interpolation, but also provides an innovative capabil-
ity of repairing them automatically and using them in the subsequent verification
runs. The extensive experimentation on the benchmark suite of primarily Linux
device drivers versions demonstrates that the proposed algorithm achieves an or-
der of magnitude speedup compared to prior approaches. The results reported
in this chapter were published in the following conference papers: [Asadi et al.,
2020b] and [Asadi et al., 2020a], and the journal paper [Asadi et al., 2023].

4.1 Motivating example

The idea of adapting summaries is motivated by the high computational bur-
den to model check the second program from scratch. In this work, we adapt
the already generated function summaries to become the function summaries of

57 4.1 Motivating example

main

get

max add

fun

Figure 4.1. Two versions of a C program with call tree and function summaries.

the second program. This section demonstrates summary reuse and summary
weakening in the proposed incremental verification approach.

Consider two programs in Figure 4.1 as the base and changed program. We
call them P1 (Figure 4.1a) and P2 (Figure 4.1b). Both versions consist of sev-
eral functions out of which one function differs, namely max, highlighted with
red. The function nondet represents a non-deterministic choice (e.g. user input)
which is assumed to be in a certain range. The two assert statements capture the
property of the program that should always hold after an execution of the pro-
gram. Program P1 can be encoded as a LRA formula together with the negation
of assertions.

The proposed approach first performs a bootstrapping verification for P1 prefer-

58 4.1 Motivating example

ably encoding and solving with a light theory of SMT like LRA. After successful
verification of P1 using Algorithm 1, summaries of functions are created with
respect to all properties, as shown in Figure 4.1d. These function summaries
represent the relation between the inputs and outputs of each function, and are
expressed using a formula that includes the return value of the function, denoted
by the variable ret in Figure 4.1d. Note that the proposed tool of this chapter im-
plements Algorithm 1 for computing summaries automatically. Summaries are
stored for future usage. When it comes to verifying P2, in order to have an ef-
ficient verification procedure, instead of performing full-verification again it is
desirable to reuse the summaries of P1. We process the changed functions of P2

and investigate if the previous summaries are good enough to over-approximate
the changes.

Summary weakening. Let us denote �T(max) as summary of max and �
0
max

as LRA encoding of function max in P2. Here the summary check �
0
max) �T(max)

does not succeed. Since �T(max) is conjunctive, we can weaken the summary by
dropping some conjuncts to increase the chance of being valid for the changed
max. As shown in Figure 4.1d �T(max) is in conjunctive form:

�T(max) := (ret � 2b)^ (ret � 2a). (4.1)

A possible weakened formula is �w
T
(max) := (ret � 2b). By dropping a conjunct,

the resulting formula is still a summary, but it is coarser than the previous one.
Since the implication �

0
max) �w

T
(max) is valid, it indicates that the weakened

summary is coarse enough to capture the changed function �
0
max. However, the

validation check has to propagate towards the caller, i.e., fun to make sure if the
coarse summary is a valid over-approximation in the subtree rooted at fun.

Summary reuse. During the validation of fun’s summary, i.e.,�T(fun), if there
are summaries available in its subtree they are used. Since function add is not
changed, its summary �T(add) is reused straightforwardly as well as �w

T
(max).

However, the summary check for function fun fails because of the change in
function max. The implication check �T(add) ^ �w

T
(max) ^ �fun) �T(fun) by

instantiating the summary template does not succeed:

(D�a+10)^ (out�2b)^ (ret = out+D))(ret�10+a+2b)^ (ret�10+3a)

Thus the summary of function fun should be weakened to (ret�10+ a + 2b),
and the summary check should be performed for function get, where the check
succeeds. Since there are no further changed functions unprocessed, the check
does not continue further to the root of the program, and we can conclude that P2

59 4.2 Incremental verification of program changes

is safe too. The weakened summaries (�w
T
(max) and �w

T
(fun)) are stored instead

of the original summaries and will be reused when a new version arrives.

4.2 Incremental verification of program changes

This section presents a solution to the problem of efficient verification of a pro-
gram after a change. The problem of incremental verification is stated as follows:
given the original program P1 with the safety properties included in the code, a
summary mapping (certificate of correctness)�1 of P1, and the changed program
P2, it is necessary to adapt �1 to become a summary mapping of �2 for P2, or to
show that P2 does not admit a correctness certificate (i.e., has a counterexample).

Note that this thesis presents the incremental verification algorithm instan-
tiated in the context of BMC and SMT. However, the algorithm is more general
and can be applied in other approaches relying on over-approximative function
summaries.

Next section presents a first version of the incremental verification algorithm
and then an optimized version of the algorithm.

4.2.1 Basic algorithm of summary validation

In the proposed incremental verification algorithm, the problem of determining
whether a newly changed program still meets a safety property reduces to the
problem of validating the family of summaries for the new program. As a re-
sult, in practice the verification is localized to the changed parts of the system,
resulting in significant run time improvements.

We customize the definitions of substitution schemes of the refinement pro-
cess defined in 3.3.1. The new definitions includes set N where it stores the set
of functions with invalid summaries once they were identified as invalid. The
substitution scheme SbN

precise: F ! {inl ine} inlines all the function bodies.

The substitution scheme SbN
eager : F ! {sum, inl ine} inlines functions with

invalid summaries accumulated in set N and otherwise employs summaries:

SbN
eager(g) =
⇢

inl ine, if g 2 N
sum, otherwise

(4.2)

Note that summary mapping �T is total and all functions initially have sum-
maries. Finally, SbN

lazy : F ! {sum, nondet} treats functions with invalid sum-

60 4.2 Incremental verification of program changes

Input: function summaries of the first version, tree : call-tree of the
second version, � : set of changed functions in the second
version;

Result: second version is Safe or Unsafe;
1 while all � are not processed do
2 choose the first f in the reverse postorder of tree such that f 2�;
3 if f has a summary then
4 if the summary is invalid then
5 RemoveSum(f); // Remove the summary of function f
6 if f has a parent (f is not root) then
7 Add the parent to � to be processed;
8 else
9 return Unsafe, error trace;

10 else
11 Re-compute summaries from subtree of f by interpolation;

12 return Safe, set of valid summaries;

Algorithm 3: Basic summary validation in incremental verification

maries as nondeterministic calls and the rest as sum, as follows:

SbN
laz y(g) =
⇢

nondet, if g 2 N
sum, otherwise

(4.3)

Summary validation shown in Algorithm 3, consists of a series of local val-
idation checks for all changed function calls and their possibly affected callers,
beginning at the deepest node. If a local validation succeeded, but for some func-
tion call in the subtree a summary was invalidated, the algorithm call the method
RemoveSum to remove the summary of f straight away (line 5). Note that this
local validation continues until there are no more functions to be processed, and
if it succeeds, the second version is reported as Safe, potentially along with a set
of valid summaries that are made available for checking the next version.

It is worth noting that when the validation check propagates to the call tree
root, i.e., main function, it corresponds to the classical BMC check where all
functions are inlined. Thus in the worst case, since the programs that we check
are bounded (a decidable problem), the algorithm falls backs to classical BMC.

61 4.2 Incremental verification of program changes

Input: Program P = (F, fmain) with function calls F ; the set of changed
functions � ✓ F ; total summary mapping �T : F ! S that maps
functions to summaries; theory T;

Output: hSafe,�Ti or hUnsafe, CEi
Data: N ✓ F set of functions with invalidated summaries

1 WL �;
2 N ?;
3 while WL 6= ? do
4 pick f 2WL, s.t. 8h 2WL : ¬subt ree(f , h);
5 WL WL \ { f };
6 if f /2 N then // if has summary?
7 � f CreateFormula(P,�T,T, f , SbN

precise); // create formula

8 hresult,⇡,✏i CheckSAT(� f ^¬�T(f)); // run SMT solver
9 if result = SAT then

10 if f 6= fmain then
11 WL WL[{parent(f)};
12 else
13 return hUnsafe,ExtractCex(✏)i;
14 h�T(f), Ni WeakenSummary(P,�T, f , N);
15 else // res = UNSAT
16 for all h 2 F s.t. subt ree(f , h) do
17 �T(h) �T(h) ^ GetInterpolant(⇡, h);
18 N N \ {h};

19 return hSafe,�Ti;// second version safe, return updated
summary

Algorithm 4: UPPROVER: Summary validation and repair in SMT

4.2.2 Algorithm with summary repair

This section presents the complete algorithm for incremental verification of pro-
gram changes. First it describes the main points of Algorithm 4. Then it de-
scribes the important subroutines of the algorithm; (i) an improvement of the
algorithm with the summary weakening in Sec. 4.2.3, and (ii) summary refine-
ment in Sec. 4.2.4.

The goal of Algorithm 4 is performing incremental verification with the ability
to repair over-approximating summaries of the updated program. The key idea
behind the summary repair approach is to circumvent the deletion of invalidated

62 4.2 Incremental verification of program changes

function summaries and instead attempt to adapt them to the changed functions.
The proposed solution repairs an over-approximating summary of the program
function which is coarse enough to enable rapid check but at the same time strong
enough to cover more changes in an incremental checking scenario. The repair
is done via two strategies: the first weakens the invalid summary formulas by
removing the broken parts, and the second strengthens the weakened summary
by recomputing the corresponding interpolant and adding missing parts. The
conjunction of newly repaired summaries is kept for subsequent uses. The re-
finement procedure accompanies our incremental summary validation algorithm
for dealing with spurious behaviors that might be introduced due to imprecise
over-approximative summaries.

Overall, the proposed solution proceeds as follows. First, a program together
with safety properties is modeled in SMT, and if properties hold, function sum-
maries are computed. Then once a change arrives, it first determines whether
the old summaries for functions are still valid after the change. This validation
phase is local to the change and tends to be computationally inexpensive since
it considers only the changed function bodies, their old summaries, and possibly
the summaries of the predecessors of the changed functions. If this local vali-
dation phase succeeds, the new program version is also safe. If local validation
fails, the approach attempts to widen the scope of the search while still main-
taining some locality, by propagating the validation check to the callers of the
modified functions. After each successful validation, any invalidated summaries
become a candidate to be repaired and are made available for checking the next
program version.

Algorithm 4 (similar to Algorithm 3) considers two versions of the program,
P1 and P2, and the function summaries of P1. If P1 or its function summaries
are not available (e.g., at the initial stage), a bootstrapping run (Algorithm 1) is
required to verify the whole program P2 to generate the summaries, which are
then maintained during the subsequent verification runs.

As input, the pseudocode takes the new program (P2), the set of functions that
have been identified as changed �, the theory T, and the summaries as a total
mapping �T from functions F to the set of all summaries S. Initially in case no
summary exists for f (e.g., newly introduced in P2) its summary is initialized as
false. By initializing the summary of f as false, we are being explicit about the fact
that we do not yet have any summary. As output, it reports either Unsafe with
a concrete counterexample CE, or Safe with a possibly updated total mapping
representing the summaries.

The algorithm maintains a worklist WL of function calls that need to be
checked against the pre-computed summaries. Initially, WL is populated by a

63 4.2 Incremental verification of program changes

set of functions with code changes, namely � (line 1). Then the algorithm re-
peatedly chooses f from WL so that no function in the subtree of f exists in WL
(line 4). Then it removes a function f from WL and attempts to check the validity
of the corresponding summary in the second version. Note that this bottom-up
traversal of the call tree ensures that summaries in the subtree of f have been al-
ready checked (shown either valid or invalid). The algorithm also maintains the
set N to store the set of functions with invalid summaries and aims at repairing
all of the summaries that were identified as invalid.

The if-condition at line 6 checks whether the summary of f is not invalid (i.e.,
has a summary). If so, CreateFormula constructs the formula � f that encodes
the subtree of f . Note that here the substitution scenario precise is used where
all function calls in the subtree of f are naively inlined. Later Section 4.2.4
introduces a more efficient way for constructing the formula.

The validation check of pre-computed summaries occurs in line 8. The valid-
ity of implication � f) �T(f) is equivalent to the unsatisfiability of the negation
of the formula,� f ^¬�T(f). This local formula is sent to an SMT solver for decid-
ing its satisfiability. Performing the local check determines whether the summary
is still a valid over-approximation of the new function’s behavior. If the result is
UNSAT, the validation is successful and the summary covers the changed func-
tion. Here, the algorithm obtains a proof of unsatisfiability ⇡ which is used to
compute new summaries to update the invalid or missing summaries (line 17).
This is called strengthening procedure in our approach. If result is SAT, the val-
idation of the current summary fails for the changed function (line 9). In this
case, either the check is propagated to the function caller towards the root of the
call tree (line 11) or a real error is identified (line 13). In the latter case, since
the validation fails for the root fmain of the call tree, the algorithm extracts and
reports a concrete counterexample from the result of the SMT query (line 13).

Note that if a function f is introduced in P2, the caller of f is marked as
changed by our difference-checker. In such a scenario, since summary of f is
trivially false, the validation check immediately fails, f gets added to N , and the
algorithm continues to check the caller. A successful validation of some ancestor
of f with inlined f generates a summary for f (line 17).

Whenever a summary is identified as invalid (line 9), the sub-routine WeakenSummary
(line 14) is called to make the summary coarser which is explained in the next
section.

64 4.2 Incremental verification of program changes

Input: Program P = (F, fmain) with function calls F ; summary mapping
�T : F ! S; Theory T; function f whose summary is being
weakened, set of functions N with invalid summary

Output: Updated summary formula of f �T(f), updated invalid set N

1 For a formula �T(f) = S1 ^ ...^ Sn, consider a set Cands= {S1, ...,Sn};
2 � f CreateFormula(P,�T,T, f , SbN

eager);
// Create formula with substitution scheme (3.4)

3 while Cands 6= ? do
4 hresult, - ,✏i CheckSAT(� f ^¬

V
cn j2Cands cn j); // validity

5 if resul t = UNSAT then break;
6 for cand 2 Cands do
7 if ✏ |= ¬cand then
8 Cands Cands \ {cand};

9 �T(f)
V

cn j2Cands cn j; // store valid summary conjuncts

10 if �T(f) = t rue then N N [{ f };
11 return �T(f), N ;

Algorithm 5: WeakenSummary(P,�T,T, f , N)

4.2.3 Summary weakening

The previous algorithms of incremental verification in [Fedyukovich et al.,
2013; Asadi et al., 2020b] check summaries one-by-one and whenever the valida-
tion fails, the invalidated summaries are removed straight away, thus the chance
to reuse summaries becomes low. In this section instead of removing the in-
validated summaries right away, our proposed algorithm attempts to compute
coarser over-approximation (i.e. weaker summaries) by dropping some con-
juncts, thus maximizing their usability. The key insight behind the algorithm
is identifying which parts of the summary break the validity of implication, re-
moving them from the set, and repeating the validation check.

The number of top-level conjuncts in a summary formula is a measure of
generalizability of the interpolant. In some applications (see, e.g., [Komuravelli
et al., 2013; Fedyukovich and Bodík, 2018]) it is useful to further abstract an
over-approximation. The idea was inspired by HOUDINI algorithm [Flanagan
and Leino, 2001]. Weakening a summary formula is performed by dropping the
conjuncts that break the validity of the summary. Note that HOUDINI is only
meaningful for the summaries with top-level structure in conjunctive form.

In Algorithm 4 once the summary turned out to be invalid (line 9) the sub-

65 4.2 Incremental verification of program changes

routine WeakenSummary (i.e., Algorithm 5) is called to weaken the summaries.
Algorithm 5 shows a simple implementation of an iterative check-and-refute cy-
cle that iterates until the validation check of the subset of summary conjuncts
succeeds. Initially, summary conjuncts are stored in the set Cands and as the
algorithm proceeds, the conjuncts are removed if proven to be invalid.

In line 2 the PBMC formula � f for the function f is constructed. In this phase
SbN

eager is used as the substitution scheme, i.e., whenever a function summary is
available in the subtree of f , the summary is used as a substitute for the function
body. Then in line 4 the containment of the resulting formula � f in the summary
candidate is checked by the SMT solver. Once the solver generates a counterex-
ample ✏, it is used to prune the summary conjuncts that break the containment
check. This iterates until the solver returns UNSAT. In the end, the remaining
subset of summary candidates would form a new valid summary for f . In case no
conjuncts are left, the function summary is assigned to the weakest possible sum-
mary, namely true (line 10) and it is added to the set N that contains functions
whose summaries were not valid anymore in P2.

Once the weakened summary is obtained from Algorithm 5, in Algorithm 4
the check always propagates to the caller (as the parent is already marked there)
to make sure the new weakened summary is suitable in the subtree rooted at
the caller. It can be the case that the weakened summary does not capture the
whole relevant functionality of the changed function and needs more conjuncts
(strengthening) that can be obtained during the validation check of the caller
and interpolation in line 17 of Algorithm 4. Note that in this case even though
the check propagates to the caller, it would be still beneficial in the sense that the
actual encoding of the function body is substituted with the weakened summary,
thus the overall check will be less expensive and still maintains some locality.

4.2.4 Summary refinement
In Algorithm 4 line 7 creates the PBMC formula � f in a way that all the nested
functions in the subtree rooted at f are inlined. In other words, the initial substi-
tution scheme was set to SbN

precise. To further speed up the incremental check while
constructing the formula � f , pre-computed summaries can be used to abstract
away the function calls in its subtree.

This section presents an algorithm for creating PBMC formulas in a more
efficient way, then presents the proposed solution for refining the abstract sum-
maries on demand. The pseudocode in this section can substitute lines 7 and 8
in Algorithm 4.

Algorithm 6 consists of two key points: (i) while constructing the PBMC for-

66 4.2 Incremental verification of program changes

Input: Program P with function calls F , function f for which a formula
is created, Summary mapping �T : F ! S, theory T, set of
functions with invalid summary N ;

Output: Solving result:{SAT, UNSAT}, proof of unsatisfiability ⇡,
updated �T, updated N

Data: PBMC formula � f , tentative set of function calls to be refined
WL ✓ F , counterexample CE, mapping of substitution scheme for
function calls SbN : F ! {precise, sum, nondet}

1 while true do
2 � f CreateFormula(P,�T,T, f , SbN

laz y); // Create formula with

substitution scheme in Eq. (3.5)
3 hresult,⇡,✏i CheckSAT(� f ^¬�T(f)); // run SMT solver
4 if resul t = SAT then
5 CE ExtractCex(✏); // extract error trace
6 RefCandid getCalls(CE); // get refinement candidates

7 if {g 2 RefCandid | SbN (g) 6= precise}= ; then
8 break; // nothing to refine
9 else

10 foreach g 2 RefCandid do
11 SbN (g) precise; // set substitution scheme to precise
12 �T(g) >;
13 N N [{g};

14 else
15 return UNSAT,⇡,�T, N ;

16 return SAT, CE,�T, N ;

Algorithm 6: SolveRefine(P, f ,�T, N)

mula � f , whenever summaries are available in the subtree of f , they substitute
the actual body of the function calls in the subtree, (ii) while checking the va-
lidity of summaries, the infeasible behaviors that are detected during analysis of
abstract summaries are refined by an iterative refinement procedure.

The initial over-approximation in Algorithm 6 is set to SbN
laz y where it sets

the precision for function calls in the lazy style. Then the PBMC formula � f is
created based on Algorithm 2 with SbN

laz y . The resulting � f is expected to be
substantially smaller compared to the encoding whose substitution scheme was
initially set to SbN

precise.
Then the resulting � f is checked for the validity whether its pre-computed

67 4.3 Correctness of the algorithm

summary contains the formula, i.e., � f) �T(f) (line 3). If the resulting for-
mula is satisfiable, it can be either a real or a spurious violation since over-
approximative function summaries were used to substitute some of the nested
function calls. This can be discovered by analyzing the presence of summaries
along an error trace, determined by a satisfying assignment ✏ returned by a solver
and by dependency analysis.

Based on the satisfying assignment the algorithm identifies the set of the sum-
maries used along the counterexample and stores them in RefCandid (line 6). The
algorithm applies dependency analysis that restricts RefCandid set to those possi-
bly affecting the validity. Then every over-approximations (summary or nondet)
in the RefCandid set is marked as precise in the next iteration (line 11). If the set
is empty, the check fails and the summary is shown invalid. This refinement loop
repeats until the validity of the summary is determined.

4.3 Correctness of the algorithm

This section defines tree interpolation property by which the correctness of Al-
gorithm 4 can be established. Then the correctness theorem is defined assum-
ing the tree interpolation property already holds in the interpolation algorithm.
Lastly, we instantiate the proposed generic SMT-based incremental verification
approach to certain theories of SMT and discuss which interpolation algorithms
can guarantee tree interpolation property.

4.3.1 Tree interpolation property

Binary interpolation can be generalized so that the partitions of an unsatisfiable
formula form a tree structure. We in particular concentrate on tree interpolants,
generalizations of binary interpolants, obtained from a single proof that guaran-
tees the tree interpolation property as defined in the following:

Definition 8 (tree interpolation property1) Let X1^. . .^Xn^Y ^Z be an unsat-
isfiable formula in first-order logic. Let IX1

, . . . , IXn
and IX1...XnY be interpolants for

interpolation instances (X1 | X2^ . . .^Xn^Y ^Z), . . ., (Xn | X1^ . . .^Xn�1^Y ^Z),
and (X1 ^ . . .^ Xn ^ Y | Z), respectively. The tuple (IX1

, . . . , IXn
, Y, IX1...XnY) has the

tree interpolation property iff IX1
^ . . .^ IXn

^ Y) IX1...XnY .

68 4.3 Correctness of the algorithm

4.3.2 Correctness of the algorithm
This section discusses the correctness of the SMT-based incremental verification
algorithm, i.e., given k unrolling steps, the algorithm always terminates with the
correct answer with respect to k. Notice that in this thesis, program safety is con-
sidered with respect to the pre-determined unwinding bound k. In the remainder
of this section, we assume the same k for both old and new programs. In case the
user increases the bound for a specific loop, the corresponding function needs to
be validated as if changed.

The correctness of Algorithm 4 is stated in the following theorem:

Theorem 1 Assume the interpolation algorithm for T guarantees tree interpolation
property. When the Algorithm 4 returns safe, then the entire program is safe, i.e.,
errorfmain

^�subtree
fmain

)?.

Proof 2 Let fmain be the entry function, �T(f) be the summaries, f range over the
function calls satisfying subtree(fmain, f), and c1, . . . , cn be the function calls in the
(possibly empty) set of functions called by f . We first show that the properties

errorfmain
^�T(fmain))?, and (4.4)

�T(c1)^ . . .^�T(cn)^ � f) �T(f) (4.5)

are strong enough to prove that the entire program is safe, and then show that
they hold in the algorithm both after successful bootstrapping and after a successful
incremental verification run on a set of changes �.

Safety from properties (4.4) and (4.5). After rewriting property (4.4) into
�T(fmain)) (errorfmain

) ?), logical transitivity and iterative application of prop-
erty (4.5) to substitute all interpolants on the right hand side of property (4.5)
yields the inlined formula in the claim errorfmain

^�subtree
fmain

)?.
Bootstrapping phase. We show that property (4.4) holds over the program

call tree annotated by computed interpolants whenever bootstrapping verification
in Algorithm 1 terminates. Recall that the summaries are generated only when the
program is safe with respect to the property, i.e., errorfmain

^�subtree
fmain

)?. Therefore,
by definition of interpolation in Definition 1 (property (ii)), errorfmain

^ I fmain
is un-

satisfiable, i.e., property (4.4) holds. Property (4.5) follows from our assumption
that the interpolation algorithm guarantees the tree interpolation property. This
can be seen by choosing the following partitions in Definition 8: Xi ⌘ �subtree

ci
for

i 2 1 . . . n, Y ⌘ � f , and Z ⌘ �rest
f .

Incremental phase. Assume that properties (4.4) and (4.5) hold before the
changes in � are introduced. We show that if Algorithm 4 running on a set of

69 4.3 Correctness of the algorithm

changes � successfully returns Safe, both properties are maintained, from which
the claim in the theorem follows. If Algorithm 4 successfully terminates, then each
function call c obtains an updated summary�T(c) (line 17) when some of its prede-
cessor f passed the summary validity check (line 15). Otherwise, the check propa-
gates towards the root of the call tree and eventually may lead to an UNSAFE result.
Thus, it suffices to show that the recomputed or repaired interpolants satisfy prop-
erty (4.5). For this purpose, we again rely on the assumption that the interpolation
algorithm guarantees the tree interpolation property. When constructing the for-
mula of a function, Algorithm 2 uses all valid summaries in the subtree of the func-
tion. This is sound as we know from property (i) of Definition 1 that �T(ci)) IXi

where IXi
is an interpolant obtained from the proof of unsatisfiability corresponding

to the successful validity check of the predecessor of ci.
In case some change in� is not contained in pre-computed summary �T(f) but

the algorithm introduced a weakened summary �w
T
(f) that contains the change,

the algorithm still propagates to the caller function (line 11) to determine whether
property (4.5) holds. In case �w

T
(f) is not precise enough in the subtree of the

caller, the algorithm proceeds with the refinement of the weak summaries. Once
the refined check succeeds, the proof of unsatisfiability is used (through interpola-
tion) to strengthen �w

T
(f) (line 17). Technically, the weakened summary and the

recomputed summary are conjoined to form a new summary�itp
T (f)^�w

T
(f). Again

relying on the assumption that the interpolation algorithm guarantees the tree inter-
polation property, the recomputed and repaired interpolants satisfy property (4.5).

⇤

4.3.3 Interpolation algorithms in a concrete theory
This section instantiates the proposed generic SMT-based incremental verifica-
tion approach to certain theories of SMT. Interpolation algorithms that are the
low-level primitives in the proposed approach are discussed based on whether
they guarantee the tree interpolation property or not. The theories of our inter-
est are LRA and EUF. Having different theories and interpolation algorithms is
of great practical interest since the choice of a good interpolation algorithm may
well determine whether an application terminates quickly or diverges.

In the theory of linear arithmetic over the reals, LRA, there are several effi-
cient proof-based interpolation algorithms proposed in the literature so that the
resulting interpolants can differ in ways that have practical importance in their
use in incremental verification. For the theory of LRA, many SMT solvers produce
interpolants using application of the Farkas lemma [Schrijver, 1999]. The most
widely used approach computes weighted sum defined by Farkas coefficients of

70 4.3 Correctness of the algorithm

all inequalities appearing in A part of (A |B) [McMillan, 2005]. The interpolant
computed in this way is always a single inequality. We call this approach Farkas
interpolation procedure and denote it as ItpF .

Recently [Blicha et al., 2019] introduced a new algorithm called decompos-
ing Farkas interpolation procedure which is able to compute interpolants in lin-
ear arithmetic in the form of a conjunction of inequalities. The algorithm is an
extension of ItpF ; it uses techniques from linear algebra to identify and separate
independent components from the interpolant structure. We denote the decom-
posing interpolation procedure as ItpD. Intuitively, ItpDworks as follows: Instead
of using the whole weighted sum of A, it tries to decompose the vector of weights
(Farkas coefficients) into several vectors. This effectively decomposes the sin-
gle sum into several sub-sums. If each of the sub-sum still eliminates all A-local
variables, the resulting inequalities can be conjoined together to yield a valid
interpolant.

Since ItpD is able to produce interpolants in the form of a conjunction of
inequalities, it provides the opportunity to make more effective use of summaries
in our incremental verification algorithm. Hence, Algorithm 5 can benefit from
computing coarser over-approximation (i.e. weaker interpolants) by dropping
conjuncts. In the later sections, we will experimentally verify the usefulness of
the decomposition scheme by comparing two LRA interpolation algorithms.

As for the theory of EUF, we use the EUF Interpolation algorithm in [Alt,
Hyvärinen, Asadi and Sharygina, 2017] that relies on a congruence [McMillan,
2005] graph data structure constructed while solving an EUF problem. EUF inter-
polation algorithm combines propositional and EUF interpolation which is useful
for a model checking setting and some of the conjuncts in EUF interpolants are
coming from the propositional structure.

For the propositional part, we use the well-known Pudlák’s interpolation al-
gorithm [Pudlák, 1997] which we treat as an instance of D’Silva et al.’s labeling
interpolation system [D’Silva et al., 2010]. This is more suitable for function sum-
maries than McMillan’s, since it constructs weaker interpolants and can capture
more changes in incremental verification. For scalability reason, combining a
propositional interpolation algorithm with LRA interpolation algorithm is shown
beneficial as an over-approximation of bit-vectors in software model checking.
The approach first constructs the refutation using standard SMT methods. The
interpolation works then by labeling each clause with an interpolant starting
from the leaf clauses towards the empty clause. The leaf theory clauses are la-
beled using an LRA interpolation after which the propositional labeling can be
applied in a standard way. For more details we refer the reader to [Asadi et al.,
2020a].

71 4.3 Correctness of the algorithm

Tree interpolants are used in our incremental algorithm for determining the
satisfiability of a first-order logic formula that reuses summaries generated af-
ter the unsatisfiability of a slightly different formula is determined. Among the
widely used family of interpolation algorithms for LRA, EUF, and Prop we rely on
the ones that can guarantee the tree interpolation property, and thus are suitable
for the application in incremental verification of program versions.

The following two lemmas state which LRA interpolation algorithms can guar-
antee tree interpolation property. The proofs can be found in [Asadi et al., 2020a]
where we discussed under which conditions LRA interpolation procedures guar-
antee tree interpolation property.

Lemma 2 LRA interpolants computed by Farkas interpolation algorithm have tree
interpolation property.

Lemma 3 LRA interpolants computed by decomposing Farkas interpolation algo-
rithm with gradual decomposition defined in [Asadi et al., 2020a] have tree inter-
polation property.

The following lemma considers the tree interpolation property of interpolants
generated from the same resolution proof in EUF, proven in [Christ and Hoenicke,
2016].

Lemma 4 EUF interpolation algorithm [Alt, Hyvärinen, Asadi and Sharygina, 2017]
guarantees the tree interpolation property.

In a purely propositional setting, we rely on the results from [Gurfinkel et al.,
2013; Sery et al., 2012b] which proves the correctness of the propositional tree
interpolation algorithms, stated in the following lemma.

Lemma 5 Propositional interpolation algorithm introduced by Pudlák guarantees
the tree interpolation property.

The proposed solution relies on the above lemmas for the correctness of the
incremental verification algorithm in the context of bounded model checking.
However, the correctness of the algorithm is not solely restricted to the preser-
vation of the tree interpolation property by construction. Instead the correctness
of the algorithm can be preserved by checking for the tree interpolation prop-
erty on-the-fly. This means that the algorithm can still produce a correct output
even if the tree interpolation property is passed by performing real-time checks
in verification run.

72 4.4 Tool architecture and implementation

 summaries of P1

Safe

Unsafe
+ CEX

*.c
*.h

Safe Program P1
+ assertions

*.c
*.h

Program P2
+ assertions

diff
annotations

Diff
analyzer

if the summary for
function main is

invalid

LRAEUF PROP

Interpolating
SMT Solver

 Call tree
traversal

of P2

summary
validation

Summary
weakening

repaired summaries of P2

LRAEUF PROP

Figure 4.2. Overview of the UpProver architecture. UpProver operates at one
particular level of precision at each run.

since the algorithm allows checks for the tree interpolation property on-the-
fly.

It is worth mentioning that our incremental algorithm with theory T gives the
same result as the verification from scratch used in the bootstrapping with the
theory T. Although automatically identifying a proper level of encoding is non-
trivial (and not a subject of this thesis), our approach allows various encoding
options to the user. In case the algorithm is instantiated with less-precise theory
(e.g., EUF), if a bug is reported, it might be due to the abstract theory usage,
and it is recommended to repeat the verification with a more precise theory (and
accordingly, more precise summaries).

4.4 Tool architecture and implementation
This section describes the implementation of our algorithms in the UPPROVER tool
which is a bounded model checker written in C++. UPPROVER concentrates on
incremental verification of program versions written in C. After each successful
verification run, it maintains a database of function summaries to store its out-
puts, which become available as inputs for verification of each subsequent pro-
gram version. For bootstrapping verification UPPROVER uses HIFROG standalone
bounded model checker. For satisfiability checks and interpolation UPPROVER

uses SMT solver OPENSMT. For pre-processing as a front-end, UPPROVER uses
the framework from CPROVER 5.112 to symbolic encoding of C by transforming

2http://www.cprover.org/

http://www.cprover.org/

73 4.4 Tool architecture and implementation

C program to a monolithic unrolled BMC representation that we use as a basis
for producing the final partitioned logical formula.

The architecture of UPPROVER tool is depicted in Figure 4.2. UPPROVER im-
plements proposed algorithms by maintaining three levels of precision—LRA,
EUF, and purely propositional logic (Prop)—to check the validity of pre-computed
summaries. The rest of this section describes UPPROVER’s key components in
more detail.

Difference analyzer. UPPROVER performs source code differencing at the level
of SSA forms for both the old and the new program to identify a set of functions
with code changes. It annotates the lines of code changed between P1 and P2.
This defines the scope of summary validations. The user may choose an inex-
pensive syntax-level difference or a more expensive and precise semantic-level
difference that compares programs after some normalization and translation to
an intermediate representation [Fedyukovich et al., 2013]. The functions that
have been identified as changed are stored in set � in Algorithm 4.

Call tree traversal. The call tree traversal guides the check of pre-computed
summaries for the modified functions in bottom-up order. It exploits the SMT
solver to perform summary validation. When necessary it performs an upwards
refinement to identify parent functions to be rechecked using SMT solver or per-
forms summary refinement to refine the imprecise summaries in the subtree.

Summary repair. Summaries of P1 (of the selected level of precision) are
taken as input and used in the incremental summary validation when necessary.
The tool iteratively checks if the summaries are valid for P2 and repairs them on
demand, possibly by iterative weakening and then strengthening using interpo-
lation over the refined summaries.

SMT solving and interpolation engine. For checking BMC queries and comput-
ing interpolants, UPPROVER interacts with the SMT solver OPENSMT. The solver
produces a quantifier-free first-order interpolant as a combination of interpolants
from resolution refutations [Alt et al., 2016], proofs obtained from a run of a con-
gruence closure algorithm in EUF [Alt, Hyvärinen, Asadi and Sharygina, 2017],
Farkas coefficients obtained from the Simplex algorithm in LRA [Blicha et al.,
2019], and Decomposed Farkas interpolation in LRA [Blicha et al., 2019].

Summary storage. UPPROVER takes summaries �1 of P1 as input and outputs
summaries �2 of P2. The user defines the precision of �1, and it uniquely deter-
mines the precision of �2. In the best-case scenario, the tool validates �1 and
copies it to �2. When some of the summaries require repair, the tool produces
new interpolants from the successful validity checks of the parent functions and
stores them as the corresponding summaries in �2 (while all other summaries
are again copied from �1). No summaries are generated when the tool returns

74 4.5 Experimental evaluation

Unsafe.

4.5 Experimental evaluation

To evaluate the proposed algorithm, we aimed to answer the following research
questions:

RQ 1 Is the use of SMT instead of SAT in incremental verification efficient for
real-world programs?

RQ 2 Is reusing function summaries beneficial in incremental verification?

RQ 3 How does the proposed approach compare with other incremental veri-
fiers?

Benchmarks and setup.3 We chose 2670 revision pairs of Linux kernel de-
vice drivers from [Beyer et al., 2013]. The benchmarks were chosen so that
they are parsable by CPROVER5.11, and contain at least one safety property
(code assertion). The crafted benchmarks mainly stress-test our implementation
and include function additions/deletions, signature changes, semantic/syntactic
changes in function-bodies, etc. In addition, we included 240 tricky hand-crafted
smaller programs. The crafted benchmarks mainly stress-test our implementa-
tion and have changes such as function addition/deletion, signature change, se-
mantic/syntactic change in function-bodies, etc. On average, the benchmarks
have 16’000 LOC, the longest ones reaching almost 71’000 LOC. For each run,
we set a memory limit of 10 GB and a CPU time limit of 900 seconds. The exper-
iments were run on a CentOS 7.5 x86_64 system with two Intel Xeon E5-2650
CPUs, clocked at 2.30 GHz, and 20 (2 x 10) cores. UPPROVER is available as
open-source software. Technical information about the setup of the tool can be
found at http://verify.inf.usi.ch/upprover.

4.5.1 Demonstrating usefulness of different theories

To answer RQ 1, we compare the run time of incremental verification using dif-
ferent encodings. Each point in Figure 4.3 corresponds to an incremental verifi-
cation run of a single benchmark (changed program P2). Figure 4.3a and 4.3b

3The experimentation data including benchmarks, evaluation results, and the source code
repositories are available online at http://verify.inf.usi.ch/upprover

http://verify.inf.usi.ch/upprover
http://verify.inf.usi.ch/upprover

75 4.5 Experimental evaluation

10�1 100 101 102 103

10�1

100

101

102

103

UpProver with EUF

U
p
P
r
o
v
e
r

w
it

h
P
R
O
P

Device drivers Crafted TO MO PS

(a)

10�1 100 101 102 103

10�1

100

101

102

103

UpProver with LRA

U
p
P
r
o
v
e
r

w
it

h
P
R
O
P

Device drivers Crafted TO MO PS

(b)

10�1 100 101 102 103

10�1

100

101

102

103

UpProver with EUF

U
p
P
r
o
v
e
r

w
it

h
L
R
A

Device drivers Crafted TO PS

(c)

Figure 4.3. Demonstrating the impact of theory encoding by comparing timings
of LRA/EUF encodings in UpProver vs. Prop encoding. The inner lines TO and
MO refer to the time and memory limit. The outer lines PS refer to the results
that are potentially spurious due to the use of abstract theory.

compare the EUF/LRA-based encodings in UPPROVER against the Prop-based en-
coding in UPPROVER4. Almost universally, whenever run time exceeds one sec-
ond, it is an order of magnitude faster to verify with LRA and EUF than with
Prop.

In addition, a large number of benchmarks on the top horizontal lines sug-
gests that it is possible to solve many more instances with LRA/EUF-based en-

4The Prop-based summary reuse in UPPROVER depicted in Figure 4.4c uses the same algorithm
from its predecessor EVOLCHECK but has been significantly optimized compared to its earlier
version. Thus Prop-based UPPROVER can be seen as representative of EVOLCHECK.

76 4.5 Experimental evaluation

coding than with Prop-based encoding. However, the loss of precision is seen on
the benchmarks on the vertical line labeled potentially spurious (PS), indicating
if the verification result using LRA/EUF is unsafe, the result might be spurious
because of abstraction. Since UPPROVER only operates at one particular level of
precision at each run, once the tool reports Unsafe in EUF/LRA it is recommended
to confirm it by a stronger theory encoding.5

The results for benchmarks show the trade-off between the precision and run
time of incremental verification. In fact the theories are complementary. This
can be contrasted to the plot in Figure 4.3c where we extracted benchmarks that
have successful bootstrapping phase in both LRA and EUF and ended up with
2516 versions out of which 50% are strictly faster in EUF and 30% are strictly
faster in LRA. The time overhead observed in LRA compared to EUF is due to the
more expensive decision procedure.

4.5.2 Demonstrating the effect of summary reuse

To answer RQ 2 we demonstrate how summary reuse and summary repair benefit
incremental verification. To this end we first compare the performance of the
tool with and without summary reuse, and then we show how summary repair
results in more summaries while the overhead of producing more summaries is
negligible.

4.5.2.1 Incremental BMC vs monolithic BMC

The purpose of this section is to compare verification time of reusing the sum-
mary against not reusing it. As opposed to summary-based incremental check-
ing in UPPROVER that maintains and reuses over-approximating summaries of
the functions across program versions, a standalone BMC tool, e.g., HIFROG and
CBMC, creates a monolithic BMC formula and solves it as a standalone run with-
out reusing information from previous runs of other versions. In this section, we
compare UPPROVER with HIFROG as a representative sample of non-incremental
BMC tool. This choice is made because both tools use the same infrastructure
from CPROVER v5.11 to transform C program to obtain a basic unrolled BMC
representation that UPPROVER uses as a basis for producing the final logical for-
mula. Since UPPROVER and HIFROG share the same parser and the same SMT
solver OPENSMT the comparison is not affected by unrelated implementation
differences.

5The work in [Asadi et al., 2018] demonstrated the relation among some theories of SMT
from the perspective of over-approximation.

77 4.5 Experimental evaluation

10�1 100 101 102 103

10�1

100

101

102

103

With EUF summary reuse (UpProver)

W
it
h
o
u
t

s
u
m

m
a
r
y

r
e
u
s
e

(
H

iF
r
o
g
)

Device drivers Crafted TO MO

(a) EUF encoding

10�1 100 101 102 103

10�1

100

101

102

103

With LRA summary reuse (UpProver)

W
it
h
o
u
t

s
u
m

m
a
r
y

r
e
u
s
e

(
H

iF
r
o
g
)

Device drivers Crafted TO MO

(b) LRA encoding

10�1 100 101 102 103

10�1

100

101

102

103

With PROP summary reuse (UpProver)

W
it
h
o
u
t

s
u
m

m
a
r
y

r
e
u
s
e

(
H

iF
r
o
g
)

Device drivers Crafted TO MO

(c) Prop encoding

Figure 4.4. Incremental verification time of UpProver versus non-incremental
verification time of HiFrog on (a) EUF, (b) LRA, and (c) PROP encoding.

The plots in Figure 4.4 compare UPPROVER against HIFROG (non-incremental)
with three encodings EUF, LRA, and Prop. Each point in each plot corresponds
to verification run of a changed program, with the running time of UPPROVER

when reusing the summary of the first version on x-axis, and the running time of
HIFROG without reuse on y-axis. The plots demonstrate the performance gains
of incremental verification with reusing function summaries against not reusing
it. A large amount of points on the upper triangle lets us conclude that UPPROVER

is an order of magnitude faster than the corresponding non-incremental verifi-
cation for most benchmarks.

Table 4.1 provides more details on each encoding that would clarify the scat-
ter plots further. We use acronyms P1 and P2 for two versions of a program. The

78 4.5 Experimental evaluation

Table 4.1. Number of benchmarks solved by each encoding in UpProver.

EUF LRA PROP
Results P1 P2 P1 P2 P1 P2

Safe 2529 2514 2686 2663 1249 1186

Unsafe 268⇤ 11⇤ 95⇤ 20⇤ 31 15

Time Out (TO) 113 4 129 3 1536 37

Memory Out (MO) 0 0 0 0 94 11

Uniquely verified - 11 - 41 - 4

No summary (No-Sum) - 381 - 224 - 1661

Total program versions 2910

row Safe indicates the number of programs reported safe by each encoding. In to-
tal out of 2910 benchmarks, UPPROVER with LRA verified safe the largest amount
of P2, i.e., 92% and with EUF and Prop verified 85% and 40% respectively. The
row Unsafe indicates the number of programs reported unsafe by each encoding.
The unsafe results might be spurious when theory encodings were used (indi-
cated by an asterisk). In other words, for EUF/LRA, some of the Unsafe results
might be a real error, but some are definitely false alarms. The row TO shows
that while UPPROVER with Prop times out in 53% of the benchmarks, for LRA and
EUF this happens for less than 1%. The row MO shows that with Prop encoding,
UPPROVER exceeds the memory limit in 105 benchmarks of P1 and P2, for LRA
and EUF this does not occur.

The row uniquely verified programs indicates how many P2 can be incremen-
tally verified safe in each encoding exclusively. The count of the uniquely verified
using LRA is comparable to other encodings where 41 instances are not solved
by any other encoding. Even though, LRA solves the most safe program versions,
there are several benchmarks that can be uniquely verified by EUF (11 instances)
and by Prop (4 instances). These distinctly verified programs in each encoding
can be included in a portfolio.

The row No-Sum represents the cases where there are no possibility to per-
form incremental verification because no function summaries were produced in
the bootstrapping phase. This can happen when the bootstrapping verification of
P1 results in Unsafe, TO, or MO. The Prop encoding results in the highest rate of
No-Sum, i.e., 57% (1661) which is the summation of Time Out, Memory Out, and
Unsafe results of bootstrapping of P1. This asserts that using the rigid approach

79 4.5 Experimental evaluation

of bit-blasting for majority of our real-world benchmarks obstructs the incremen-
tal verification. On the contrary, LRA and EUF encodings have a relatively small
rate of No-Sum.

It is worth noting that we compared the results of UPPROVER with the ex-
pected results of SVCOMP, since most benchmark names indicate the expected
result. Out of 2910 pairs of benchmarks, 2794 pairs had both versions classi-
fied as safe. However, for the remaining 116 benchmarks, no expected result
was provided and they were marked as unknown, thus we are unable to obtain
precise numbers for Unsafe benchmarks. For Safe benchmarks, we never encoun-
tered any disagreement with the expected results. This indicates a high degree
of accuracy for UPPROVER in verifying safe benchmarks with theories. However,
for EUF/LRA, Unsafe results might be either real error or false alarms. Due to
these unknown benchmarks, we are unable to report the exact number of false
alarms for Unsafe benchmarks in theory and we mark them with asterisk.

The overall findings from our experiments show evidence for the following
key points: precision and performance-gain present a trade-off. UPPROVER with
EUF and LRA have a better performance compared to the bit precise Prop encod-
ing and are crucial for scalability. At the same time, there is a small number of
benchmarks that require Prop. Despite the fact that bit-blasted models are more
expensive to check than the EUF and LRA models, we find it surprising that the
light-weight encodings succeed so often. In practice, the encodings complement
each other, and the results imply an approach where the user gradually tries
different precisions until one is found that suits the programs at hand.

4.5.2.2 Number of repaired summaries

In this section, we measure the number of repaired summaries that are gener-
ated by two out of the box LRA interpolation algorithms. Recall the two phases
of the repair in the proposed algorithm: once an existing summary is marked
invalid for a changed function f , Algorithm 5 first weakens the summary by re-
moving broken conjuncts of the summary. In case the weakened summary is not
strong enough, Algorithm 4 (line 17) strengthens the weakened summary by re-
computing interpolants for f and conjoining with the weakened summaries. We
shortlisted 43 pairs of C programs whose summaries was repaired at least once
during incremental verification.

Figure 4.5 depicts the count of two types of repair in LRA. We use acronymsW
for weakening, ItpD for decomposing Farkas interpolation algorithm, and ItpF for
Farkas interpolation algorithm. We ran Algorithm 1 with LRA encoding over the
shortlisted programs and generated 3837 LRA summaries in total, out of which

80 4.5 Experimental evaluation

ItpD+W ItpF+W

1,
04

3

1,
00

7

49

29

#Repaired by
interpolation

#Repaired by
weakening

Figure 4.5. Number of repaired summaries in LRA.

1043 summaries were strengthened by ItpD interpolation and 49 summaries were
weakened by W. The remaining summaries were either used without any repair,
or unused at all due to their corresponding functions did not have change, thus
no summary validation performed. Similarly, 1007 and 29 of summaries were
repaired by ItpF and by W respectively.

We can also view the result of this experiment from a different perspective.
It can be seen as a way to test how good the interpolants are and how benefi-
cial is the summary weakening. In the summary validation phase in UPPROVER,
the more general interpolants are, the more likely they contain changes of the
functions in the second version. Experimenting with ItpD and ItpF algorithms for
producing LRA interpolants, shows that almost always they were as good as they
could obtain more summaries with W technique. Observing that 49 summaries
out of 3837 could be weakened further, implies that pre-computed interpolants
are already as weak as possible but strong enough to be safe.

Now that we have an estimate of the number of function summaries repaired
by W, the question becomes how much overhead time this approach adds up to
the overall process of UPPROVER.

4.5.2.3 Overhead of summary repair

In the following, we study the overhead of weakening (W) process in the verifi-
cation time. Figure 4.6 compares the runtime of UPPROVER when reusing sum-

81 4.5 Experimental evaluation

0 200 400 600 800

0

200

400

600

800

Decomposed interpolants with W

D
e
c
o
m

p
o
s
e
d

in
t
e
r
p
o
la

n
t
s

Device drivers Crafted

Figure 4.6. Incremental verification
time of UpProver with LRA decom-
posed interpolants with and without
weakening (W).

0 200 400 600 800

0

200

400

600

800

EUF interpolants with W

E
U
F

in
t
e
r
p
o
la

n
t
s

Device drivers Crafted

Figure 4.7. Incremental verification
time of UpProver with EUF with
and without weakening (W).

maries generated by ItpDwith and without W6. In 60% of the benchmarks ItpD

with W outperform or equal to ItpD. In 32% strictly ItpD with W faster than ItpD,
whereas in 41% ItpD is strictly faster than ItpD with W. This reveals that in most
of the cases not only weakening of summaries did not introduce considerable
overhead, but also sometimes outperform the cases without W. For instance,
the cases that are above 200 seconds, 29 benchmarks with ItpD and W strictly
outperform ItpD, suggesting that the ItpD is not undesirable.

Overall, the results imply that summaries repaired by W and strengthened
by ItpD are beneficial in a sense that leads to more summaries in the end, and
even shows speed-up in some benchmarks compared to disabling W, thus did
not affect the overall performance.

In Figure 4.7 we compared the runtime of UPPROVER in theory of EUF with
and without W. Concretely, at the area of around 350 to 800 seconds we observe
6 points above diagonal line confirms out performance of W, whereas 3 points
below diagonal shows that pure EUF without W performs better.

Table 4.2 gives further details on 14 representative pairs of benchmarks whose
change type are substantially different and whose summaries had a chance of be-
ing repaired at least once. The table consists of four configurations in LRA. Each
row refers to a pair (P1, P2) of programs. The columns highlighted in gray color
refers to enabling summary weakening feature in the algorithm. The columns
highlighted in blue color refers to disabling summary weakening feature in which

6The results with ItpF is similar.

82 4.5 Experimental evaluation

Table 4.2. Detailed verification results for four setups in LRA

Bootstrapping Diff Farkas Farkas with W Decomposed Farkas
Decomposed Farkas

with W

pr
og

ra
m

pa
ir

in
te

rp
ol

at
io

n
tim

e

(s)

in
iti

al
su

m
m

ar
y

#

pr
es

er
ve

d
fu

nc
tio

n

#
ch

an
ge

d
(�
)

#

di
ff

tim
e

(s)

va
lid

at
io

n
ch

ec
k

#

re
pa

ir
ed

by
itp

#

in
cr

em
en

ta
lt

im
e

(s)

va
lid

at
io

n
ch

ec
k

#

re
pa

ir
ed

by
W

#

re
pa

ir
ed

by
itp

#

in
cr

em
en

ta
lt

im
e

(s)

va
lid

at
io

n
ch

ec
k

#

re
pa

ir
ed

by
itp

#

in
cr

em
en

ta
lt

im
e

(s)

va
lid

at
io

n
ch

ec
k

#

re
pa

ir
ed

by
W

#

re
pa

ir
ed

by
itp

#

in
cr

em
en

ta
lt

im
e

(s)

1 0.1 19 23 1 0.1 2 1 1.8 6 1 0 2.2 2 1 1.8 6 1 0 2
2 0.1 19 22 2 0.1 2 1 1.9 5 1 3 2.3 2 1 1.9 5 1 3 2.2
3 0.1 19 23 1 0.1 2 3 2.8 5 1 4 4 2 3 2.8 5 1 4 3.8
4 0.1 16 18 1 0.1 2 1 3.2 4 1 0 3 2 1 3.1 4 1 0 2.9
5 0.1 5 14 5 0.1 5 2 3 8 1 0 3 5 2 3 8 1 0 2.8
6 0.1 5 14 5 0.1 5 2 3 8 1 0 3 5 2 3.2 8 1 0 2.7
7 0.1 4 3 4 0.1 5 4 0.2 5 0 4 0.2 5 4 0.2 7 1 3 0.2
8 3.9 370 947 159 0.2 33 50 42 33 0 50 41 33 50 41 34 1 49 36
9 1.7 448 1401 665 1.5 72 313 161 72 0 313 160 72 311 186 78 1 306 166
10 1.4 184 634 39 0.1 21 2 42.7 27 1 0 39 21 2 43 27 1 0 43
11 18.8 765 1265 787 0.5 214 268 147 225 2 268 146 214 268 144 225 2 268 144
12 3.9 325 763 131 0.2 47 87 114 52 1 88 114 47 87 113 51 1 88 112
13 8.4 474 1300 52 0.5 27 64 64 37 1 66 77 27 64 57 37 1 66 86
14 4.4 412 1060 63 0.4 34 53 65 36 1 54 58 34 53 59 36 1 54 66

the summaries are repaired only by re-computation through interpolation. The
column interpolation time shows the time for generating all summaries after suc-
cessful bootstrapping of P1 and initial summary the number of function sum-
maries in P1 which are non-trivial, i.e., are not simply true formula.The column
preserved refers to the number of functions that stayed the same in P2 and �
to the number of changed functions in P2. The column diff time shows the time
taken by difference-checker to identify changes between P1 and P2. The column
validation check refers to iterative validation checks of summaries for checking
the containment of summaries. The columns repaired by itp and repaired by W

indicate the number of newly established summaries by re-computation through
interpolation and weakening respectively.

Overall, the numbers in the column validation check are higher when W is
used since the algorithm has to iterate more to find a subset of conjuncts in the
summary formula. Nevertheless, there are benchmarks, highlighted in bold, that
show that the performance improves with the use of W. This happens because
the weakened summaries can contain more changes and thus be more suitable for
incremental verification. Interestingly, the columns repaired by itp and repaired
byW show that wheneverW is used, more summary formulas are produced. This
is desirable for incremental verification. We see from the experiments that the in-
crease in the number of summary formulas results both directly from weakening
the summaries and indirectly because each successful validation check generates
new interpolants.

83 4.5 Experimental evaluation

0 5 10 15 20 25

0

10

20

UpProver speedup with summary reuseC
P
A
c
h
e
c
k
e
r
s
p
e
e
d
u
p
w
it
h
p
r
e
c
is
io
n
-r
e
u
s
e

Figure 4.8. Speedup in UpProver with LRA summary reuse vs. speedup in
CPAchecker with precision reuse.

4.5.3 Comparison of UpProver and CPAchecker

To answer RQ 3, we compare UPPROVER with a widely-used tool CPACHECKER

which is able to perform incremental verification by reusing abstraction preci-
sions. It is an orthogonal technique to ours, i.e., it is an unbounded verifier and
aims at finding loop invariants. Thus, comparing running times does not make
sense since running times in UPPROVER crucially depend on the chosen bound.7

Instead, we focus on comparing the speedups obtained with the two techniques
since the change of a bound affects a speedup less.

Here we report the results only on device driver instances which both tools
could handle. Out of 250 device drivers categories given in https://www.sosy-lab.
org/research/cpa-reuse/predicate.html, we selected 34 categories which
are suitable for UPPROVER.8 These categories contain in total 903 verification
tasks.

Figure 4.8 shows the comparison of speedup in UPPROVER and CPACHECKER.
A large amount of points on the lower triangle reveals that summary reuse in UP-
PROVER achieves superior speedup than the precision reuse in CPACHECKER. The
average speedup in UPPROVER with LRA summary-reuse is 7.3 with a standard
deviation of 6 and in CPACHECKER the average speedup is 2.9 with a standard de-
viation of 1.7. UPPROVER reported 4 slowdowns among 34 categories, whereas

7For instance, the average running times in CPACHECKER is 285.3 seconds and in UPPROVER
with LRA is 13.4 seconds for chosen bound 5. For other bounds UPPROVER would have different
average running times.

8The reported version of UPPROVER is restricted by its dependency on the CPROVER5.11 frame-
work which impedes its frontend from processing some benchmarks.

https://www.sosy-lab.org/research/cpa-reuse/predicate.html
https://www.sosy-lab.org/research/cpa-reuse/predicate.html

84 4.6 Related work

this was not the case for CPACHECKER.

4.6 Related work

The problem of incremental verification is not as studied as model checking
of standalone programs. There are still several techniques and tools [Conway
et al., 2005; Sery et al., 2012b; Beyer et al., 2013; Trostanetski et al., 2017; He
et al., 2018; Rothenberg et al., 2018; Beyer et al., 2020] which the central in-
centive behind these lines of work is the ability to reuse intermediate results that
were costly computed in previous verification runs, thus achieving performance
speedup in the verification of later revisions compared to verification of programs
in isolation. Works in this area vary based on the underlying non-incremental
verification approach used, which defines what information to be reused and
how efficiently so. Various information has been proposed for reuse, including
state-space graphs [Lauterburg et al., 2008], constraint solving results [Visser
et al., 2012], and automata-based trace abstraction [Rothenberg et al., 2018].
However, these groups of techniques are orthogonal to the proposed approach
as we store and reuse the interpolation-based function summaries in the context
of BMC for verifying revisions of programs. Moreover, apart from pure reusing
the previous computations, the proposed technique repairs the already generated
summaries to increase the chance of reusability.

Another approach towards efficiently verifying evolving programs, which is
the one we compare in this thesis, is based on the reuse of previously abstraction
precision in predicate abstraction CPACHECKER [Beyer et al., 2013]. Apart from
the inherent difference that CPACHECKER is an unbounded verifier and UPPROVER

is a bounded model checker, we differ from this in that we base the proposed
approach on proof-based computing of interpolants and repairing them on the
fly, therefore in some sense are able to store more information from the previous
runs.

Other techniques for incremental verification of program revisions include
reusing inductive invariants in Constrained Horn Clause across programs by guess-
ing syntactically matching variable names [Fedyukovich et al., 2014, 2016]. How-
ever, these techniques can be applied only for programs sharing the same loop
structure. In contrast, the proposed approach is applicable for all sorts of pro-
gram changes in a bounded model. However, when the changes are substantial,
there would not be much summary reuse even with the summary repair.

Other techniques for verifying program versions are based on relational verifi-
cation (also known as regression verification or equivalence checking) which are

85 4.6 Related work

used to prove equivalence of closely related program versions. To tackle the prob-
lem of formally verifying all program revisions various techniques and tools have
been proposed for the last two decades [Hardin et al., 1996; Godlin and Strich-
man, 2009]. Existing relational verification approaches leverage the similarities
between two programs so that they verify the first revision, and then prove that
every pair of successive revisions is equivalent [Lahiri et al., 2013; Pick et al.,
2018; Shemer et al., 2019; Mordvinov and Fedyukovich, 2019; Felsing et al.,
2014]. Since checking exact equivalence is hard to fulfill and not always prac-
tical, there is a group of techniques that check for partial equivalence between
pairs of procedures [Yang et al., 2014; Lahiri et al., 2012; Godlin and Strichman,
2009] or check conditional equivalence under certain input constraints [Lahiri
et al., 2013]. Despite the evident success, these techniques are sound but not
complete.

The work in [Godefroid et al., 2011] investigates the effects of code changes
on function summaries used in dynamic test generation. This approach is also
known as white-box fuzzing which includes running a program while simultane-
ously symbolically executing the program to collect constraints on inputs. The
aim of [Godefroid et al., 2011] is to discover summaries that were affected by
the modifications and cannot be reused in the new program version. Since this
approach relies on testing, it suffers from the problem of path explosion, i.e., all
program paths are not covered. However, this work is orthogonal to the pro-
posed approach as we construct and repair function summaries in a symbolical
way, thus the proposed approach allows encoding of all paths of an unrolled
program into a single formula.

A group of related work includes techniques using interpolation-based func-
tion summaries (such as [McMillan, 2010; Albarghouthi et al., 2012b; Sery et al.,
2011]) for the standalone programs. Although these works do not support pro-
gram versions, we believe that the proposed incremental algorithm may be in-
stantiated in their context similar to how we instantiated it in the context of
HIFROG. The bootstrapping phase of the proposed solution of this chapter is
built on top of HIFROG, an approach for constructing and reusing interpolation-
based function summaries in the context of Bounded Model Checking. In later
work [Asadi et al., 2018] we propose to use function summaries more efficiently
by lifting function summaries into various SMT levels, thus information obtained
from one level of abstraction could be reused at a different level of abstraction.

The work we find most closely related to ours is EVOLCHECK, the predecessor
of UPPROVER, which works only at the propositional level and uses the function
summaries only in a bit-precise encoding. Consequently, despite being an in-
cremental approach, EVOLCHECK is computationally expensive in many cases in

86 4.7 Synopsis

practice. Whereas, the proposed approach allows flexibility in balancing between
verification performance and precision through both program encoding and the
choice of summarization algorithms. As a result of the high-level encodings, UP-
PROVER summaries serve as human-readable certificates of correctness expressing
function specifications.

4.7 Synopsis

We addressed the problem of verifying a large number of programs, in particular,
when they are closely related. To avoid expensive full re-verification of each
program version and repeating a significant amount of work over and over again,
our proposed algorithm operates incrementally by attempting to maximally reuse
the results from any previous computations.

In this chapter, we exploited an SMT-based family of summaries that con-
denses the relevant information from a previous verification run to localize and
speed up the checks of new program versions. In this approach, the problem
of determining whether a newly changed program still meets a safety property
reduces to the problem of validating the family of summaries for the new pro-
gram. As a result, in practice the verification is localized to the changed parts of
the system, resulting in significant run time improvements. The key contribution
of this work lies in enabling this flexibility by SMT encoding and exploiting the
SMT summarization. Having SMT encoding allows for a lot of flexibility when
reusing and repairing the summaries leading to the optimization of the whole
process which was not possible in the previous SAT-based approach. To achieve
incrementality, the proposed algorithm constructs and reuses SMT-based function
summaries to over-approximate program functions. It also provides an innova-
tive capability of repairing previously computed summaries by means of iterative
weakening and strengthening procedures. Moreover, it offers an efficient way of
building formulas and refining them on-the-fly. Through extensive experimenta-
tion, we demonstrate that the proposed approach advances the state of the art in
incremental verification of program revisions and is significantly more efficient
than its predecessor EVOLCHECK and non-incremental BMC approach.

4.8 Limitation and Future work

While the results of the incremental verification of program revisions are highly
encouraging, there are limitations on the usefulness of the results in today’s soft-

87 4.8 Limitation and Future work

ware engineering practices, e.g., for substantial program changes such as ex-
changing libraries or data structures with non-local changes. A restriction of
UPPROVER algorithm is that the considered program changes should be small,
such that the properties of the earlier program version mostly carry over to the
new version. Another shortcomings of this approach in practice is that it only
considers somewhat small changes. More research is needed in this area, and
therefore, it would be interesting to investigate incremental verification of pro-
gram versions without restricting our approach to specific local changes. For
instance, in the case of structural changes, such as merging two function calls
into a single call, an interesting idea would be to glue both of the old summaries
and the code between their bodies, and eliminate local variables using quantifier
elimination techniques which should not appear in the merged summary.

As future work, one can investigate incremental verification of program ver-
sions without bounds, i.e., unbounded incremental verification of program revi-
sions. This requires to reduce the problem of determining whether a changed
program still meets the safety property, w.r.t. which the invariants were created,
to the problem of adapting these invariants on the changed program. Thus the
key idea will be lifting safe inductive invariants across program modifications. In
case the complete invariant lifting is not possible, one can leverage the state-of-
the-art invariant synthesizers to construct invariants for the missing parts of the
invariant. In the potential future work one can perform integrating a portfolio
of well-known invariant synthesis algorithms into our incremental verification
framework and systematically evaluate their impact on incremental verification
of different tasks. This work can be based on Constrained Horn Clauses to take
full advantage of concisely expressing the verification problem.

Another potential avenue for enhancing the refinement process is the devel-
opment of new heuristics for candidate selection. This thesis focuses on localized
refinement of theories via the technique of theory refinement, wherein a single
counterexample is utilized to determine the refinement. However, it would be
worthwhile to explore a proof-based heuristic for refining the theories, which
could potentially yield more relevant refinements. In situations where a larger
pool of counterexamples is available for refinement, utilizing a single counterex-
ample may prove difficult for generalization purposes. Hence, exploring alter-
native refinement techniques could prove fruitful for achieving more effective
results. This will be a topic of interest for future research.

Chapter 5

Model checking by theory
transformation

As motivated before, one of the major issue with the SMT-based program verifi-
cation is that as the level of abstraction increases, missing important details of
the program model becomes problematic. Precision is traded for performance by
increasing the abstraction level of the model.

The previous chapters proposed an approach for SMT-based BMC. However,
the main issue with SMT encoding of programs is that the light-weight theories
are often imprecise. This means if a program is encoded in SMT, it may not
be a ready-to-use solution for verification; it would require various (sometimes
major) tuning to be reliable. Exploring such trade-offs between precision and
the right level of abstraction is a challenge in program verification.

This chapter addresses this problem with an incremental verification approach
that alternates precision of the program modules on demand. The idea is to
model a program using the lightest possible (i.e., less expensive) theories that
suffice to verify the desired property. This chapter proposes a new abstraction
refinement approach to support the proposed integrated method and remove
possible spurious behaviors introduced by the consequent lost of precision. Fi-
nally, in order to make the full advantage of already generated abstract models
this chapter proposes a technique for tuning the abstractions via transformation
of one theory to another one. Designing the theory interface enables migrating
information among formulas in different theories.

To make the verification scalable, the proposed technique employs safe over-
approximations for the program based on both function summaries and light-
weight SMT theories. An over-approximating function summary enables reuse of
information among verification runs. If during verification it turns out that the

89

90 5.1 Overview of the technique

precision is too low, the proposed approach lazily strengthens all affected sum-
maries or the theory through an iterative refinement procedure. The resulting
summarization framework provides a natural and light-weight approach for car-
rying information between different theories. To the best of our knowledge this
is the first integrated system for SMT-based model checking in which a sequence
of safety properties is verified incrementally. With keeping the ultimate goal in
mind, incremental verification scalable to large-scale programs, we break down
the contributions of this chapter into several parts:

• A novel approach to incremental verification that lazily identifies, among
several suitable candidates, the lightest level of encoding for each given
property.

• A theory interface for exchanging function summaries among formulas in
different theories.

• An algorithm to leverage both function summaries and the overall preci-
sion of the program encoding that in practice demonstrates a competitive
performance on a range of large-scale programs where the state-of-the-art
model checker CBMC runs out of time or memory.

5.1 Overview of the technique
In this section, we give a high-level overview of the proposed approach. As pro-
grams become larger and more complex, they need more elaborated specifica-
tions to be verified for safety. Specifications with multiple properties are expen-
sive to check as a significant amount of work is repeated over and over again.
To overcome this issue, a verifier needs to operate incrementally. That is, the
results obtained while verifying different properties should be reused to avoid
wasting resources. When a specification involves certain amount of closely re-
lated properties, the incremental approaches are capable of avoiding verifying
each property from scratch, and instead, they automatically identify and focus
on small “deltas” in the verification conditions (see the solution presented in
Chapter 4).

Verification approaches based on SMT represent a program together with a
specification in first-order logic. Often the specification is naturally expressible as
a set of individual properties. Given a specification consisting of multiple proper-
ties, each property requires its own encoding that is precise enough to show the
absence of spurious counterexamples to the property. In a real sense, this means

91 5.2 Motivating example

that each formula requires its own theory: for example, some properties might
be provable with a lightweight and inexpensive encoding, such as the one to
the theory of equality and uninterpreted functions (EUF), while other properties
might require expensive bit-precise reasoning. Identifying automatically which
theory is suitable for verifying each property is challenging. In the incremental
verification setting, maintaining such a framework gives new challenges.

Summaries are constructed using Craig interpolation after a successful verifi-
cation run for one property and used as a light-weight replacement of the precise
encoding of the corresponding functions while verifying other properties. In this
study, we propose an algorithm that effectively incorporates different theories for
incremental verification of multiple properties via creation, reuse, and refine-
ment of function summaries.

Overal, the proposed algorithm works as follows. Given a program, a se-
quence of properties to verify, and an initially empty set of function summaries
in several available theories T1, . . . ,Tn, the algorithm encodes the program and
the current property using the least precise theory T1 and the least precise sum-
maries available. In case the algorithm finds a proof, the result is sound since we
guarantee that both the theories and the summaries always over-approximate
the concrete program. The proposed algorithm starts with imprecise encodings
since, if sufficient for proving a property, it lowers the cost of summarization
and results in more compact summaries. If no proof is found, the algorithm in-
creases the precision lazily. Assume that the problem is currently encoded using
the theory Ti. In the phase called local refinement, the algorithm sequentially
adds summaries translated from theories T j, j 6= i to Ti and checks if the prop-
erty in this encoding is provable. The algorithm enters the second phase, global
refinement, where the problem is encoded in a more precise theory Ti+1, only
when all summaries are already tried on theory Ti. Then the algorithm returns
to the local refinement again. Similarly to [Sery et al., 2011], the proposed al-
gorithm is capable of generating new function summaries and identifying actual
bugs. The proposed refinement procedure is driven by a counterexample-guided
analysis that distinguishes spurious counterexamples from the real ones.

5.2 Motivating example

Figure 5.1 (left) shows a C program with a function call containing non-linear
operations and two user-defined assertions. The (simplified) encoding of the C
program to an SMT formula is shown in Figure 5.1 (right). The resulting for-
mula consists of five parts: a conjunct representing function main, two equiva-

92 5.2 Motivating example

int a, b, c;

void func() {
c = b;
if (a > 0) a = b;
int m = 0;
for (int i = 0; i < 100; i++)
m += a*b;
b = m;
}

int main() {
a = nondet(); b = nondet();
if (a <= 0) return -1;
func();
assert(a == c);
if (a > 0) {
func();
if (c > 10) assert(a > 7);
}
return 0;
}

Program in C with non-linear arithmetic

//encoding of 1st call of ‘func’
c1 = b0^
a1 = i te(a0 > 0, b0, a0)^
m0 = 0^
L_UNW1^
b1 = m10^

//encoding of 2nd call of ‘func’
c2 = b1^
a2 = i te(a1 > 0, b1, a1)^
m11 = 0^
L_UNW2^
b2 = m21^

//encoding of function ‘main’
a0 > 0^ a1 > 0^ c2 > 10

/negation of 1st assertion
¬(a1 = c1)

//negation of 2nd assertion
¬(a2 > 7)

Modular encoding into SMT formula
suitable for summarization

Figure 5.1. Program in C with non-linear arithmetic.

lent (modulo renaming) conjuncts representing calls of func, and two conjuncts
representing the negated assertions. As customary in BMC, each program vari-
able has its indexed copies (induced by the single static assignment form). The
formulas L_UNWi, i 2 {1, 2}, represent a loop unwinding.

The proposed approach can verify the two assertions in the code Figure 5.1
incrementally. It is not hard to see that the program is safe with respect to both
assertions. However, verification of this program using bit-precise encoding is
expensive.

The proposed algorithm tries the less precise but easier to solve theory of
EUF as the level of abstraction first, leading to successful verification of the first
assertion almost immediately. Moreover, it generates and stores a summary for
function func. To verify the second assertion, reasoning over theory of LRA is
necessary. It cannot be verified at the same level of abstraction as the first asser-
tion, so the algorithm moves to the more precise encoding using linear arithmetic.
The proposed algorithm presented later in the chapter enables to translate the

93 5.3 Theory-based model refinement

summary for func from EUF to LRA and to reuse it to successfully verify the
second assertion.

5.3 Theory-based model refinement

This section presents a general framework that allows a translation back and
forth among theories of SMT with different level of precision.

This study views the problem of bounded model checking of C programs as
a decision problem which is (i) decidable, and (ii) not based on Nelson-Oppen
theory combination [Nelson and Oppen, 1979]. This chapter therefore concen-
trates in the proposed framework on four theories of interest: the quantifier-free
theories of EUF, LRA, non-linear real arithmetic (NRA), and bit-vectors (BV)1.
As a result, we obtain a decision procedure that has a relatively low complexity.
The proposed framework, called theory interface, provides a common place from
which the theories are instantiated, and to which they can also be converted
back. This theory interface is not aimed to be passed to an SMT solver, but in-
stead provides an infrastructure through which an instance from one theory can
be converted to an instance from another theory.

The transformation from a theory T to the theory interface and back can be
expressed in the theory-specific instantiations of the following rules, where [�]T

denotes that the expression � is encoded using theory T:

[f (t)]T

f ([t]T)
if f ([t]T) in T [f (t)]T

vf (t)
if f ([t]T) not in T (5.1)

We use the notation f (t) to abbreviate f (t1, . . . , tn), and f ([t]T) to abbreviate
f ([t1]T, . . . , [tn]T). Above we write f ([t]T) in T, if f 2 ⌃ and there is a derivation
recursively using the rules (5.1) such that f ([t]T) is expressible in T. This chapter
denotes by vf (t) a variable that is unique to the expression f (t). For example, the
expression f (x , x) is not expressible in the theory of linear real arithmetic if f
is the multiplication operation and x is a variable, and therefore the result of
applying the rules (5.1) is vx⇤x . To simplify slightly the notation, we define a
bijection M that maps terms f (t) to the variables vf (t). For completeness, this

1For the signature of bit-vectors, we use a modification presented in [Hyvärinen et al., 2017]
that preserves the high-level programming language structures to facilitate the proofs of over-
approximation.

94 5.3 Theory-based model refinement

LRANRAEUF

 Theory Interface

BV

Figure 5.2. Theory interface between EUF, LRA, NRA, and BV. The horizon-
tal arrows demonstrate the relation among these theories from the perspective
of over-approximation. This relation is a part of the contribution of this study.

chapter presents the three rules for transforming non-atomic formulas

[�1 ^�2]T

[�1]T ^ [�2]T
[�1 _�2]T

[�1]T _ [�2]T
[¬�]T
¬[�]T (5.2)

that are independent of a theory and thus common to all transformations.

5.3.1 Theory Interface
A theory interface T uni is a general representation for formulas that we use for
transformation among theories. Figure 5.2 outlines a communication among our
four theories of interest. Because this chapter aims at using from early on a light-
weight theory that suffices for reasoning, over-approximation among theories is
at the core of speeding up the solving procedure. In the rest of this section, we
formally define a theory interface and establish a relation among theories in a
sound way.

Definition 9 (Theory interface T uni) Let S⌃ be a set of formulas and R⌃ be a set
of terms (recall Section 2.4). Given a sequence of theories T1, . . . ,Tn with signatures
⌃1, . . . ,⌃n respectively, a theory interface T uni is a tuple h⌃,M1, . . . ,Mniwhere⌃ def=
⌃1[· · ·[⌃n, and each Mi is a bijective mapping Mi : (S⌃[R⌃)\ (S⌃i

[R⌃i
)! Xi

where {Xi}0<in are pairwise disjoint sets of unique variables not used anywhere
else.

Intuitively, Mi replaces the formulas and terms that are not expressible in
theory Ti by unique fresh variables. Note that for every Ti, S⌃i

✓ S⌃ and R⌃i
✓

R⌃.
The projection of T uni to one of the theories Ti is done by the following rules.

First, if f (t) 2 S⌃i
(i.e., is expressible in theory Ti), then it is projected to Ti

95 5.3 Theory-based model refinement

without changes. Second, if f (t) /2 S⌃i
(i.e., is not expressible in theory Ti),

then we replace it by a fresh symbol Mi(f (t))
def= vf (t) 2 Xi. For transformation

in the opposite direction, i.e., Ti to T uni, we define the inverse function M�1
i as

M�1
i : vf (t) 7! f (t) for vf (t) in the range of Mi.
In the following, we develop a set of translation functions to different theories

and build the over-approximation relation among these translation functions.
Given a formula � in theory interface T uni and an arbitrary theory T, we write
TrT(�) for the translation from � to T.

Definition 10 (over-approximation) Let � be a formula in T uni, and T1 and
T2 two arbitrary theories. The two translation functions, TrT1

(�) and TrT2
(�)

convert the original formula � into T1 and T2 respectively. We say that T1 over-
approximates T2 if

TrT1
(�) |= ? implies TrT2

(�) |= ? (5.3)

This section gives the specifics for the theories EUF and LRA, but in the interest
of space, provide the rules of transformation from theory interface to BV and NRA
in Appendix A. To establish the over-approximation relation, we assume in this
chapter that the programs being verified admit no overflows or underflows, and
that their semantics can be exactly captured by BV.

Definition 11 (Theory of EUF) Let X be a set of variables and F be a set of func-
tion symbols with arities. An Equality logic formula with uninterpreted functions
(EUF) is defined by the grammar

t rm ::= const
| var
| f (t rm, . . . , t rm) where f is uninterpreted

f la ::= Bvar
| p(t rm, . . . , t rm) where p is uninterpreted

| t rm= t rm | t rm 6= t rm |> |? | ¬ f la
| f la ^ f la | f la _ f la |

where f la is a quantifier-free formula, var 2 X, f 2 F, and const 2 C. With the
exception of equality and disequality (=, 6=), function and predicate symbols are
treated as uninterpreted.

Semantically, EUF has the axioms of reflexivity, symmetry and transitivity for the
symbol of equality, and congruence axiom for function and predicate symbols

96 5.3 Theory-based model refinement

(x = y) ! (f (x) = f (y)) and (x = y) ! (p(x) $ p(y)) where x = y is an
abbreviation for (x1 = y1)^. . .^(xn = yn) and f and p are function and predicate
symbols, respectively, of arity n.

Definition 12 (Theory of LRA) A quantifier-free formula in the language of the-
ory of Linear Real Arithmetic (LRA) is defined by the following grammar:

t rm ::= const
| var
| const ⇤ var
| f (t rm, . . . , t rm) where f 2 {+}

f la ::= Bvar
| p(t rm, . . . , t rm) where p 2 { , < }
|> |? | ¬ f la
| f la ^ f la | f la _ f la |

where var are variables, and const is a rational number.

5.3.2 Encoding of theory interface into specific theories
Light-weight theories help removing overly complex or irrelevant details from
the encoding of a program whenever possible. We define the following rules for
the theory-specific part of the transformation from T uni to EUF:

[v]EUF

v v is a variable or a constant

[t1 = t2]EUF

[t1]EUF = [t2]EUF

[t1 ./ t2]EUF

(¬[t1 = t2]EUF)^ ([t1]EUF ./ [t2]EUF)
./2 {>,<}

[f (t)]EUF

f ([t]EUF)
otherwise

(5.4)

Note that in the third rule of (5.4), if the function symbol > or < is applied
over the terms of theory interface, it can be simply translated into a disequality
in EUF. All the other cases in the signature of theory interface which cannot be
applied in the first three rules such as {,�, . . .} are handled by the fourth rule.

97 5.3 Theory-based model refinement

Theorem 2 For every � 2 T uni, TrEUF(�) |= ? implies TrBV(�) |= ?.

Proof 3 We show that every model in BV can be translated to a model in EUF.
Assume that there is a satisfying assignment in BV, such that a = b holds for two
bitvectors a and b. This can be trivially translated to an equality a = b in EUF. In
case of equality of two function applications f (a) = f (b), we utilize the congruence
rule in EUF, assuming that each function in BV is implemented as a deterministic
circuit.

We define the following rules to transform T uni to LRA 2:

[t1 = t2]LRA

([t1]LRA [t2]LRA)^ ([t2]LRA [t1]LRA)
(5.5.1)

[v]LRA

v v is a variable or an integer constant (5.5.2)

[t1 + t2]LRA

[t1]LRA + [t2]LRA (5.5.3)

[� t1]LRA

(�1) ⇤ [t1]LRA (5.5.4)

[t1 ⇤ t2]LRA

[t1]LRA ⇤ [t2]LRA t1 or t2 is an integer constant (5.5.5)

[f (t)]LRA

M(f (t)) otherwise (5.5.6)

(5.5)

The rule (5.5.6) uniquely associates the expression with a fresh variable. Es-
sentially this rule is used for over-approximation of all the expressions that can-
not be expressed in sufficient precision in LRA. The rules (5.5.2) and (5.5.5)
operate only on integer constants in order to preserve the soundness of transla-
tion between LRA and BV. Example 3 illustrates this case in detail.

Example 3 (Over-approximation of BV by RA) Consider the following excerpt
of a program written in C: int x = 1; int y = 0.5 * x; assert (y == 0);
Let � def= x = 1^ 0.5 ⇤ x = 0 represent the corresponding SMT representation. Fol-
lowing the semantics of C, a bit-precise encoding of � is satisfiable since 0.5 ⇤ 1

2We assume that before undergoing a transformation, a preprocessing is done for the sake of
normalization, e.g., �1 ⇤ 2 ⇤ x is normalized to �2 ⇤ x .

98 5.3 Theory-based model refinement

is truncated to 0. However, an LRA-encoding of � is unsatisfiable. According to
Definition 10, this means that LRA does not over-approximate BV. In order to
get that over-approximating behavior, we impose restrictions on LRA rules (5.5.2)
and (5.5.5) and apply rule (5.5.6) when these restrictions are not met. The trans-
lation applied to � results in x = 1 ^ v0.5⇤x = 0 which is satisfiable in LRA. The
same restrictions are imposed in NRA (see Appendix A).

Theorem 3 For every � 2 T uni, TrLRA(�) |= ? implies TrBV(�) |= ?.

Proof 4 We show that every model in BV can be translated to a model in LRA.
Assume that there are no overflows or underflows in BV. This guarantees that the
models of all arithmetic operations in BV are also models in LRA.

5.3.3 Decoding theories to the Theory Interface

The previous section describes the instantiation from the theory interface to a
specific theory of interest. This section presents the inverse, that is, transforming
from a theory to the theory interface. Such steps are necessary in order to build
the over-approximation relation among theories. The key insight is to use the
mapping M�1. The transformation from EUF to T uni is defined by the following
rules:

[t1 = t2]T
uni

[t1]T
uni
= [t2]T

uni

[v]T
uni

v v is a variable or a constant

[f (t)]T
uni

f ([t]T
uni
)

(5.6)

99 5.4 Summary and theory-aware model checking

Similarly, the rules for transforming from LRA to theory interface T uni are as
follows:

([t1]T
uni [t2]T

uni
)^ ([t2]T

uni [t1]T
uni
)]

[t1]T
uni
= [t2]T

uni

[t1 ./ t2]T
uni

[t1]T
uni
./ [t2]T

uni is a function or predicate symbol in LRA

[v]T
uni

v v is a variable or a constant, v 62 dom(M�1)

[v]T
uni

M�1(v)
v 2 dom(M�1)

(5.7)

Determining satisfiability in an over-approximative theory does not guarantee
that the formula is satisfiable in a more precise theory, since the satisfiability
might have been introduced by the abstraction. In such cases the strength of
the formula must be enhanced through techniques such as refinement. In the
next section, we discuss how to use the theory-based model refinement idea in a
model checking algorithm.

5.4 Summary and theory-aware model checking

The proposed novel approach to incremental bounded model checking is pre-
sented in Algorithm 7. It takes as input a program with a sequence hQ1, . . . ,Qmi
of safety assertions that are to be verified, and a sequence of theories hT1, . . . ,Tni,
such that for each i and j, i < j, T j is not an over-approximation of T j.3 For sim-
plicity, we assume that all assertions are located in the entry function (i.e., ˆmain),
but our implementation does not have this restriction. We refer to �T j

(f̂) as to
a summary for function f which is encoded in theory T j. Note that the function
summary is initialized with the weakest possible summary, namely true. The al-
gorithm searches for a first assertion which does not hold and then terminates
with the Unsafe result. If no such assertion is found, the algorithm terminates
with the Safe result.

Algorithm 7 maintains a set of mappings for each function call and each the-
ory to a summary formula that over-approximates the behavior of the source

3In our implementation, we chose T1 = EUF, T2 = LRA, and T3 = BV.

100 5.4 Summary and theory-aware model checking

Input: Program P with function calls F̂ , sequence of theories
hT1, . . . ,Tni; sequence of safety assertions hQ1, . . . ,Qmi

Output: Verification result: {Safe, Unsafe}

1 for each T j do
2 for each f̂ 2 F̂ do �T j

(f̂) true;

3 for each Qi do
4 for each T j do
5 hresult,�T j

i SUMREF(P,T j, h�T1
, . . . ,�Tn

i,Qi);
6 if result = Safe then break;
7 if j = n then return Unsafe;

8 return Safe;

Algorithm 7: VERIFY(P, hT1, . . . ,Tni, hQ1, . . . ,Qmi)

function and is expressible in the theory. These summary formulas are initially
true, but are refined after a verification run of each assertion Qi. Importantly,
they are reused by a verification run of the next assertion Qi+1.

An algorithm for verifying an assertion Q with function summaries is shown
in Algorithm 8. It starts by encoding the entry function in a given theory T and
conjoins it with the negation of encoding of Q in T. If this formula ' is unsatisfi-
able, then Q holds, manifesting the weakest possible summary true was adequate
for all nested function calls from ˆmain. Otherwise, the proposed algorithm starts
gradually strengthening the formula ' by adding summaries of the function calls
responsible for the satisfiability of '. We rely on a method described in [Sery
et al., 2011] to get models of satisfiable formulas and identifying the “reason”
for their satisfiability.

The new contribution of the proposed approach is a method to refine sum-
maries based on lazy enumeration of available theories. In particular, Algo-
rithm 8 maintains a level of precision for each function call. In each round of
refinement, if a function call f̂ requires strengthening, its level of precision is
increased by one, and a summary of that level, if available, is conjoined to '.
The key ingredient here is the set of translation rules, described in the previ-
ous section, that allow effectively reusing formulas among theories. Note that
the translation process is not direct, but operates via a theory interface (omitted
from the pseudocode in order to save space).

In order to prove the soundness of Algorithm 7, we need to show that a sum-
mary in one theory can be reused in another theory. In other words, the correct-

101 5.4 Summary and theory-aware model checking

Input: Program P = (F, fmain) with function calls F̂ , theory T; sequence
h�T1

, . . . ,�Tn
i of mappings of function calls to their summaries;

Q: safety assertion to verify
Output: Verification result: {Safe, Unsafe}, updated �T

Data: ': BMC formula, WL ✓ F̂ , Pr: precision mapping for function
calls, CE: counterexample

1 ' ENCODET(ˆmain)^¬ENCODET(Q);
2 for each f̂ 2 F̂ do
3 Pr(f̂) 0

4 while t rue do
5 hresult, CEi SOLVE(');
6 if result = SAT then
7 WL GETCALLSWITHWEAKSUMMS(C E);
8 if WL= ? then return Unsafe;
9 for each f̂ 2W L do

10 if Pr(f̂)< n then
11 Pr(f̂) Pr(f̂) + 1;
12 �TPr(f̂)

(f̂);
13 ' ' ^ TRANSLATET();
14 else
15 ' ' ^ ENCODET(f̂);

16 else
17 for each f̂ 2 F̂ do
18 �T(f̂) �T(f̂)^ GETITPT(', f̂);

19 return hSafe, �Ti;

Algorithm 8: SUMREF(P,T, h�T1
, . . . ,�Tn

i,Q)

ness of Algorithm 7 depends on the correctness of transferral of summaries from
one theory to another theory. To this end, we connect the over-approximations
via function summarization with the over-approximations via less precise theory.
The following theorem captures formally the correctness of summary transfor-
mation through theory interface.

Theorem 4 Let f be a function, f T
sum be a summary of f obtained from f T

precise, and
f T0
sum be a translation of f T

sum to theory T0. Then f T0
sum is also a summary of f .

Proof 5 First, notice that by translating back f T
sum to the theory interface using the

102 5.5 Implementation and evaluation

rules in (5.1) we obtain an over-approximating representation fsum of fprecise. This
follows from the properties of the translation. Next, by translating fsum to theory T0

using rules in (5.1) we obtain an over-approximating formula f T0
sum of fsum. Finally,

by transitivity f T0
sum over-approximates fprecise, and hence f T0

sum is a summary of f as
stated in the theorem.

Note that the fact that f T0
sum is a summary of f is sufficient for correctness of using

f T0
sum instead of f T0

precise in next verification tasks in case of unsatisfiability results. It
is not required that f T0

sum over-approximates f T0
precise. In case of over-approximating

theory T0 it may happen that the full encoding of a function f , f T0
precise, is not

sufficient to prove a property while a summary obtained from a different theory
might be enough.

5.5 Implementation and evaluation
We have implemented the proposed summary and theory refinement algorithm
on top of HIFROG, presented in detail in Chapter 3. As a backend, HIFROG uses
the SMT solver OPENSMT which is equipped with a flexible interpolation frame-
work for EUF and LRA for computing function summaries. Technical informa-
tion about the setup of the tool can be found at http://verify.inf.usi.ch/
sum-theoref.

With the reported experiments, the goal is to understand how bounded model
checking can benefit from using over-approximative techniques based on func-
tion summaries obtained from SMT theories. We therefore compare our imple-
mentation against CBMC v5.8 [Kroening and Tautschnig, 2014], the most effi-
cient bounded model checker based on the results of Competition on Software
Verification SV-COMP. Compared to an earlier version of HIFROG presented in
Chapter 3, this chapter presents 1) automating the theory refinement which pre-
viously required manual intervention and 2) transferring the summaries among
theories, which previously was not supported at all. In the following, we also
give an explicit experimental comparison against our earlier version to highlight
the usefulness of the proposed algorithm.

We instantiated the summary and theory refinement framework as described
by Algorithm 7 and Algorithm 8 with three theories: EUF, LRA and BV (using
a standard encoding to propositional logic). In the global refinement phase of
Algorithm 7, the program is first encoded in EUF. In case of unsuccessful verifica-
tion with EUF, the entire program is encoded in LRA. Where the verification with
LRA fails, the entire program falls back on bit-blasting. In the local refinement

http://verify.inf.usi.ch/sum-theoref
http://verify.inf.usi.ch/sum-theoref

103 5.5 Implementation and evaluation

phase, in each of these stages, summaries of functions are used when available
and are refined on demand. After a successful verification run, summaries are
constructed in the current theory and become available for verification of the
subsequent assertions. Using the framework described in Section 5.3, they are
translated to different theories on-demand.

Currently in our implementation, only EUF and LRA theories may exchange
summaries. However, before the precise bit-blasting of the entire program, we
can bit-blast the more abstract EUF and LRA summaries. While this feature is
currently under development, we believe that it will lead to smaller and more
compact proofs and thus improve efficiency of the entire tool. Similarly, the
inverse direction of extracting high-level information from bit-precise summaries
are challenging and remains a possible future work.

5.5.1 Results

For benchmarking we used an Ubuntu 16.04 Linux system with two Intel Xeon
E5620 CPUs clocked at 2.40GHz. We limit the memory consumption to 2 Giga-
bytes and the CPU time to 200 seconds per process.

We chose 109 C programs from the ldv category of SV-COMP that either
CBMC or HIFROG could solve within our time and memory limits. The choice of
the ldv benchmarks in this work is justified because they exercise the proposed
algorithm in an interesting way due to containing many assertions and functions,
and being relatively large. We excluded programs where CBMC reported an in-
ternal error. In addition, we included 31 tricky hand-crafted smaller programs to
stress-test our implementation. On average, the benchmarks have 10’000 lines
of code, the longest ones reaching to 35’000 lines of code.

In total, our benchmark set contains 140 C programs and 500 assertions (ver-
ification tasks) placed inside these programs. 215 of these assertions were rec-
ognized as unreachable statements by the entry function in the C program. We
excluded them from our study and focused on those tasks that require a full
solving procedure. This narrowed down our set to 285 verification tasks.

In the following, we provide more details on statistics we collected after the
extensive evaluation of the proposed algorithm against CBMC and three individ-
ual verification approaches from the older version of HIFROG, namely pure EUF,
LRA, BV. Table 5.1 gives statistics on our benchmark set. The column Solved in-
dicates the number of benchmarks which were solved by each tool within the
time and memory limits. In total HIFROG solved 24 more benchmarks than

104 5.5 Implementation and evaluation

Table 5.1. HiFrog against CBMC, and the original version of HiFrog with
respect to pure EUF, LRA, and BV solving, where #sv is the number of bench-
marks from SV-COMP, and #craft is the number of our tricky hand-crafted
benchmarks.

Tools Solved Timeouts Memory outs Unknown
#sv #craft #sv craft #sv #craft #sv #craft

HIFROG 67 31 32 0 10 0 - -
CBMC 63 11 28 20 18 0 - -
EUF only 49 0 38 0 10 0 12 31
LRA only 48 1 40 0 11 0 10 30
BV only 43 4 33 4 33 23 - -

CBMC4. Among 98 benchmarks for which HIFROG succeeded to return an an-
swer within the time and memory limits, 24 benchmarks were unsafe and 74
benchmarks were safe. Interestingly, the average running time for unsafe bench-
marks was longer (78 s) than the one for safe ones (48 s). This can be explained
by our observation that in the unsafe cases, an iterative refinement of all the sum-
maries was required to confirm the validity of the counterexample. However, in
the safe cases, HIFROG was comparable to CBMC.

As can be seen from the column Timeouts, CBMC performed better than
HIFROG on SV-COMP benchmarks, but it failed on almost 60% of our crafted
benchmarks. As can be seen from the column Memory outs, HIFROG solved
eight more SV-COMP benchmarks, on which CBMC immediately exceeded the
memory limits. Overall, the experiments show that HIFROG is able to solve more
benchmarks, and both times out and runs out of memory less often than CBMC.

Figure 5.3 gives a scatter plot representing a more detailed performance com-
parison of HIFROG and CBMC. Each cross in the figure stands for a single bench-
mark with the running time of HIFROG on the x-axis, and the running time of
CBMC on the y-axis. The crosses on the outer lines correspond to executions
that exceeded the memory limit of 2GB, and the crosses on the inner lines cor-
respond to executions that exceeded the time limit of 200 s. A large amount
of crosses on the top horizontal lines lets us conclude that HIFROG is able to
solve benchmarks which are challenging for CBMC. Furthermore, the solving is
relatively fast in these cases.

4Since many of our benchmarks include non-linear arithmetic, we also tried CBMC with the
experimental -refine option. This did not significantly change the results, and therefore we
report here the results obtained with the default options of CBMC.

105 5.5 Implementation and evaluation

10
0

10
1

10
2

10
0

10
1

10
2

HiFrog

C
B

M
C

Figure 5.3. HiFrog vs CBMC. The outer horizontal and vertical lines refer to
memory limit of 2GB, and the inner lines refer to timeout at 200 s.

The last three rows in Table 5.1 explain how the proposed novel algorithm in
HIFROG performs compared to the earlier version of HIFROG, in which summary
reuse was naïve and manual with respect to successive assertions. Because this
functionality was not directly available in the older HIFROG, we prepared a set
of helper scripts so that the older HIFROG could process assertions one after the
other with possible re-use of the summaries. As expected, EUF and LRA had a
large number of unsafe results, 43 and 40 respectively. We marked such results as
unknown since due to the abstract nature of EUF and LRA the results are possibly
spurious and thus cannot be trusted. By comparison, all unsafe results returned
by the proposed new algorithm correspond to actual bugs. Verifying with BV
revealed that a large number of benchmarks (56 instances) exceeded the memory
limit, manifesting the cost of bit-blasting, which is avoided in the proposed new
approach whenever possible.

In conclusion, we find it encouraging that the techniques described in this
chapter provide such an impressive performance increase in the proposed model
checking procedure. Considering both the effectiveness and the downsides of
the proposed approach, in overall the evaluation results show a significant pos-
itive impact on the effectiveness and efficiency of verification of large-scale and
multi-property benchmarks. Although we acknowledge that these initial results
obtained with the 140 instances might not be enough to draw a decisive conclu-
sion, the results do justify future efforts into extending the benchmarking, among

106 5.6 Related Work

others, to large-scale instances with multiple user-defined assertions.

5.6 Related Work

As discussed in the previous chapters, in particular Section 3.6.1 and Section 3.6.2,
both interpolants and function summaries are heavily used in model checking
techniques. First we discuss the difference of the proposed technique of this
chapter compared to the Chapter 3. Then we discuss related work on abstrac-
tion refinement techniques and using different levels of abstraction in model
checking.

While the model checking framework presented in Chapter 3 supports dif-
ferent levels of SMT abstraction, information obtained from one level of SMT
abstraction can only be reused at the same level of abstraction. The proposed
approach in this chapter has no such limitation and is able to strengthen func-
tion summaries by converting from the current level of abstraction into a different
level of abstraction.

In general, the choice of finer granularity for abstraction refinement can have
both positive and negative impacts. That is, finding a weaker abstraction might
make the proof easier (or not) but it could lead to a larger number of refinements
that ultimately slow the proof. The concept of theory transformation is focused
on optimizing the utilization of resources (‘good‘ summaries) by maximizing the
potential for reuse, while concurrently minimizing the frequency of calling upon
the SMT solver.

A substantial amount of work has been done in the area of abstraction refine-
ment. The technique known as localization reduction [Kurshan, 1994] originated
as a verification algorithm for timed automata, utilizing successive approxima-
tions [Alur et al., 1995]. Its purpose is to offer an iterative design abstraction
algorithm, with respect to a specific property to be verified. The original algo-
rithm was first integrated into the COSPAN model checker in 1992. Later, the
concept of counterexample-guided refinement from localization reduction for
COSPAN was expanded to apply to a broader framework through the use of CE-
GAR approach. CEGAR used symbolic simulation of the abstract counterexample
to determine whether it is spurious and to generate a refined abstraction func-
tion. The initial implementation of CEGAR was based on the symbolic model
checker NUSMV [Cimatti et al., 2002] and geared to finite state models. Since
then several effective methods utilizing abstraction refinement have been de-
veloped [Chauhan et al., 2002; Clarke, Gupta and Strichman, 2004; Jain et al.,
2007; Seghir et al., 2009; Heizmann et al., 2009; Lahtinen et al., 2015; Iosif and

107 5.6 Related Work

Xu, 2018; Zhang et al., 2020]. Nevertheless, identifying the appropriate level of
abstraction granularity continues to be a an active research topic in abstraction-
based methodologies.

A group of related approach for abstraction refinement is PDR-based tools
that have been integrated with different abstraction techniques [Fan et al., 2016;
Nguyen et al., 2008; Bayless et al., 2013]. There are techniques which use word-
level information for creating abstractions [Lee and Sakallah, 2014; Ho et al.,
2017]. In the context of solving constrained Horn clauses with interpolation, the
tool DUALITY [McMillan and Rybalchenko, 2013] generalizes IMPACT algorithm
to incrementally unroll a program and solves the corresponding CHC’s with inter-
polation until it produces valid inductive invariants. Duality computes function
summaries using tree interpolants and uses them as abstractions of functions
with refinement. Other PDR-based tools such as SPACER [Komuravelli et al.,
2013] effectively uses interpolants as abstractions combines proof-based tech-
niques with CEGAR and maintains both an overapproximation and an underap-
proximation of the input program. However, these research areas are different
than the proposed theory transformation: the context of our approach is bounded
model checking while the above mentioned techniques are unbounded verifiers.
The distinguishing feature of our approach, in addition to the flexible SMT-level
summarizations it supports, is the theory interface it provides, which enables the
transformation of encoding from one layer to another level of encoding. This ca-
pability allows for maximal reuse of the already generated function summaries.

The work [Kroening et al., 2004] presents a new abstraction-based frame-
work for deciding satisfiability of quantifier-free Presburger arithmetic formulas
and later an adaptation to bit-vector formulas was presented in the approach
[Bryant et al., 2007] . The proof-based abstraction-refinement approach to model
checking in McMillan and Amla [2003] use a related technique to accelerate
model checking algorithms over finite Kripke structures. More precisely, they
invoke a bounded model checker to determine the state variables that need to
be visible in order to create a ‘good’ abstraction for the next iteration of model
checking.

The idea of using an abstract description of the bit-precise level of encoding
has been tried with success in verification of hardware designs [Andraus et al.,
2008] as well as software He and Rakamarić [2017]; Armando et al. [2009].
The approaches use different level of encoding for different parts of the prob-
lem; these approaches typically start with uninterpreted functions and gradually
refine to bit-level precision to rule out spurious counterexamples when necessary,
while mixing different levels of encoding to verify a single property. Unlike these
approaches, we do not mix different levels of encoding and only shift to more

108 5.7 Synopsis

precise encoding globally, when the previous level of abstraction is insufficient.
A single level of encoding allows us to extract useful information in form of func-
tion summaries from successful verification runs and reuse that information in
the next verification run.

An outstanding advantage of the SMT technology is that it can employ de-
cision procedures not only in isolation, but also in combination. For instance,
once can speed up solving non-linear arithmetic formulas by first checking linear
abstractions using more efficient decision procedures, before applying heavier
procedures [Cimatti, Griggio, Irfan, Roveri and Sebastiani, 2017]. Additionally,
theories can also be combined already in the input language of SMT solvers. For
example, deductive program verification techniques generate verification condi-
tions, which might refer to arrays, bit-vectors as well as integers; in such cases,
dedicated SMT solvers can apply several decision procedures for different theo-
ries in combination [Sebastiani, 2007b; Bonacina et al., 2019; Sebastiani, 2007a;
Bruttomesso et al., 2009]. However, these line of research remains orthogonal
to the proposed theory transformation.

5.7 Synopsis

This chapter introduced a concept called theory interface to map function sum-
maries in one theory to another one. The key idea is to exploit both the function
summaries and the overall precision of the program encoding lazily. The theory
interface enables the exchange of function summaries among formulas in differ-
ent theories and avoids an expensive theory combination. Searching for higher
precision theory is performed lazily in the sense that available summaries are
tried out first by translating them into the current precision. This chapter pro-
posed a framework to establish a set of over-approximation relations as well as
translation rules among SMT theories, in particular for EUF, LRA, and BV. The
over-approximation relations guarantee that when a program is proven to be safe
with less precise theories, it is also safe with respect to precise program seman-
tics. The translation rules allow re-using function summaries among different
theories, which is essential to the laziness provided by the framework.

The idea is evaluated by implementing the algorithm which performs both
local refinement and global refinement on demand. This is implemented on top
of the HIFROG tool. The model checker lazily chooses the appropriate theory
to precisely reason about program properties in the context of bounded model
checking using function summaries. An extensive evaluation on a range of large-
scale benchmarks taken from SV-COMP demonstrates the effectiveness of the

109 5.8 Limitation and future work

proposed algorithm in practice. The results show that in comparison to a state-of-
the-art model checker CBMC, the proposed tool can solve more instances within
the same limits on time and memory. From the extensive evaluation, we learned
the use of summary refinement by theory transformation instead of the naive
summary refinement (described in Section 3.3.2) helps the SMT solver to check
the smallest possible formula. As a result, the burden of proof on the solver is
reduced and leads to an efficient solving process.

5.8 Limitation and future work
We would like to point the reader to some limitations of the work and some
possible directions for future research.

The framework described in this chapter is coupled with certain theories. For
example, the theories in scope are limited to EUF, LRA, and BV. Although these
theories are generally sufficient to reason about several realistic programs, it
would be interesting to show that over-approximation relations can be easily de-
rived for other theories such as the theory of arrays and LIA. Another limitation is
the lack of inverse direction of extracting high-level information from bit-precise
summaries, i.e., conversion of bit-blasted summary to high-level summary. This
can be interesting for future work.

The technique of theory and summary transformation in this chapter was ap-
plied successfully to the domain of symbolic model checking, and it would be
interesting to apply the idea to software verification based on IC3, where the
correctness of unbounded programs is reduced to finding general proofs for a se-
quence of verification conditions that are generated on-the-fly. Another possible
direction for the future would be studying the applicability of this approach to
other areas of program verification, such as upgrade checking, which considers a
task of verification of somewhat related programs against the same property (cf.
Chapter 4) (as opposed to verification of the same program against somewhat
related properties, as in the context of this chapter).

Chapter 6

Theory-aware abstraction refinement

Finding the right abstraction is a key to further extension of the applicability of
formal methods to real problems of software and hardware engineering. The
SMT reasoning approach is based on modeling the software and its specifica-
tions in propositional logic, while expressing domain-specific knowledge with
first-order theories connected to the logic through equalities. Once a satisfying
assignment is found for the propositional model, its consistency is queried as
equalities from the theory solvers, which, in case of inconsistency, provide an ex-
planation as a propositional clause. Successful verification of software relies on
finding a model that is expressive enough to capture software behavior relevant
to correctness, while sufficiently high-level to prevent reasoning from becoming
prohibitively expensive. Since in general more precise theories are both more ex-
pensive computationally and potentially distracting for the automatic reasoning,
finding such a balance is a non-trivial task.

An interesting observation is that if a property being verified is proved us-
ing one of the light-weight theories the proof holds also for the exact encoding
of the program. However, the loss of precision can sometimes produce spuri-
ous counterexamples due to the over-approximating encoding. To mitigate such
spurious behaviors, an iterative refinement process is employed alongside the
abstraction, which involves refining the abstract model and performing repeated
checks. In this chapter we address this problem, and propose a general frame-
work for building abstraction for model checkers that involves different theories
of SMT based on the precision hierarchy among SMT. Moreover, as an integral
part of our abstraction framework we proposed a rigorous refinement strategy to
tune the abstraction. Finally, we plan to develop a methodology to identify the
critical parts of the program to guide our abstraction refinement framework to
reduce the overhead of refinement procedure.

111

112

The proposed algorithms in the previous chapters attempted to strengthen
the connection between two research areas of model checking and SAT-modulo-
theories (SMT). Towards the seamless connection between decision procedures
and modeling, this chapter introduces theory refinement, a counterexample-guided
abstraction refinement (CEGAR) approach for modeling software modularly us-
ing theories that are partially ordered with respect to their precision. The main
contribution of this chapter is the process of gradually encoding a program us-
ing the most precise theory only for a critical subset of all program statements,
while keeping lower precision for the rest of the statements. Note that the gran-
ularity of such refinement is in the level of program statements while the refine-
ment procedure in Chapter 5 was on the function level. The critical subset of
theories is identified based on counterexamples, and theories of different preci-
sion are bound to each other through special identities. We study several auto-
matic heuristics for guiding the encoding and provide also a manual encoding
option. We apply theory refinement on verification of safety properties of soft-
ware through bounded model checking. However, we believe that the technique
is applicable in most verification techniques where higher level information is
available on the problem structure. This includes model checking and upgrade
checking, k-induction [McMillan, 2005], the IC3 algorithm [Bradley, 2011], and
generation of inductive invariants [Gurfinkel et al., 2014]. We show that the
modular composition of the theories preferring lower precision can be used to
both obtain speed-up in solving and identifying statements whose precise seman-
tics do not affect the program safety, providing the model checker with cleaner
proofs.

Many SMT solvers use over-approximation through theories as a means of
speeding up solving. For instance [Bruttomesso et al., 2007; Hadarean et al.,
2014; Brummayer and Biere, 2009b] organizes the theory solvers into layers that
solve problems represented in BV. The query is first given to fast and less precise
theory solvers, and only passed on to the exact solver if previous layers fail to
show unsatisfiability. In contrast to low-level SMT solving, this work studies how
to automatically identify statements whose exact semantics can be ignored in
model checking. This shift of view point has several advantages: (i) the approach
can be used both to obtain speed-up in solving, and as a means for synthesis and
finding fix-points for transition relations; (ii) the guidance from the source code
allows the use of more powerful heuristics for choosing which statements should
remain abstract; and (iii) the refinement takes place on the level of the program,
not at the level of the theory query, an approach potentially more natural from
the point of view of the semantics of the program.

This chapter presents theory refinement with two new theories called unin-

113 6.1 Preliminaries

terpreted functions for programs (UFP) and bit vectors for programs (BVP) that
are based on the theories of quantifier-free uninterpreted functions with equal-
ity (EUF), and bit vectors (BV), respectively. The two theories were chosen since
they represent two natural extremes in precision and are commonly used in the
layered solver approach (see, e.g., [Hadarean et al., 2014]). In addition to the
functionality of EUF, UFP provides interpretations for constants, conversion of
abstract values to concrete values, and commutativity for uninterpreted functions
when applicable. The key difference in BVP compared to BV is that BVP is capable
of directly injecting non-clausal refinements, modeling the program statements
bit-precisely, to the inherent Boolean structure maintained in the SMT solver.

The theory refinement algorithm has been validated through its implemen-
tation in HIFROG. We report promising results both with respect to speed and
the amount of refined program statements on both instances from a software
verification competition and our own regression test suite. The experiments
demonstrate that the approach has a potential of several orders of magnitude
of improvement over the approach based solely on flattened bit-vectors, as im-
plemented in the state-of-the-art tool CBMC and in our own tool.

6.1 Preliminaries

Let P be a loop-free program represented as a transition system, and t a safety
property, that is, a logical formula over the variables of P. We are interested in
determining whether all reachable states of P satisfy t. Given a program P and a
safety property t, the task of a model checker is to find a counterexample, that is,
an execution of P that does not satisfy t, or prove the absence of counterexam-
ples on P. In the bounded, symbolic model checking approach followed in this
chapter the model checker encodes P into a logical formula, conjoins it with the
negation of t, and checks the satisfiability of the encoding using an SMT solver.
If the encoding is unsatisfiable, the program is safe, and we say that t holds in
P. Otherwise, the satisfying assignment the SMT solver found is used to build a
counterexample.

A sort is a set of constants. For example the Boolean sort B = {>,?} con-
sists of the Boolean constants, true and false. Given a set of sorts {T0, . . . , Tn}, a
function op : T1 ⇥ . . .⇥ Tn ! T0 maps a (possibly empty) sequence of constants
v1, . . . , vn such that vi 2 Ti to a return value v0 2 T0. Functions mapping empty
sequences are variables, and a term is either a constant, a variable, or an appli-
cation of a function op(t1, . . . , tn) where ti are, recursively, terms with a return
value in the sort Ti. In most cases in this chapter we use the usual infix nota-

114 6.2 Combination of theories in theory refinement

Table 6.1. The functions used in the encoding we consider. Note that unsigned
and signed sum coincide.

Functions Descriptions

Logical functions

&& , || Sb⇥ Sb! Sb Logical and, or
! Sb! Sb Logical not

Non-logical functions

+ , *u , *s , /u , /s Sz⇥ Sz! Sz Sum, unsigned and signed product
and division

% u , % s Sz⇥ Sz! Sz Unsigned and signed remainder
⌧ ,�a ,�l Sz⇥ Sz! Sz left shift, arithmetic and logical right

shift
& , | , ˆ Sz⇥ Sz! Sz Bitwise and, or, exclusive or
⇠ : Sz! Sz bitwise complement
s , u , <s , <u ,
�s , �u , >s , >u

Sz⇥ Sz! Sb Signed and unsigned less than or
equal to and greater than or equal
to

tion together with parentheses to express the well-known arithmetic and logical
functions.

6.2 Combination of theories in theory refinement

This section fixes a notation for describing instances of the safety problem using
SMT, and provides two communicating theories for solving the safety problem.
The goal of the presentation is to clarify how the modeling works in the SMT
framework, placing particular emphasis to the use of symbols and their semantic.

In modeling programs we consider sets of quantifier-free symbolic statements
of the form x = t, where x is a variable, and t is a term. This form essentially
corresponds to the Single static assignment (SSA) form [Cytron et al., 1989] for
loop-free programs. The symbolic statements are defined over a sort of bounded
integers Sz and a Boolean sort Sb= {>l ,?l}; we distinguish between these sorts
and, for instance, the sorts of integers Z and Booleans B to clarify the difference

115 6.2 Combination of theories in theory refinement

c =
�
(a % u 2)+ (b % u 2)

�
% u 2

c0 = (a + b) % u 2
d = f *u e *u c
d 0 = e *u f *u c0

Ä
cb =BVz

�
(ab % u 2b)+ (bb % u 2b)

�
% u 2b
ä

1
^

Ä
(c0)b =BVz (ab + bb) % u 2b

ä
1
^

Ä
du = f u

*u eu
*u cu
ä
^

Ä
(d 0)u = eu

*u f u
*u (c0)u
ä
^

�
cu = (c0)u
�
$
Ä�

cb
1 $ (c0)b1
�
^ . . .^
�
cb

bw$ (c0)bbw

�ä

Figure 6.1. (Left) a sequence of statements and (right) the corresponding
encoding in combined UFP and BVP (to be described in Sect. 6.2.3). On the
left all the variables are of sort Sz, and e and f are unbound.

between this symbolic encoding (hence the S) and the representation used by an
SMT solver. Table 6.1 lists the non-variable functions we consider in our encod-
ing. Note that unlike some programming languages, including C and C++, we
do not allow the encodings to interpret terms from Sz as terms from Sb or vice
versa. We distinguish between the functions defined over the sort Sb and those
defined over Sz, calling the former logical functions and the latter non-logical
functions. The control-flow structures, such as if-then-elses, are encoded us-
ing the functions ! , || , and && . For the purpose of this presentation we assume
that the encodings do not contain arrays and pointers.1 Figure 6.1 (left) shows
an example sequence of statements that we will use as a running example in the
discussion of this section.

6.2.1 Bit Vectors for programs

Our theory of bit vectors for programs (BVP) has a single sort BVzbw containing
the integers representable in bw 2 N bits. When the bit-width of the sort is clear
from the context we simply write BVz for the sort. Each BVP term t of sort BVzbw

is associated with the bits t1, . . . , tbw which are variables from the sort B. The bits
t1 and tbw are called, respectively, the least significant bit and the most significant
bit of t.

The BVP theory has two special constants 1b and 0b. For the constant 0b,
0b

i = ?, 1 i bw. For the constant 1b, 1b
1 = > and 1b

i = ? for 2 i bw.
The equality of BVP is =BVz: BVz⇥BVz! BVz. The interpretation of the equality
is that if x =BVz y holds, then the value of the equality term is 1b and otherwise

1We do support these in our implementation, but their results are treated nondeterministically,
that is, as unbound variables from Sz.

116 6.2 Combination of theories in theory refinement

0b. Finally, BVP has the functions defined in Table 6.1 with all sorts replaced
by the sort BVz. For a term t, the Boolean functions determining the bits ti are
computed through propositional flattening (see, e.g., [Kroening and Strichman,
2016]).

We encode a sequence of statements P = {x1 = t1, . . . , xn = tn} in BVP as
follows. Each statement xi = ti is converted to |xi|b =BVz |ti|b, where the operator
| · |b is defined for a symbolic term t recursively:

|t|b def=

8
<
:

x b if t .= x is a variable or a constant
|x |b ./ |y |b if t .= x ./ y where ./ is a binary function,
�|x |b if t .= �x where � is a unary function

(6.1)

where a .= b denotes that the term a matches the form of b. Conjunction of the
least significant bits of encoded statements in P defines its BVP-encoding [P]b:

[P]b def= (|x1|b =BVz |t1|b)1 ^ . . .^ (|xn|b =BVz |tn|b)1 (6.2)

We say that a safety property t holds in program P if and only if [P]b ^¬[t]b1
is unsatisfiable. Based on the definition we can see that the symbolic encoding
in Figure 6.1 satisfies the safety property (d = d 0) due to properties of modular
arithmetic. The BVP encoding is often inefficient due to the quadratic growth of
the formula with respect to bw. However, in many cases, the bit-precise encoding
of statements (e.g., *u in Figure 6.1) are irrelevant to the safety property, and can
therefore be over-approximated. This motivates the use of less precise but more
efficiently solvable encodings such as those based on uninterpreted functions.

6.2.2 Uninterpreted functions for programs

The logic UFP (Uninterpreted Functions for Programs) is the standard logic of
quantifier-free uninterpreted functions having the Boolean sort B, the standard
Boolean functions op : B⇥ . . .⇥B! B where op is an operator such as _,^, and
¬, and an unbounded number of variables. In addition the logic is augmented
with

• a sort UFPn of real or integer numbers;

• the functions listed in Table 6.1 treated as uninterpreted functions with the
sorts UFPn and B instead of Sz and Sb respectively;

• commutativity of the functions + , *u , *s ,& , and | ; and

117 6.2 Combination of theories in theory refinement

• the concept of constants beyond the Boolean > and ?.

As usual, UFP also contains the equality function =S: T ⇥ T ! B for all sorts T .
As in the symbolic encoding, also in UFP we differentiate between two types of
functions: those with a return sort B, and those with a return sort UFPn.

Given a sequence of statements P = {x1 = t1, . . . , xn = tn}, we denote its
encoding in UFP by [P]u def= ([x1]u =T1

[t1]u) ^ . . . ^ ([xn]u =Tn
[tn]u), where Ti

is either UFPn or B depending on the related sort. The encoding operator [·]u is
defined as follows for a term t:

[t]u def=

8
>>>><
>>>>:

xu if t .= x is a variable or a constant
[x]u ^ [y]u if t .= x && y
[x]u _ [y]u if t .= x || y
¬[x]u if t .= ! x
[x]u ./ [y]u if t .= x ./ y where ./ is a non-logical function.

(6.3)

We distinguish between the notions of program safety in UFP and in BVP. In
particular, we say that a safety property t holds in program P in UFP if and only
if [P]u ^¬[t]u is unsatisfiable.

The program in Figure 6.1 is safe with respect to the safety property ! (c =
c0)|| (d = d 0) in UFP and therefore also in BVP. However, it is not safe in UFP
with respect to the safety property d = d 0 that is safe in BVP. For checking
safety of programs in UFP we use a theory solver implementing a congruence
closure algorithm [Detlefs et al., 2005] that is modified to support constants and
commutativity. The modifications are described in more detail in Sec. 6.5.1.

In our experiments presented in Chapter 3 we showed that safety of many
programs can be established by interpreting the arithmetic functions as unin-
terpreted functions. In the next subsection we describe how the UFP logic and
the BVP logic can be combined.

6.2.3 Combination of UFP and BVP

We present the theory refinement approach using a seamless integration of the
UFP and BVP encoding, and therefore require a form of theory combination.
However, unlike in conventional theory combination on bit vectors (see, e.g., [Hadarean
et al., 2014]), we do not need to consider bit-vectors as theories, but instead they
are embedded directly to the Boolean structure of the SMT solver. The two the-
ories UFP and BVP are combined using a binding formula defined as follows.

118 6.3 Overview and motivating examples

Figure 6.2. A symbolic encoding of a program and the corresponding SMT
formula. In the schematic example most of the program is encoded using UFP,
while certain critical parts are encoded in BVP and made to communicate with
the UFP encoding using the binding formula FB.

Definition 13 Given a symbolic statement t, let [t]u and [t]b be its UFP and BVP-
encodings respectively. If both [t]u and [t]b appear together in a formula, we say
that t is bound. Let B be the set of all bound statements. The binding formula for
B (denoted FB) is defined as

FB
def=
^

t,t 02B

�
[t]u = [t 0]u
�
$
�
([t]b1 $ [t 0]b1)^ . . .^ ([t]bbw$ [t 0]bbw)

�
(6.4)

Intuitively, the combination of the theories UFP and BVP with FB allow us to
express an over-approximation of the symbolic encoding of a program. This is
stated more formally in the following theorem.

Theorem 5 Let P be a program. Then [P]b ^ FB |= [P]u.

Proof 6 (sketch) By simulation of executions in BVP: if there exist values vb
1 , . . . , vb

n
for the variables x b

1 , . . . , x b
n in a term [a = t]b then the same values vu

1 , . . . , vu
n satisfy

the corresponding equality [a]u = [t]u.

Figure 6.2 shows the combined UFP and BVP encoding schematically. The
symbolic encoding of a program is partitioned by the model checker into three
parts: the UFP encoding, the BVP encoding, and the binding formula FB. The
conjunction of these is solved by the SMT solver. Figure 6.1 (right) describes
a combination encoding of UFP and BVP together with the necessary binding
formula for the running example.

6.3 Overview and motivating examples
This section demonstrates with examples the necessity for mix theories in the
program encoding and solving the corresponding formula.

The great advantage of encoding program with EUF theory is that it allows
a model checker to abstract away complicated operations and solve them effi-
ciently. However, as expected due to the abstraction spurious counterexamples
may be produced. The result of experimentation in Chapter 3 confirmed that

119 6.3 Overview and motivating examples

verification with the EUF in HIFROG had a 45 percent SAT result which might be
potentially spurious. To cope with spurious the results, such light-weight theo-
ries need to be refined to the more precise encoding like BV or propositional on
demand.

We discuss two C-code examples to explain the idea of partial theory refine-
ment procedure of EUF formula with bit-precise formula. For both examples,
once they are encoded with EUF solely, the solver reports an spurious model.
However, as it is possible to solve correctly the first example with propositional
logic, it is not the case for the second example, that cannot be solved with rea-
sonable time and space resources. One way to solve the formula of the second
example is by using theory refinement. The goal of theory refinement idea is to
keep the program encoding as much as possible in EUF theory instead of propo-
sitional.

Example 4 Figure 6.3 shows a C program with modulo and multiplication oper-
ators, motivated by a case where a modulo operator is refactored and the equality
of the old and the new code needs to be certified. Once encoding this program with
EUF, it spuriously generates a counterexample. Because unlike propositional logic,
which has a precise encoding for modulo operator, EUF encodes the modulo operator
as an uninterpreted symbol. Thus, EUF cannot express the fact that the expression
(f % x) is equivalent to the expression ((f % y) % x).

1 int main()
2 {
3 unsigned e,f,x,y;
4 x = 2;
5 y = 4;
6 unsigned d1 = e * (f % x);
7 unsigned d2 = e * ((f % y) % x);
8 assert(d1 == d2);
9 }

Figure 6.3. Example written in C with multiplication and modulo operators.

The idea of theory refinement suggests to replace the EUF encoding for the
expression (f % x) and ((f % y)% x) in Figure 6.3 with the bit-precise encoding.
The rest of the terms are kept in EUF level.

The second example in Figure 6.4 is the case where propositional logic fails
to verify the C code as a result of time-out. The assignment of variables a and b

120 6.4 Counterexample-guided theory refinement

are only for the sake of the example. More meaningful benchmarks are part of
the experimental results in section 6.6.

1 int main()
2 {
3 unsigned a;
4 unsigned b;
5 unsigned c1 = (((a % 2) + (b % 2))) % 2;
6 unsigned c2 = (a + b) % 2;
7 unsigned e, f;
8 unsigned d1 = e * f * c1;
9 unsigned d2 = e * f * c2;

10 assert(d1 == d2);
11 }

Figure 6.4. A C example with addition, multiplication, and modulo operators.

Example 5 Consider the C code example in Figure 6.4 where the equation c1= c2
is equivalent in Modular arithmetic. The non-linear multiplications expressions as-
sign to d1 and d2 can be treated as uninterpreted functions with respect to the
assertion. The bit-precise BMC encoding of this problem is hard to solve within the
limited time and space. The EUF encoding is solved in few seconds, however the ver-
ification fails with a spurious counterexample for similar reasons as in Figure 6.3’s
examples. Theory refinement suggest to encode c1 and c2 in bit-precise level and
glue it with the rest of program which is encoded in EUF.

6.4 Counterexample-guided theory refinement

This section provides an algorithm for verifying safety of programs by gradually
refining the precision ⇢ of the symbolic encoding from UFP to BVP in parts where
satisfying truth assignments show that it is necessary for soundness. Algorithm 9
describes the high-level idea. The algorithm takes as input a symbolically en-
coded problem P and a safety property t, and returns either Safe, if t holds in P,
or Unsafe with a bit-precise counterexample if t does not hold in P. During the
execution the algorithm picks statements s 2 P[{t} and refines their approxima-
tions in ⇢ until ⇢[s] is equivalent to [s]b. Based on ⇢, the algorithm constructs
the binding formula FB sufficient to connect the UFP and BVP terms.

121 6.4 Counterexample-guided theory refinement

input : P = {(x1 = t1), . . . , (xn = tn)}: a program, and t: a safety
property

output: hSafe,?i or hUnsafe, CEbi
1 For all 1 i n initialize ⇢[xi = ti] [xi = ti]u

2 ⇢[t] [t]u
3 FB >
4 while true do
5 Query ⇢[x1 = t1]^ . . .^⇢[xn = tn]^¬⇢[t]^ FB
6 hresult, CEi CheckSAT(Query) // Get a model in combined EUF

and BV
7 if result is UNSAT then
8 return hSafe,?i
9 CEb getValues(CE) // Get a model in BV

10 foreach s 2 P [{t} s.t. ⇢[s] 6|= [s]b do
11 hresult, _i CheckSAT([s]b ^ CEb) // Consult the BV solver
12 if result is UNSAT then
13 ⇢[s] refines(⇢[s]) // Refine abstraction on the

Main Solver
14 FB computeBinding(⇢)
15 break

16 if No s was refined at line 13 then
17 return hUnsafe, CEbi

Algorithm 9: Counterexample-guided Theory Refinement Algorithm

The safety of the program is tested at lines 5–8 using the current precision
⇢ and the binding formula. If the check succeeds, the algorithm terminates at
line 8. Otherwise, a satisfying truth assignment is extracted at line 9 and then
used to refine ⇢ at lines 10–15.

The need for refinement is checked for every statement s with a precision⇢[s]
not equivalent to [s]b. If the truth assignment CEb is inconsistent with [s]b then
⇢[s] is refined to block the truth assignment. If at least one such replacement
happens in the current iteration, the execution proceeds to line 5. In practice it
is a good idea to refine several statements based on a single counterexample, as
discussed in Sec. 6.6. If no refinement is done, the truth assignment corresponds
to a counterexample and the algorithm terminates at line 17.

The algorithm uses four sub-procedures CheckSAT, getValues, refines, and
computeBinding. CheckSAT(F) determines the satisfiability of a formula F , and

122 6.4 Counterexample-guided theory refinement

getValues(CE) computes a BVP encoding of CE through substituting the abstract
values from UFP with concrete BVP values. refines(F) refines the statement
s with respect to the previous precision F , and computeBinding(⇢) computes
the binding formula using Definition 13. Below we give a definition for the
refine procedure, while the other procedures will be discussed in more detail
in Sec. 6.5.3.

Definition 14 The procedure refines(F) returns an iterative refinement of the
statement s of the symbolic encoding with respect to F, such that (i) refines(F) |=
F, and (ii) refines has a fix-point that is equivalent to [s]b and reachable in a
finite number of applications of refines.

While in the implementation discussed in Sect. 6.5 we use refines(F) = [s]b ^
[s]u, we want to point out the possibility of using interpolation-based methods
(see, e.g., [Alt et al., 2016]) for the refinement.

Theorem 6 Algorithm 9 terminates in a finite number of steps.

Proof 7 Assume that Algorithm 9 does not terminate. Then there is a term in P[{t}
that can be refined an unbounded number of times before the fix-point equivalent
to [s]b is reached, which contradicts Definition 14.

Theorem 7 Algorithm 9 returns Unsafe if and only if the symbolic encoding P has
an execution violating the safety property t.

Proof 8 The algorithm maintains the invariants

Inv1 [x1 = t1]b ^ . . .^ [xn = tn]b |= ⇢[x1 = t1]^ . . .^⇢[xn = tn]
Inv2 [t]b |= ⇢[t] (6.5)

at line 13 by Definition 14 and Th. 5. Assume that the algorithm returns Unsafe but
there is no execution violating the safety property t. Then there is a truth assignment
� such that ⇢[x1 = t1]^ . . .^⇢[xn = tn]^ FB is true and ⇢[t] is false. The truth
assignment � must also satisfy [x1 = t1]b ^ . . . ^ [xn = tn]b. By Inv2, if ⇢[t] is
false also [t]b is false, hence contradicting the unsafety of (P, t). Now assume the
algorithm returns Safe but there is an execution of P violating t. Then there is a
truth assignment satisfying [P]b ^¬[t]b. Since by Th. 5 both [P]b ^ FB |= ⇢[x1 =
t1]^. . .^⇢[xn = tn] and ¬[t]b^FB |= ¬⇢[t], also the query on line 5 is satisfiable,
contradicting the assumption.

123 6.5 Implementation of theory refinement algorithm

 OpenSMT

HiFrog

Symbolic
Encoding

Unsafe
+ CEX

Safe

nothing
to refine

Refiner

UFP Binding BVP
UNSAT

CEX
validator

S
AT

+
m

od
el

sequence

of all terms

in
iti

al
 e

nt
ire

en
co

di
ng

local refinements

"U
NSAT"

term
(s)

program + term vs
CEX

OpenSMT

BVP
SAT /

UNSAT

assertion

Figure 6.5. The SMT-based model checking framework implementing a theory
refinement approach used in the experiments.

6.5 Implementation of theory refinement algorithm
This section describes the prototype implementation of the theory refinement
algorithm. The algorithm has been implemented on the SMT solver OPENSMT
and the bounded model checker HIFROG. The overview of implementation in-
cluding the three main components and interactions between them is depicted
in Figure 6.5.

6.5.1 The Solver for UFP

The UFP theory solver is based on the co-operation between a congruence closure
algorithm, which maintains sets of equivalence classes and inequalities between
the classes, and a SAT solver, which enforces a propositional structure describing
the relations between the equalities. We refer the reader to [Detlefs et al., 2005]
for the full description of the egraph algorithm that the UFP solver bases on.

Constants. The original egraph algorithm does not support constants other
than the Boolean > and ?, but constants play often an important role in our
benchmarks. The egraph algorithm can represent an inequality between two
terms t1, t2 by asserting explicitly the inequality t1 6= t2 over these terms. This
representation grows quadratically in the number of constants and therefore is
not scalable. We adopt a different strategy for representing the inequalities be-
tween constants. An equivalence class in the egraph algorithm is represented by a
linked list binding together the terms in the same class. Each class is represented
by a canonical term from the linked list. In the original algorithm of [Detlefs

124 6.5 Implementation of theory refinement algorithm

et al., 2005], when two equivalence classes a and b are joined, the canonical
term of the new class a[b is the representative of whichever class a or b contains
more terms. This is done to allow efficient joining and splitting in the backtrack-
ing search driven by the SMT solver. In our implementation the representative of
a class a is always a constant if a contains a constant. The implicit inequality be-
tween constants is then implemented by a check that the respective equivalence
classes are not both represented by a constant term. This approach fits naturally
into the egraph algorithm and explanation generation. In the experiments we
observed no noticeable slowdown compared to the original approach.

Values. Algorithm 9 requires concrete values from the UFP theory to con-
struct a counterexample candidate. In general the values for UFP are obtained
by assigning a running number for each equivalence class that the egraph algo-
rithm maintains. However, there are two special cases for the values. First, if the
equivalence class contains a constant, the value is that of the constant. Second, a
pre-processing step in the SMT solver removes terms that only appear on clauses
that are true by construction. Since these terms can have any value, we indicate
this with a special flag.

Commutativity. The commutativity of the functions Co = {+ , *u , *s , & , | }
is implemented by conjoining the set {�(a, b)$ �(b, a) | � 2 Co,�(a, b) in P}
to the instance [P]u being solved. A similar approach is followed, for instance,
in [Cimatti, Irfan, Griggio, Roveri and Sebastiani, 2017].

6.5.2 The Solver for BVP

The BVP theory is solved through propositional flattening [Kroening and Strich-
man, 2016]. The solver supports the operations listed in Table 6.1, and allows the
use of arbitrary bit-widths.2 Based on an extensive testing the implementation
is robust, but still prototypical in the sense that we implement no sophisticated
pre-processing techniques that are available in many other bit-vector solvers (see,
e.g., [Bruttomesso et al., 2007]).

Unlike many other SMT solvers (see, e.g., [Hadarean et al., 2014]), we do not
implement the bit-vector solver as a separate SAT solver working on the flattening
and driven by the main SAT solver. Instead, we flatten the problem directly to the
main SAT solver. This has several advantages: we avoid the overhead of duplicate
solver instantiation, and we enable the solver to potentially learn much more

2The shift operations ⌧ ,�a ,�l assume a bit-width that is a power of two.

125 6.6 Experimental results

intricate relationships between the flattened formula and the formula in UFP.
However, an in-depth analysis of the implications of this design is beyond the
scope of this chapter.

6.5.3 Theory Refinement in Model Checking

We integrated Algorithm 9 into the bounded model checker HIFROG for C pro-
grams. HIFROG obtains first the symbolic encoding of the program P and a safety
property t through a sequence of pre-processing steps, builds then the UFP for-
mula, and finally gradually transforms parts of the UFP formula into BVP based
on truth assignments until the safety is determined. We follow the approach
where safety properties are expressed as assertions in the C code. The architec-
ture is depicted in Figure 6.5. HIFROG maintains two SMT solvers during the
execution and which are represented by the CheckSAT calls in Algorithm 9: the
main solver for checking the satisfiability query constructed at line 5 (shown on
the bottom of Figure 6.5) and the refinement solver for checking the spuriousness
of each counterexample at line 9 (shown on the right of Figure 6.5). This choice
was taken so that the expensive calls on the main solver would not be slowed
down by unnecessary clauses at the refinement solver.

The counterexamples are flattened to propositional logic through the call to
getValues by mapping the values in UFP to a unique bit-vector constant of the
given bit width bw. At this stage of the development we ignore the case where
the UFP solver gives more equivalence classes than what is representable in bw
bits, since this limitation did not affect our results. Note that this work considers
only fixed bit-width, namely 32 bits, thus exponential case split on all the possible
partitions of the nodes in the egraph would not occur.

The binding formula (see Definition 13) is updated whenever a statement
x = t is refined. This is done by first constructing the BVP formulas [x]b and [t]b,
and then adding the missing equalities to FB with the call to computeBinding.

6.6 Experimental results
This section evaluates the theory-refinement mode of HIFROG on C programs
mostly coming from the software model checking competition (SV-COMP). The
benchmarks were split into the safe (128 instances) and unsafe (30 instances)
sets, indicating whether the bad behavior is reachable or not. Among safe in-
stances, 17 require refinements.

For benchmarking we used Ubuntu 14.04 Linux system with two Intel Xeon

126 6.6 Experimental results

0.1

1

10

100

0.1 1 10 100

T
he
or
y
re
fin

em
en
t
(s
)

cbmc (s)

0.1

1

10

100

0.1 1 10 100

T
he
or
y
re
fin

em
en
t
(s
)

HiFrog flattening (s)

Figure 6.6. Timings of CBMC (left) and HiFrog’s flattening (right) against
HiFrog’s theory refinement for the safe instances.

0.1

1

10

100

0.1 1 10 100

T
he
or
y
re
fin

em
en
t
(s
)

cbmc (s)

0.1

1

10

100

0.1 1 10 100

T
he
or
y
re
fin

em
en
t
(s
)

HiFrog flattening (s)

Figure 6.7. Timings of CBMC (left) and HiFrog’s flattening (right) against
HiFrog’s theory refinement for the unsafe instances.

E5620 CPUs clocked at 2.40GHz and 12 Gigabyte memory limit per process using
a timeout of 300 seconds CPU time. The model checker was compiled with the
GNU C++ compiler and the O3 optimization level.

Figure 6.6 shows the verification results on safe properties. We compared
(Figure 6.6, left) the HIFROG’s theory-refinement mode against CBMC version
5.7, the winner of the software model checking competition falsification track in
2017

In 101 cases, HIFROG was either as fast or faster than CBMC, sometimes by or-
ders of magnitude. Furthermore, HIFROG’s theory refinement mode is compared
against HIFROG’s propositional flattening (Figure 6.6, right), hence ensuring that
the only difference in the solvers is in how the symbolic encoding is presented to
the SMT solver. In 115 cases, the theory refinement was either as fast or faster
than flattening in determining safety, providing a more convincing evidence that
the theory refinement approach works well in practice.

127 6.6 Experimental results

Table 6.2. Comparison of the heuristics against Min on instances requiring
refinement.

H0 H1 H2 H3 H4 H5 H6 H7 Min

#solved 17 16 17 17 17 17 17 17 17
#ref 660 2218 1250 1250 533 2266 1442 1831 162
time (s) 538 223 257 317 123 166 147 158 46.2

The verification results of unsafe benchmarks are shown in Figure 6.7. In five
cases, bug detection by HIFROG was slower than the one by CBMC since HIFROG

required iterative refining of all the expressions to confirm the validity of the
counterexample. However, in the remaining cases, HIFROG was comparable to
CBMC.

6.6.1 Experiments on Refinement Heuristic
Algorithm 9 does not address which exact statement should be refined based on
a counterexample on Line 10 in case there are several possibilities. However this
selection affects the run time of the model checking and is therefore of practical
interest. We consider the following three features while building a refinement
heuristic:

• Traversal order: the algorithm can proceed either by choosing from P the
first statement (forward order) or the last statement (backward order) sat-
isfying the condition on Line 10.

• All statements falsified by the counterexample are refined simultaneously
(simultaneous refinement).

• All statements that depend on refined statements are refined simultane-
ously (dependency refinement).

The heuristics are as follows: H0 – Forward order; H1 – Backward order; H2
– Forward order with simultaneous refinement; H3 – Backward order with si-
multaneous refinement; H4 – Forward order with dependency refinement; H5 –
Backward order with dependency refinement; H6 – Forward order with simulta-
neous and dependency refinement; and H7 – Backward order with simultaneous
and dependency refinement. Based on the experimentation, the fastest solver
on average results from using Forward order with dependency refinement. This

128 6.7 Related Work

10

100

10 100

R
efi
ne
d
st
at
em

en
ts

Total number of statements

Figure 6.8. The number of refined statements using the Min heuristic with
respect to the total number of statements.

is the heuristic we use in the results on Figs. 6.6-6.7. We briefly report on the
results of the heuristics in Table 6.2 over the 17 instances of our total benchmark
set where statements were refined. This benchmark set contains three crafted
instances and the rest from the bitvector category of SV-COMP. The row labeled
#solved reports how many instances the heuristic could solve before the time-
out, #ref reports how many statements in total had to be refined over the set,
and time reports the total run time. As a reference the table also reports results
on the heuristic Min that requires no run time and computes a minimum set of
refinements required to prove the property.

Finally, Figure 6.8 shows the reduction in the number of refined statements
when using the Min heuristic on the 17 instances. As expected, the performance
of the heuristic depends on the instance, but when effective, dramatically reduces
the amount of flattened statements.

6.7 Related Work

Solving bit-vector problems with layers of theory solvers is introduced in [Brut-
tomesso et al., 2007] and further developed in [Hadarean et al., 2014]. While
we work directly on software verification instead of bit-vectors, our approach is
related, as we also use hierarchy of solvers combined with rewriting techniques.
However, we work explicitly on the modeling language by automatically adjust-

129 6.7 Related Work

ing the precision to be different in different parts of the problem, and adding
additional constraints that seams these parts together. In [Brummayer and Biere,
2009b] a CEGAR based approach is used for solving problems involving arrays
by transforming an abstract representation into clauses. We differ from this ap-
proach in that we integrate the system on the theory solver level, employing in
the experiments the congruence closure algorithm together with a propositional
solver. To the best of our knowledge, no existing approach uses this level of gran-
ularity in the modeling. Furthermore, we use counterexamples that are checked
against the bit-precise implementation, and this way can avoid refinement of pro-
gram parts that would need to be refined in approaches based on layered theory
solvers.

Exploiting simultaneously several theories for one verification goal is not new.
For example, [Gurfinkel et al., 2014] presents a system for synthesizing safe bit-
precise inductive invariants for software. Compared to this thesis, the refinement
direction is inverted: the software is first flattened, and in case of a time-out,
converted to a domain-specific theory. Furthermore, we integrate seamlessly
the theories UFP and BVP into an SMT solver whereas [Gurfinkel et al., 2014]
considers real arithmetic.

Uninterpreted functions have been used together with the bit-precise encod-
ing for verifying the equivalence of Verilog designs in [Ho et al., 2016; Brady
et al., 2011]. The approach uses machine learning to identify sub-components
that can likely be abstracted. In contrast, our emphasis is on software verification
and integration to the SMT solver.

Other abstraction refinement technique, specifically in the context of hard-
ware verification, have also been explored in [Andraus et al., 2008]. Similarly
their technique employs different abstraction level to obtain a compact represen-
tation of the design being checked compared to the original design. Unlike the
abstraction refinement technique we present in this thesis, their technique uses
universal facts as lemmas extracted from the concrete model to refute spurious
counterexamples. Our technique obtains a model in combined EUF and BV and
gradually concretizes the model to BV model only for the parts that precision is
necessary and keeps the model as much as possible in EUF.

A related approach [Kutsuna et al., 2016] constructs test cases for scien-
tific software by computing difference constraints from non-linear mathematical
functions. This approach can be viewed as a special case of the framework we
present in this chapter; the formulas we derive can also be used for generating
test cases, although this is not the focus of this chapter. Similarly, [Cimatti, Ir-
fan, Griggio, Roveri and Sebastiani, 2017] combines linear real arithmetic and
equality of uninterpreted functions (EUF) for the SMT encoding of the program.

130 6.8 Synopsis

The algorithm initially uses EUF to abstract non-linear operators, and then uses
the monotonicity and the multiplication checks to identify spurious counterex-
ample thus avoiding simulation and code execution. Both checks might result in
a refinement formula, which is added then to the current SMT encoding. Unlike
ours, their approach cannot be applied as such for bit-precise reasoning. Our
work in Chapter 3 reports very positive results on using the theory of EUF and
LRA for encoding model checking problems. The work presented in this chapter
which explores the possibilities in much more depth and rigor is motivated by
this early result.

Another program-based refinement approach was proposed in [Katz et al.,
2015], where compositional program is approximated with a program-specific
theory of transition systems. Our approach is orthogonal to this, as we are able
to handle programs in a more general way through the eventual flattening, while
the theory of transition systems could likely be integrated as an additional theory.

In the domain of predicate abstraction, the work Beyer et al. [2015] uses a
combination of both value and predicate analysis and proposes several heuris-
tics for refinement selection to improve the effectiveness and efficiency of CEGAR-
based analyses. The idea of refinement selection has been implemented in the
open-source software-verification framework CPACHECKER. While this idea is re-
stricted to predicate abstraction and considers program with unbounded loops,
our approach considers only loop-free programs. Our methodology can system-
atically build the most light-weight abstract model by adjusting the precision to
be different in different parts of the problem.

Finally, the CEGAR paradigm is extensively used in software verification. It is
integrated into SLAM model checker used in Microsoft for verification of device
drivers [Ball and Rajamani, 2002], but the approach does not use the fine-grained
precision tuning we apply through theories. CEGAR is used in [Brummayer and
Biere, 2009b] for solving problems involving arrays by transforming an abstract
representation into clauses. We differ from this approach in that we integrate the
system on the theory solver level, employing in the experiments the congruence
closure algorithm together with a propositional solver.

6.8 Synopsis

This chapter presented a new approach for abstraction refinement in software
verification by focusing on mixing different theories of SMT within the same
verification task. The proposed approach introduces iterative theory refinement
and supports solving of formulas of combined theories in the SMT solver, where

131 6.9 Limitation and future work

the binding to the theory is maintained by a series of identities in the original
formula. The main contribution of this chapter is the gradual encoding process
that uses the most precise theory only for a subset of all program statements,
while handling the rest of the statements by using the less precise theories. This
subset of the statements could either be identified by checking spurious coun-
terexamples or simply specified by the user. The proposed framework can be
extended by sets of theories with a partial order of refinement defined among
them. In this chapter, we demonstrated the framework on the UFP theory with
the partial refinement to the BVP theory. The theory refinement approach has
been integrated into HIFROG. We studied various refinement strategies and com-
pared them with a strategy computed offline, as well as with the propositional
logic encoding known as flattening or bit-blasting. Improvement is seen both in
the running time and in the size of the resulting formula, demonstrating that the
spurious counterexamples are usually eliminated by refining a small number of
statements in the formula.

6.9 Limitation and future work

A low number of abstraction refinement iterations is fundamental for the success
of the CEGAR loop and, consequently to overall verification effort. In fact, the
number of refinements required to verify the property grows with the complexity
of a system. For this reason, it is of paramount importance to avoid as many
redundant iterations as possible: even a single saved iteration can result in a
substantial time-saving for large systems.

In the course of this chapter, we gained insights on how to use theories of EUF
and BV in theory refinement and benefit from the best of both worlds. It would
be interesting to extend theory refinement to exploit mixing more theories such
as arithmetic theories and arrays. To this end, one has to define a partial order
among these theories based on the level of abstraction/refinement that they pro-
vide. This will further improve the automatic refinement based on an analysis of
the counterexamples using approaches such as interpolation. Moreover one also
can develop more sophisticated heuristics and strategies for refinement.

Theory refinement algorithm is limited in that it cannot leverage the inter-
polation based summarization techniques presented in the previous chapters for
further optimizations. A compelling avenue for future research would involve
exploring the integration of function summarization with theory refinement. By
combining these two approaches, it may be possible to further enhance the effec-
tiveness of software verification methods. Function summarization involves sim-

132 6.9 Limitation and future work

plifying complex functions into more manageable abstractions, thereby reducing
the overall computational cost of analyzing the program. By incorporating this
technique into theory refinement algorithms, it may be possible to refine theories
more efficiently and accurately, leading to faster and more precise results. Such
an approach could have a significant impact on the field of software verification
and could pave the way for new, more efficient verification methods.

Chapter 7

Contribution Summary

This research thesis aimed to improve the scalability and flexibility of software
model checking. The study identified several challenges that hinder the broader
application of symbolic model checking techniques in software verification, such
as the expensive bit-precise reasoning, the need for effective ways to reuse com-
putation history, and the determination of the appropriate level of abstraction for
efficient symbolic model checking. These challenges are linked to the complex-
ity problems inherent in the model checking paradigm. To overcome these chal-
lenges, the study introduced the concept of on-demand usage of SMT technology,
which enhances the efficiency of symbolic model checking. Ultimately, the pro-
posed approach can facilitate the wider adoption of symbolic model checking
and improve the verification of software systems.

This thesis has proposed a range of techniques that have been combined in a
novel way. Specifically, we have developed sound algorithms in bounded model
checking that utilize SMT-based interpolation-based function summarization to
reuse invested efforts between verification runs in an incremental manner. Our
proposed solutions are based on Satisfiability Modulo Theories, which serve as a
logical representation of programs. However, despite SMT reasoning being one
of the most successful approaches to verifying software in a scalable way, it offers
limited direct support for adapting the constraint language to the task at hand
and requires various tuning to be reliable. Therefore, the main focus of this work
has been to examine the balance between the precision of program encoding and
the efficiency provided by SMT, aiming to identify an optimal level of abstraction
that can facilitate effective symbolic model checking. In the following, we sum-
marize the contribution of each chapter in more details.

In Chapter 3, we proposed an incremental verification approach whose func-
tionality is interleaved with SMT reasoning for various computational tasks. Our

133

134

solution utilized SMT solving and SMT interpolating procedures for program ab-
straction and verification. The expressiveness of SMT logics allowed us for the
development of symbolic model checking, which circumvents the need to expand
the bit-precise encoding of models during verification. We presented a frame-
work for generating and reusing SMT-based function summaries. The proposed
framework is a fully-featured function-summarization-based model checker which
enabled more efficient and scalable methods for verifying the correctness of pro-
grams. We validated our solution by developing HIFROG, a new SMT-based
model checking framework for verifying a sequence of properties in a single pro-
gram. We demonstrated that the use of SMT and SMT-based function summaries
can scale up model checking to verify larger individual C programs with multiple
properties compared to the use of rigid bit-precise encoding. HIFROG also serves
as a foundation for validating the proposed approaches in the other chapters of
the thesis.

In Chapter 4 we tackled the issue of verifying numerous programs that are
closely connected. To prevent the need for costly full re-verification of each ver-
sion and repeating a significant amount of work repeatedly, we presented an
incremental algorithm that aims to maximize the reuse of prior computations.
Our approach leverages an SMT-based family of summaries to compress the per-
tinent information from a previous verification run, enabling faster checks of new
program versions. This approach simplifies the task of verifying if a modified pro-
gram still satisfies a safety property by validating a set of summaries for the new
program. This localization of the verification process to the altered parts of the
program leads to substantial reductions in verification run time, as it eliminates
the need to recheck the entire program. The proposed verification framework
also provides an innovative capability of repairing previously computed sum-
maries by means of iterative weakening and strengthening procedures. More-
over, it offers an efficient way of building formulas and refining them on-the-fly.
The effectiveness of the proposed approach has been validated through the de-
velopment of a new SMT-based model checking frameworks, UPPROVER, which
have been successfully integrated into the interpolating SMT solver OpenSMT.
Through extensive experimentation, we demonstrate that UPPROVER is signifi-
cantly more efficient than its predecessor EVOLCHECK and non-incremental BMC
approach.

In Chapter 5 a new concept called "theory interface" was presented, which fa-
cilitates the mapping of function summaries from one theory to another. By lever-
aging function summaries and the program’s overall precision in a lazy manner,
the theory interface allows for the sharing of function summaries across formulas
in different theories, without the need for costly theory combination. The search

135

for a higher precision theory is performed lazily, meaning that existing summaries
are attempted first by translating them into the current precision. In this chapter,
a framework was introduced to create a series of over-approximation relations
and translation rules between various SMT theories, specifically for EUF, LRA,
and BV. These over-approximation relations ensure that a program proven to
be safe with less precise theories remains safe according to the precise program
semantics. The translation rules enable the reuse of function summaries across
different theories, which is crucial to the framework’s lazy approach. We evalu-
ated the proposed idea by implementing an algorithm that performs both local
and global refinement on demand, built on top of the HIFROG tool. We selectively
choose the appropriate theory to accurately reason about program properties in
the context of bounded model checking using function summaries. The proposed
algorithm is extensively evaluated on a variety of large-scale benchmarks taken
from SV-COMP, demonstrating its practical effectiveness. The results show that
compared to a state-of-the-art model checker CBMC, our proposed framework
can solve more instances. Our extensive evaluation reveals that using summary
refinement via theory transformation instead of the naive summary refinement
can assist the SMT solver in checking the smallest possible formula and improv-
ing program efficiency.

Chapter 6 presented a new approach for abstraction refinement in software
verification with SMT solvers. The work was motivated by the observation that
if a property being verified is proved using one of the light-weight theories the
proof holds also for the exact BMC encoding of the program. However, the loss
of precision can sometimes produce spurious counterexamples due to the over-
approximating encoding. In order to overcome these spurious behaviors, a re-
finement process was employed alongside the abstraction. This process involves
enhancing the abstract model and conducting repeated checks in an iterative
manner. The proposed approach has introduced iterative theory refinement and
supported solving of formulas of combined theories in the SMT solver, where the
binding to the theory was maintained by a series of identities in the original for-
mula. The main contribution of this chapter was the gradual encoding process
that uses the most precise theory only for a subset of all program statements,
while handling the rest of the statements by using the less precise theories. This
subset of the statements could either be identified by checking spurious coun-
terexamples or simply specified by the user. In this chapter, we demonstrated
the framework on the UFP theory with the partial refinement to the BVP the-
ory. Our study involved examining different refinement strategies and evaluating
their effectiveness, comparing them to an offline-computed strategy as well as to
the propositional logic encoding method known as flattening or bit-blasting. The

136

theory refinement algorithm has been validated through its implementation in
HIFROG. The experimentation showed an improvement both in the running time
and in the size of the resulting formula, demonstrating that the spurious coun-
terexamples are usually eliminated by refining a small number of statements in
the formula.

As a wrap up on future work of this thesis, we summarize some of the poten-
tial future directions that have been discussed at the end of each chapter. One
interesting direction would be to have an unbounded proof by basing the ap-
proach on top of CHCs. Furthermore, supporting nontrivial programs that use
arrays, heap data structures, and dynamic memory allocation would also be in-
teresting with the help of additional theories of SMT. Since the idea of theory
refinement does not use summaries, incorporating interpolation with the idea
of theory refinement would be a promising idea. Another promising avenue for
improving the refinement process involves developing new heuristics for can-
didate selection. While this thesis primarily focuses on localized refinement of
theories using the technique of theory refinement, which utilizes a single coun-
terexample to determine whether refinement is necessary, it would be beneficial
to explore proof-based heuristics for refining the theories. Such heuristics have
the potential to yield more relevant refinements. In situations where a larger
pool of counterexamples is available for refinement, the generalization process
may be easier compared to using a single data point. Hence, exploring alter-
native refinement techniques could prove fruitful for achieving more effective
results. These will be a topic of interest for future research.

Appendix A

Transformation rules for BV and NRA

We define here a particular class of quantifier free theory of bit-vectors (BV)
which is based on the work in Chapter 6 ([Hyvärinen et al., 2017]). In that
paper the presented theory called BVP (Bit Vectors for Programs) which was an
augmented version of the theory of bit-vectors. For abbreviation we use in this
work the BV notation. In order to be applicable in our framework, BV should
comply with the restriction that no overflows are allowed.

Based on SMT-LIB2 standard the signature in BV is as follows:
⌃BV = {+,⇤, bvand, bvor, bvudiv, bvurem, bvshl, bvlshr, bvnot, bvneg}. We con-
sider the predicate symbols as P = {>,<,,�}. Note that for the addition and
multiplication we use the same notation i.e., “+” and “*” throughout the work
to highlight the fact that the syntax are in common with our theory of interest.
Therefore syntactically they can be used in the transformation rules. However,
the task of interpretation of each function symbol must be delegated to the cor-
responding theory solver.

In the following the rules for translation from T uni to BV are as follows:

137

138

[t1 = t2]BV

[t1]BV = [t2]BV

[v]BV

v v is a variable or a constant

[t1 ./ t2]BV

[t1]BV ./ [t2]BV

./ is a predicate symbol or binary function symbol in BV,

i.e.,./2 {bvand, bvor,+,⇤, bvudiv, bvurem, bvshl, bvlshr}

[4 t1]BV

4 [t1]BV 4 is a unary function symbol in BV, i.e.,4 2 {bvnot, bvneg}

[f (t)]BV

M(f (t)) otherwise

(A.1)

The rules for transforming from BV to theory interface T uni are as follows:

[t1 = t2]T
uni

[t1]T
uni
= [t2]T

uni

[t1 ./ t2]T
uni

[t1]T
uni
./ [t2]T

uni

./ is a binary function symbol in BV,

e.g.,./2 {bvand, bvor,+,⇤, bvudiv, bvurem, bvshl, bvlshr}

[4 t1]T
uni

4 [t1]T
uni 4 is a unary function symbol in BV,4 2 {bvnot, bvneg}

[v]T
uni

v v is a variable or a constant, v 62 dom(M�1)

[v]T
uni

M�1(v)
v 2 dom(M�1)

(A.2)

In the following we present the translation rules from the NRA to T uni and vice
versa which are listed in (A.3) and (A.4), respectively. The rules for transforming

139

from T uni to NRA are as follows:

[t1 = t2]NRA

([t1]NRA [t2]NRA)^ ([t2]NRA [t2]NRA)

[v]NRA

v v is a variable or a constant

[t1 ./ t2]NRA

[t1]NRA ./ [t2]NRA ./ is a function symbol in NRA, e.g.,./2 {+,�,⇤ }

(A.3)

Likewise the LRA rules, the rules for transforming from NRA to T uni are as
follows:

([t1]T
uni [t2]T

uni
)^ ([t2]T

uni [t1]T
uni
)]

[t1]T
uni
= [t2]T

uni

[v]T
uni

v v is a variable or a constant

[f (t)]T
uni

f ([t]T
uni
)

(A.4)

Appendix B

List of Publications

B.1 List of publications related to this thesis

B.1.1 Journals

Asadi, S., Blicha, M., Hyvarinen, A., Fedyukovich, G., and Sharygina, N. SMT-
based verification of program changes through summary repair. Journal of For-
mal Methods in System Design. Submitted in 2021, Accepted with minor revision
in April 2023.

B.1.2 Main conference proceedings

1. Asadi, S., Blicha, M., Hyvarinen, A., Fedyukovich, G., and Sharygina, N.
(2020b). Incremental verification by SMT-based summary repair. In For-
mal Methods in Computer Aided Design, (FMCAD 2020) 2020 - pages
77–82. IEEE. (link)

2. Asadi, S., Blicha, M., Hyvarinen, A., Fedyukovich, G., and Sharygina, N.
(2020a). Farkas-based tree interpolation. In 27th International Static Anal-
ysis Symposium, (SAS 2020) - Chicago, USA, volume 12389 of LNCS, pages
357–379. Springer. (link)

3. Asadi, S., Blicha, M.,Fedyukovich, G., Hyvarinen, A., Even-Mendoza, K.,
Sharygina, N. ,and Chockler, H. (2018). Function summarization modulo
theories. In 22nd International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR 2018) - Awassa, Ethiopia, volume
57 of EPiC Series in Computing, pages 56–75. EasyChair. (link)

141

http://verify.inf.usi.ch/sites/default/files/upprover-fmcad20.pdf
https://link.springer.com/content/pdf/10.1007/978-3-030-65474-0_16.pdf
https://easychair.org/publications/open/nNLJ

142 B.2 Other collaborative publications

4. Alt, L., Asadi, S., Chockler, H., Even-Mendoza, K., Fedyukovich, G., Hy-
varinen, A., and Sharygina, N. (2017). HiFrog: SMT-based function sum-
marization for software verification. In 23rd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, (TACAS
2017) - Uppsala, Sweden, volume 10206 of LNCS, pages 207–213. Springer.
(link)

5. Hyvarinen, A., Asadi, S., Even-Mendoza, K., Fedyukovich, G., Chockler,
H., and Sharygina, N. (2017). Theory refinement for program verification.
In 20th International Conference Theory and Applications of Satisfiability
Testing, (SAT 2017) - Melbourne, Australia, volume 10491 of LNCS, pages
347–363. Springer. (link)

B.1.3 Poster presentation

Asadi, S., HiFrog: Interpolation-based Software Verification using Theory
Refinement, FMCAD student forum poster presentation, 2017. URL: www.
cs.utexas.edu/users/hunt/FMCAD/FMCAD17/student-forum/

B.2 Other collaborative publications
1. Alt, L., Hyvarinen, A., Asadi, S., and Sharygina, N. (2017). Duality-based

interpolation for quantifier-free equalities and uninterpreted functions. In
Formal Methods in Computer Aided Design, (FMCAD 2017) - Vienna, Aus-
tria, pages 39–46. IEEE. (link)

2. Even-Mendoza, K., Asadi, S., Hyvarinen, A., Chockler, H., and Sharygina,
N. (2018). Lattice-based refinement in bounded model checking. In 10th
International Conference on Verified Software. Theories, Tools, and Exper-
iments, (VSTTE 2018) - Oxford, UK, volume 11294 of LNCS, pages 50– 68.
Springer. (link)

3. Marescotti, M., Blicha, M., Hyvarinen, A., Asadi, S., and Sharygina, N.
(2018). Computing exact worst-case gas consumption for smart contracts.
In 8th International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation. Industrial Practice, (ISoLA 2018) - Limas-
sol, Cyprus, volume 11247 of LNCS, pages 450–465. Springer. (link)

https://link.springer.com/content/pdf/10.1007/978-3-662-54580-5_12.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-66263-3_22.pdf
www.cs.utexas.edu/users/hunt/FMCAD/%20FMCAD17/student-forum/
www.cs.utexas.edu/users/hunt/FMCAD/%20FMCAD17/student-forum/
https://doi.org/10.23919/FMCAD.2017.8102239
https://link.springer.com/chapter/10.1007/978-3-030-03592-1_4
https://link.springer.com/chapter/10.1007/978-3-030-03427-6_33

Bibliography

Albarghouthi, A., Gurfinkel, A. and Chechik, M. [2012a]. From under-
approximations to over-approximations and back, 18th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS, Vol. 7214 of LNCS, Springer, pp. 157–172.

Albarghouthi, A., Gurfinkel, A. and Chechik, M. [2012b]. Whale: An
interpolation-based algorithm for inter-procedural verification, 13th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI, Vol. 7148 of LNCS, Springer, Heidelberg, pp. 39–55.

Albarghouthi, A. and McMillan, K. L. [2013]. Beautiful interpolants, 25th Inter-
national Conference on Computer Aided Verification, CAV, pp. 313–329.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S. and Sharygina, N. [2012].
Lazy abstraction with interpolants for arrays, Logic for Programming, Artificial
Intelligence, and Reasoning - 18th International Conference, LPAR-18, Vol. 7180,
Springer, pp. 46–61.

Alt, L., Asadi, S., Chockler, H., Mendoza, K. E., Fedyukovich, G., Hyvärinen, A.
and Sharygina, N. [2017]. HiFrog: SMT-based function summarization for
software verification, International Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS, Vol. 10206, Springer, Heidelberg,
pp. 207–213.

Alt, L., Fedyukovich, G., Hyvärinen, A. and Sharygina, N. [2016]. A proof-
sensitive approach for small propositional interpolants, VSTTE 2015, Vol.
9593, Springer, Berlin, Heidelberg, pp. 1–18.

Alt, L., Hyvärinen, A., Asadi, S. and Sharygina, N. [2017]. Duality-based interpo-
lation for quantifier-free equalities and uninterpreted functions, 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, FMCAD Inc, Austin, Texas,
pp. 39–46.

143

144 Bibliography

Alt, L., Hyvärinen, A. E. J. and Sharygina, N. [2017]. LRA interpolants from no
man’s land, Haifa Verification Conference, HVC, Vol. 10629, Springer, Heidel-
berg, pp. 195–210.

Alt, L. and Reitwießner, C. [2018]. Smt-based verification of solidity smart con-
tracts, in T. Margaria and B. Steffen (eds), Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice - 8th International Sym-
posium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part
IV, Vol. 11247 of LNCS, Springer, pp. 376–388.

Alur, R., Itai, A., Kurshan, R. P. and Yannakakis, M. [1995]. Timing verification
by successive approximation, Inf. Comput. 118(1): 142–157.

Andraus, Z. S., Liffiton, M. H. and Sakallah, K. A. [2008]. Reveal: A formal
verification tool for verilog designs, International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning, Springer, pp. 343–352.

Armando, A., Mantovani, J. and Platania, L. [2009]. Bounded model checking
of software using SMT solvers instead of SAT solvers, International Journal on
Software Tools for Technology Transfer 11(1): 69–83.

Asadi, S., Blicha, M., Fedyukovich, G., Hyvärinen, A. E. J., Even-Mendoza, K.,
Sharygina, N. and Chockler, H. [2018]. Function summarization modulo the-
ories, 22nd International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, LPAR-22, Vol. 57, EasyChair, England & Wales, pp. 56–75.

Asadi, S., Blicha, M., Hyvärinen, A., Fedyukovich, G. and Sharygina, N. [2020a].
Farkas-based tree interpolation, International Symposium on Static Analysis,
SAS, Springer, Heidelberg.

Asadi, S., Blicha, M., Hyvärinen, A., Fedyukovich, G. and Sharygina, N. [2020b].
Incremental verification by SMT-based summary repair, Formal Methods in
Computer Aided Design, FMCAD 2020, IEEE, New York.

Asadi, S., Blicha, M., Hyvärinen, A., Fedyukovich, G. and Sharygina, N. [2023].
SMT-based verification of program changes through summary repair, Journal
of Formal Methods in System Design .

Asadzade, M., Blicha, M., Hyvärinen, A. E. and Sharygina, N. [2021]. The
opensmt solver in SMT-COMP 2021, 16th International Satisfiability Modulo
Theories Competition (SMT-COMP 2021).

145 Bibliography

Babic, D. and Hu, A. J. [2008]. Calysto: scalable and precise extended static
checking, Int. Conference on Software Engineering (ICSE ’08), pp. 211–220.

Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K. S., Rungta,
N., Tkachuk, O. and Varming, C. [2018]. Semantic-based automated reasoning
for AWS access policies using SMT, 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, IEEE,
pp. 1–9.

Balarin, F. and Sangiovanni-Vincentelli, A. L. [1993]. An iterative approach to
language containment, 5th International Conference on Computer Aided Verifi-
cation, Springer-Verlag, London, UK, UK, pp. 29–40.

Ball, T., Levin, V. and Rajamani, S. K. [2011]. A decade of software model check-
ing with SLAM, Commun. ACM 54(7): 68–76.

Ball, T. and Rajamani, S. K. [2000]. Bebop: A symbolic model checker for boolean
programs, SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Vol. 1885 of LNCS, Springer, pp. 113–130.

Ball, T. and Rajamani, S. K. [2002]. The SLAM Project: Debugging System Soft-
ware via Static Analysis, POPL, pp. 1–3.

Barbosa, H., , Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Noetzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C. and Zohar, Y. [2022]. cvc5: A versatile
and industrial-strength smt solver, 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS. to appear.

Barrett, C., Fontaine, P. and Tinelli, C. [2021]. The Satisfiability Modulo Theories
Library (SMT-LIB), https://smtlib.cs.uiowa.edu/.

Barrett, C. W., Sebastiani, R., Seshia, S. A. and Tinelli, C. [2009]. Satisfiability
modulo theories, Handbook of Satisfiability, Vol. 185 of Frontiers in Artificial
Intelligence and Applications, IOS Press, pp. 825–885.

Bartocci, E., Beyer, D., Black, P. E., Fedyukovich, G., Garavel, H., Hartmanns,
A., Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M.,
Sutcliffe, G., Weber, T. and Yamada, A. [2019]. Toolympics 2019: An overview
of competitions in formal methods, Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Vol. 11429 of LNCS, Springer, pp. 3–24.

146 Bibliography

Basler, G., Kroening, D. and Weissenbacher, G. [2007]. SAT-Based Summariza-
tion for Boolean Programs, Model Checking Software, 14th International SPIN
Workshop, pp. 131–148.

Bayless, S., Val, C. G., Ball, T., Hoos, H. H. and Hu, A. J. [2013]. Efficient modular
SAT solving for IC3, Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, IEEE, pp. 149–156.

Beyer, D. and Dangl, M. [2019]. Software verification with PDR: implementation
and empirical evaluation of the state of the art, CoRR abs/1908.06271.

Beyer, D., Dangl, M., Dietsch, D. and Heizmann, M. [2016]. Correctness wit-
nesses: exchanging verification results between verifiers, 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE, ACM,
pp. 326–337.

Beyer, D., Jakobs, M. and Lemberger, T. [2020]. Difference verification with
conditions, SEFM 2020, Vol. 12310, Springer, Cham, pp. 133–154.

Beyer, D. and Keremoglu, M. E. [2011]. CPAchecker: A tool for configurable
software verification, International Conference on Computer Aided Verification,
CAV, Vol. 6806, Springer, pp. 184–190.

Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A. and Wendler, P. [2013]. Precision
reuse for efficient regression verification, ESEC/FSE 2013, ACM, New York,
pp. 389–399.

Beyer, D., Löwe, S. and Wendler, P. [2015]. Refinement selection, Model Check-
ing Software - 22nd International Symposium, SPIN 2015, Stellenbosch, South
Africa, August 24-26, 2015, Proceedings, Vol. 9232 of LNCS, Springer, pp. 20–
38.

Beyer, D. and Podelski, A. [2022]. Software model checking: 20 years and be-
yond, Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on
the Occasion of His 60th Birthday, Vol. 13660 of LNCS, Springer, pp. 554–582.

Biere, A., Cimatti, A., Clarke, E. M. and Zhu, Y. [1999]. Symbolic model checking
without BDDs, TACAS 1999, Vol. 1579, Springer, Heidelberg, pp. 193–207.

Biere, A., Heule, M., van Maaren, H. and Walsh, T. [2009]. Handbook of Satisfi-
ability, Vol. 85, IOS Press.

147 Bibliography

Bjørner, N. [2018]. Z3 and SMT in industrial r&d, 22nd International Symposium
on Formal Methods, FM 2018, Vol. 10951 of LNCS, Springer, pp. 675–678.

Bjørner, N. S., McMillan, K. L. and Rybalchenko, A. [2012]. Program verification
as satisfiability modulo theories, 10th International Workshop on Satisfiability
Modulo Theories, SMT, Vol. 20 of EPiC Series in Computing, EasyChair, pp. 3–11.

Blanc, R., Gupta, A., Kovács, L. and Kragl, B. [2013]. Tree interpolation in Vam-
pire, LPAR 2013, Vol. 8312, Springer, pp. 173–181.

Blicha, M., Hyvärinen, A., Kofron, J. and Sharygina, N. [2019]. Decomposing
Farkas interpolants, TACAS 2019, Vol. 11427, Springer, Heidelberg, pp. 3–20.

Böhme, S., Moskal, M., Schulte, W. and Wolff, B. [2010]. Hol-boogie - an in-
teractive prover-backend for the verifying C compiler, J. Autom. Reason. 44(1-
2): 111–144.

Bonacina, M. P., Fontaine, P., Ringeissen, C. and Tinelli, C. [2019]. Theory com-
bination: Beyond equality sharing, Description Logic, Theory Combination, and
All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday,
Vol. 11560 of LNCS, Springer, pp. 57–89.

Bradley, A. R. [2011]. SAT-based model checking without unrolling, 12th Inter-
national Conference Verification, Model Checking, and Abstract Interpretation - ,
VMCAI, Vol. 6538, Springer, pp. 70–87.

Brady, B. A., Bryant, R. E. and Seshia, S. A. [2011]. Learning conditional abstrac-
tions, International Conference on Formal Methods in Computer-Aided Design,
FMCAD, FMCAD Inc., pp. 116–124.

Brummayer, R. and Biere, A. [2009a]. Boolector: An efficient SMT solver for
bit-vectors and arrays, Tools and Algorithms for the Construction and Analysis
of Systems, 15th International Conference, TACAS, Vol. 5505 of LNCS, Springer,
pp. 174–177.

Brummayer, R. and Biere, A. [2009b]. Lemmas on demand for the extensional
theory of arrays, J. Satisf. Boolean Model. Comput. 6(1-3): 165–201.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti,
A. and Sebastiani, R. [2007]. A lazy and layered SMT(BV) solver for hard
industrial verification problems, International Conference on Computer Aided
Verification, CAV, Vol. 4590 of LNCS, Springer, Heidelberg, pp. 547 – 560.

148 Bibliography

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A. and Sebastiani, R. [2009].
Delayed theory combination vs. nelson-oppen for satisfiability modulo theo-
ries: a comparative analysis, Ann. Math. Artif. Intell. 55(1-2): 63–99.

Bruttomesso, R., Pek, E., Sharygina, N. and Tsitovich, A. [2010]. The OpenSMT
solver, International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS, Vol. 6015, Springer, pp. 150 – 153.

Bryant, R. E. [1986]. Graph-based algorithms for boolean function manipulation,
IEEE Trans. Computers 35(8): 677–691.

Bryant, R. E., Kroening, D., Ouaknine, J., Seshia, S. A., Strichman, O. and Brady,
B. [2007]. Deciding Bit-Vector Arithmetic with Abstraction , TACAS’07, Vol.
4424, Springer, pp. 358–372.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. and Hwang, L. J. [1990].
Symbolic model checking: 10ˆ20 states and beyond, Fifth annual symposium
on Logic in Computer Science (LICS ’90), pp. 428–439.

C. [2011]. Information technology – programming languages, Standard, Inter-
national Organization for Standardization, Geneva, Switzerland.

Cabodi, G., Murciano, M., Nocco, S. and Quer, S. [2006]. Stepping forward with
interpolants in unbounded model checking, ICCAD’06, ACM, pp. 772–778.

Cabodi, G., Palena, M. and Pasini, P. [2014]. Interpolation with guided refine-
ment: Revisiting incrementality in SAT-based unbounded model checking, FM-
CAD’14, IEEE, pp. 43–50.

Champion, A., Kobayashi, N. and Sato, R. [2018]. Hoice: An ice-based non-
linear horn clause solver, 16th Asian Symposium on Programming Languages
and Systems, APLAS, Vol. 11275 of LNCS, Springer, pp. 146–156.

Champion, A., Mebsout, A., Sticksel, C. and Tinelli, C. [2016]. The kind 2 model
checker, Computer Aided Verification - 28th International Conference, CAV, Vol.
9780 of LNCS, Springer, pp. 510–517.

Chauhan, P., Clarke, E. M., Kukula, J. H., Sapra, S., Veith, H. and Wang, D.
[2002]. Automated abstraction refinement for model checking large state
spaces using SAT based conflict analysis, FMCAD, Vol. 2517, Springer, Hei-
delberg, pp. 33–51.

149 Bibliography

Christ, J. and Hoenicke, J. [2016]. Proof tree preserving tree interpolation, J.
Autom. Reasoning 57(1): 67–95.

Christ, J., Hoenicke, J. and Nutz, A. [2012]. Smtinterpol: An interpolating SMT
solver, 19th International Workshop on Model Checking Software, SPIN, Vol.
7385, Springer, pp. 248–254.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R. and Tacchella, A. [2002]. NuSMV Version 2: An OpenSource
Tool for Symbolic Model Checking, International Conference on Computer Aided
Verification, CAV, Vol. 2404, Springer.

Cimatti, A., Griggio, A., Irfan, A., Roveri, M. and Sebastiani, R. [2017]. Invariant
checking of NRA transition systems via incremental reduction to LRA with EUF,
in A. Legay and T. Margaria (eds), Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS, Vol. 10205 of LNCS,
pp. 58–75.

Cimatti, A., Griggio, A., Schaafsma, B. J. and Sebastiani, R. [2013]. The math-
sat5 SMT solver, 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, Vol. 7795 of LNCS, Springer, Hei-
delberg, pp. 93–107.

Cimatti, A., Griggio, A. and Sebastiani, R. [2008]. Efficient Interpolant Gener-
ation in Satisfiability Modulo Theories, International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS, pp. 397–412.

Cimatti, A., Irfan, A., Griggio, A., Roveri, M. and Sebastiani, R. [2017]. Invariant
checking of NRA transition systems via incremental reduction to LRA with EUF,
Proc. TACAS 2017, Vol. 10205 of LNCS, pp. 58 – 75.

Cimatti, A., Mover, S. and Tonetta, S. [2012]. Smt-based verification of hybrid
systems, in J. Hoffmann and B. Selman (eds), Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada, AAAI Press.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5072

Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H. [2003]. Counterexample-
guided abstraction refinement for symbolic model checking, J. ACM
50(5): 752–794.

150 Bibliography

Clarke, E., Kroening, D. and Lerda, F. [2004]. A tool for checking ANSI-C pro-
grams, TACAS 2004, Vol. 2988, Springer, Berlin, Heidelberg, pp. 168–176.

Clarke, E. M. and Emerson, E. A. [1981]. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic, Workshop on Logics of Pro-
grams, Springer, Heidelberg, pp. 52–71.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. [2000].
Counterexample-guided abstraction refinement, 12th International Conference
on Computer Aided Verification, CAV, pp. 154–169.

Clarke, E. M., Gupta, A. and Strichman, O. [2004]. SAT-based-guided abstraction
refinement, IEEE Trans. on CAD of Integrated Circuits and Systems 23(7): 1113–
1123.

Colón, M. and Uribe, T. E. [1998]. Generating finite-state abstractions of reac-
tive systems using decision procedures, in A. J. Hu and M. Y. Vardi (eds), In-
ternational Conference on Computer Aided Verification, CAV, Vol. 1427 of LNCS,
Springer, pp. 293–304.

Conway, C. L., Namjoshi, K. S., Dams, D. and Edwards, S. A. [2005]. Incremental
algorithms for inter-procedural analysis of safety properties, CAV 2005, Vol.
3576, Springer, Heidelberg, pp. 449–461.

Cook, B., Döbel, B., Kroening, D., Manthey, N., Pohlack, M., Polgreen, E.,
Tautschnig, M. and Wieczorkiewicz, P. [2020]. Using model checking tools
to triage the severity of security bugs in the xen hypervisor, Formal Methods in
Computer Aided Design, FMCAD, IEEE, pp. 185–193.

Cook, B., Kroening, D. and Sharygina, N. [2005]. COGENT: Accurate Theorem
Proving for Program Verification, International Conference on Computer Aided
Verification, CAV, Vol. 3576, pp. 296–300.

Cordeiro, L. C. and de Lima Filho, E. B. [2016]. Smt-based context-bounded
model checking for embedded systems: Challenges and future trends, ACM
SIGSOFT Software Engineering Notes 41(3): 1–6.

Cordeiro, L. C., Fischer, B. and Marques-Silva, J. [2012]. Smt-based bounded
model checking for embedded ANSI-C software, IEEE Trans. Software Eng.
38(4): 957–974.

151 Bibliography

Cousot, P. and Cousot, R. [1977]. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints, in
R. M. Graham, M. A. Harrison and R. Sethi (eds), the Fourth ACM Symposium
on Principles of Programming Languages, ACM, New York, pp. 238–252.

Craig, W. [1957]. Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory, J. Symb. Log. 22(3): 269–285.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M. and Zadeck, F. [1989]. An effi-
cient method of computing static single assignment form, POPL 1989, ACM,
pp. 25–35.

de Moura, L. M. and Bjørner, N. [2008]. Z3: an efficient SMT solver, 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS, Vol. 4963, Springer, pp. 337–340.

de Moura, L. M. and Bjørner, N. [2009]. Satisfiability modulo theories: An ap-
petizer, SBMF 2009, Vol. 5902 of LNCS, Springer, Heidelberg, pp. 23–36.

de Moura, L. M. and Bjørner, N. [2011]. Satisfiability modulo theories: introduc-
tion and applications, Commun. ACM 54(9): 69–77.

Decision Procedure Toolkit [2007]. https://dpt.sourceforge.net/. Accessed:
Feb 2022.

Detlefs, D., Nelson, G. and Saxe, J. B. [2005]. Simplify: A theorem prover for
program checking, Journal of the ACM 52(3): 365–473.

Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A. and Podelski, A. [2019]. Ul-
timate treeautomizer, the Sixth Workshop on Horn Clauses for Verification and
Synthesis and Third Workshop on Program Equivalence and Relational Reason-
ing, HCVS/PERR, Vol. 296 of EPTCS, pp. 42–47.

Dill, D. L., Grieskamp, W., Park, J., Qadeer, S., Xu, M. and Zhong, J. E. [2021].
Fast and reliable formal verification of smart contracts with the move prover,
CoRR abs/2110.08362.

Donaldson, A. F., Kroening, D. and Rümmer, P. [2010]. Automatic analysis of
scratch-pad memory code for heterogeneous multicore processors, Tools and
Algorithms for the Construction and Analysis of Systems, 16th International Con-
ference, TACAS, Vol. 6015 of LNCS, Springer, pp. 280–295.

https://dpt.sourceforge.net/

152 Bibliography

D’Silva, V., Kroening, D., Purandare, M. and Weissenbacher, G. [2010]. Inter-
polant strength, VMCAI 2010, Vol. 5944, Springer, pp. 129–145.

Dutertre, B. [2014]. Yices 2.2, Computer Aided Verification - 26th International
Conference, CAV 2014, Vol. 8559 of LNCS, Springer, pp. 737–744.

Dutertre, B. and de Moura, L. M. [2006]. A fast linear-arithmetic solver for
DPLL(T), International Conference on Computer Aided Verification, CAV, Vol.
4144 of LNCS, Springer, pp. 81–94.

Eén, N., Mischenko, A. and Brayton, R. K. [2011]. Efficient implementation of
property directed reachability, FMCAD 2011, FMCAD Inc., pp. 125–134.

Engler, D. R. and Ashcraft, K. [2003]. Racerx: effective, static detection of race
conditions and deadlocks, Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles 2003, SOSP, ACM, pp. 237–252.

Ernst, M. D., Cockrell, J., Griswold, W. G. and Notkin, D. [2001]. Dynamically dis-
covering likely program invariants to support program evolution, IEEE Trans.
Software Eng. 27(2): 99–123.
URL: https://doi.org/10.1109/32.908957

Esen, Z. and Rümmer, P. [2021]. A theory of heap for constrained horn clauses
(extended technical report), CoRR abs/2104.04224.

Falke, S., Merz, F. and Sinz, C. [2013]. The bounded model checker LLBMC, 2013
28th IEEE/ACM International Conference on Automated Software Engineering,
ASE, 2013, IEEE, pp. 706–709.

Fan, K., Yang, M. and Huang, C. [2016]. Automatic abstraction refinement of TR
for PDR, 21st Asia and South Pacific Design Automation Conference, ASP-DAC
2016, Macao, Macao, January 25-28, 2016, IEEE, pp. 121–126.

Fedyukovich, G. and Bodík, R. [2018]. Accelerating Syntax-Guided Invariant
Synthesis, TACAS, 2018, Vol. 10805, Springer, Heidelberg, pp. 251–269.

Fedyukovich, G., D’Iddio, A. C., Hyvärinen, A. E. J. and Sharygina, N. [2015].
Symbolic detection of assertion dependencies for bounded model checking, in
A. Egyed and I. Schaefer (eds), Fundamental Approaches to Software Engineer-
ing - 18th International Conference, FASE 2015, Vol. 9033, Springer, pp. 186–
201.

153 Bibliography

Fedyukovich, G., Gurfinkel, A. and Sharygina, N. [2014]. Incremental verifica-
tion of compiler optimizations, NFM 2014, pp. 300–306.

Fedyukovich, G., Gurfinkel, A. and Sharygina, N. [2016]. Property directed
equivalence via abstract simulation, International Conference on Computer
Aided Verification, CAV, Vol. 9780, Part II, Springer, Cham, pp. 433–453.

Fedyukovich, G., Kaufman, S. J. and Bodík, R. [2017]. Sampling invariants from
frequency distributions, Formal Methods in Computer Aided Design, FMCAD,
IEEE, pp. 100–107.

Fedyukovich, G., Sery, O. and Sharygina, N. [2013]. eVolCheck: Incremental
upgrade checker for C, TACAS 2013, Vol. 7795, Springer, Heidelberg, pp. 292–
307.

Fedyukovich, G., Sery, O. and Sharygina, N. [2017]. Flexible SAT-based frame-
work for incremental bounded upgrade checking, STTT 19(5): 517–534.

Felsing, D., Grebing, S., Klebanov, V., Rümmer, P. and Ulbrich, M. [2014]. Au-
tomating regression verification, ASE 2014, ACM, New York, pp. 349–360.

Flanagan, C. and Leino, K. R. M. [2001]. Houdini, an annotation assistant for
esc/java, FME 2001, Vol. 2021, Springer, Heidelberg, pp. 500–517.

Freeman, T. S. and Pfenning, F. [1991]. Refinement types for ML, Proceedings of
the ACM SIGPLAN’91 Conference on Programming Language Design and Imple-
mentation (PLDI), ACM, pp. 268–277.

Gacek, A., Backes, J., Whalen, M., Wagner, L. G. and Ghassabani, E. [2018]. The
jkind model checker, Computer Aided Verification - 30th International Confer-
ence, CAV, Vol. 10982 of LNCS, Springer, pp. 20–27.

Gadelha, M. Y. R., Monteiro, F. R., Morse, J., Cordeiro, L. C., Fischer, B. and
Nicole, D. A. [2018]. ESBMC 5.0: an industrial-strength C model checker, the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE, ACM, pp. 888–891.

Ganai, M. K. and Gupta, A. [2006]. Accelerating high-level bounded model
checking, 2006 International Conference on Computer-Aided Design, ICCAD
2006, San Jose, CA, USA, November 5-9, 2006, ACM, pp. 794–801.

154 Bibliography

Godefroid, P. [2007]. Compositional dynamic test generation, the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL,
ACM, pp. 47–54.

Godefroid, P., Lahiri, S. K. and Rubio-González, C. [2011]. Statically validating
must summaries for incremental compositional dynamic test generation, Inter-
national Symposium on Static Analysis, SAS, Vol. 6887, Springer, Heidelberg,
pp. 112–128.

Godlin, B. and Strichman, O. [2009]. Regression verification, the 46th Design
Automation Conference, DAC, ACM, New York, pp. 466–471.

Graf, S. and Saïdi, H. [1997]. Construction of abstract state graphs with PVS,
9th International Conference on Computer Aided Verification, CAV, Vol. 1254 of
LNCS, Springer, pp. 72–83.

Grebenshchikov, S., Lopes, N. P., Popeea, C. and Rybalchenko, A. [2012]. Syn-
thesizing software verifiers from proof rules, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, ACM, New York,
pp. 405–416.

Griggio, A., Le, T. T. H. and Sebastiani, R. [2011]. Efficient interpolant generation
in satisfiability modulo linear integer arithmetic, Tools and Algorithms for the
Construction and Analysis of Systems - 17th International Conference, TACAS,
pp. 143–157.

Grishchenko, I., Maffei, M. and Schneidewind, C. [2018]. Foundations and tools
for the static analysis of ethereum smart contracts, Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, Vol.
10981, Springer, pp. 51–78.

Güdemann, M. [2022]. Smt-based verification of concurrent critical system, in
C. Wressnegger, D. Reinhardt, T. Barber, B. C. Witt, D. Arp and Z. Á. Mann
(eds), Sicherheit, Schutz und Zuverlässigkeit: Konferenzband der 11. Jahresta-
gung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), Sicher-
heit 2022, Vol. P-323 of LNI, Gesellschaft für Informatik, Bonn, pp. 67–82.

Gupta, A., Popeea, C. and Rybalchenko, A. [2011]. Solving recursion-free Horn
clauses over LI+UIF, Programming Languages and Systems - 9th Asian Sympo-
sium, APLAS, Vol. 7078, Springer, pp. 188–203.

155 Bibliography

Gurfinkel, A., Belov, A. and Marques-Silva, J. [2014]. Synthesizing safe bit-
precise invariants, International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems TACAS, Vol. 8413, Springer, pp. 93–108.

Gurfinkel, A. and Bjørner, N. [2019]. The science, art, and magic of constrained
horn clauses, 21st International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, SYNASC, IEEE, pp. 6–10.

Gurfinkel, A., Chaki, S. and Sapra, S. [2011]. Efficient predicate abstraction
of program summaries, NASA Formal Methods - 3rd International Symposium,
NFM, Vol. 6617 of LNCS, Springer, pp. 131–145.

Gurfinkel, A., Kahsai, T., Komuravelli, A. and Navas, J. A. [2015]. The SeaHorn
verification framework, 27th International Conference on Computer Aided Veri-
fication, CAV, Vol. 9206, Springer, Heidelberg, pp. 343–361.

Gurfinkel, A., Rollini, S. F. and Sharygina, N. [2013]. Interpolation properties
and SAT-based model checking, ATVA 2013, pp. 255–271.

Hadarean, L., Bansal, K., Jovanović, D., Barret, C. and Tinelli, C. [2014]. A tale of
two solvers: Eager and lazy approaches to bit-vectors, International Conference
on Computer Aided Verification, CAV, Springer, Heidelberg, pp. 680 – 695.

Hardin, R. H., Kurshan, R. P., McMillan, K. L., Reeds, J. A. and Sloane, N. J. A.
[1996]. Efficient regression verification, Proc. WODES’96, IEEE, Proc., pp. 147–
150.

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B., Roberts, M. L.,
Setty, S. T. V. and Zill, B. [2015]. Ironfleet: proving practical distributed sys-
tems correct, Proceedings of the 25th Symposium on Operating Systems Princi-
ples, SOSP, ACM, pp. 1–17.

He, F., Yu, Q. and Cai, L. [2018]. When regression verification meets CEGAR,
CoRR abs/1806.04829.

He, S. and Rakamarić, Z. [2017]. Counterexample-guided bit-precision selection,
Asian Symposium on Programming Languages and Systems, Springer, pp. 534–
553.

Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T. and Podelski, A. [2018]. Ultimate
automizer and the search for perfect interpolants - (competition contribution),
Proc. TACAS 2018, pp. 447–451.

156 Bibliography

Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Lindenmann, M.,
Nutz, A., Schilling, C. and Podelski, A. [2013]. Ultimate automizer with smtin-
terpol - (competition contribution), Tools and Algorithms for the Construction
and Analysis of Systems - 19th International Conference, TACAS, Vol. 7795 of
LNCS, Springer, pp. 641–643.

Heizmann, M., Hoenicke, J. and Podelski, A. [2009]. Refinement of trace ab-
straction, in J. Palsberg and Z. Su (eds), Static Analysis, 16th International
Symposium, SAS, Vol. 5673, Springer, pp. 69–85.

Heizmann, M., Hoenicke, J. and Podelski, A. [2010a]. Nested interpolants, POPL
2010, ACM, New York, pp. 471–482.

Heizmann, M., Hoenicke, J. and Podelski, A. [2010b]. Nested interpolants, 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL, ACM, New York, pp. 471–482.

Henzinger, T., Jhala, R., Majumdar, R. and McMillan, K. [2004]. Abstractions
from Proofs, POPL.

Ho, Y., Mishchenko, A. and Brayton, R. K. [2017]. Property directed reacha-
bility with word-level abstraction, in D. Stewart and G. Weissenbacher (eds),
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria,
October 2-6, 2017, IEEE, pp. 132–139.

Ho, Y.-S., Chauhan, P., Roy, P., Mishchenko, A. and Brayton, R. [2016]. Effi-
cient uninterpreted function abstraction and refinement for word-level model
checking, Proc. FMCAD 2016, ACM, pp. 65–72.

Hoare, C. [1971]. Procedures and parameters: An axiomatic approach, Sympo-
sium on Semantics of Algorithmic Languages pp. 102–116.

Hoare, C. A. R. [1969]. An axiomatic basis for computer programming, Commun.
ACM 12(10): 576–580.

Huang, X., Kwiatkowska, M., Wang, S. and Wu, M. [2016]. Safety verification of
deep neural networks, CoRR abs/1610.06940.

Hyvärinen, A. E. J., Asadi, S., Mendoza, K. E., Fedyukovich, G., H.Chockler and
Sharygina, N. [2017]. Theory refinement for program verification, Theory and
Applications of Satisfiability Testing - SAT 2017 - 20th International Conference,
Vol. 10491, Springer, Heidelberg, pp. 347–363.

157 Bibliography

Hyvärinen, A., Marescotti, M., Alt, L. and Sharygina, N. [2016]. OpenSMT2: An
SMT solver for multi-core and cloud computing, SAT 2016, Vol. 9710, Springer,
Heidelberg, pp. 547–553.

Iosif, R. and Xu, X. [2018]. Abstraction refinement for emptiness checking of al-
ternating data automata, Tools and Algorithms for the Construction and Analysis
of Systems - 24th International Conference, TACAS 2018, pp. 93–111.

Jain, H., Kroening, D., Sharygina, N. and Clarke, E. [2007]. VCEGAR: Verilog
CounterExample Guided Abstraction Refinement, International Conference on
Tools and Algorithms for the Construction and Analysis of Systems TACAS.

Jhala, R. and McMillan, K. L. [2007]. Array abstractions from proofs, Inter-
national Conference on Computer Aided Verification, CAV, Vol. 4590, Springer,
pp. 193–206.

Kahsai, T., Garoche, P., Tinelli, C. and Whalen, M. [2012]. Incremental verifica-
tion with mode variable invariants in state machines, 4th International Sympo-
sium on NASA Formal Methods NFM, Vol. 7226 of LNCS, Springer, pp. 388–402.

Kahsai, T., Rümmer, P., Sanchez, H. and Schäf, M. [2016]. Jayhorn: A framework
for verifying java programs, in S. Chaudhuri and A. Farzan (eds), 28th Inter-
national Conference on Computer Aided Verification, CAV, Vol. 9779, Springer,
Heidelberg, pp. 352–358.

Kapur, D., Majumdar, R. and Zarba, C. G. [2006]. Interpolation for data struc-
tures, 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, ACM, pp. 105–116.

Katz, G., Barrett, C. and Harel, D. [2015]. Theory-aided model checking of con-
current transition systems, Proc. FMCAD 2015, IEEE, pp. 81–88.

Komuravelli, A., Gurfinkel, A. and Chaki, S. [2016]. Smt-based model checking
for recursive programs, Formal Methods Syst. Des. 48(3): 175–205.

Komuravelli, A., Gurfinkel, A., Chaki, S. and Clarke, E. M. [2013]. Automatic
abstraction in SMT-based unbounded software model checking, International
Conference on Computer Aided Verification, CAV, Vol. 8044 of LNCS, Springer,
Berlin, Heidelberg, pp. 846–862.

Kroening, D., Ouaknine, J., Seshia, S. A. and Strichman, O. [2004]. Abstraction-
based satisfiability solving of presburger arithmetic, International Conference

158 Bibliography

on Computer Aided Verification, CAV, Vol. 3114 of Lecture Notes in Computer
Science, Springer, pp. 308–320.

Kroening, D., Schrammel, P. and Tautschnig, M. [2023]. CBMC: the C bounded
model checker, CoRR abs/2302.02384.

Kroening, D. and Strichman, O. [2016]. Decision Procedures - An Algorithmic
Point of View, Second Edition, Texts in Theoretical Computer Science. An EATCS
Series, Springer.

Kroening, D. and Tautschnig, M. [2014]. CBMC - C bounded model checker -
(competition contribution), Tools and Algorithms for the Construction and Anal-
ysis of Systems - 20th International Conference, TACAS 2014,, Vol. 8413 of LNCS,
Springer, pp. 389–391.

Kurshan, R. P. [1994]. Computer-aided Verification of Coordinating Processes: The
Automata-theoretic Approach, Princeton University Press, Princeton, NJ, USA.

Kutsuna, T., Ishii, Y. and Yamamoto, A. [2016]. Abstraction and refinement of
mathematical functions toward SMT-based test-case generation, International
Journal on Software Tools for Technology Transfer 18(1): 109–120.

Lahiri, S. K., Hawblitzel, C., Kawaguchi, M. and Rebêlo, H. [2012]. SYMDIFF:
A language-agnostic semantic diff tool for imperative programs, International
Conference on Computer Aided Verification, CAV, Vol. 7358, Springer, Heidel-
berg, pp. 712–717.

Lahiri, S. K., McMillan, K. L., Sharma, R. and Hawblitzel, C. [2013]. Differential
assertion checking, ESEC/FSE 2013, ACM, New York, pp. 345–355.

Lahtinen, J., Kuismin, T. and Heljanko, K. [2015]. Verifying large modular sys-
tems using iterative abstraction refinement, Reliab. Eng. Syst. Saf. 139: 120–
130.

Lauterburg, S., Sobeih, A., Marinov, D. and Viswanathan, M. [2008]. Incremental
state-space exploration for programs with dynamically allocated data, ICSE
2008, ACM, New York, pp. 291–300.

Lee, S. and Sakallah, K. A. [2014]. Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction, Inter-
national Conference on Computer Aided Verification, CAV, Vol. 8559 of LNCS,
Springer, pp. 849–865.

159 Bibliography

Lei, S., Cheng, M. and Jiang, J. [2019]. Tactics for proving separation logic asser-
tion in coq proof assistant, ICVISP 2019: 3rd International Conference on Vision,
Image and Signal Processing, Vancouver, BC, Canada, August 26-28, 2019, ACM,
pp. 99:1–99:5.

Leino, K. R. M. and Wüstholz, V. [2015]. Fine-grained caching of verification
results, International Conference on Computer Aided Verification, CAV, Vol. 9206
of LNCS, pp. 380–397.

Li, G. and Gopalakrishnan, G. [2010]. Scalable smt-based verification of GPU
kernel functions, in G. Roman and A. van der Hoek (eds), Proceedings of the
18th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2010, Santa Fe, NM, USA, November 7-11, 2010, ACM, pp. 187–196.
URL: https://doi.org/10.1145/1882291.1882320

Loos, R. and Weispfenning, V. [1993]. Applying linear quantifier elimination,
Comput. J. 36(5): 450–462.

Marescotti, M., Gurfinkel, A., Hyvärinen, A. E. J. and Sharygina, N. [2017]. De-
signing parallel pdr, FMCAD 2017, IEEE, pp. 156–163.

Marescotti, M., Hyvärinen, A. E. J. and Sharygina, N. [2018]. SMTS: Distributed,
visualized constraint solving, LPAR 2018.

Matsushita, Y., Tsukada, T. and Kobayashi, N. [2021]. Rusthorn: Chc-based veri-
fication for rust programs, ACM Trans. Program. Lang. Syst. 43(4): 15:1–15:54.

McMillan, K. L. [1993]. Symbolic model checking, Kluwer Academic Publishers,
Norwell, MA, USA.

McMillan, K. L. [2003a]. Interpolation and SAT-based model checking, 15th In-
ternational Conference on Computer Aided Verification, CAV, Vol. 2725, Springer,
pp. 1–13.

McMillan, K. L. [2003b]. Interpolation and SAT-based model checking, Inter-
national Conference on Computer Aided Verification, CAV, Vol. 2725, Springer,
pp. 1–13.

McMillan, K. L. [2004]. An interpolating theorem prover, International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems TACAS,
Vol. 2988, Springer, pp. 16–30.

160 Bibliography

McMillan, K. L. [2005]. An interpolating theorem prover, Theor. Comput. Sci.
345(1): 101–121.

McMillan, K. L. [2006]. Lazy abstraction with interpolants, 18th International
Conference on Computer Aided Verification CAV, Vol. 4144 of LNCS, Springer,
pp. 123–136.

McMillan, K. L. [2010]. Lazy annotation for program testing and verification, In-
ternational Conference on Computer Aided Verification, CAV, Vol. 6174 of LNCS,
Springer, Heidelberg, pp. 104–118.

McMillan, K. L. [2014]. Lazy annotation revisited, International Conference on
Computer Aided Verification, CAV, Vol. 8559 of LNCS, Springer, pp. 243–259.

McMillan, K. L. and Amla, N. [2003]. Automatic abstraction without counterex-
amples, 9th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS.

McMillan, K. L. and Rybalchenko, A. [2013]. Solving constrained horn clauses
using interpolation, Technical report, MSR-TR-2013-6.

Mentel, L., Scheibler, K., Winterer, F., Becker, B. and Teige, T. [2021]. Benchmark-
ing smt solvers on automotive code, 24th workshop methods and description
languages for modeling and verification of circuits and systems MBMV, pp. 1–10.

Mordvinov, D. and Fedyukovich, G. [2019]. Property directed inference of rela-
tional invariants, FMCAD 2019, IEEE, San Jose, pp. 152–160.

Müller, P., Schwerhoff, M. and Summers, A. J. [2016]. Viper: A verification infras-
tructure for permission-based reasoning, VMCAI, Vol. 9583 of LNCS, Springer,
pp. 41–62.

Nelson, G. and Oppen, D. C. [1979]. Simplification by Cooperating Decision Pro-
cedures, ACM Transactions on Programming Languages and Systems 1(2): 245–
57.

Nelson, G. and Oppen, D. C. [1980]. Fast decision procedures based on congru-
ence closure, Journal of ACM 27(2): 356–364.

Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt, J., Torlak, E.
and Wang, X. [2017]. Hyperkernel: Push-button verification of an OS kernel,
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, ACM, pp. 252–269.

161 Bibliography

Nguyen, M. D., Thalmaier, M., Wedler, M., Bormann, J., Stoffel, D. and Kunz, W.
[2008]. Unbounded protocol compliance verification using interval property
checking with invariants, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
27(11): 2068–2082.

Nieuwenhuis, R. and Oliveras, A. [2005]. Proof-producing congruence closure,
RTA 2005, pp. 453–468.

Nigam, V. and Talcott, C. L. [2022]. Automating safety proofs about cyber-
physical systems using rewriting modulo SMT, in K. Bae (ed.), Rewriting Logic
and Its Applications - 14th International Workshop, WRLA@ETAPS 2022, Mu-
nich, Germany, April 2-3, 2022, Revised Selected Papers, Vol. 13252 of LNCS,
Springer, pp. 212–229.

O’Hearn, P. W., Reynolds, J. C. and Yang, H. [2001]. Local reasoning about pro-
grams that alter data structures, in L. Fribourg (ed.), 15th International Work-
shop Computer Science Logic, CSL - 10th Annual Conference of the EACSL, Vol.
2142 of LNCS, Springer, pp. 1–19.

Padon, O., McMillan, K. L., Panda, A., Sagiv, M. and Shoham, S. [2016]. Ivy:
safety verification by interactive generalization, the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI, ACM,
pp. 614–630.

Pick, L., Fedyukovich, G. and Gupta, A. [2018]. Exploiting synchrony and sym-
metry in relational verification, International Conference on Computer Aided
Verification, CAV, Vol. 10981, Springer, Cham, pp. 164–182.

Pólrola, A., Cybula, P. and Meski, A. [2014]. Smt-based reachability checking for
bounded time petri nets, Fundam. Informaticae 135(4): 467–482.

Pudlák, P. [1997]. Lower bounds for resolution and cutting plane proofs and
monotone computations, J. Symb. Log. 62(3): 981–998.

Qadeer, S., Rajamani, S. K. and Rehof, J. [2004]. Summarizing procedures in
concurrent programs, Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL, ACM, pp. 245–255.

Queille, J. and Sifakis, J. [1982]. Specification and verification of concurrent
systems in CESAR, 5th International Symposium on Programming, pp. 337–
351.

162 Bibliography

Raghunathan, D., Beckett, R., Gupta, A. and Walker, D. [2022]. ACORN:
network control plane abstraction using route nondeterminism, CoRR
abs/2206.02100.

Ramalho, M., Freitas, M., Sousa, F. R. M., Marques, H., Cordeiro, L. C. and Fis-
cher, B. [2013]. Smt-based bounded model checking of C++ programs, 20th
IEEE International Conference and Workshops on Engineering of Computer Based
Systems, ECBS, IEEE Computer Society, pp. 147–156.

Reps, T. W., Horwitz, S. and Sagiv, S. [1995]. Precise interprocedural dataflow
analysis via graph reachability, Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pp. 49–61.

Rollini, S. F., Alt, L., Fedyukovich, G., Hyvärinen, A. and Sharygina, N. [2013].
PeRIPLO: A framework for producing effective interpolants in SAT-based soft-
ware verification, LPAR 2013, Vol. 8312, Springer, Heidelberg, pp. 683–693.

Rothenberg, B., Dietsch, D. and Heizmann, M. [2018]. Incremental verification
using trace abstraction, Static Analysis - 25th International Symposium, SAS
2018, pp. 364–382.

Rümmer, P., Hojjat, H. and Kuncak, V. [2013]. Disjunctive interpolants for Horn-
clause verification, International Conference on Computer Aided Verification,
CAV, Vol. 8044, Springer, pp. 347–363.

Rybalchenko, A. and Sofronie-Stokkermans, V. [2007]. Constraint solving for
interpolation, 8th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI, Vol. 4349, Springer, pp. 346–362.

Schrijver, A. [1999]. Theory of linear and integer programming, Wiley-
Interscience series in discrete mathematics and optimization, Wiley, Sons.

Sebastiani, R. [2007a]. From KSAT to delayed theory combination: Exploiting
DPLL outside the SAT domain, Frontiers of Combining Systems, 6th Interna-
tional Symposium, FroCoS, Vol. 4720 of LNCS, Springer, pp. 28–46.

Sebastiani, R. [2007b]. Lazy satisfiability modulo theories, Journal on Satisfia-
bility, Boolean Modeling and Computation 3(3-4): 141–224.

Seghir, M. N., Podelski, A. and Wies, T. [2009]. Abstraction refinement for quan-
tified array assertions, International Symposium on Static Analysis, SAS, Vol.
5673, Springer, pp. 3–18.

163 Bibliography

Sery, O., Fedyukovich, G. and Sharygina, N. [2011]. Interpolation-based function
summaries in bounded model checking, Hardware and Software: Verification
and Testing - 7th International Haifa Verification Conference, HVC, Vol. 7261 of
LNCS, Springer, pp. 160–175.

Sery, O., Fedyukovich, G. and Sharygina, N. [2012a]. FunFrog: Bounded model
checking with interpolation-based function summarization, ATVA 2012, Vol.
7561, Springer, Heidelberg, pp. 203–207.

Sery, O., Fedyukovich, G. and Sharygina, N. [2012b]. Incremental upgrade check-
ing by means of interpolation-based function summaries, FMCAD 2012, IEEE,
New York, pp. 114 – 121.

Sheeran, M., Singh, S. and Stålmarck, G. [2000]. Checking safety properties us-
ing induction and a sat-solver, Third International Conference on Formal Meth-
ods in Computer-Aided Design.

Shemer, R., Gurfinkel, A., Shoham, S. and Vizel, Y. [2019]. Property directed self
composition, International Conference on Computer Aided Verification, CAV, Vol.
11561, Springer, Heidelberg, pp. 161–179.

Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S. A. and Saraswat, V. A. [2006].
Combinatorial sketching for finite programs, the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS, ACM, New York, pp. 404–415.

Szymoniak, S., Siedlecka-Lamch, O., Zbrzezny, A. M., Zbrzezny, A. and
Kurkowski, M. [2021]. SAT and smt-based verification of security protocols
including time aspects, Sensors 21(9): 3055.

Trostanetski, A., Grumberg, O. and Kroening, D. [2017]. Modular demand-driven
analysis of semantic difference for program versions, International Symposium
on Static Analysis, SAS, Vol. 10422, Springer, Cham, pp. 405–427.

Vick, C. and McMillan, K. L. [2023]. Synthesizing history and prophecy variables
for symbolic model checking, Verification, Model Checking, and Abstract Inter-
pretation - 24th International Conference, VMCAI, Vol. 13881 of LNCS, Springer,
pp. 320–340.

Visser, W., Geldenhuys, J. and Dwyer, M. B. [2012]. Green: reducing, reusing
and recycling constraints in program analysis, SIGSOFT/FSE 2012, ACM, New
York, p. 58.

164 Bibliography

Vizel, Y. and Grumberg, O. [2009]. Interpolation-sequence based model check-
ing, FMCAD’09, IEEE, pp. 1–8.

Vizel, Y. and Gurfinkel, A. [2014]. Interpolating property directed reachability,
26th International Conference Computer Aided Verification, CAV, Vol. 8559 of
LNCS, Springer, Heidelberg, pp. 260–276.

Vizel, Y., Gurfinkel, A. and Malik, S. [2015]. Fast interpolating BMC, International
Conference on Computer Aided Verification, CAV, pp. 641–657.

W., F. R. [1967]. Assigning meanings to programs, Symposium on Applied Math-
ematics 19: 19–32.

Xie, Y. and Aiken, A. [2005a]. Saturn: A SAT-Based Tool for Bug Detection, Com-
puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings, pp. 139–143.

Xie, Y. and Aiken, A. [2005b]. Scalable error detection using boolean satisfiabil-
ity, the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, ACM, pp. 351–363.

Xu, L. [2008]. Smt-based bounded model checking for real-time systems (short
paper), in H. Zhu (ed.), Proceedings of the Eighth International Conference on
Quality Software, QSIC 2008, 12-13 August 2008, Oxford, UK, IEEE Computer
Society, pp. 120–125.

Yang, G., Khurshid, S., Person, S. and Rungta, N. [2014]. Property differencing
for incremental checking, ICSE 2014, ACM, New York, pp. 1059–1070.

Zhang, H., Yang, W., Fedyukovich, G., Gupta, A. and Malik, S. [2020]. Synthe-
sizing environment invariants for modular hardware verification, Verification,
Model Checking, and Abstract Interpretation - 21st International Conference, VM-
CAI, Vol. 11990 of Lecture Notes in Computer Science, Springer, pp. 202–225.

Zhu, H., Magill, S. and Jagannathan, S. [2018]. A data-driven CHC solver, the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI, ACM, New York, pp. 707–721.

	Contents
	List of List of Figures
	List of List of Tables
	Introduction
	Preface
	Symbolic model checking
	Abstraction in model checking
	Interpolation-based model checking

	Challenges and Contributions
	SMT-based BMC by means of function summarization
	SMT-based incremental verification of program revisions
	Model checking by theory transformation
	Counterexample-guided theory-aware refinement
	Outline

	Background
	Formal modeling and properties
	Abstraction
	Abstract interpretation
	Predicate abstraction
	Counterexample-guided abstraction refinement (CEGAR)
	Abstraction using interpolation

	Interpolation-based function summarization
	Function summaries

	Satisfiability Modulo Theories
	SMT notational conventions
	Theories of SMT
	Theories of interest

	Programs and Summaries

	SMT-based BMC by means of function summarization
	Program modeling
	Monolithic program encoding into SMT formula
	PBMC formula construction for summarization

	Obtaining function summaries
	Interpolation algorithms used in the proposed framework

	SMT-based incremental verification for verifying multiple properties
	Applying function summaries during formula construction
	Summary refinement

	HiFrog: SMT-based incremental verification via function summaries
	Evaluation
	Related work
	Related work on interpolation in verification
	Related work on function summaries
	Related work on SMT-based verification

	Synopsis
	Limitation and future work

	Incremental verification of program changes
	Motivating example
	Incremental verification of program changes
	Basic algorithm of summary validation
	Algorithm with summary repair
	Summary weakening
	Summary refinement

	Correctness of the algorithm
	Tree interpolation property
	Correctness of the algorithm
	Interpolation algorithms in a concrete theory

	Tool architecture and implementation
	Experimental evaluation
	Demonstrating usefulness of different theories
	Demonstrating the effect of summary reuse
	Incremental BMC vs monolithic BMC
	 Number of repaired summaries
	 Overhead of summary repair

	Comparison of UpProver and CPAchecker

	Related work
	Synopsis
	Limitation and Future work

	Model checking by theory transformation
	Overview of the technique
	Motivating example
	Theory-based model refinement
	Theory Interface
	Encoding of theory interface into specific theories
	Decoding theories to the Theory Interface

	Summary and theory-aware model checking
	Implementation and evaluation
	Results

	Related Work
	Synopsis
	Limitation and future work

	Theory-aware abstraction refinement
	Preliminaries
	Combination of theories in theory refinement
	Bit Vectors for programs
	Uninterpreted functions for programs
	Combination of UFP and BVP

	Overview and motivating examples
	Counterexample-guided theory refinement
	Implementation of theory refinement algorithm
	The Solver for UFP
	The Solver for BVP
	Theory Refinement in Model Checking

	Experimental results
	Experiments on Refinement Heuristic

	Related Work
	Synopsis
	Limitation and future work

	Contribution Summary
	Transformation rules for BV and NRA
	List of Publications
	List of publications related to this thesis
	Journals
	Main conference proceedings
	Poster presentation

	Other collaborative publications

	Bibliography

