
The Synergy of Precise and Fast Abstractions
for Program Verification

Natasha Sharygina
University of Lugano,

Switzerland

natasha.sharygina@unisi.ch

Stefano Tonetta
Fondazione Bruno Kessler,

Trento, Italy

tonettas@fbk.eu

Aliaksei Tsitovich
University of Lugano,

Switzerland

aliaksei.tsitovich@lu.unisi.ch

ABSTRACT
Predicate abstraction is a powerful technique to reduce thestate
space of a program to a finite and affordable number of states.It
produces a conservative over-approximation where concrete states
are grouped together according to a given set of predicates.A pre-
cise abstraction contains the minimal set of transitions with regards
to the predicates, but as a result is computationally expensive. Most
model checkers therefore approximate the abstraction to alleviate
the computation of the abstract system by trading off precision with
cost. However, approximation results in a higher number of refine-
ment iterations, since it can produce more false counterexamples
than its precise counterpart. The refinement loop can becomepro-
hibitively expensive for large programs.

This paper proposes a new abstraction refinement technique that
combines slow and precise predicate abstraction techniques with
fast and imprecise ones. It allows computing the abstraction quickly,
but keeps it precise enough to avoid too many refinement iterations.
We implemented the new algorithm in a state-of-the-art software
model checker. Our tests with various real life benchmarks show
that the new approach systematically outperforms both precise and
imprecise techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking

General Terms
Algorithms, Theory, Verification.

Keywords
Predicate Abstraction, Abstraction Refinement, CEGAR

1. INTRODUCTION
Predicate abstraction [17, 14], when combined with reachability

analysis and an automated abstraction refinement mechanism(also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

known asCounterexample Guided Abstraction Refinement(CE-
GAR)[4, 10]), is an effective model checking strategy. The CEGAR-
based verification consists of constructing and evaluatinga finite-
state system that is an abstract model of the original systemwith
respect to a set of predicates.

The abstract model is a conservative over-approximation ofthe
original program with respect to the set of given predicates. Thus,
if the property holds on the abstract model, it also holds on the
original program. The drawback of the conservative abstraction is
that when model checking of the abstract program fails, it may pro-
duce a counterexample that does not correspond to any concrete
counterexample. This is called aspurious counterexample. When
a spurious counterexample is encountered,refinementis performed
by adjusting the set of predicates in a way that eliminates the given
counterexample. The overall efficiency of verification is highly de-
pendent on the efficiency of the abstraction and refinement proce-
dures.

Computing the abstract model relies on enumerating the abstract
states and checking, for each pair of states, if there existsan ab-
stract transition. This computation is expensive since it requires an
exponential number of calls to a theorem prover [16, 2, 1]. In[27,
8, 26], the abstraction is computed by means of dedicated decision
procedures based on BDDs, SAT or SAT modulo theories (SMT).
As another direction, various techniques have been proposed to al-
leviate this computation by approximating the abstract transition
relation (see, for example, [15, 2, 3, 1, 23]).

We distinguish betweenpreciseabstraction andapproximated
abstraction (as also done, for example, in [10, 15, 23]): a precise
abstraction is minimal in the sense that it contains only those tran-
sitions that correspond to some transition in the concrete model; in-
stead, an approximated abstraction is a further over-approximation
of the minimal abstract model so that the transition relation is re-
laxed. In the paper, we will refer to the latter simply as approxima-
tion.

Approximation techniques are important because they allowa
less expensive (as compared to precise abstraction) computation of
the abstract transition relation. Cartesian abstraction [3], for exam-
ple, loses every relationship among predicates, but has been suc-
cessfully used to verify large programs, such as operating system
device drivers. However, abstraction approximations add spuri-
ous behaviors in addition to the spurious counterexamples resulting
from precise abstraction. In order to rule out this kind of “impu-
rity”, the approximation must be refined without changing the set
of predicates and focusing only on the spurious transitionscaused
by the approximation [15]. This procedure on its own might be-
come very costly and can not fit to verification of large programs.

When refining the abstract model, we distinguish between two
types of spurious behavior (as also done in [12]). 1)Spurious path

void main() {
int x=*;
int y;

l0: y=x+1;
l1: if (x<0)
l2: if (!(x<y))
l3: assert(0);
l4:}

(a)

void main() {
int x = *;
int y;
int z;
y=x+1;
z=y-1;
if (x<0||y>0||z>0){
x++;
z++;
if (y<z && z>x)
assert(0); } }

(b)

Figure 1: Sample program for which the approximated abstraction
causes spurious transitions.

is due to the over-approximating nature of the precise abstraction:
states are merged together so that some resulting paths cannot be
simulated on the concrete system. This happens when the set of
predicates is not sufficient to capture the relevant behaviors of the
concrete system. 2)Spurious transitionsare abstract transitions
which do not have corresponding concrete transitions. By defini-
tion, spurious transitions cannot appear in the most precise abstrac-
tion and are caused by using the approximation techniques. Clearly,
the efficiency of the approximated abstraction depends on a trade-
off between time spent in computing the abstraction and refining
spurious transitions.

In order to illustrate the abstraction approximation and its refine-
ment procedures, consider the example of Figure 1(a). The vari-
ablex is assigned non-deterministically with an unknown value
“*”. The property we verify is the reachability of linel3. It never
can be true since the condition!(x<y) at linel2 never holds (the
conditional statement with guardx<0 is necessary to avoid integer
overflow). Thus if in the abstract program there is a path leading
to the assertion, then it is spurious. The predicatesx<0 andx<y
are sufficient to prove the property. However, approximate meth-
ods like Cartesian abstraction cannot prove it because theycannot
infer that after the assignmenty=x+1, the condition!(x<0) ||
!(x<y) is true. Thus, most model checkers that use such abstrac-
tions refine the transition relation by adding a constraint that re-
moves the spurious transition.

In order to experience the difference in performance between
precise and approximated abstractions, let us extend the previous
example in order to have more spurious behaviors. The program
of Figure 1(b) has one more variable and a slightly more complex
control flow graph. As before the assertion is not reachable,and all
abstract counterexamples are spurious. Though, if we consider the
predicates in the guards of the program, an approximated abstrac-
tion may produce many spurious behaviors. Table 1 reports the
verification results obtained with the SATABS model checker[13],
by running approximated and precise abstractions. The finalnum-
ber of predicates is in all cases 10. The approximated abstraction
spends most of time in refining the transition relation (Ref). Since
it runs for 12 iterations (or even 42 in case when we used the re-
finement procedure of [15]), also the time for the verification (MC)
is not negligible. On the contrary, the precise abstractiontakes only
2 iterations to terminate (the first refinement is necessary to add a
sufficient set of predicates). Nevertheless, the amount of time spent
in computing the abstraction is too high for such example.

A low number of refinement iterations is fundamental for the
success of the CEGAR loop, especially when applied to industrial
benchmarks: in fact, when the system is complex, the number of
predicates required to verify the property becomes high, and the
time spent in the reachability (model checking) procedure grows

exponentially. For this reason, it is of paramount importance to
avoid as many redundant iterations as possible: even a single saved
iteration can result into a huge saving in time for large systems.

Contributions
This paper presents a CEGAR-based technique that controls the
number of iterations and reduces the verification time by interleav-
ing precise (but slow) and approximated (but fast) abstractions. The
abstraction is first computed with a high level of approximation ex-
ploiting the weakest precondition of the predicates. Then,during
the refinement step, our technique uses the SAT-based quantifier
elimination in order to compute a precise abstraction.

The blow up that we would experience in computing the precise
abstraction of the whole program is avoided by exploiting the local-
ized abstraction: as in static analysis [30], in most model checkers
(such as SLAM [2], BLAST [20], SATABS [13], F-Soft [22]) the
abstract model keeps the control flow graph of the original program
and has a different abstract transition relation for each location of
the control-flow graph1. This way, during the refinement step, we
add the constraints built with a precise abstraction only torelevant
transition relations, affecting only those parts of the system that
caused the spurious counterexample.

In order to illustrate the immediate advantages of our approach,
consider the fourth line of Table 1 that is based on the implemen-
tation of our technique. Our approach is able to avoid both a high
number of iterations and an expensive abstraction, resulting in an
optimized verification time.

We performed a thorough evaluation comparing the new tech-
nique with the purely precise and imprecise counterparts. Our tests
with various real life benchmarks show a systematic advantage of
our approach over both precise and imprecise techniques reaching
up to 90% improvement in time.

Overall, the new technique manages the verification complexity
by using the precise abstraction on demand and locally. The advan-
tage is that the expensive abstraction is only used on a smallportion
of the program, yet the higher quality of abstraction refinement is
sufficient to reduce the number of refinement iterations, thus im-
proving the overall performance.

Related work
The paper addresses the problem of refining the abstraction in the
presence of spurious transitions. The solution was first given by
Das and Dill [15] whose technique consists of removing one spuri-
ous transition at every refinement iteration. The approach may be
very expensive because it requires a high number of iterations of
the abstraction-refinement loop. In practice, the technique is not
feasible for real systems.

Many works such as [1] improved the refinement by strengthen-
ing the condition added to the transition relation to removemore
spurious transitions. The idea in [1] is to syntactically simplify
the condition and to check if a larger set of spurious transitions is
found.

In [9, 21, 22], a different technique is presented based on SAT
techniques. Transitions are simulated over the concrete program
by means of SAT formulas. If the transition is not concretizable
the SAT solver will produce a resolution proof of the unsatisfia-
bility. It is then possible to extract from the proof either acore
set of predicates or a constraint sufficient to remove the spurious
transition. Though, in principle, the technique can removemany
spurious transitions at once, the efficiency strongly depends on the
unsatisfiability proof. In the worst case, it may require a number of

1Localized abstraction is further investigated in [20, 19].

Total Abs MC Ref Iter
Approximated abstraction [15] 5.817 0.063 2.659 2.112 42
Approximated abstraction [21] 1.469 0.046 0.501 0.617 12

Precise abstraction 3.591 3.478 0.076 0.01 2
New approach 0.467 0.039 0.161 0.189 4

Table 1: Verification results on the example of Figure 1(b).Total, Abs, MC, Refrefer to the time, in seconds, for total verification, abstraction,
model checking and refinement respectively;Iter refers to the number of iterations of the abstraction-refinement loop.

abstraction refinements exponential in the number of predicates.
The technique of [23] also exploits the unsatisfiability proof but

it is based on interpolation. The interpolant produced by the proof
is indeed an over-approximation of the exact abstraction able to re-
move the spurious transition. As in the case of unsat cores, the tech-
nique depends on the heuristics to produce unsatisfiabilityproofs.
The interpolant is not always enough strong to remove all spurious
transitions.

This paper instead proposes a greedy approach where all spu-
rious transitions between two locations are removed. The idea is
that the computation can be efficient because it is localizedand on-
demand. The technique inherits the efficiency of the approximated
abstraction which is used any time new predicates are discovered.
At the same time, the precision of the minimal abstraction isex-
ploited whenever spurious transitions are found.

Summary
The paper is organized as follows: Section 2 gives an overview
of related abstraction refinement techniques; Section 3 describes
our new approach; Section 4 presents the experimental evaluation;
finally, Section 5 draws the conclusions.

2. BACKGROUND

2.1 Transition Systems
We consider programs as Transition Systems. TSs are defined

by a setV of state variables. We useV ′ to denote the set of next
state variables{v′}v∈V , wherev′ represents the next value ofv.
The setSV of states is given by all assignments to the variables
V . Given a states, s′ denotes the corresponding assignment to the
next state variables, i.e.s′ = s[V ′/V]. Transitions are represented
as pairs of states. For each transitiont = (s1, s2), we usein(t)
andout(t) to denote resp.s1 ands2. Given a formulaφ, we write
φ[V/V ′] to denote the result of substituting every free occurrence
of every variablev′ ∈ V ′ with its correspondingv. We use∃V (φ)
to denote the existential quantification of every variable in V .

Definition 1 A Transition System (TS) is a tupleM = 〈V, I, T 〉,
where

• V is a set of variables;

• I(V) is a formula that represents the initial states;

• T (V, V ′) is a formula that represents the transitions.

A states is initial iff s |= I(V). Given two statess1 ands2,
there exists a transitiont betweens1 ands2 iff s1, s

′
2 |= T (V, V ′).

A path ofM is a finite sequenceπ of transitionst0, t1, ..., tn such
thatin(t0) |= I , and, for every0 ≤ i < n, out(ti) = in(ti+1). In
general, given a transition relationT , we useπ |= T to denote that
π[i] |= T for every0 ≤ i ≤ |π|.

Example 1 Consider the program of Figure 1(a). It can be repre-
sented by the TSM = 〈V, I, T 〉, where

• V := {x, y, pc}, wherepc is the program counter;

• I := (pc = l0);

• T := (pc = l0) → (pc′ = l1 ∧ y′ = x + 1 ∧ x′ = x)∧
(pc = l1 ∧ x < 0) → (pc′ = l2 ∧ x′ = x ∧ y′ = y)∧
(pc = l1∧!x < 0) → (pc′ = l4 ∧ x′ = x ∧ y′ = y)∧
(pc = l2∧!x < y) → (pc′ = l3 ∧ x′ = x ∧ y′ = y)∧
(pc = l2 ∧ x < y) → (pc′ = l4 ∧ x′ = x ∧ y′ = y)∧
(pc = l3) → (pc′ = l4 ∧ x′ = x ∧ y′ = y)

2.2 Abstraction

Definition 2 Given two TSsM = 〈V, I, T 〉 andM̂ = 〈V̂ , Î, T̂ 〉,
a relationH(V, V̂) is anabstraction relation[11] iff the following
conditions hold:

• every initial state ofM corresponds to an initial state of̂M ;
namely, ifs |= I(V), then there exists a statês of M̂ such
that ŝ |= Î(V̂) ands, ŝ |= H(V, V̂);

• every transition ofM corresponds to a transition of̂M ; namely,
if s1, ŝ1 |= H(V, V̂), and s1, s

′
2 |= T (V, V ′), then there

exists a statês2 of M̂ such thats2, ŝ2 |= H(V, V̂) and
ŝ1, ŝ

′
2 |= T̂ (V, V ′) .

If such relation exists, we say that̂M is anabstractionof M , or M
refinesM̂ (M � M̂).

Definition 3 Given the abstraction relationH , we define theab-
straction functionαH : 2SV → 2S

V̂ and theconcretization func-
tion γH : 2S

V̂ → 2SV as follows:

• αH(Q) = {ŝ ∈ SV̂ | there existss ∈ Q s.t.s, ŝ |= H(V, V̂)},
for everyQ ⊆ SV ;

• γH(Q̂) = {s ∈ SV | there existŝs ∈ Q̂ s.t.s, ŝ |= H(V, V̂)},
for everyQ̂ ⊆ SV̂ .

We extendγ to transitions and paths so that:

• γH(t̂) = {t | in(t) ∈ γ(in(t̂)), out(t) ∈ γ(out(t̂))}, for
every transition̂t of M̂ .

• γH(π̂) = {π | π[i] ∈ γ(π̂[i]) for every0 ≤ i ≤ |π̂|}, for
every patĥπ of M̂ .

If a propertyφ is universal a systemM satisfies the property
(M |= φ) if and only if the property is satisfied by all paths ofM .
The abstraction relation we defined preserves universal properties,
so that ifM � M̂ , φ is a universal property, and̂M |= φ, then
M |= φ (though, in general, the reverse does not hold). Given a
TS M = 〈V, I, T 〉, an abstractionM̂ = 〈V̂ , Î, T̂ 〉 of M is said
to beprecisewhen every abstract initial state and transition ofM̂
corresponds respectively to a concrete initial state and transition of
M . Given the abstraction relationH , M̂ can be obtained as:

• ÎH(V̂) = ∃V (I(V) ∧ H(V, V̂)),

• T̂H(V̂ , V̂ ′) = ∃V ∃V ′(T (V, V ′) ∧ H(V, V̂) ∧ H(V ′, V̂ ′))

The precise abstraction is also calledminimalor existentialor exact
or eagerabstraction [11].

Given a TSM = 〈V, I, T 〉, let P be a set of predicates and̂vp

an abstract variable for every predicatep ∈ P . The set of abstract
variables is the set̂VP = {v̂p}p∈P . The abstraction relation for
predicate abstraction is defined as follows:

HP (V, V̂P) =
^

p∈P

v̂p ↔ p(V)

The minimal predicate abstraction is the TŜM = 〈V̂P , ÎP , T̂P 〉,
where:

• ÎP (V̂P) = ∃V (I(V) ∧
V

p∈P
v̂p ↔ p(V))

• T̂P (V̂P , V̂ ′
P) = ∃V ∃V ′(T (V, V ′) ∧

V

p∈P
(v̂p ↔ p(V) ∧

v̂′
p ↔ p(V ′))).

2.2.1 Quantifier elimination
In order to model check the abstract TS, it is necessary to com-

pute the set of successors of abstract states. This requiresthe re-
moval of the quantifiers from the definition of the abstract transition
relation. In general, given a transition relationT and a set of predi-
catesP , to computeT̂P means to find a quantifier-free formula that
is equivalent toT̂P .

Example 2 Consider the TS described in the Example 1 and the
predicatesP1 := (x < 0) and P2 := (x < y). Let the abstract
variablesv̂1 and v̂2 correspond respectively toP1 andP2. We do
not abstract the program counter. The abstract transition relation
results to be equivalent to

• T̂P ≡ (pc = l0 ∧ v̂1) → (pc′ = l1∧!v̂′
2)∧

(pc = l0∧!v̂1) → (pc′ = l1)∧
(pc = l1 ∧ v̂1) → (pc′ = l2 ∧ v̂′

1 = v̂1 ∧ v̂′
2 = v̂2)∧

(pc = l1∧!v̂1) → (pc′ = l4 ∧ v̂′
1 = v̂1 ∧ v̂′

2 = v̂2)∧
(pc = l2∧!v̂2) → (pc′ = l3 ∧ v̂′

1 = v̂1 ∧ v̂′
2 = v̂2)∧

(pc = l2 ∧ v̂2) → (pc′ = l4 ∧ v̂′
1 = v̂1 ∧ v̂′

2 = v̂2)∧
(pc = l3) → (pc′ = l4 ∧ v̂′

1 = v̂1 ∧ v̂′
2 = v̂2)

In hardware and software verification, different techniques have
been conceived to computêTP . In symbolic model checking [7] of
finite state machines, the existential quantification can beremoved
either by a Shannon expansion technique when using BDDs [6]
or by SAT techniques when using CNF [29]. In software model
checking, the problem is exacerbated by the fact that the concrete
transition relation may contain first-order terms. The abstract tran-
sition relation can be obtained by enumerating the abstractstates,
and checking if, for each pair of states, there exists an abstract tran-
sition. As it is done by most software model checkers, this requires
an exponential number of calls to a theorem prover [16, 2]. In[13],
a SAT solver is exploited to find all possible solutions. We refer to
this technique asSATQE.

2.3 Abstraction approximation
Precise abstractions are very expensive to compute becauseof

the existential quantification operations. Thus, in practice, model
checkers use approximations to trade-off precision with complex-
ity.

Definition 4 Formally, givenMH = 〈V, IH , TH〉 andM̃ = 〈V, Ĩ, T̃ 〉,
we say thatM̃ is anapproximationof MH (MH - M̃) iff the fol-
lowing formulas are valid:

• IH → Ĩ, i.e., every initial state of the minimal abstraction is
an initial state in the approximation;

• TH → T̃ , i.e., every transition of the minimal abstraction is
a transition in the approximation.

Intuitively, M̃ has more initial states and transitions thanMH .
Note that an approximation is also an abstraction namely, ifMH -

M̃ , thenMH � M̃ . However, the set of predicates is not affected,
in the sense that̃M andMH have the same abstract variables.

2.3.1 Approximation techniques
Many approximation techniques have been developed both in

hardware and software verification. Their aim is to alleviate the
computation ofT̂P . The easiest way is to reduce the scope of
quantifiers. This can be done withearly quantification[11], by
pushing quantifiers in front of predicates.Predicate partitioning
[21] approximateŝTP by taking the conjunction of its projections
over subsets of predicates. This technique is pushed to its limit by
Cartesian abstraction [3] that, given a set of statesQ, approximates
transition relation with the product of the projections on each vari-
able. This way, the approximated abstraction ignores everyrelation
among predicates.

2.4 Spurious behaviors
The overapproximation nature of the abstraction as we define

may generate spurious paths even in the case of precise abstraction.
Spurious paths are sequences of transitions that satisfy the abstract
transition relation, but not the concrete one.

Definition 5 (Spurious path) Given a TSM = 〈V, I, T 〉, an ab-
stractionM̂ = 〈V̂ , Î , T̂ 〉, and a sequencêπ of transitions ofM̂ ,
we say that̂π is a spurious path iff̂π |= T̂ andπ 6|= T for every
π ∈ γ(π̂).

In order to refine the abstraction and remove a spurious path,re-
finement procedures need to add more predicates to the abstraction.
There are different techniques to discover the new set of predicates,
either based on weakest precondition [5], interpolation [19], or UN-
SAT core [18].

Besides spurious path, approximated abstraction generates an-
other kind of spurious behavior, called spurious transitions. Spu-
rious transitions are transitions that satisfy the abstract transition
relation, but not the concrete one.

Definition 6 (Spurious transition) Given a TSM = 〈V, I, T 〉,
an abstractionM̂ = 〈V̂ , Î, T̂ 〉, and a transitiont̂ of M̂ , we say
that t̂ is a spurious transition iff̂t |= T̂ and t 6|= T for every
t ∈ γ(t̂).

In order to refine an approximation that contains a spurious tran-
sition, a new transition relation is obtained by adding a constraint
in conjunction to the old abstract transition relation. As aresult, the
spurious counterexample is ruled out. Different techniques uses as
such constraint either the exact encoding of the spurious transition
[15], or the UNSAT core produced by the SAT solver when check-
ing if the transition is spurious [21], or an interpolant between the
exact abstraction and the current approximated abstraction [23].

3. THE SYNERGY ALGORITHM
This section proposes a new refinement algorithm. It uses both

the fast and precise types of abstraction to gain verification effi-
ciency. It is independent of any particular technique used to define
either procedure.

MixCegarLoop(TransitionSystem M, Property F)1
begin2

Π = InitialPredicates(F,T);3
α = FastAbstraction(T,Π);4
while not TIMEOUTdo5

π = ModelCheck(α,F);6
if π = ∅ then return CORRECT;7
else8

σST = SpuriousTransition(π);9
if σST 6= ∅ then10

foreach t ∈ π do11
C = PreciseAbstraction(T,σST (t));12
α = α ∧ C;13

else14
σSP = SpuriousPath(π);15
if σSP 6= ∅ then return INCORRECT;16
else17

foreach t ∈ π do18
Π = Π ∪ σSP (t);19
C =20
PreciseAbstraction(T,σSP (t));
α = α ∧ C;21

end22
Algorithm 1 : A new abstraction-refinement algorithm combining
fast and precise abstractions.

The algorithm implements the standard CEGAR loop. Each it-
eration of the CEGAR loop is composed of an abstraction step,
a model checking step, a simulation step and finally a refinement
step.

We first present the high-level overview of the combined algo-
rithm and then describe the specifics of the new refinement proce-
dures. For simplicity, we first present the algorithm with regard to
a monolithic transition relation. In Section 3.3 we extend it to the
case where a transition relation is defined for every location of the
program.

The algorithm is parameterized by a number of subroutines that
take care of the abstraction and refinement. In particular, the algo-
rithm contains the following procedures:

• FastAbstraction: given a set of predicatesΠ and a con-
crete transition relationT , it computes an over-approximation
of T̂Π.

• PreciseAbstraction: given a set of predicatesΠ and
a concrete transition relationT , it computes the minimal ab-
stractionT̂Π.

• SpuriousTransition: given a pathπ, it returns a func-
tion σST that maps every transitiont in π to a set of predi-
catesP , s.t.,P ⊆ Π andt 6|= T̂P .

• SpuriousPath: given a pathπ, it returns a functionσSP

that maps every transitiont in π to a set of predicatesP ,
s.t. π 6|= T̂σSP (t). Note thatP may contain new and old
predicates.

Algorithm 1 shows how theFastAbstraction and Pre-
ciseAbstraction are combined. It first computes the approx-
imated abstraction (line 4). When a spurious counterexample is
encountered as a result of the model checking (line 6), the spurious
transitions are removed by using the precise abstraction technique
(line 12) with the predicates returned bySpuriousTransition
(line 9). If no spurious transitions are found, the spuriouspath is
removed by using the precise abstraction technique (line 20) with
the predicates returned bySpuriousPath (line 15).

3.1 Refining spurious transitions (lines 9-13)
Suppose some transitionst1, ..., tn of the counterexampleπ found

by ModelCheck are spurious. This means that the functionσST

returned bySpuriousTransition maps those transitions to
some non-empty set of predicates. Let us define the clustering of
predicatesΓ as{σST (ti)}1≤i≤n (i.e.,Γ contains the set of predi-
catesσST (ti) for every transition in the spurious counterexample).
The spurious transition refinement procedure proceeds as follows.
For each cluster,P ∈ Γ, the refinement algorithm computeŝTP ,
which is a precise computation of the abstract transition relation
projected on the predicates of the cluster. In order to rule out ev-
ery spurious transition amongt1, ..., tn, the refinement algorithm
updates the abstract transition relation as follows:

α′ := α ∧
^

P∈Γ

T̂P

Note that, in general, every cluster,P , is a subset of the global
set of predicates,Π. This means that each constraintT̂P is an over-
approximation of the precise abstraction computed overΠ. Nev-
erthlessT̂P is precise with regards to the predicatesP , in the sense,
that it removes all the unrealistic abstract transitions that can be de-
fined by the those predicates.

The following theorem states the soundness of this refinement
step.

Theorem 1 For every spurious transitionti, 1 ≤ i ≤ n, ti 6|= α′.

Proof Sketch.The proof comes directly from the definition ofσST

(it relies therefore on the soundness of a particularSpurious-
Transition technique): for1 ≤ i ≤ n, sinceti 6|= T̂σST (ti),
ti 6|= α′.

3.2 Refining spurious paths (lines 15-21)
We adopt the cluster-based approach described above to the re-

moval of the spurious path. Our technique uses
SpuriousPath to produce the set of predicates that are sufficient
to rule out the spurious counterexample. The set of predicates gen-
erated by the standard predicate-discovery techniques (described
in Section 2) includes both current predicates and new predicates,
that together rule out the spurious counterexample. Our technique
considers this set of old and new predicates as a new cluster.

Suppose the patht1, ..., tn to be spurious. This means that the
functionσSP returned bySpuriousPath maps eachti to some
non-empty set of predicates. Let us define the clustering of pred-
icatesΓ as{σSP (ti)}1≤i≤n (i.e., Γ contains the set of predicates
σSP (ti) for every transition in the spurious counterexample). The
computation of the updated abstract transition relation isidentical
to spurious transition case, i.e.

α′ := α ∧
^

P∈Γ

T̂P

Note that this time, unlike the case of spurious transitions, the clus-
ters involve new predicates.

By definition, the set of predicates produced by
SpuriousPath is sufficient to remove the spurious counterex-
ample only if the precise abstraction is used. In fact, spurious tran-
sitions over such predicates (possibly created by the approximation
abstraction) might create the same spurious counterexample. Our
technique guarantees that this does not happen. This is achieved by
using the precise componentT̂P .

The following theorem states the soundness of this refinement
step.

MixCegarLoop(TransitionSystem M, Property F)1
begin2

foreach T in M do Π(T) = InitialPredicates(F,T);3
foreach T in M do α(T) = FastAbstraction(T,Π);4
while not TIMEOUTdo5

π = ModelCheck(α,F);6
if π = ∅ then return CORRECT;7
else8

σ = SpuriousTransition(π);9
if σ 6= ∅ then10

foreach t ∈ π do11
T = τ(t);12
C = PreciseAbstraction(T,σ(t));13
α(T) = α(T) ∧ C;14

else15
σSP = SpuriousPath(π);16
if σSP 6= ∅ then return INCORRECT;17
else18

foreach t ∈ π do19
T = τ(t);20
Π(T) = Π(T) ∪ σSP (t);21
C =22
PreciseAbstraction(T,σSP (t));
α(T) = α(T) ∧ C;23

end24
Algorithm 2 : CEGAR loop with localized abstraction.

Theorem 2 For every spurious pathπ, π 6|= α′.

Proof Sketch.The proof comes directly from the definition ofσSP

(it relies therefore on the soundness of a particularSpurious-
Path technique).

3.3 Localized abstraction
The algorithm shown in Algorithm 1 was defined for a mono-

lithic transition relation. When the set of predicates returned by the
SpuriousTransition orSpuriousPath procedures covers
the whole setΠ of current predicates, the constraint thatMix-
CegarLoop adds to the abstract transition corresponds exactly to
the precise abstraction. This way, the abstraction refinement be-
comes as expensive asPreciseAbstraction. We limit this
disadvantage by localizing the abstraction to some parts ofthe pro-
gram. Some software model checkers (e.g., BLAST [20] and SA-
TABS [13]) use the control flow graph as a partitioning of the tran-
sition relation to implement such localization. During theabstrac-
tion refinement, they keep a set of predicates and an abstracttransi-
tion relation for each program location, and perform the abstraction
for each local transition relation separately.

Our algorithm implements the localized procedure as part ofthe
CEGAR algorithm as shown in Algorithm 2. The algorithm treats
the systemM as a set of concrete transition relations, one for ev-
ery location of the control-flow graph. For each transition relation
T , it computes an abstract transition relationα(T) (line 4); when
a spurious counterexample is encountered as a result of the model
checking (line 6), spurious transitions and path are removed by us-
ing the precise abstraction technique (line 13 and 22). The dif-
ference from the monolithic case (presented earlier in thissection)
is that in the localized version, every transitiont of the spurious
counterexampleπ is associated with a particular abstract transition
relation, denotedτ (t). Thus, when the refinement step of the al-
gorithm has to add a new constraint, it changes only the transition
relation corresponding to either the spurious transition (as part of
the spurious transition refinement step, lines 9-14) or to each tran-
sition of the spurious path (as part of the spurious path refinement
step, lines 16-23).

By exploiting the localized-abstraction framework, the algorithm

reduces the abstraction computation to the parts of the system that
are relevant to the property and keeps the approximated abstraction
in all parts of the program that are irrelevant to prove the property.

4. EXPERIMENTAL RESULTS
We implemented the proposed algorithm in the framework of

software model checking. We used the SATABS [13] model checker
as a platform for our experiments. As described in Section 3,the
new CEGAR loop uses four subroutines. We experimented with
the following techniques implemented in SATABS:

• for FastAbstraction, we used a fast abstraction tech-
nique based on the computation of the weakest precondition;
it assigns to the next predicate its weakest precondition ifthis
is a current predicate; it does not allow a general Boolean
combination of predicate variables;

• for PreciseAbstraction, we used a precise abstraction
based on the enumeration of possible transitions by means of
a SAT solver: we force the SAT solver to find all the solutions
of the quantifier-elimination problem by iteratively adding
the negation of previous assignments as clauses [13];

• for SpuriousTransition, we used the SAT-based tech-
nique of [21]2; this calls a SAT solver to check if a transition
is spurious; if the transition is not realistic, it inspectsthe
UNSAT proof to find the relevant predicates;

• for SpuriousPath, we used a technique based on weakest
precondition; it computes the weakest preconditions of the
current predicates along the transitions of the spurious path;
it uses these expressions to produce a set of current and new
predicates that are sufficient to rule out the spurious path.

The SAT solver used byPreciseAbstractionandSpurious-
Transitionwas MiniSAT3. We implemented the new algorithm
and enhanced SATABS with two new procedures: the first (we will
refer to it asNewST) affects how the abstraction is refined in the
case of spurious transitions, as described in Section 3.1; the second
(NewSP) refines the abstraction in the case of spurious paths, as
described in Section 3.2.

We ran the experiments on a AMD Dual-Core Opteron(TM) 2212
machine with 2GHz CPU and Ubuntu 7.04 We compared the pure
fast abstraction and the pure precise abstraction (as implemented
in SATABS) with the new algorithm where we used eitherNewSP
or NewST or both together. We evaluated the techniques on differ-
ent examples with different assertions. For every experiment, we
verified one property at a time.4

We first compared the different techniques on a C implementa-
tion of a multi server/client shopping agent system as reported in
Fig. 2. This example is particularly interesting because the fast ab-
straction produces a number of spurious transitions exponential in
the number of predicates.

As seen in Fig. 2, the performance of the weakest-precondition-
based (WP) and the SAT-based abstractions (SATQE) is compara-
ble. Notably,NewST separately and in combination withNewSP
2We also experimented with an implementation of technique [15],
but it reached 200 CEGAR iterations even on the small examples.
3http://minisat.se/
4We observed that verifying several assertions at the same time
makes the results unreliable, since the counterexample produced by
the model checker may vary according to different abstract models.
This way, at the same iteration we might obtain different predicates
which might close the CEGAR loop in a different number of itera-
tions.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7

WP
SATQE
NewST
NewSP
NewSP+NewST

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7

WP
SATQE
NewST
NewSP
NewSP+NewST

Figure 2: Total running time in seconds (left) and number of iterations (right) plotted against the number of clients in the server/client
example.

is much more efficient than either WP or SATQE. WP andNew-
SP are sensitive to a number of spurious transitions and, due tothe
nature of the example, grow exponentially with the growth ofthe
model.NewST efficiently removes spurious transitions and signif-
icantly reduces the number of iterations. In Fig. 2 (right) we note
that the new technique as expected has a balanced number of itera-
tions between WP and SATQE. This produces an evident saving in
time (as shown in Fig. 2 left) comparing to either WP (up to factor
of 5) and to SATQE (up to factor of 7!).

Secondly, we evaluated the techniques on the benchmark set pro-
posed in [25]. For the benchmark set the authors collected a large
number of large-scale C programs with known buffer-overflowbugs
and their fixed versions. The test suite includes applications such as
Sendmail, Apache HTTP server, Samba etc.; though, the original
programs were stripped down by substituting libraries withstubs.
The benchmark set contains 568 test cases, of which 261 are fixed
versions of the programs. SATABS needs on average 106 predi-
cates to check these programs, with a maximum of 239 predicates.

As expected, SATQE does not perform efficiently on large real
programs because of the large number of predicates involved. New-
ST outperforms uniformlyNewSP. The most interesting result re-
mains the comparison between WP andNewSTwhich gives a deeper
understanding of the improvement of our techniques. Fig. 3 reports
the scatter plots of the comparison.5

We pruned all claims that reached a timeout of 3 hours or 200
iterations of CEGAR and those verified in less than 100 seconds,
since the performance difference was not relevant. In fact,40% of
the test cases were completed in less then 2 seconds and not more
than 5 iterations.

The results show thatNewST systematically outperforms WP.
In 98% of the test cases it wins in number of iterations required
to verify the property. The advantage in iterations leads toa total
verification time win in 71% of the tests. On average, it decreased
total time for 34%, reaching up to 90% improvement in a number
of cases.

In the remaining 29% of the test cases, whereNewST was not
better than WP, the difference in verification time usually was not
bigger than 15%. As an exception, we found only one test case,in
which advantage in the number of iterations was not able to com-
pensate the additional time spent for refinement. This was due to
a very large number of predicates required for one particular pro-
gram location. In future we want to investigate these extreme cases

5Complete version of results as well as tools and examples are
available at http://www.verify.inf.unisi.ch/projects/synergy.

in order to develop a heuristic which would help to cope with them.

5. CONCLUSIONS AND FUTURE WORK
We presented a new approach to the abstraction refinement that

combines precise and approximated techniques. On one hand,the
proposed algorithm benefits from the precise component, because
it avoids too many iterations due to spurious transitions ofthe ab-
stract model. On the other hand, it uses the fast component todis-
cover the spurious counterexample. Moreover, by exploiting the
localized-abstraction framework, it reduces the abstraction compu-
tation to the parts of the system that are relevant to the property
and keeps the approximated abstraction in all parts of the program
that are irrelevant to prove the property. Our technique is indepen-
dent of any particular abstraction or refinement procedure and can
be used for any combination of the existing abstraction and refine-
ment techniques.

We performed an extensive evaluation on large scale programs
comparing the new technique with the classical precise and im-
precise algorithms. Our tests with various benchmarks showthat
the new approach systematically outperforms both precise and im-
precise techniques. Altogether it confirms that our new technique
achieves the goal of reducing the number of iterations of theCE-
GAR loop.

In this paper, the goal of the experimental evaluation was toval-
idate the new technique on spurious transition refinement. Thus,
we maintained the same tool framework and we did not change or-
thogonal techniques such as predicate discovery. As a future work,
we are interested in implementing the same approach in othertools
such as BLAST [20] and in integrating it with interpolation-based
approaches to predicate discovery [19, 24]. Another interesting di-
rection is to investigate the same trade-off between precise and ap-
proximated approaches in the context of purely interpolation-based
model checking [28] which does not need predicate abstraction.

6. REFERENCES
[1] T. Ball, B. Cook, S. Das, and S.K. Rajamani. Refining

Approximations in Software Predicate Abstraction. In
TACAS, pages 388–403, 2004.

[2] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani.
Automatic Predicate Abstraction of C Programs. InPLDI,
pages 203–213, 2001.

[3] T. Ball, A. Podelski, and S.K. Rajamani. Boolean and
Cartesian Abstraction for Model Checking C Programs.
STTT, 5(1):49–58, 2003.

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

N
ew

S
T

, t
im

e
in

 s
ec

on
ds

WP, time in seconds

Ku et al. benchmark suite [25]

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160 180 200

N
ew

S
T

, n
um

be
r

of
 it

er
at

io
ns

WP, number of iterations

Ku et al. benchmark suite [25]

Figure 3: Comparison of time in seconds (right) and number ofiterations (left) used by WP and NewST to verify benchmark suite [25]

[4] T. Ball and S.K. Rajamani. Boolean Programs: A Model and
Process for Software Analysis. Technical Report 2000-14,
Microsoft Research, February 2000.

[5] T. Ball and S.K. Rajamani. Generating Abstract Explanations
of Spurious Counterexamples in C Programs. Technical
Report 2002-09, Microsoft Research, September 2002.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation.IEEE Transactions on Computers,
C-35(8):677–691, August 1986.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking:1020 States and Beyond.
Information and Computation, 98(2):142–170, 1992.

[8] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram,
M. Roveri, and R. K. Shyamasundar. Computing Predicate
Abstractions by Integrating BDDs and SMT solvers. In
FMCAD, pages 69–76. IEEE, 2007.

[9] E. Clarke, M. Talupur, H. Veith, and D. Wang. SAT Based
Predicate Abstraction for Hardware Verification. InSAT,
2003.

[10] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. InCAV,
pages 154–169, 2000.

[11] E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking
and Abstraction.ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[12] E.M. Clarke, A. Gupta, J.H. Kukula, and O. Strichman. SAT
Based Abstraction-Refinement Using ILP and Machine
Learning Techniques. InCAV, pages 265–279, 2002.

[13] E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate Abstraction of ANSI-C Programs Using SAT.
Formal Methods in System Design, 25(2-3):105–127, 2004.

[14] M. Colón and T.E. Uribe. Generating Finite-State
Abstractions of Reactive Systems Using Decision
Procedures. InCAV, pages 293–304, 1998.

[15] S. Das and D.L. Dill. Successive Approximation of Abstract
Transition Relations. InLICS, pages 51–60, 2001.

[16] S. Das, D.L. Dill, and S. Park. Experience with Predicate
Abstraction. InCAV, 1999.

[17] S. Graf and H. Saı̈di. Construction of Abstract State Graphs
with PVS. InCAV, pages 72–83, 1997.

[18] A. Gupta and O. Strichman. Abstraction Refinement for
Bounded Model Checking. InCAV, pages 112–124, 2005.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.
Abstractions from Proofs. InPOPL, pages 232–244, 2004.

[20] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. InPOPL, pages 58–70, 2002.

[21] H. Jain, D. Kroening, N. Sharygina, and E.M. Clarke. Word
Level Predicate Abstraction and Refinement for Verifying
RTL Verilog. In DAC, pages 445–450, 2005.

[22] Himanshu Jain, Franjo Ivancic, Aarti Gupta, and Malay K.
Ganai. Localization and Register Sharing for Predicate
Abstraction. InTACAS, pages 397–412, 2005.

[23] R. Jhala and K.L. McMillan. Interpolant-Based Transition
Relation Approximation. InCAV, pages 39–51, 2005.

[24] R. Jhala and K.L. McMillan. A Practical and Complete
Approach to Predicate Refinement. InTACAS, pages
459–473, 2006.

[25] Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie.
A Buffer Overflow Benchmark for Software Model
Checkers. InASE ’07, pages 389–392. ACM Press, 2007.

[26] S.K. Lahiri, T. Ball, and B. Cook. Predicate Abstraction via
Symbolic Decision Procedures.Logical Methods in
Computer Science, 3(2), 2007.

[27] S.K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT
Techniques for Fast Predicate Abstraction. InCAV, LNCS,
pages 424–437. Springer, 2006.

[28] Kenneth L. McMillan. Lazy abstraction with interpolants. In
CAV, pages 123–136, 2006.

[29] K.L. McMillan. Applying SAT Methods in Unbounded
Symbolic Model Checking. InCAV, pages 250–264, 2002.

[30] Flemming Nielson, Hanne Riis Nielson, and Chris L.
Hankin.Principles of Program Analysis. Springer, 1999.

