
SMTS Artifact Description

Matteo Marescotti

August 9, 2018

SMTS is a framework that allows the user to execute, monitor, and guide
model-checking and SMT solving in a distributed, high-performance computing
environment. This artifact description explains how to use SMTS in a virtual
machine. We need to emphasize that the experimental results of the paper are
not reproducible in a virtual machine. This is in part due to the number of avail-
able CPUs, but in particular to the high memory usage of each model-checking
or SMT solving process. However, the user may still fully assess SMTS by us-
ing our testing tool dummy solver (Sec. B.1), a backend that reports random
results, but acts otherwise like a normal solver with respect to the protocol.
Alternatively, we successfully run SMTS in a 8-core Mac OSX laptop, executing
4 solvers with lemma sharing.

Username: smts

Password: smts2018

Working directory: artifact/smts

A Introduction

This section provides information on the SMTS set-up, the interaction between
the solvers, and how to run SMTS in a single machine.

SMTS consists of five components: the solvers, the lemma server, the server,
the client, and the graphical user interface (GUI). The solvers and the lemma
server are written in C++; the sources are available in /src. The server and
the client are written in Python3 available in /server, while the GUI is written
in NodeJS (Javascript) and is provided in /gui.

The executables built from C++ sources are stored in the build directory (by
default in /build), and include lemma server and the solvers. SMTS currently
provides two types of solvers: one based on OpenSMT2 (solver opensmt), and
on based on the IC3 engine Spacer (solver z3spacer). While the underlying
solver engine is different for the two solvers, their command line interface is
the same. The command ./solver * -h displays the help of the solver. The

1

reviewer might find useful the argument -s for specifying the server’s IP address
and port.

The server and the client are respectively smts.py and client.py, both in
/server. Both show useful help when executed with the argument -h. The
server smts.py is highly configurable through configuration files. The default
configuration file is /server/config/default.py. We suggest to not change
the default configuration file, but instead provide smts.py with configuration
files using the -c argument. The user may provide several configuration files,
in which case each one will set the parameters it specifies, leaving everything
else unchanged. The current configuration may be checked by running the
server with argument -L. When running SMTS with local clients, the arguments
-o and -z of smts.py are a convenient way to specify the number of clients
(solver opensmt or solver z3spacer, respectively). Such approach will not
work in a cluster, because the solvers run in different computing nodes. Instead
each solver must be run separately, providing the server IP and port through
the -s argument.

client.py connects to a running server and can work in two modes: as
a Python3 shell or as a system sending problem instances. The former mode
allows the user to inspect the current execution by evaluating and executing
code while the server is running. The latter mode takes one or more smtlib
instances and sends them to the server for solving. Another convenient way
to provide instances to the server is to fill them in the files path list of the
provided configuration file. By doing so, smts.py will load them from the file
system at startup.

The third Python3 file utils.py lets the user to run the GUI for analysing
a past execution (based on the logged events).

B Running SMTS

B.1 The dummy solver.

Every running solver requests a consistent amount of memory and up to a full
core of CPU computational resource. For this reason, bugs affecting SMTS when
managing a consistent number of solvers might be expensive, both in terms of
money (CPU time is expensive) and in terms of time lost in cluster queuing
systems. The dummy solver is designed for testing SMTS by simulating several
solvers working concurrently. The kinds of bugs the dummy solver can detect
are related to protocol compliance, partitioning scheduling among solvers, error
and timeout handling.

The dummy solver design is also suitable to make an evaluation of SMTS
within a virtual machine possible. The user can assess how SMTS would behave
having an arbitrary number of solvers running e.g. in a cluster. Features of
particular interest are the functionalities offered by the SMTS GUI, and the
partitions scheduling performed by the server.

The Python3 executable /server/dummy solver.py is designed to simulate

2

an arbitrary number of solvers compatible with any SMT theory. Each solver
acts as follows: after receiving an instance from the server it chooses an answer
out of SAT, UNSAT or TIMEOUT, based on the weights respectively provided
by the arguments -S, -U , and -t. If the chosen answer is TIMEOUT, the
solver sleeps forever. Otherwise, if the answer is either SAT or UNSAT, the
solver draws a number t from a uniform distribution between 0 and the value
provided by the argument -m, and after t seconds, reports the answer.

The dummy solver is useful to evaluate an execution with e.g. 10 solvers on
a single core virtual machine. The user can see from the GUI how the resulting
tree would look like, visualize the SMT instance, guide the expansion of the
partition tree, and also see simulated learned clauses. An example of how to
evaluate SMTS using the dummy solver is provided in Sec B.3.

Dummy solver’s output. The dummy solver simulates N solvers, provided
-n N as argument. Each simulated solver produces its own output lines:

• solving [filename][partition] is printed on the arrival of a new solv-
ing request;

• reporting [status] in [s] seconds tells immediately when and which
status will be sent to the server; and

• going timeout means that nothing about the particular instance will be
sent to the server.

B.2 The server

The two supported solvers cannot be used simultaneously because they support
different SMT theories. In particular OpenSMT supports uninterpreted func-
tions and linear real arithmetics, while Z3 Spacer supports constrained Horn
clauses with integers and arrays. To allow the user to evaluate both solvers,
we provide two different configuration files, each proving suitable benchmarks
for the respective solver. The configuration files config {opensmt,spacer}.py
contain some help related to the parameters they set. The configuration files
also contain a parameter set with the path to some benchmarks suitable for the
respective solver. Those benchmarks are loaded at startup and scheduled for
solving as soon as some solvers connects to the server. To run the server and
the solvers type one of:

$./server/smts.py -c config_opensmt.py -l -g -o2

$./server/smts.py -c config_spacer.py -l -g -z2

WARNING: we discourage from running these commands in a virtual ma-
chine because they will result in many CPU and memory intensive processes
executing simultaneously, seriously reducing the responsiveness of the system.
In particular, the argument -l runs the lemma sharing server, -g runs the GUI,
and -o2 and -z2 respectively run two OpenSMT2 and Z3 Spacer processes. To

3

evaluate the GUI and the server on a virtual machine we suggest to use the
dummy solver. An example of usage is provided in Sec B.3.

Server’s output. Each output line consist of the current time, a level (INFO,
WARNING, or ERROR), and a message.

• Each filename provided in the files path is loaded by the server and
an INFO message new instance "[filename]" is printed.

• The server attempts to solve instances one by one, until the instance either
times out or gets solved. The message solving instance "filename" tells
which instance SMTS is currently solving.

• The message GUI running on 8080 tells the user that the GUI is available
through a web browser at http://127.0.0.1:8080.

• The message new <[sname] at [ip:port] idle> is printed on each new
incoming solver connection.

• A solver sname reports on instance fname by printing a message

<[sname] at [ip:port] [fname][part]>: [report msg].

The partition part is described by the index path starting from the root []
of the partition tree.

B.3 Examples

The benchmarks are stored in ../benchmarks {opensmt,spacer}/. Each folder
has a sub-folder easy/ containing some easy-to-solve benchmarks. These bench-
marks are currently listed in the configuration files and will therefore be loaded
by SMTS server at startup. We encourage the reader to change the configuration
files.

The following example will simulate 5 solvers, each connecting to smts.py

running locally on the default port, never returning SAT, with 70% probability
of returning UNSAT after a simulated run of at most 150 seconds, and with
30% probability of timing out. Note that the weights need not sum up to a
particular value, like 10 in the current example.

$./server/smts.py -c config_opensmt.py -g

on another terminal

$./server/dummy_solver.py -S0 -U7 -t3 -m150 -n5 -s127.0.0.1:3000

Now the GUI is available by opening the browser at 127.0.0.1:3000; a screen-
shot is provided in Fig. 1

The left column provides a list of the solved instances on the top, and infor-
mation about the currently solving instance (e.g. time spent, time until timeout
etc.) on the bottom. The central column consists of the parallelization tree view

4

on the top and the list of solving-related events on the bottom. The number
near each node in the tree is the amount of solvers working on the partition
which that node represents. Finally, on the right there is a list of currently
working solvers on the top, and information about the selected node on the
bottom.

The GUI features involve:

• Clicking an event makes the tree to go back in time showing how the tree
was at that time.

• Double click on a tree node triggers partitioning. Note that partitioning is
triggered by the server’s config option partitioning timeout, in seconds.

• Only for server running with -c config opensmt.py. Clicking the
bottom Get Clauses will make the CNF graphical representation to appear
in the CNF tab. This feature is only supported by OpenSMT2 solver, and
the dummy solver offers that functionality relying on it. For this reason
if the dummy solver is simulating solving an IC3 instance (those from
confing spacer.py), an error will be returned.

• Only for server running with -c config opensmt.py. Clicking the
button Learnts will make the CNF graphical representation to appear to-
gether with the learned binary clauses displayed by green edges.

5

Figure 1: A GUI screenshot

6

