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Abstract. Predicate abstraction is a powerful technique
to reduce the state space of a program to a finite and
affordable number of states. It produces a conservative
over-approximation where concrete states are grouped
together according to a given set of predicates. A pre-
cise abstraction contains the minimal set of transitions
with regards to the predicates, but as a result is com-
putationally expensive. Most model checkers therefore
approximate the abstraction to alleviate the computa-
tion of the abstract system by trading off precision with
cost. However, approximation results in a higher num-
ber of refinement iterations, since it can produce more
false counterexamples than its precise counterpart. The
refinement loop can become prohibitively expensive for
large programs.

This paper proposes a new approach that employs
both precise (slow) and approximated (fast) abstrac-
tion techniques within one abstraction-refinement loop.
It allows computing the abstraction quickly, but keeps
it precise enough to avoid too many refinement itera-
tions. We implemented the new algorithm in a state-of-
the-art software model checker. Our tests with various
real life benchmarks show that the new approach almost
systematically outperforms both precise and imprecise
techniques.

1 Introduction

Predicate abstraction [20,16], when combined with reach-
ability analysis and an automated abstraction refine-
ment mechanism (also known as Counterexample Guided
Abstraction Refinement (CEGAR)[5,12]), is an effective

? This paper is an extended version of “Natasha Sharygina, Ste-
fano Tonetta, Aliaksei Tsitovich: The synergy of precise and fast
abstractions for program verification, SAC 2009”[34].

model checking strategy. The CEGAR-based verification
consists of constructing and evaluating a finite-state sys-
tem that is an abstract model of the original system with
respect to a set of predicates.

The abstract model is a conservative over-approxi-
mation of the original program with respect to the set of
given predicates. Thus, if the property holds on the ab-
stract model, it also holds on the original program. The
drawback of the conservative abstraction is that when
model checking of the abstract program fails, it may
produce a counterexample that does not correspond to
any concrete counterexample. This is called a spurious
counterexample. When a spurious counterexample is en-
countered, refinement is performed by adjusting the set
of predicates in a way that eliminates the given coun-
terexample. The overall efficiency of verification is highly
dependent on the efficiency of the abstraction and refine-
ment procedures.

Computing the abstract model relies on enumerating
the abstract states and checking, for each pair of states,
if there exists an abstract transition. This computation
is expensive since it requires an exponential number of
calls to a theorem prover [18,3,2]. In [30,10,29], the ab-
straction is computed by means of dedicated decision
procedures based on BDDs, SAT or SAT modulo the-
ories (SMT). As another direction, various techniques
have been proposed to alleviate this computation by ap-
proximating the abstract transition relation (see, for ex-
ample, [17,3,4,2,26]).

We distinguish between precise abstraction and ap-
proximated abstraction (as also done, for example, in [12,
17,26]): a precise abstraction is minimal in the sense
that it contains only those transitions that correspond
to some transition in the concrete model; instead, an ap-
proximated abstraction is a further over-approximation
of the minimal abstract model so that the transition re-
lation is relaxed. In the paper, we will refer to the latter
simply as approximation.
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Approximation techniques are important because they
allow a less expensive (as compared to precise abstrac-
tion) computation of the abstract transition relation.
Cartesian abstraction [4], for example, loses every re-
lationship among predicates, but has been successfully
used to verify large programs, such as operating sys-
tem device drivers. However, abstraction approximations
add spurious behaviors in addition to the spurious coun-
terexamples resulting from precise abstraction. In order
to rule out this kind of “impurity”, the approximation
must be refined without changing the set of predicates
and focusing only on the spurious transitions caused by
the approximation [17]. This procedure on its own might
become very costly and does not scale to verification of
large programs.

When refining the abstract model, we distinguish be-
tween two types of spurious behavior (as also done in
[14]). 1) Spurious path is due to the over-approximating
nature of the precise abstraction: states are merged to-
gether so that some resulting paths cannot be simulated
on the concrete system. This happens when the set of
predicates is not sufficient to capture the relevant be-
haviors of the concrete system. 2) Spurious transitions
are abstract transitions which do not have corresponding
concrete transitions. By definition, spurious transitions
cannot appear in the most precise abstraction and are
caused by using the approximation techniques. Clearly,
the efficiency of the approximated abstraction depends
on a tradeoff between time spent in computing the ab-
straction and refining spurious transitions.

In order to illustrate the abstraction approximation
and its refinement procedures, consider the example of
Figure 1(a). The variable x is assigned non-determini-
stically with an unknown value “*”. The property we
verify is the reachability of line l3. It never can be reached
since the condition !(x<y) at line l2 never holds (to-
gether with the guard x<0 at line l1, which is necessary
to avoid integer overflow). Thus if in the abstract pro-
gram there is a path leading to the assertion, then it is
spurious. The predicates x<0 and x<y are sufficient to
prove the property. However, approximate methods like
Cartesian abstraction cannot prove it because they can-
not infer that after the assignment y=x+1, the condition
(!(x<0) || !(x<y)) is true. Thus, most model check-
ers that use such abstractions refine the transition rela-
tion by adding a constraint that removes the spurious
transition.

In order to experience the difference in performance
between precise and approximated abstractions, let us
extend the previous example in order to have more spu-
rious behaviors. The program of Figure 1(b) has one
more variable and a slightly more complex control flow
graph. As before the assertion is not reachable, and all
abstract counterexamples are spurious. Though, if we
consider the predicates in the guards of the program, an
approximated abstraction may produce many spurious
behaviors. Table 1 reports the verification results ob-

void main() {
int x=*;

int y;

l0: y=x+1;

l1: if (x<0)

l2: if (!(x<y))

l3: assert(0);

l4: }
(a)

void main() {
int x = *;

int y;

int z;

y=x+1;

z=y-1;

if (x<0||y>0||z>0){
x++;

z++;

if (y<z && z>x)

assert(0); } }
(b)

Fig. 1: Sample program for which the approximated ab-
straction causes spurious transitions.

tained with the SATABS model checker [15], by running
approximated and precise abstractions. The final num-
ber of predicates is in all cases 10. The approximated ab-
straction spends most of time in refining the transition
relation (Ref). Since it runs for 12 iterations (or even 42
in case when we used the refinement procedure of [17]),
also the time for the verification (MC) is not negligible.
On the contrary, the precise abstraction takes only 2 it-
erations to terminate (the first refinement is necessary
to add a sufficient set of predicates). Nevertheless, the
amount of time spent in computing the abstraction is
too high for such example.

A low number of refinement iterations is fundamen-
tal for the success of the CEGAR loop, especially when
applied to industrial benchmarks: in fact, when the sys-
tem is complex, the number of predicates required to
verify the property becomes high, and the time spent in
the reachability (model checking) procedure grows expo-
nentially. For this reason, it is of paramount importance
to avoid as many redundant iterations as possible: even
a single saved iteration can result into a huge saving in
time for large systems.

Contributions This paper presents a CEGAR-based tech-
nique that controls the number of iterations and reduces
the verification time by interleaving precise (but slow)
and approximated (but fast) abstractions. The abstrac-
tion is first computed with a high level of approximation
exploiting the weakest precondition of the predicates.
Then, during the refinement step, our technique uses the
SAT-based quantifier elimination in order to compute a
precise abstraction. We also show how precise compo-
nent computation can be heuristically limited in order
to avoid possible exponential blow ups.

The difficuty that we would experience in computing
the precise abstraction of the whole program is avoided
by exploiting the localized abstraction: as in static anal-
ysis [33], in most model checkers (such as SLAM [3],
BLAST [23], SATABS [15], F-Soft [25]) the abstract
model keeps the control flow graph of the original pro-
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gram and has a different abstract transition relation for
each location of the control-flow graph1. This way, dur-
ing the refinement step, we add the constraints built
with a precise abstraction only to relevant transition
relations, affecting only those parts of the system that
caused the spurious counterexample.

In order to illustrate the immediate advantages of
our approach, consider the fourth line of Table 1 that is
based on the implementation of our technique. Our ap-
proach is able to avoid both a high number of iterations
and an expensive abstraction, resulting in an optimized
verification time.

We performed a thorough evaluation comparing the
new technique with the purely precise and imprecise
counterparts. Our tests with various real life benchmarks
show a systematic advantage of our approach over both
precise and imprecise techniques reaching up to 90% im-
provement in time.

Overall, the new technique manages the verification
complexity by using the precise abstraction on demand
and locally. The advantage is that the expensive abstrac-
tion is only used on a small portion of the program, yet
the higher quality of abstraction refinement is sufficient
to reduce the number of refinement iterations, thus im-
proving the overall performance.

Related work

The paper addresses the problem of refining the abstrac-
tion in the presence of spurious transitions. The solution
was first given by Das and Dill [17] whose technique
consists of removing one spurious transition at every re-
finement iteration. The approach may be very expensive
because it requires a high number of iterations of the
abstraction-refinement loop. In practice, the technique
is not feasible for real systems.

Many works such as [2] improved the refinement by
strengthening the condition added to the transition re-
lation to remove more spurious transitions. The idea in
[2] is to syntactically simplify the condition and to check
if a larger set of spurious transitions is found.

In [11,24,25], a different technique is presented based
on SAT techniques. Transitions are simulated over the
concrete program by means of SAT formulas. If the tran-
sition is not concretizable the SAT solver will produce a
resolution proof of the unsatisfiability. It is then possible
to extract from the proof either a core set of predicates or
a constraint sufficient to remove the spurious transition.
Though, in principle, the technique can remove many
spurious transitions at once, the efficiency strongly de-
pends on the unsatisfiability proof. In the worst case, it
may require a number of abstraction refinements expo-
nential in the number of predicates.

The technique of [26] also exploits the unsatisfiabil-
ity proof but it is based on interpolation. The inter-

1 Localized abstraction is further investigated in [23,22].

polant produced by the proof is indeed an over-appro-
ximation of the exact abstraction able to remove the
spurious transition. As in the case of unsat cores, the
technique depends on the heuristics to produce unsat-
isfiability proofs. The interpolant is not always enough
strong to remove all spurious transitions.

This paper instead proposes a greedy approach where
all spurious transitions between two locations are re-
moved. The idea is that the computation can be efficient
because it is localized and on-demand. The technique
inherits the efficiency of the approximated abstraction
which is used any time new predicates are discovered. At
the same time, the precision of the minimal abstraction
is exploited whenever spurious transitions are found.

Summary

The paper is organized as follows: Section 2 gives an
overview of related abstraction refinement techniques;
Section 3 describes our new approach; Section 4 presents
the experimental evaluation; finally, Section 5 draws the
conclusions.

2 Background

2.1 Transition Systems

We consider programs as Transition Systems. TSs are
defined by a set V of state variables. We use V ′ to de-
note the set of next state variables {v′}v∈V , where v′

represents the next value of v. The set SV of states is
given by all assignments to the variables V . Given a state
s, s′ denotes the corresponding assignment to the next
state variables, i.e. s′ = s[V ′/V ]. Transitions are repre-
sented as pairs of states. For each transition t = (s1, s2),
we use in(t) and out(t) to denote resp. s1 and s2. Given a
formula φ, we write φ[V/V ′] to denote the result of sub-
stituting every free occurrence of every variable v′ ∈ V ′
with its corresponding v. We use ∃V (φ) to denote the
existential quantification of every variable in V .

Definition 1. A Transition System (TS) is a tupleM =
〈V, I, T 〉, where

– V is a set of variables;
– I(V ) is a formula that represents the initial states;
– T (V, V ′) is a formula that represents the transitions.

A state s is initial iff s |= I(V ). Given two states s1
and s2, there exists a transition t between s1 and s2 iff
s1, s

′
2 |= T (V, V ′). A path of M is a finite sequence π

of transitions t0, t1, ..., tn such that in(t0) |= I, and, for
every 0 ≤ i < n, out(ti) = in(ti+1). In general, given
a transition relation T , we use π |= T to denote that
π[i] |= T for every 0 ≤ i ≤ |π|.

Example 1. Consider the program of Figure 1(a). It can
be represented by the TS M = 〈V, I, T 〉, where
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Total Abs MC Ref Iter
Approximated abstraction [17] 5.817 0.063 2.659 2.112 42
Approximated abstraction [24] 1.469 0.046 0.501 0.617 12

Precise abstraction 3.591 3.478 0.076 0.01 2
New approach 0.467 0.039 0.161 0.189 4

Table 1: Verification results on the example of Figure 1(b). Total, Abs, MC, Ref refer to the time, in seconds, for
total verification, abstraction, model checking and refinement respectively; Iter refers to the number of iterations of
the abstraction-refinement loop.

– V := {x, y, pc}, where pc is the program counter;
– I := (pc = l0);
– T := (pc = l0)→ (pc′ = l1 ∧ y′ = x+ 1 ∧ x′ = x)∧

(pc = l1 ∧ x < 0)→ (pc′ = l2 ∧ x′ = x ∧ y′ = y)∧
(pc = l1∧!x < 0)→ (pc′ = l4 ∧ x′ = x ∧ y′ = y)∧
(pc = l2∧!x < y)→ (pc′ = l3 ∧ x′ = x ∧ y′ = y)∧
(pc = l2 ∧ x < y)→ (pc′ = l4 ∧ x′ = x ∧ y′ = y)∧
(pc = l3)→ (pc′ = l4 ∧ x′ = x ∧ y′ = y)

2.2 Abstraction

Definition 2. Given two TSs M = 〈V, I, T 〉 and M̂ =
〈V̂ , Î, T̂ 〉, a relation H(V, V̂ ) is an abstraction relation
[13] iff the following conditions hold:

– every initial state of M corresponds to an initial state
of M̂ ; namely, if s |= I(V ), then there exists a state
ŝ of M̂ such that ŝ |= Î(V̂ ) and s, ŝ |= H(V, V̂ );

– every transition of M corresponds to a transition
of M̂ ; namely, if s1, ŝ1 |= H(V, V̂ ), and s1, s

′
2 |=

T (V, V ′), then there exists a state ŝ2 of M̂ such that
s2, ŝ2 |= H(V, V̂ ) and ŝ1, ŝ

′
2 |= T̂ (V, V ′) .

If such relation exists, we say that M̂ is an abstraction
of M , or M refines M̂ (M � M̂).

Definition 3. Given the abstraction relation H, we de-
fine the abstraction function αH : 2SV → 2SV̂ and the
concretization function γH : 2SV̂ → 2SV as follows:

– αH(Q) = {ŝ ∈ SV̂ | there exists s ∈ Q s.t. s, ŝ |=
H(V, V̂ )}, for every Q ⊆ SV ;

– γH(Q̂) = {s ∈ SV | there exists ŝ ∈ Q̂ s.t. s, ŝ |=
H(V, V̂ )}, for every Q̂ ⊆ SV̂ .

We extend γ to transitions and paths so that:

– γH(t̂) = {t | in(t) ∈ γ(in(t̂)), out(t) ∈ γ(out(t̂))}, for
every transition t̂ of M̂ .

– γH(π̂) = {π | π[i] ∈ γ(π̂[i]) for every 0 ≤ i ≤ |π̂|},
for every path π̂ of M̂ .

If F is a subset of Q, F is an invariant for a system M
iff for all paths of M all states of the paths belong to F .
The abstraction relation we defined preserves invariants
(and more in general all universal properties in ∀CTL∗
[13]), so that if M � M̂ , and αH(F ) is an invariant of
M̂ then F is an invariant of M (though, in general, the
reverse does not hold). Given a TS M = 〈V, I, T 〉, an
abstraction M̂ = 〈V̂ , Î, T̂ 〉 of M is said to be precise

when every abstract initial state and transition of M̂
corresponds respectively to a concrete initial state and
transition of M . Given the abstraction relation H, M̂
can be obtained as:

– ÎH(V̂ ) = ∃V (I(V ) ∧H(V, V̂ )),
– T̂H(V̂ , V̂ ′) = ∃V ∃V ′(T (V, V ′)∧H(V, V̂ )∧H(V ′, V̂ ′))

The precise abstraction is also called minimal or exis-
tential or exact or eager abstraction [13].

Given a TS M = 〈V, I, T 〉, let P be a set of predicates
and v̂p an abstract variable for every predicate p ∈ P .

The set of abstract variables is the set V̂P = {v̂p}p∈P .
The abstraction relation for predicate abstraction is de-
fined as follows:

HP (V, V̂P ) =
∧
p∈P

v̂p ↔ p(V )

The minimal predicate abstraction is the TS M̂ =
〈V̂P , ÎP , T̂P 〉, where:

– ÎP (V̂P ) = ∃V (I(V ) ∧
∧
p∈P v̂p ↔ p(V ))

– T̂P (V̂P , V̂
′
P ) = ∃V ∃V ′(T (V, V ′) ∧

∧
p∈P (v̂p ↔ p(V ) ∧

v̂′p ↔ p(V ′))).

2.2.1 Quantifier elimination

In order to model check the abstract TS, it is necessary
to compute the set of successors of abstract states. This
requires the removal of the quantifiers from the defini-
tion of the abstract transition relation. In general, given
a transition relation T and a set of predicates P , to com-
pute T̂P means to find a quantifier-free formula that is
equivalent to T̂P .

Example 2. Consider the TS described in the Example 1
and the predicates P1 := (x < 0) and P2 := (x < y). Let
the abstract variables v̂1 and v̂2 correspond respectively
to P1 and P2. We do not abstract the program counter.
The abstract transition relation results to be equivalent
to

– T̂P ≡ (pc = l0 ∧ v̂1)→ (pc′ = l1∧!v̂′2)∧
(pc = l0∧!v̂1)→ (pc′ = l1)∧
(pc = l1 ∧ v̂1)→ (pc′ = l2 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l1∧!v̂1)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l2∧!v̂2)→ (pc′ = l3 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l2 ∧ v̂2)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)∧
(pc = l3)→ (pc′ = l4 ∧ v̂′1 = v̂1 ∧ v̂′2 = v̂2)
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In hardware and software verification, different tech-
niques have been conceived to compute T̂P . In symbolic
model checking [9] of finite state machines, the existen-
tial quantification can be removed either by a Shan-
non expansion technique when using BDDs [8] or by
SAT techniques when using CNF [32]. In software model
checking, the problem is exacerbated by the fact that
the concrete transition relation may contain first-order
terms. The abstract transition relation can be obtained
by enumerating the abstract states, and checking if, for
each pair of states, there exists an abstract transition. As
it is done by most software model checkers, this requires
an exponential number of calls to a theorem prover [18,
3]. In [15], a SAT solver is exploited to find all possible
solutions. We refer to this technique as SATQE.

2.3 Abstraction approximation

Precise abstractions are very expensive to compute be-
cause of the existential quantification operations. Thus,
in practice, model checkers use approximations to trade-
off precision with complexity.

Definition 4. Formally, given MH = 〈V, IH , TH〉 and
M̃ = 〈V, Ĩ, T̃ 〉, we say that M̃ is an approximation of
MH (MH - M̃) iff the following formulas are valid:

– IH → Ĩ, i.e., every initial state of the minimal ab-
straction is an initial state in the approximation;

– TH → T̃ , i.e., every transition of the minimal ab-
straction is a transition in the approximation.

Intuitively, M̃ has more initial states and transitions
than MH . Note that an approximation is also an ab-
straction namely, if MH - M̃ , then MH � M̃ . However,
the set of predicates is not affected, in the sense that M̃
and MH have the same abstract variables.

2.3.1 Approximation techniques

Many approximation techniques have been developed
both in hardware and software verification. Their aim
is to alleviate the computation of T̂P . The easiest way
is to reduce the scope of quantifiers. This can be done
with early quantification [13], by pushing quantifiers in
front of predicates. Predicate partitioning [24] approxi-
mates T̂P by taking the conjunction of its projections
over subsets of predicates. This technique is pushed to
its limit by Cartesian abstraction [4] that, given a set of
states Q, approximates transition relation with the prod-
uct of the projections on each variable. This way, the
approximated abstraction ignores every relation among
predicates.

2.4 Spurious behaviors

The overapproximation nature of the abstraction as we
define may generate spurious paths even in the case

of precise abstraction. Spurious paths are sequences of
transitions that satisfy the abstract transition relation,
but not the concrete one.

Definition 5 (Spurious path). Given a TSM = 〈V, I, T 〉,
an abstraction M̂ = 〈V̂ , Î, T̂ 〉, and a sequence π̂ of tran-
sitions of M̂ , we say that π̂ is a spurious path iff π̂ |= T̂
and π 6|= T for every π ∈ γ(π̂).

In order to refine the abstraction and remove a spuri-
ous path, refinement procedures need to add more pred-
icates to the abstraction. There are different techniques
to discover the new set of predicates, either based on
weakest precondition [6], interpolation [22], or UNSAT
core [21].

Besides spurious path, approximated abstraction gen-
erates another kind of spurious behavior, called spurious
transitions. Spurious transitions are transitions that sat-
isfy the abstract transition relation, but not the concrete
one.

Definition 6 (Spurious transition). Given a TSM =
〈V, I, T 〉, an abstraction M̂ = 〈V̂ , Î, T̂ 〉, and a transition
t̂ of M̂ , we say that t̂ is a spurious transition iff t̂ |= T̂
and t 6|= T for every t ∈ γ(t̂).

In order to refine an approximation that contains a
spurious transition, a new transition relation is obtained
by adding a constraint in conjunction to the old abstract
transition relation. As a result, the spurious counterex-
ample is ruled out. Different techniques uses as such con-
straint either the exact encoding of the spurious transi-
tion [17], or the UNSAT core produced by the SAT solver
when checking if the transition is spurious [24], or an in-
terpolant between the exact abstraction and the current
approximated abstraction [26].

3 The synergy algorithm

This section proposes a new refinement algorithm. It
uses both the fast and precise types of abstraction to
gain verification efficiency. It is independent of any par-
ticular technique used to define either procedure.

The algorithm implements the standard CEGAR loop.
Each iteration of the CEGAR loop is composed of an ab-
straction step, a model checking step, a simulation step
and finally a refinement step.

We first present the high-level overview of the com-
bined algorithm and then describe the specifics of the
new refinement procedures. For simplicity, we first present
the algorithm with regard to a monolithic transition re-
lation. In Section 3.3 we extend it to the case where a
transition relation is defined for every location of the
program.

The algorithm is parameterized by a number of sub-
routines that take care of the abstraction and refinement.
In particular, the algorithm contains the following pro-
cedures:
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Algorithm 1: A new abstraction-refinement algo-
rithm combining fast and precise abstractions.

MixCegarLoop(TransitionSystem M, Property F)1

begin2

Π = InitialPredicates(F,T);3

α = FastAbstraction(T,Π);4

while not TIMEOUT do5

π = ModelCheck(α,F);6

if π = ∅ then return CORRECT;7

else8

σST = SpuriousTransition(π);9

if σST 6= ∅ then10

foreach t ∈ π do11

C = PreciseAbstraction(T,σST (t));12

α = α ∧ C;13

else14

σSP = SpuriousPath(π);15

if σSP = ∅ then return INCORRECT;16

else17

foreach t ∈ π do18

Π = Π ∪ σSP (t);19

C = PreciseAbstraction(T,σSP (t));20

α = α ∧ C;21

end22

– FastAbstraction: given a set of predicates Π and a
concrete transition relation T , it computes an over-
approximation of T̂Π .

– PreciseAbstraction: given a set of predicates Π
and a concrete transition relation T , it computes the
minimal abstraction T̂Π .

– SpuriousTransition: given a path π in M̂ , it re-
turns a function σST that maps every transition t in
π to a set of predicates P , s.t., P ⊆ Π and t 6|= T̂P .

– SpuriousPath: given a path π in M̂ , it returns a
function σSP that maps every transition t in π to a
set of predicates P , s.t. π 6|= T̂σSP (t). Note that P
may contain new and old predicates.

Algorithm 1 shows how the FastAbstraction and
PreciseAbstraction are combined. It first computes
the approximated abstraction (line 4). When a spurious
counterexample is encountered as a result of the model
checking (line 6), the spurious transitions are removed by
using the precise abstraction technique (line 12) with the
predicates returned by SpuriousTransition (line 9). If
no spurious transitions are found, the spurious path is
removed by using the precise abstraction technique (line
20) with the predicates returned by SpuriousPath (line
15).

3.1 Refining spurious transitions (lines 9-13)

Suppose some transitions t1, ..., tn of the counterexam-
ple π found by ModelCheck are spurious. This means
that the function σST returned by SpuriousTransition

maps those transitions to some non-empty set of pred-
icates. Let us define the clustering of predicates Γ as
{σST (ti)}1≤i≤n (i.e., Γ contains the set of predicates

σST (ti) for every transition in the spurious counterexam-
ple). The spurious transition refinement procedure pro-
ceeds as follows. For each cluster, P ∈ Γ , the refinement
algorithm computes T̂P , which is a precise computation
of the abstract transition relation projected on the pred-
icates of the cluster. In order to rule out every spurious
transition among t1, ..., tn, the refinement algorithm up-
dates the abstract transition relation as follows:

α′ := α ∧
∧
P∈Γ

T̂P

Note that, in general, every cluster, P , is a subset
of the global set of predicates, Π. This means that each
constraint T̂P is an over-approximation of the precise
abstraction computed over Π. Neverthless T̂P is precise
with regards to the predicates P , in the sense, that it
removes all the unrealistic abstract transitions that can
be defined by those predicates.

The following theorem states the soundness of this
refinement step.

Theorem 1. For every spurious transition ti, 1 ≤ i ≤
n, ti 6|= α′.

Proof Sketch. The proof comes directly from the defini-
tion of σST (it relies therefore on the soundness of a par-
ticular SpuriousTransition technique): for 1 ≤ i ≤ n,
since ti 6|= T̂σST (ti), ti 6|= α′.

In Section 2, we discussed that the techniques used to
remove spurious transitions require adding a constraint
to the abstract transition relation. The Das-Dill tech-
nique removes only one abstract spurious transition per
refinement iteration. When the abstraction is built with
a high level of approximation, this technique is highly
inefficient because it requires a large number of itera-
tions. The UNSAT core can be used to generate a more
relaxed constraint that removes more spurious transi-
tions in one iteration of the CEGAR loop. It can even
remove some that are not present in the spurious coun-
terexample. However, it highly depends on the heuristic
to cut the UNSAT proof and it is still tightly coupled
with the spurious counterexample. By using the precise
component T̂P , we remove all spurious transitions which
can be expressed with combinations of the predicates in
P . This is much stronger than the standard techniques
(and, of course, computationally more expensive).

3.2 Refining spurious paths (lines 15-21)

We adopt the cluster-based approach described above to
the removal of the spurious path. Our technique uses
SpuriousPath to produce the set of predicates that are
sufficient to rule out the spurious counterexample. The
set of predicates generated by the standard predicate-
discovery techniques (described in Section 2) includes



N. Sharygina, S. Tonetta and A. Tsitovich: An Abstraction Refinement Approach Combining Precise and Approx. 7

both current predicates and new predicates, that to-
gether rule out the spurious counterexample. Our tech-
nique considers this set of old and new predicates as a
new cluster.

Suppose the path t1, ..., tn to be spurious. This means
that the function σSP returned by SpuriousPath maps
each ti to some non-empty set of predicates. Let us define
the clustering of predicates Γ as {σSP (ti)}1≤i≤n (i.e., Γ
contains the set of predicates σSP (ti) for every transition
in the spurious counterexample). The computation of
the updated abstract transition relation is identical to
spurious transition case, i.e.

α′ := α ∧
∧
P∈Γ

T̂P

Note that this time, unlike the case of spurious transi-
tions, the clusters involve new predicates.

By definition, the set of predicates produced by
SpuriousPath is sufficient to remove the spurious coun-
terexample only if the precise abstraction is used. In fact,
spurious transitions over such predicates (possibly cre-
ated by the approximation abstraction) might create the
same spurious counterexample. Our technique guaran-
tees that this does not happen. This is achieved by using
the precise component T̂P .

The following theorem states the soundness of this
refinement step.

Theorem 2. For every spurious path π, π 6|= α′.

Proof Sketch. The proof comes directly from the defi-
nition of σSP (it relies therefore on the soundness of a
particular SpuriousPath technique).

In Section 2, we referred to the different techniques
used to refine the set of predicates. These are orthog-
onal to the way the abstract transition relation is up-
dated with the new predicates. This is typically done
with the same procedure used to compute the initial ab-
stract transition relation given the initial set of predi-
cates. Here, we add a constraint whose precision is de-
termined by the clustering obtained with the spurious
path. Thus, it is more precise than FastAbstraction

but less precise than PreciseAbstraction.

3.3 Localized abstraction

The algorithm shown in Algorithm 1 was defined for
a monolithic transition relation. When the set of predi-
cates returned by the SpuriousTransition or Spurious-
Path procedures covers the whole set Π of current predi-
cates, the constraint that MixCegarLoop adds to the ab-
stract transition corresponds exactly to the precise ab-
straction. This way, the abstraction refinement becomes
as expensive as PreciseAbstraction. We limit this dis-
advantage by localizing the abstraction to some parts of
the program. Some software model checkers (e.g., BLAST
[23] and SATABS [15]) use the control flow graph as a

Algorithm 2: “Synergy” algorithm with localized
abstraction.
MixCegarLoop(TransitionSystem M, Property F)1

begin2

foreach T in M do Π(T ) = InitialPredicates(F,T);3

foreach T in M do α(T ) = FastAbstraction(T,Π);4

while not TIMEOUT do5

π = ModelCheck(α,F);6

if π = ∅ then return CORRECT;7

else8

σ = SpuriousTransition(π);9

if σ 6= ∅ then10

foreach t ∈ π do11

T = τ(t);12

C = PreciseAbstraction(T,σ(t));13

α(T ) = α(T ) ∧ C;14

else15

σSP = SpuriousPath(π);16

if σSP = ∅ then return INCORRECT;17

else18

foreach t ∈ π do19

T = τ(t);20

Π(T ) = Π(T ) ∪ σSP (t);21

C = PreciseAbstraction(T,σSP (t));22

α(T ) = α(T ) ∧ C;23

end24

partitioning of the transition relation to implement such
localization. During the abstraction refinement, they keep
a set of predicates and an abstract transition relation for
each program location, and perform the abstraction for
each local transition relation separately.

Our algorithm implements the localized procedure as
part of the CEGAR algorithm as shown in Algorithm 2.
The algorithm treats the system M as a set of concrete
transition relations, one for every location of the control-
flow graph. For each transition relation T , it computes an
abstract transition relation α(T ) (line 4); when a spu-
rious counterexample is encountered as a result of the
model checking (line 6), spurious transitions and path
are removed by using the precise abstraction technique
(line 13 and 22). The difference from the monolithic case
(presented earlier in this section) is that in the localized
version, every transition t of the spurious counterexam-
ple π is associated with a particular abstract transition
relation, denoted τ(t). Thus, when the refinement step
of the algorithm has to add a new constraint, it changes
only the transition relation corresponding to either the
spurious transition (as part of the spurious transition
refinement step, lines 9-14) or to each transition of the
spurious path (as part of the spurious path refinement
step, lines 16-23).

By exploiting the localized-abstraction framework,
the algorithm reduces the abstraction computation to
the parts of the system that are relevant to the property
and keeps the approximated abstraction in all parts of
the program that are irrelevant to prove the property.
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Fig. 2: Total running time in seconds (left) and number of iterations (right) plotted against the number of clients

4 Evaluation

We implemented the proposed algorithm in the frame-
work of software model checking. We used the SATABS
[15] model checker as a platform for our experiments.
As described in Section 3, the new CEGAR loop uses
four subroutines. We experimented with the following
techniques implemented in SATABS:

– for FastAbstraction, we used a fast abstraction tech-
nique based on the computation of the weakest pre-
condition; it assigns to the next predicate its weak-
est precondition if this is a current predicate; it does
not allow a general Boolean combination of predicate
variables;

– for PreciseAbstraction, we used a precise abstrac-
tion based on the enumeration of possible transitions
by means of a SAT solver: we force the SAT solver
to find all the solutions of the quantifier-elimination
problem by iteratively adding the negation of previ-
ous assignments as clauses [15];

– for SpuriousTransition, we used the SAT-based
technique of [24]2; this calls a SAT solver to check if
a transition is spurious; if the transition is not realis-
tic, it inspects the UNSAT proof to find the relevant
predicates;

– for SpuriousPath, we used a technique based on
weakest precondition; it computes the weakest pre-
conditions of the current predicates along the transi-
tions of the spurious path; it uses these expressions
to produce a set of current and new predicates that
are sufficient to rule out the spurious path.

The SAT solver used by PreciseAbstraction and Spu-

riousTransition was MiniSAT [19].
We implemented the new algorithm and enhanced

SATABS with two new procedures: the first (we will refer

2 We also experimented with an implementation of technique
[17], but it reached 200 CEGAR iterations even on the small ex-
amples.

to it as NewST) affects how the abstraction is refined in
the case of spurious transitions, as described in Section
3.1; the second (NewSP) refines the abstraction in the
case of spurious paths, as described in Section 3.2.

We compared the new algorithm with the abstraction-
refinement loop based on the pure fast abstraction (re-
ferred as WP) and the pure precise abstraction (referred
as SATQE) using the standard SATABS implementations
of latter techniques. The new algorithm was evaluated
with either NewSP or NewST or both together. Thus, in
case NewSP was not used, the default refinement of SA-
TABS based on fast abstraction was used.

We ran the experiments on a AMD Dual-Core Op-
teron 2212 machine with 2GHz CPU and Ubuntu 7.04.
The techniques were evaluated on the sets of ANSI-C
programs as benchmarks3 with different assertions in
it. For every experiment, we verified one property at a
time.4

4.1 Shopping agent benchmark

We first compared the different techniques on a C imple-
mentation of a multi server/client shopping agent sys-
tem (described in details in [7]) as reported in Fig. 2.
This example is particularly interesting because the fast
abstraction produces a number of spurious transitions
exponential in the number of predicates

As seen in Fig. 2, the performance of the weakest-
precondition-based (WP) and the SAT-based abstractions
(SATQE) is comparable. Notably, NewST separately and in

3 Complete version of results as well as tools and examples are
available at http://www.verify.inf.usi.ch/projects/synergy.

4 We observed that verifying several assertions at the same time
may affect the comparison in a unreliable way, since the counterex-
ample produced by the model checker may vary according to dif-
ferent abstract models. This way, at the same iteration we might
obtain different predicates which might close the CEGAR loop in
a different number of iterations.
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combination with NewSP is much more efficient than ei-
ther WP or SATQE. WP and NewSP are sensitive to a number
of spurious transitions and, due to the nature of the ex-
ample, grow exponentially with the growth of the model.
NewST efficiently removes spurious transitions and signif-
icantly reduces the number of iterations. In Fig. 2 (right)
we note that the new technique as expected has a bal-
anced number of iterations between WP and SATQE. This
produces an evident saving in time (as shown in Fig. 2
left) comparing to either WP (up to factor of 5) and to
SATQE (up to factor of 7).

4.2 Benchmark test suite from Ku et.al.

Next, we evaluated the techniques on the benchmark
set proposed in [28]. For this benchmark set the authors
collected a large number of large-scale C programs with
known buffer-overflow bugs and their fixed versions. The
test suite includes applications such as Sendmail, Apache
HTTP server, Samba etc.; though, the original programs
were stripped down by substituting libraries with stubs.
The benchmark set contains 5685 test cases, of which
261 are fixed versions of the programs.

4.2.1 Overall results

We limited the execution with 1 hour or 200 iterations
of CEGAR per test case. Under this threshold 377 test
cases completed by at least one of the techniques. In fact,
40% of them were completed in less than 2 seconds by
all techniques and not more than 5 iterations. For this
test cases the performance difference was not relevant
and we exclude them from the comparison charts (if the
opposite is not stated explicitly). For the remaining test
cases SATABS needs on average 42 predicates to perform
a check, with a maximum of 177 predicates.

Only NewST was able to complete all of 377 consid-
ered test cases. WP did 9 less, while SATQE and NewSP

failed to finish within a given limit on 76 and 26 test
cases respectively.

4.2.2 WP vs. NewST

The notable comparison of two most effective methods
— WP and NewST — gives a better understanding of the
advantage of the new techniques. Fig. 3 reports the scat-
ter plots of the comparison. The results show that NewST
almost systematically outperforms WP. In 98% of the test
cases it requires fewer iterations to verify the property.
Smaller number of iterations leads to reduction of the
total verification time for 53% of the tests. On average,
it decreased the total time by 42%, reaching more than
double performance gain for some cases. For the small

5 We reported to the benchmark authors that 17 test cases are
incorrect, 31 test cases do not pass correctly through our front-end,
thus only 520 test cases were used.

test cases (i.e. 5-10 iterations to complete) the applica-
tion of the new technique doesn’t give any significant
advantage, but it becomes more pronounced with the
growth of the test case complexity. The more time the
model checking step in CEGAR requires, the bigger re-
duction in total time the CEGAR loop obtains due to
fewer iterations.

4.2.3 Setting up a threshold for PreciseAbstraction

In 47% of the test cases, where NewST was not better
than WP, the difference in verification time usually was
not bigger than 15%. As an exception, we found only one
test case, in which advantage in the smaller number of
iterations was not able to compensate for the additional
time spent for refinement (the point above the diagonal
line in Fig. 3, left).

We investigated the test case: for several program lo-
cations PreciseAbstraction computation took longer
than the time saved from the reduction in refinement it-
erations. This was due to the fact that the SAT-based
enumeration of all spurious transitions was exponential
in the number of predicates returned by SpuriousTran-

sition (or SpuriousPath). Although there were only
few transitions where it became critical, we decided to
implement a heuristic, which would limit the applica-
tion of precise computation. The heuristic forbids the
application of PreciseAbstraction when the number
of predicates reaches a given threshold Nσ. In such cases,
FastAbstraction is applied instead of PreciseAbstrac-
tion. The value of the threshold depends on the appli-
cation and the effectiveness of the predicate discovery
techniques as well as implementation of PreciseAbs-

traction and FastAbstraction.
The idea can be further modified to use the already

known threshold values. Separate limits can be set for
PreciseAbstraction in the SpuriousTransition and
SpuriousPath branches. In our experiments we used the
pre-computed thresholds that seem optimal for the cur-
rent implementation of the procedure: we use NσST

= 13
for the call of PreciseAbstraction dedicated to the
removal of spurious transition, while NσSP

= 17 when
PreciseAbstraction is used to rule out spurious paths.

We can further optimize this approach by computing
the threshold on-the-fly by limiting the maximum execu-
tion time for PreciseAbstraction: when the time-out
is reached, the number of predicates that made the pro-
cedure blow up is used as a new threshold. The approach
is shown in Algorithm 3.

We evaluated NewST with the pre-computed thresh-
olds on the test suite from Ku et.al. and obtained even
better results than for pure NewST. The comparison with
WP (Fig. 4) shows that with the heuristic the improve-
ment with NewST is systematic. The comparison between
NewST with and without the threshold is shown in Fig. 5.
As expected, results of both techniques are similar in
more than 90% of the test cases, because the threshold
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Algorithm 3: “Synergy” algorithm with local-
ized abstraction and on-the-fly threshold compu-
tation. NTO — time-out value for the Precise-

Abstraction; Nσ — computed threshold value;
TimeoutWasReached — flag, which tracks if Pre-
ciseAbstraction was stopped by time-out Nσ.

MixCegarLoop(TransitionSystem M, Property F, Time1

NTO)
begin2

Nσ = unknown;3

foreach T in M do Π(T ) = InitialPredicates(F,T);4

foreach T in M do α(T ) = FastAbstraction(T,Π);5

while not TIMEOUT do6

π = ModelCheck(α,F);7

if π = ∅ then return CORRECT;8

else9

σST = SpuriousTransition(π);10

if σST 6= ∅ then11

foreach t ∈ π do12

T = τ(t);13

if Nσ = unknown or size(σST (t)) < Nσ then14

C = PreciseAbstraction(T,σST (t), NTO);15

if TimeoutWasReached then16

C = FastAbstraction(T,σST (t));17

Nσ = size(σST (t));18

else19

C = FastAbstraction(T,σST (t));20

α(T ) = α(T ) ∧ C;21

else22

σSP = SpuriousPath(π);23

if σSP = ∅ then return INCORRECT;24

else25

foreach t ∈ π do26

T = τ(t);27

Π(T ) = Π(T ) ∪ σSP (t);28

if Nσ = unknown or size(σSP (t)) < Nσ then29

C = PreciseAbstraction(T,σSP (t), NTO);30

if TimeoutWasReached then31

C = FastAbstraction(T,σSP (t));32

Nσ = size(σSP (t));33

else34

C = FastAbstraction(T,σSP (t));35

α(T ) = α(T ) ∧ C;36

end37

was never reached and FastAbstraction was never ap-
plied. When the threshold was reached, the results of
NewST with Nσ remained very close to the original New-
ST. But whenever the precise abstraction computation
was a bottleneck, the use of the threshold enabled the
use of the cheaper fast abstraction consequently result-
ing in a smaller computation time. The point below the
diagonal line in Fig. 5 (left) corresponds to one of the
test cases where it happened. As an overall result NewST
with a threshold reduced the total verification time by
5% compared to pure NewST.

4.2.4 SATQE, NewSP and NewST + NewSP

As expected, SATQE did not perform efficiently whenever
a large number of predicates was involved in abstrac-
tion. Although on smaller instances (≤ 30 predicates

on average) it showed good results, on large instance it
tended to time-out. Thus, it completed 76 test cases less
than NewST. NewSP performed better (only 26 test cases
were not finished) but still was worse than WP and New-

ST. The cause of the problem was similar to the one of
SATQE or of NewST without a threshold: NewSP obtained
too many predicates from SpuriousPath and the pre-
cise computation became very expensive. Nevertheless
it scaled better than SATQE — see Fig. 6 for comparison.
Notice, that both techniques required fewer iterations
than NewST and WP (Fig. 3).

The combination of NewST and NewSP outperformed
NewSP (Fig. 7). But the usage of PreciseAbstraction

also caused the problem here and did not allow to com-
pete against NewST. Therefore a threshold for NewSP was
also applied similar to its use in the NewST branch (Al-
gorithm 3, lines 29-33).

We compared the fastest technique so far, NewST with
a threshold, and a combination of NewSP and NewST with
thresholds (Fig. 8). However, on our test suite the winner
was not obvious. Although NewST + NewSP variant got
more information from counterexamples to remove the
spurious behaviours with (likely) cheap computation, the
advantage over NewST was not enough to compensate for
the additional call to precise abstraction computation.
Nevertheless it confirmed that the use of a threshold
helped to avoid problems caused by PreciseAbstrac-

tion.

4.3 Evaluation on large-scale programs

We experimented with the various large-scale programs
from the open-source software packages like INN, WU-FTPD,
GnuPG and others6. We applied the most effective meth-
ods — WP, NewST and NewST +NewSP with thresholds —
and analysed the programs for memory bounds viola-
tions.

The overall results on average repeated those from
the benchmark suite with an exception that real pro-
grams had fewer trivial assertions. Here we report the
outcome for one of the experiments. We analysed the
encode program from the inn utilities suite version 2.4.3 [1].
It produces a seven-bit printable encoding of stdin on
stdout and serves as a good example of a small memory-
operating piece of C code. This program was taken as an
example also because it is not very big (1.1KLOC) and
has only 28 locations where a safety of the memory ac-
cess should be checked. The size of the program allowed
most of the claims to be verified within one hour time
limit.

The results are reported in Table 2. For each claim
and each technique we showed a total verification time
and a number of the required refinement iterations. As

6 All the benchmarks were taken from http://www.cprover.

org/goto-cc/



12 N. Sharygina, S. Tonetta and A. Tsitovich: An Abstraction Refinement Approach Combining Precise and Approx.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  500  1000  1500  2000  2500  3000  3500

N
e
w

S
P

, 
ti
m

e
 i
n
 s

e
c
o
n
d
s

SATQE, time in seconds

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20  40  60  80  100  120  140  160  180  200

N
e
w

S
P

, 
n
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

SATQE, number of iterations

Fig. 6: Scatter plot of time (left) and number of iterations (right) used by SATQE and NewSP
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Total time Number of iterations

# WP NewST

NewST

WP NewST

NewST

+ +
NewSP NewSP

1 3.478 3.464 2.871 5 5 4

2 2.243 2.318 1.892 4 4 3

3 7.977 8.345 6.64 6 6 5

4 124.013 104.657 83.893 25 19 10

5 4.149 4.222 3.529 4 4 3

6 137.317 97.449 121.919 28 17 12

7 2.683 2.698 1.567 3 3 2

8 2.712 2.636 1.594 3 3 2

9 37.86 28.783 31.429 10 8 7

10 27.575 27.225 29.612 9 9 7

11 5.975 5.801 4.727 6 6 4

12 76.945 49.822 71.106 13 10 10

13 TO TO TO TO TO TO

14 7.894 8.195 6.985 6 6 5

15 128.271 98.01 88.266 26 19 10

16 4.207 4.261 3.42 4 4 3

17 145.884 112.898 122.006 30 19 13

18 2.113 2.123 1.33 3 3 2

19 2.193 2.158 1.37 3 3 2

20 31.598 22.788 27.131 9 7 6

21 27.163 22.906 28.05 10 8 6

22 4.349 4.495 3.111 5 5 3

23 77.919 49.293 67.942 13 10 10

24 10.981 9.494 11.103 8 7 6

25 7.408 7.603 6.62 6 6 5

26 150.855 123.884 112.992 32 23 14

27 4.439 4.393 3.592 4 4 3

28 125.827 73.21 97.236 30 15 14

Table 2: SATABS’s total time and number of refinement
iterations on a set of claims obtained for inn-encode

2.4.3 program. TO stands for time-out (3600 sec.).

expected the reduction in the refinement iterations re-
sulted in reduction of the total verification time. NewST
used fewer refinements than WP in 12 out of 28 claims and
won in verification time as well. Interesting to notice, the
advantage was achieved any time more than 10 refine-
ment iterations were required. For other 16 claims two
techniques showed approximately the same result. Pre-
cise abstraction computation was localized and never re-
quired a significant time. NewST + NewSP required fewer
refinements than WP in all 28 claims and, as a result, it
outperformed WP on all but 3 claims. However it did not
perform better than NewST on every claim and therefore
they are comparable in their advantages.

5 Conclusions and future work

We presented a new approach to the abstraction re-
finement that combines precise and approximated tech-
niques. On one hand, the proposed algorithm benefits

from the precise component, because it avoids too many
iterations due to spurious transitions of the abstract
model. On the other hand, it uses the fast component to
discover the spurious counterexample. Moreover, by ex-
ploiting the localized-abstraction framework, it reduces
the abstraction computation to the parts of the system
that are relevant to the property and keeps the approx-
imated abstraction in all parts of the program that are
irrelevant to prove the property. Our technique is in-
dependent of any particular abstraction or refinement
procedure and can be used for any combination of the
existing abstraction and refinement techniques.

We performed an extensive evaluation on large scale
programs comparing the new technique with the classical
precise and imprecise algorithms. Our tests with various
benchmarks show that the new approach systematically
outperforms both precise and imprecise techniques. Al-
together it confirms that our new technique achieves the
goal of reducing the number of iterations of the CEGAR
loop.

In this paper, the goal of the experimental evalu-
ation was to validate the new technique on spurious
transition refinement. Thus, we maintained the same
tool framework and we did not change orthogonal tech-
niques such as predicate discovery. As a future work,
we are interested in implementing the same approach
in other tools such as BLAST [23] and in integrating
it with interpolation-based approaches to predicate dis-
covery [22,27]. Another interesting direction is to inves-
tigate the same trade-off between precise and approxi-
mated approaches in the context of purely interpolation-
based model checking [31] which does not need predicate
abstraction. Also we plan to establish fine-grained corre-
spondence between the semantics of the analyzed model
(e.g. semantic of C code instructions) and the combina-
tion of fast/precise abstraction.
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