The Synergy of Precise and Fast Abstractions
for Program Verification

Natasha Sharygina
University of Lugano,
Switzerland

natasha.sharygina@unisi.ch

ABSTRACT

Predicate abstraction is a powerful technique to reducestdie
space of a program to a finite and affordable number of stdtes.
produces a conservative over-approximation where constates
are grouped together according to a given set of predicAtese-
cise abstraction contains the minimal set of transitiorth végards
to the predicates, but as a result is computationally expenslost
model checkers therefore approximate the abstractionlduiaie
the computation of the abstract system by trading off precigith
cost. However, approximation results in a higher numbeefife-
ment iterations, since it can produce more false counterples
than its precise counterpart. The refinement loop can begome
hibitively expensive for large programs.

This paper proposes a new abstraction refinement techrtiqie t
combines slow and precise predicate abstraction techmigith
fast and imprecise ones. It allows computing the abstnactidckly,
but keeps it precise enough to avoid too many refinementibesa
We implemented the new algorithm in a state-of-the-artveanfe
model checker. Our tests with various real life benchmahaws
that the new approach systematically outperforms bothisgend
imprecise techniques.

Categories and Subject Descriptors

D.2.4 [Software Engineering: Software/Program Verification—
Model checking

General Terms
Algorithms, Theory, Verification.

Keywords
Predicate Abstraction, Abstraction Refinement, CEGAR

1. INTRODUCTION

Predicate abstraction [17, 14], when combined with reaitihab
analysis and an automated abstraction refinement mechéalison

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’09March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/0355.00.

Stefano Tonetta
Fondazione Bruno Kessler,
Trento, Italy

tonettas@fbk.eu

Aliaksei Tsitovich
University of Lugano,
Switzerland

aliaksei.tsitovich@lu.unisi.ch

known asCounterexample Guided Abstraction RefinemE -
GAR)[4, 10Q]), is an effective model checking strategy. THEGAR-
based verification consists of constructing and evaluaifigite-
state system that is an abstract model of the original syst&im
respect to a set of predicates.

The abstract model is a conservative over-approximatiaimef
original program with respect to the set of given predicaigsus,
if the property holds on the abstract model, it also holds fen t
original program. The drawback of the conservative abstrads
that when model checking of the abstract program fails, i pra-
duce a counterexample that does not correspond to any ¢encre
counterexample. This is calledsaurious counterexampléVhen
a spurious counterexample is encounterefinements performed
by adjusting the set of predicates in a way that eliminategthen
counterexample. The overall efficiency of verification ighiy de-
pendent on the efficiency of the abstraction and refinemetepr
dures.

Computing the abstract model relies on enumerating theaadbst
states and checking, for each pair of states, if there eaistab-
stract transition. This computation is expensive sinceqduires an
exponential number of calls to a theorem prover [16, 2, 1]2ih
8, 26], the abstraction is computed by means of dedicateididac
procedures based on BDDs, SAT or SAT modulo theories (SMT).
As another direction, various techniques have been proposal-
leviate this computation by approximating the abstraatdition
relation (see, for example, [15, 2, 3, 1, 23)).

We distinguish betweeprecise abstraction an@pproximated
abstraction (as also done, for example, in [10, 15, 23]):exipe
abstraction is minimal in the sense that it contains onlpéhan-
sitions that correspond to some transition in the concreat in-
stead, an approximated abstraction is a further over-appetion
of the minimal abstract model so that the transition retatsre-
laxed. In the paper, we will refer to the latter simply as appna-
tion.

Approximation techniques are important because they atlow
less expensive (as compared to precise abstraction) catigyuof
the abstract transition relation. Cartesian abstrac8prf¢r exam-
ple, loses every relationship among predicates, but has e
cessfully used to verify large programs, such as operatstes
device drivers. However, abstraction approximations agulttis
ous behaviors in addition to the spurious counterexampkadting
from precise abstraction. In order to rule out this kind effiu-
rity”, the approximation must be refined without changing tet
of predicates and focusing only on the spurious transitcased
by the approximation [15]. This procedure on its own might be
come very costly and can not fit to verification of large progsa

When refining the abstract model, we distinguish between two
types of spurious behavior (as also done in [12])Sfurious path

void main() { void main() {

int x=x; int x = *;
int y; int y;
1 0: y=x+1; int z;
I1: if (x<0) y=x+1;
12: if (!(x<y)) z=y-1,;
| 3: assert(0); if (x<0][y>0]]z>0){
1 4:} X+
Z++;
@ if (y<z && z>x)
assert(0); } }
(b)

Figure 1: Sample program for which the approximated abtrac
causes spurious transitions.

is due to the over-approximating nature of the precise attn:
states are merged together so that some resulting pathsetdaan

exponentially. For this reason, it is of paramount impartato
avoid as many redundant iterations as possible: even a&saged
iteration can result into a huge saving in time for large eyst.

Contributions

This paper presents a CEGAR-based technique that conhels t
number of iterations and reduces the verification time bgrlativ-
ing precise (but slow) and approximated (but fast) abgtrast The
abstraction is first computed with a high level of approximraex-
ploiting the weakest precondition of the predicates. Thiming
the refinement step, our technique uses the SAT-based fielanti
elimination in order to compute a precise abstraction.

The blow up that we would experience in computing the precise
abstraction of the whole program is avoided by exploitirglttal-
ized abstraction: as in static analysis [30], in most motek&ers
(such as SLAM [2], BLAST [20], SATABS [13], F-Soft [22]) the
abstract model keeps the control flow graph of the originadjm

simulated on the concrete system. This happens when thd set oand has a different abstract transition relation for eachtion of

predicates is not sufficient to capture the relevant behsnibthe
concrete system. 2purious transitionsare abstract transitions
which do not have corresponding concrete transitions. Binide
tion, spurious transitions cannot appear in the most peetistrac-
tion and are caused by using the approximation techniquesrl§;
the efficiency of the approximated abstraction depends oadet
off between time spent in computing the abstraction andirgfin
spurious transitions.

In order to illustrate the abstraction approximation asdefine-
ment procedures, consider the example of Figure 1(a). The va
able x is assigned non-deterministically with an unknown value
“*". The property we verify is the reachability of lide3. It never
can be true since the conditiorf x<y) at linel 2 never holds (the
conditional statement with guarkO0 is necessary to avoid integer
overflow). Thus if in the abstract program there is a pathitead
to the assertion, then it is spurious. The predicate8 andx<y
are sufficient to prove the property. However, approximagéthm
ods like Cartesian abstraction cannot prove it becausedieyot
infer that after the assignmeptx+1, the condition (x<0) ||

the control-flow graph This way, during the refinement step, we
add the constraints built with a precise abstraction onetevant
transition relations, affecting only those parts of thetesys that
caused the spurious counterexample.

In order to illustrate the immediate advantages of our aggrp
consider the fourth line of Table 1 that is based on the implem
tation of our technique. Our approach is able to avoid botigh h
number of iterations and an expensive abstraction, reguiiti an
optimized verification time.

We performed a thorough evaluation comparing the new tech-
nigue with the purely precise and imprecise counterparts.t€sts
with various real life benchmarks show a systematic adggntd
our approach over both precise and imprecise techniquebinga
up to 90% improvement in time.

Overall, the new technique manages the verification contglex
by using the precise abstraction on demand and locally. e
tage is that the expensive abstraction is only used on a pordibn
of the program, yet the higher quality of abstraction refiaatris
sufficient to reduce the number of refinement iterationss fimr

I (x<y) is true. Thus, most model checkers that use such abstrac-proving the overall performance.

tions refine the transition relation by adding a constraiat tre-
moves the spurious transition.

In order to experience the difference in performance betwee
precise and approximated abstractions, let us extend twopis
example in order to have more spurious behaviors. The progra
of Figure 1(b) has one more variable and a slightly more cerpl
control flow graph. As before the assertion is not reachalnid all
abstract counterexamples are spurious. Though, if we dengie
predicates in the guards of the program, an approximatedaabs
tion may produce many spurious behaviors. Table 1 repogs th
verification results obtained with the SATABS model chedk&,
by running approximated and precise abstractions. Therfiunal
ber of predicates is in all cases 10. The approximated atbistna
spends most of time in refining the transition relation (R&ince
it runs for 12 iterations (or even 42 in case when we used the re
finement procedure of [15]), also the time for the verificatipC)
is not negligible. On the contrary, the precise abstradtias only
2 iterations to terminate (the first refinement is necessandtl a
sufficient set of predicates). Nevertheless, the amouritngf spent
in computing the abstraction is too high for such example.

A low number of refinement iterations is fundamental for the
success of the CEGAR loop, especially when applied to im@dist

Related work

The paper addresses the problem of refining the abstractitirei
presence of spurious transitions. The solution was firgrgiy
Das and Dill [15] whose technique consists of removing ongisp
ous transition at every refinement iteration. The approaak be
very expensive because it requires a high number of iteratd
the abstraction-refinement loop. In practice, the techmigunot
feasible for real systems.

Many works such as [1] improved the refinement by strengthen-
ing the condition added to the transition relation to remoae
spurious transitions. The idea in [1] is to syntacticallynglify
the condition and to check if a larger set of spurious tréomsitis
found.

In [9, 21, 22], a different technique is presented based oh SA
techniques. Transitions are simulated over the concretgram
by means of SAT formulas. If the transition is not concredilea
the SAT solver will produce a resolution proof of the undatis
bility. It is then possible to extract from the proof eithercare
set of predicates or a constraint sufficient to remove theicps!
transition. Though, in principle, the technique can remmany
spurious transitions at once, the efficiency strongly ddpem the

benchmarks: in fact, when the system is complex, the number o unsatisfiability proof. In the worst case, it may require anber of

predicates required to verify the property becomes higl, the
time spent in the reachability (model checking) proceduravg

!Localized abstraction is further investigated in [20, 19].

Total | Abs MC Ref | Tter
Approximated abstraction [15] 5.817| 0.063| 2.659| 2.112| 42
Approximated abstraction [21]] 1.469| 0.046| 0.501| 0.617| 12
Precise abstraction 3.591| 3.478| 0.076| 0.01 | 2
New approach 0.467| 0.039| 0.161| 0.189| 4

Table 1: Verification results on the example of Figure 1{mtal, Abs, MC, Rakefer to the time, in seconds, for total verification, absticm,
model checking and refinement respectivélgr refers to the number of iterations of the abstraction-refieet loop.

abstraction refinements exponential in the number of padekic

The technique of [23] also exploits the unsatisfiabilityqdrbut
it is based on interpolation. The interpolant produced leyptoof
is indeed an over-approximation of the exact abstractibm takre-
move the spurious transition. As in the case of unsat cdreseth-
nigue depends on the heuristics to produce unsatisfiapilagfs.
The interpolant is not always enough strong to remove allisps
transitions.

This paper instead proposes a greedy approach where all spu-

rious transitions between two locations are removed. Tha id
that the computation can be efficient because it is locakrebon-
demand. The technique inherits the efficiency of the apprated
abstraction which is used any time new predicates are disedv
At the same time, the precision of the minimal abstractioaxis
ploited whenever spurious transitions are found.

Summary

The paper is organized as follows: Section 2 gives an owervie
of related abstraction refinement technigues; Section 8ribes
our new approach; Section 4 presents the experimentalagiai
finally, Section 5 draws the conclusions.

2. BACKGROUND
2.1 Transition Systems

e V :={z,y,pc}, wherepcis the program counter;
o [:= (pc=lo);

e T:= (pc=1lp) = (pd =li Ay =x+1A2 =x)A
pc=li Az <0)—= (pd =l Az =z Ay =y)A
pc=UAzr<0)— (pd =lunz' =z Ay =y)A
pc=IDAz <y)— (pd =ls Az’ =x Ay =y)A
pc=la ANz <y)— (p =la Az’ =x ANy =y)A
—(pd =lund' =z ANy =1)

(
(
(
(
(
(

2.2 Abstraction

Definition 2 Given two TSSV/ = (V,I,T) and M = (V,I,T),
arelation H(V, V) is anabstraction relatiofiL1] iff the following
conditions hold:

e every initial state of/ corresponds to an initial state o ;
namely, ifs = I(V'), then there exists a stateof M such

that = I(V) ands, s = H(V,V);

e every transition of\/ corresponds to a transition aff; namely,
if 51,51 = H(V,V), andsi,s5 = T(V,V’), then there
exists a states, of M such thatss,$; = H(V,V) and
51,8, ET(V, V'),

If such rglation exjsts, we say that is anabstractiorof M, or M

We consider programs as Transition Systems. TSs are defined,gfinesis (M < M).

by a setV of state variables. We ugé’ to denote the set of next
state variable§v’'},cv, wherev’ represents the next value of

The setSy of states is given by all assignments to the variables
V. Given a state, s’ denotes the corresponding assignment to the

next state variables, i.e! = s[V’/V]. Transitions are represented
as pairs of states. For each transitios= (s1, s2), we usein(t)
andout(t) to denote resps: andsz. Given a formulap, we write

#[V/V'] to denote the result of substituting every free occurrence

of every variabley’ € V' with its corresponding. We usedV (¢)
to denote the existential quantification of every variahl&i

Definition 1 A Transition System (TS) is a tupdd = (V, I, T,
where

e Visaset of variables;
e I(V)is aformula that represents the initial states;
e T(V,V')is aformula that represents the transitions.

A states is initial iff s = I(V). Given two states; andsa,
there exists a transitianbetweens; andss iff s1,s5 = T(V, V’).
A path of M is a finite sequence of transitionsto, t1, ..., t», such
thatin(to) = I, and, for even) < ¢ < n, out(t;) = in(ti+1). In
general, given a transition relatidn we user = 7' to denote that
w[i] E T for every0 < i < |r|.

Example 1 Consider the program of Figure 1(a). It can be repre-
sented by the T8/ = (V, I,T), where

Definition 3 Given the abstraction relatiol/, we define theb-
straction functiomy : 2°v — 2°v and theconcretization func-
tion vy : 25 — 25V as follows:

e ag(Q)={5¢€ S, | thereexists € Qst.s,5 = H(V,V)},
for every@ C Sv;

e vu(Q) = {s € Sv | thereexists € Qs.t.s, s = H(V,V)},
for everyQ C Sy

We extendy to transitions and paths so that:

o vu(f) = {t | in(t) € y(in(1)),out(t) € v(out(?))}, for
every transitiort of M.

e vu(7t) = {r | w[i] € v(7[q]) for every0 < i < |&|}, for
every path# of M.

If a property ¢ is universal a systemi/ satisfies the property

(M E ¢) if and only if the property is satisfied by all paths /f.

The abstraction relation we defined preserves universakpties,

so that if M < M, ¢ is a universal property, andi/ |= ¢, then

M E ¢ (though, in general, the reverse does not hold). Given a
TSM = (V,I,T), an abstractionV/ = (V,I,T) of M is said

to beprecisewhen every abstract initial state and transition\éf
corresponds respectively to a concrete initial state ansition of

M. Given the abstraction relatiaff, M7 can be obtained as:

o Ix(V)=3V{I(V)AHV,V)),
o Ty(V,V')=3VavV(T(V,VYANH(V,V)NH(V', V"))

The precise abstraction is also callathimalor existentialor exact
or eagerabstraction [11].

Given a TSM = (V,1,T), let P be a set of predicates arig
an abstract variable for every predicatee P. The set of abstract
variables is the set» = {9, },cp. The abstraction relation for
predicate abstraction is defined as follows:

/\'Up‘—’p

peP

P(V,Vp)

The minimal predicate abstraction is the I18= (Vp, Ip, Tp),

where:
Ip(Vp) = VI(V) A ,ep B < p(V))
o Tp(Vp,Vp) = IVIV(T(V,V') A N, p(Bp < p(V) A
oy < p(V"))).
2.2.1 Quantifier elimination

In order to model check the abstract TS, it is necessary té com

pute the set of successors of abstract states. This reqh@as-
moval of the quantifiers from the definition of the abstraansition
relation. In general, given a transition relatiérand a set of predi-
catesP, to comgutéfp means to find a quantifier-free formula that
is equivalent tdl'p.

Example 2 Consider the TS described in the Example 1 and the

predicatesP; := (x < 0) and P» := (z < y). Let the abstract
variables?; and 9. correspond respectively t8; and P>. We do
not abstract the program counter. The abstract transitiefation

results to be equivalent to

(pc’ = 11 A1D5)A
— (pc = l)A

[] Tpf (pC—l()/\’LA)l)H
pe = loAlD1) —

pe=11 A1) — (pc’ =l2 AD] = D1 A D = D2)A
f}z)/\
pe = laA\D2) — (pd =13 A D) = 01 A Dy = D2)A

(pc —l4/\1}1—v1/\1}2 D2)A
(pc/*lz;/\ulfvl /\1)271}2

(’—lz/\?}z)

(

(

(pc=UAD1) = (p =l ANDy =01 A Dy =
(

(p

(pc=13) —

~

In hardware and software verification, different techngbave
been conceived to compulé . In symbolic model checking [7] of
finite state machines, the existential quantification carebeoved

either by a Shannon expansion technique when using BDDs [6]
In software model

or by SAT techniques when using CNF [29].
checking, the problem is exacerbated by the fact that therets
transition relation may contain first-order terms. The eusttran-
sition relation can be obtained by enumerating the absstates,
and checking if, for each pair of states, there exists anadistan-
sition. As itis done by most software model checkers, thisimes
an exponential number of calls to a theorem prover [16, 2|18},

a SAT solver is exploited to find all possible solutions. Wieré¢o

this technique a§ ATQE.

2.3 Abstraction approximation

Precise abstractions are very expensive to compute becéuse

the existential quantification operations. Thus, in pastimodel
checkers use approximations to trade-off precision witimglex-

ity.

Definition 4 Formally, givenMy = (V, Ir, Tx) andM =
we say thatV/ is anapproximatiorof Mz (M =< M) iff the fol-
lowing formulas are valid:

(V,I,T),

e Iy — I,i.e., every initial state of the minimal abstraction is
an initial state in the approximation;

e Ty —T,ie., every transition of the minimal abstraction is
a transition in the approximation.

Intuitively, M has more initial states and transitions thaw .
Note that an approximation is also an abstraction namely/if <
M, thenMy < M. However, the set of predicates is not affected,
in the sense that/ and My have the same abstract variables.

2.3.1 Approximation techniques

Many approximation techniques have been developed both in
hardware and software verification. Their aim is to allevidte
computation off’>. The easiest way is to reduce the scope of
quantifiers. This can be done witkarly quantification[11], by
pushing quantifiers in front of predicate®redicate partitioning
[21] approximated » by taking the conjunction of its projections
over subsets of predicates. This technique is pushed tionitsky
Cartesian abstraction [3] that, given a set of sté}eapproximates
transition relation with the product of the projections atle vari-
able. This way, the approximated abstraction ignores eetagion
among predicates.

2.4 Spurious behaviors

The overapproximation nature of the abstraction as we define
may generate spurious paths even in the case of precisacthsir
Spurious paths are sequences of transitions that satesittstract
transition relation, but not the concrete one.

Definition 5 (Spurious path) Given a TSM = (V,I,T), an ab-
straction M = (V,I,T), and a sequence of transitions of),
we say thatr is a spurious path ifft = T and 7 = T for every
w € (7).

In order to refine the abstraction and remove a spurious path,
finement procedures need to add more predicates to thectimsira
There are different techniques to discover the new set dfigates,
either based on weakest precondition [5], interpolati@j,[@r UN-
SAT core [18].

Besides spurious path, approximated abstraction geseaate
other kind of spurious behavior, called spurious transgioSpu-
rious transitions are transitions that satisfy the abstransition
relation, but not the concrete one.

Definition 6 (Spurious transition) Given a TSM = (V,I,T),
an abstractionM = (V,I,T), and a transition of M, we say
that £ is a spurious transition iff = 7" andt [~ T for every
t € y(t).

In order to refine an approximation that contains a spuriars t
sition, a new transition relation is obtained by adding ast@int
in conjunction to the old abstract transition relation. Aesult, the
spurious counterexample is ruled out. Different techrsquees as
such constraint either the exact encoding of the spuri@usition
[15], or the UNSAT core produced by the SAT solver when check-
ing if the transition is spurious [21], or an interpolantuseén the
exact abstraction and the current approximated abstraj@Rgj.

3. THE SYNERGY ALGORITHM

This section proposes a new refinement algorithm. It usds bot
the fast and precise types of abstraction to gain verifinagii-
ciency. Itis independent of any particular technique usedktine
either procedure.

1 M xCegar Loop(TransitionSystem M, Property) F
2 begin

3 II=Initial Predi cates(FT);

4 a=Fast Abstraction(T]II);

5 while not TIMEOUTdo

6 m =Model Check(a,F);

7 if 7 = () then return CORRECT;

8 else

9 ogT =SpuriousTransition(n);
if o # () then

11 foreacht € 7 do
12 C =PreciseAbstraction(Togsr(t));
13 a=aAC;
14 else
15 osp =SpuriousPat h(x);
16 if csp # 0 then return INCORRECT;
17 else
18 foreacht € 7 do
19 M=TUosp(t);
20 =
Preci seAbstracti on(Togsp(t));
21 a=aANC(C,
22 end

Algorithm 1: A new abstraction-refinement algorithm combining
fast and precise abstractions.

The algorithm implements the standard CEGAR loop. Each it-
eration of the CEGAR loop is composed of an abstraction step,
a model checking step, a simulation step and finally a refiméme
step.

We first present the high-level overview of the combined algo
rithm and then describe the specifics of the new refinemerepro
dures. For simplicity, we first present the algorithm witgaed to
a monolithic transition relation. In Section 3.3 we extehtbithe
case where a transition relation is defined for every loocaticthe
program.

The algorithm is parameterized by a number of subroutinass th
take care of the abstraction and refinement. In particliaratgo-
rithm contains the following procedures:

e Fast Abstracti on: given aset of predicatdsand a con-
crete transition relatiof’, it computes an over-approximation
of Tri.

e Preci seAbstracti on: given a set of predicatdg and
a concrete transition relatid, it computes the minimal ab-
stractionT;.

e SpuriousTransition: given a pathr, it returns a func-
tion os7 that maps every transitionin 7 to a set of predi-
catesP, s.t.,P C Il and¢ [~ Tp.

e Spuri ousPat h: given a pathr, it returns a functiorrsp
that maps every transitiohin 7 to a set of predicate#’,
st. 7w [~ Toqn(t)- Note thatP may contain new and old
predicates.

Algorithm 1 shows how thd-ast Abst racti on andPr e-
ci seAbstracti on are combined. It first computes the approx-
imated abstraction (line 4). When a spurious counterexarigpl
encountered as a result of the model checking (line 6), themys
transitions are removed by using the precise abstract@migue
(line 12) with the predicates returned $gur i ousTr ansi ti on
(line 9). If no spurious transitions are found, the spuripath is
removed by using the precise abstraction technique (linevié
the predicates returned I8pur i ousPat h (line 15).

3.1 Refining spurious transitions (lines 9-13)

Suppose some transitiotis ..., t,, of the counterexampte found
by Model Check are spurious. This means that the functignr
returned bySpuri ousTr ansi ti on maps those transitions to
some non-empty set of predicates. Let us define the clugtefin
predicated” as{osr(t:) }1<i<n (i.€., T contains the set of predi-
catesosr(t;) for every transition in the spurious counterexample).
The spurious transition refinement procedure proceedsllas/éo
For each clusterP € T, the refinement algorithm computé%,
which is a precise computation of the abstract transitidaticmn
projected on the predicates of the cluster. In order to ruteew-
ery spurious transition among, ..., t,,, the refinement algorithm
updates the abstract transition relation as follows:

a i=an /\ T P
per

Note that, in general, every clustd?, is a subsgt of the global
set of predicated]. This means that each constrdift is an over-
approximation of the precise abstraction computed éVemMNev-
erthlessI'» is precise with regards to the predicafesin the sense,
that it removes all the unrealistic abstract transitiors tan be de-
fined by the those predicates.

The following theorem states the soundness of this refinemen
step.

Theorem 1 For every spurious transition;, 1 < i < n, t; }£= o'

Proof SketchThe proof comes directly from the definition @&+
(it relies therefore on the soundness of a particjaur i ous-
Transi tion technique): forl < i < n, sincet; [~ T, (1,

t; bﬁ o
3.2 Refining spurious paths (lines 15-21)

We adopt the cluster-based approach described above te-the r
moval of the spurious path. Our technique uses
Spur i ousPat h to produce the set of predicates that are sufficient
to rule out the spurious counterexample. The set of preziagen-
erated by the standard predicate-discovery techniquestrided
in Section 2) includes both current predicates and new paces,
that together rule out the spurious counterexample. Otnigue
considers this set of old and new predicates as a new cluster.
Suppose the path, ..., t, to be spurious. This means that the
functionosp returned bySpur i ousPat h maps each; to some
non-empty set of predicates. Let us define the clusteringed-p
icatesI” as{osp(ti) }1<i<n (i-€.,T" contains the set of predicates
osp(t:) for every transition in the spurious counterexample). The
computation of the updated abstract transition relatiddestical
to spurious transition case, i.e.

a i=an /\ Tp
pPer

Note that this time, unlike the case of spurious transititims clus-
ters involve new predicates.

By definition, the set of predicates produced by
Spur i ousPat h is sufficient to remove the spurious counterex-
ample only if the precise abstraction is used. In fact, susriran-
sitions over such predicates (possibly created by the appation
abstraction) might create the same spurious counterexangplir
technique guarantees that this does not happen. This isvachby
using the precise compon€ens.

The following theorem states the soundness of this refinemen
step.

1 M xCegar Loop(TransitionSystem M, Property) F
2 begin

3 foreachTinMdoII(T)=Initial Predi cates(FT);
4 foreachTin Mdo «(T") = Fast Abstracti on(T,II) ;
5 while not TIMEOUTdo
6 m =Model Check(a,F);
7 if 7 = () then return CORRECT;
8 else
9 o=SpuriousTransition(mx);
10 if o # (then
11 foreacht¢ € = do
12 T = 7(t);
13 C =PreciseAbstraction(To(t));
14 a(T) =a(T)NC,
15 else
16 osp =SpuriousPat h(x);
17 if osp # 0 then return INCORRECT;
18 else
19 foreacht¢ € = do
20 T = 7(t);
21 I(T) =1(T)Uosp(t);
22 C=
Preci seAbstracti on(Tosp(t));
23 a(T) =ao(T)NC,
24 end

Algorithm 2 : CEGAR loop with localized abstraction.

Theorem 2 For every spurious pathr, 7 = o

Proof SketchThe proof comes directly from the definition ef p
(it relies therefore on the soundness of a particjaur i ous-
Pat h technique).

3.3 Localized abstraction

The algorithm shown in Algorithm 1 was defined for a mono-
lithic transition relation. When the set of predicates ne¢d by the
Spuri ousTransiti onorSpuri ousPat h procedures covers
the whole sefll of current predicates, the constraint thdtx-
Cegar Loop adds to the abstract transition corresponds exactly to
the precise abstraction. This way, the abstraction refinere-
comes as expensive & eci seAbstracti on. We limit this
disadvantage by localizing the abstraction to some pattsegbro-
gram. Some software model checkers (e.g., BLAST [20] and SA-
TABS [13]) use the control flow graph as a partitioning of trent
sition relation to implement such localization. During tiestrac-
tion refinement, they keep a set of predicates and an abstiast-
tion relation for each program location, and perform theralotion
for each local transition relation separately.

Our algorithm implements the localized procedure as patti®f
CEGAR algorithm as shown in Algorithm 2. The algorithm teeat
the system\/ as a set of concrete transition relations, one for ev-
ery location of the control-flow graph. For each transitietation
T, it computes an abstract transition relatiof’) (line 4); when
a spurious counterexample is encountered as a result ofddelm
checking (line 6), spurious transitions and path are reihdyeus-
ing the precise abstraction technique (line 13 and 22). The d
ference from the monolithic case (presented earlier ingbegion)
is that in the localized version, every transitioof the spurious
counterexampler is associated with a particular abstract transition
relation, denoted-(¢). Thus, when the refinement step of the al-
gorithm has to add a new constraint, it changes only theitrans
relation corresponding to either the spurious transites dart of
the spurious transition refinement step, lines 9-14) or th é&an-
sition of the spurious path (as part of the spurious pathesfant
step, lines 16-23).

By exploiting the localized-abstraction framework, thgaaithm

reduces the abstraction computation to the parts of thersystat
are relevant to the property and keeps the approximatethatish
in all parts of the program that are irrelevant to prove thapprty.

4. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in the framework of
software model checking. We used the SATABS [13] model check
as a platform for our experiments. As described in Sectiahe,
new CEGAR loop uses four subroutines. We experimented with
the following techniques implemented in SATABS:

o for Fast Abstracti on, we used a fast abstraction tech-
nigue based on the computation of the weakest precondition;
it assigns to the next predicate its weakest precondititimdf
is a current predicate; it does not allow a general Boolean
combination of predicate variables;

e for Preci seAbstracti on,we used a precise abstraction
based on the enumeration of possible transitions by means of
a SAT solver: we force the SAT solver to find all the solutions
of the quantifier-elimination problem by iteratively adgin
the negation of previous assignments as clauses [13];

e for Spuri ousTr ansi ti on, we used the SAT-based tech-
nique of [21F; this calls a SAT solver to check if a transition
is spurious; if the transition is not realistic, it inspeth®
UNSAT proof to find the relevant predicates;

e for Spuri ousPat h, we used a technique based on weakest
precondition; it computes the weakest preconditions of the
current predicates along the transitions of the spuriotis, pa
it uses these expressions to produce a set of current and new
predicates that are sufficient to rule out the spurious path.

The SAT solver used bigr eci seAbstracti onandSpuri ous-
Transi t i onwas MiniSAT. We implemented the new algorithm
and enhanced SATABS with two new procedures: the first (wie wil
refer to it asNewST) affects how the abstraction is refined in the
case of spurious transitions, as described in Sectiont#lsacond
(NewSP) refines the abstraction in the case of spurious paths, as
described in Section 3.2.

We ran the experiments on a AMD Dual-Core Opteron(TM) 2212
machine with 2GHz CPU and Ubuntu 7.04 We compared the pure
fast abstraction and the pure precise abstraction (as mguited
in SATABS) with the new algorithm where we used eithiemSP
or NewST or both together. We evaluated the techniques on differ-
ent examples with different assertions. For every experimse
verified one property at a tinfe.

We first compared the different techniques on a C implementa-
tion of a multi server/client shopping agent system as tegoin
Fig. 2. This example is particularly interesting becausefést ab-
straction produces a number of spurious transitions exyg@ien
the number of predicates.

As seen in Fig. 2, the performance of the weakest-precamditi
based (WP) and the SAT-based abstractions (SATQE) is campar
ble. Notably,NewST separately and in combination wittewSP

2\We also experimented with an implementation of techniq®é, [1
but it reached 200 CEGAR iterations even on the small exasnple

Shttp://minisat.se/

*We observed that verifying several assertions at the same ti
makes the results unreliable, since the counterexamptiipea by
the model checker may vary according to different abstraxtets.
This way, at the same iteration we might obtain differentifrates
which might close the CEGAR loop in a different number ofater
tions.

1400

T 60
—&— WP
- SATQE
NewST
NewSP
- NewSP+NewST

1200 + -

1 50

beo

1000

800 r
oo _A
O A
600 | S ;
Lo
400 t
- -
200t F 2 g0 L -]
0 M =

—85— WP
@ SATQE
: NewST
NewSP
- NewSP+NewST

Figure 2: Total running time in seconds (left) and numbertefations (right) plotted against the number of clientshia server/client

example.

is much more efficient than either WP or SATQE. WP e

SP are sensitive to a number of spurious transitions and, dthesto
nature of the example, grow exponentially with the growthhaf
model. NewST efficiently removes spurious transitions and signif-
icantly reduces the number of iterations. In Fig. 2 (right) mote
that the new technique as expected has a balanced numberaef it
tions between WP and SATQE. This produces an evident sawing i
time (as shown in Fig. 2 left) comparing to either WP (up tddac

of 5) and to SATQE (up to factor of 7!).

Secondly, we evaluated the techniques on the benchmarkoset p
posed in [25]. For the benchmark set the authors collectedge |
number of large-scale C programs with known buffer-overthogs
and their fixed versions. The test suite includes applinatguch as
Sendmail, Apache HTTP server, Samba etc.; though, thenatigi
programs were stripped down by substituting libraries sitibs.
The benchmark set contains 568 test cases, of which 261 ark fix
versions of the programs. SATABS needs on average 106 predi-
cates to check these programs, with a maximum of 239 predgicat

As expected, SATQE does not perform efficiently on large real
programs because of the large number of predicates invoNeg
ST outperforms uniformlyNewSP. The most interesting result re-
mains the comparison between WP &gdhvST which gives a deeper
understanding of the improvement of our techniques. Figpdrts
the scatter plots of the comparison.

We pruned all claims that reached a timeout of 3 hours or 200
iterations of CEGAR and those verified in less than 100 sezond
since the performance difference was not relevant. In f% of
the test cases were completed in less then 2 seconds and ret mo
than 5 iterations.

The results show thallewST systematically outperforms WP.
In 98% of the test cases it wins in number of iterations resglir
to verify the property. The advantage in iterations leada total
verification time win in 71% of the tests. On average, it dasesl
total time for 34%, reaching up to 90% improvement in a number
of cases.

In the remaining 29% of the test cases, whi¥esVST was not
better than WP, the difference in verification time usualBswot
bigger than 15%. As an exception, we found only one test ¢gase,
which advantage in the number of iterations was not able to-co
pensate the additional time spent for refinement. This wastdu
a very large number of predicates required for one partiquie-
gram location. In future we want to investigate these extreases

SComplete version of results as well as tools and examples are
available at http://www.verify.inf.unisi.ch/projecsshergy.

in order to develop a heuristic which would help to cope wiitbrh.

5. CONCLUSIONS AND FUTURE WORK

We presented a new approach to the abstraction refinement tha
combines precise and approximated techniques. On one thend,
proposed algorithm benefits from the precise componengusec
it avoids too many iterations due to spurious transitionthefab-
stract model. On the other hand, it uses the fast componetisto
cover the spurious counterexample. Moreover, by explpithe
localized-abstraction framework, it reduces the abstraactompu-
tation to the parts of the system that are relevant to thegotpp
and keeps the approximated abstraction in all parts of thgram
that are irrelevant to prove the property. Our techniquadepen-
dent of any particular abstraction or refinement procedntecan
be used for any combination of the existing abstraction afide-
ment techniques.

We performed an extensive evaluation on large scale pragram
comparing the new technique with the classical precise and i
precise algorithms. Our tests with various benchmarks shaiv
the new approach systematically outperforms both precidera-
precise techniques. Altogether it confirms that our newnipfe
achieves the goal of reducing the number of iterations ofGke
GAR loop.

In this paper, the goal of the experimental evaluation wasto
idate the new technique on spurious transition refinemehus;T
we maintained the same tool framework and we did not change or
thogonal techniques such as predicate discovery. As afutark,
we are interested in implementing the same approach in tibkr
such as BLAST [20] and in integrating it with interpolatibased
approaches to predicate discovery [19, 24]. Another istare di-
rection is to investigate the same trade-off between peemisl ap-
proximated approaches in the context of purely interpofabased
model checking [28] which does not need predicate abstracti

6. REFERENCES

[1] T. Ball, B. Cook, S. Das, and S.K. Rajamani. Refining
Approximations in Software Predicate Abstraction. In
TACAS pages 388-403, 2004.

[2] T.Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani.
Automatic Predicate Abstraction of C ProgramsPIrDI,
pages 203-213, 2001.

[3] T.Ball, A. Podelski, and S.K. Rajamani. Boolean and
Cartesian Abstraction for Model Checking C Programs.
STTT 5(1):49-58, 2003.

10000 |- O Ku et al. benchmark suite [25]

=0

8000
T g

6000

4000

NewST, time in seconds

2000

8]

]

4000 6000 8000
WP, time in seconds

0
imlin]
2000

il

10000

NewST, number of iterations

180
160
140
120
100

80

60

"0 Ku et al. benchmark suite [25]

40 o B,
| if o 5

20@ e et 5| i
20 40 60 80 100 120 140 160 180 200

WP, number of iterations

Figure 3: Comparison of time in seconds (right) and numbéteadtions (left) used by WP and NewST to verify benchmaikeqi25]

[4] T. Ball and S.K. Rajamani. Boolean Programs: A Model and

[5]

[6]

[7]

(8]

9]

[10]

[11] E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking

[12]

[13]

[14]

[15]

Process for Software Analysis. Technical Report 2000-14,
Microsoft Research, February 2000.

T. Ball and S.K. Rajamani. Generating Abstract Expléaoa
of Spurious Counterexamples in C Programs. Technical
Report 2002-09, Microsoft Research, September 2002.
R. E. Bryant. Graph-Based Algorithms for Boolean Fuoaeti
Manipulation.IEEE Transactions on Computers
C-35(8):677—691, August 1986.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.
Hwang. Symbolic Model Checking:0?° States and Beyond.
Information and Computatiqr®8(2):142—-170, 1992.

R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram,
M. Roveri, and R. K. Shyamasundar. Computing Predicate
Abstractions by Integrating BDDs and SMT solvers. In
FMCAD, pages 69-76. IEEE, 2007.

E. Clarke, M. Talupur, H. Veith, and D. Wang. SAT Based
Predicate Abstraction for Hardware Verification.SAT,

2003.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction RefinemenCAhY,
pages 154-169, 2000.

and AbstractionACM Trans. Program. Lang. Syst.
16(5):1512-1542, 1994.

E.M. Clarke, A. Gupta, J.H. Kukula, and O. StrichmanTSA
Based Abstraction-Refinement Using ILP and Machine
Learning Techniques. IGBAV, pages 265-279, 2002.

E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate Abstraction of ANSI-C Programs Using SAT.
Formal Methods in System Desidtb(2-3):105-127, 2004.
M. Colbn and T.E. Uribe. Generating Finite-State
Abstractions of Reactive Systems Using Decision
Procedures. ICAV, pages 293—-304, 1998.

S. Das and D.L. Dill. Successive Approximation of Alastr
Transition Relations. IhICS pages 51-60, 2001.

[16]
[17]
[18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

S. Das, D.L. Dill, and S. Park. Experience with Predicat
Abstraction. INCAV, 1999.

S. Graf and H. Saidi. Construction of Abstract Stataghs
with PVS. InCAV, pages 72-83, 1997.

A. Gupta and O. Strichman. Abstraction Refinement for
Bounded Model Checking. IBAV, pages 112-124, 2005.
T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMilla
Abstractions from Proofs. IROPL, pages 232-244, 2004.
T.A. Henzinger, R. Jhala, R. Majumdar, and G. SutreylLaz
Abstraction. InPOPL, pages 58-70, 2002.

H. Jain, D. Kroening, N. Sharygina, and E.M. Clarke. \d@/or
Level Predicate Abstraction and Refinement for Verifying
RTL Verilog. In DAC, pages 445-450, 2005.

Himanshu Jain, Franjo lvancic, Aarti Gupta, and Malay K
Ganai. Localization and Register Sharing for Predicate
Abstraction. INTACAS pages 397-412, 2005.

R. Jhala and K.L. McMillan. Interpolant-Based Trarmit
Relation Approximation. ITCAV, pages 39-51, 2005.

R. Jhala and K.L. McMillan. A Practical and Complete
Approach to Predicate Refinement. TACAS pages
459-473, 2006.

Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David.Lie
A Buffer Overflow Benchmark for Software Model
Checkers. IPASE '07 pages 389-392. ACM Press, 2007.
S.K. Lahiri, T. Ball, and B. Cook. Predicate Abstractigia
Symbolic Decision Proceduresogical Methods in
Computer Scien¢e(2), 2007.

S.K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT
Techniques for Fast Predicate AbstractionCKV, LNCS,
pages 424-437. Springer, 2006.

Kenneth L. McMillan. Lazy abstraction with interpolkanin
CAV, pages 123-136, 2006.

K.L. McMillan. Applying SAT Methods in Unbounded
Symbolic Model Checking. IICAV, pages 250-264, 2002.
Flemming Nielson, Hanne Riis Nielson, and Chris L.
Hankin.Principles of Program AnalysisSpringer, 1999.

