
Incremental Upgrade Checking by Means of
Interpolation-based Function Summaries

Ondrej Sery∗† Grigory Fedyukovich∗ Natasha Sharygina∗
∗Formal Verification Lab, University of Lugano, Switzerland

†D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract—During its evolution, a typical software/hardware
design undergoes a myriad of small changes. However, it is
extremely costly to verify each new version from scratch. As
a remedy to this problem, we propose to use function summaries
to enable incremental verification of the evolving systems. Dur-
ing the evolution, our approach maintains function summaries
derived using Craig’s interpolation. For each new version, these
summaries are used to perform a local incremental check. Benefit
of this approach is that the cost of the check depends on the
extent of the change between the two versions and can be
performed cheaply for incremental changes without resorting
to re-verification of the entire system. Our implementation and
experimentation in the context of the bounded model checking
for C confirms that incremental changes can be verified efficiently
for different classes of industrial programs.

I. INTRODUCTION

Software and hardware designs are usually not written all

at once, but are built incrementally, due to numerous reasons:

1) requirements change and have impact on the design and

implementation; 2) errors are often discovered late in the

design cycle and must be removed; 3) software components are

updated or substituted to adapt to architectural and requirement

changes; just to name a few. Changes are done frequently

during the lifetime of many products and can introduce errors

that were not present in the old versions, or expose errors

that were present before but did not get exposed. The state

of the affairs is that the correctness of the system has to be

re-validated from scratch after any (even minor) change. Often

the cost of this validation dominates costs of the products.

Currently, re-validation mostly relies on the execution of

extensive test suits, which is inherently not exhaustive; fault

localization is mainly manual and driven by experts’ knowl-

edge of the system; fault fixing often introduces new faults that

are hard to detect and remove. To address this problem, this

paper presents a new fully automated approach that extends

formal verification by model checking to the problem of

validation of system upgrades. The new technique focuses

on the incremental changes and takes advantage of the effort

already invested in the verification of previous versions. The

target of our approach is to avoid (when possible) re-validation

of the new system and to reduce analysis only to the parts of

the system which were affected by the change.

The advantages of model checking are often shaded by

its high consumption of computational resources (known as
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the state-space explosion problem). Many efficient complex-

ity reduction algorithms have been developed to cope with

this problem among which the representative approaches

are symbolic verification such as Bounded Model Checking

(BMC) [1], and different types of automated abstraction (pred-

icate abstraction [2], interpolation-based reasoning [3], func-

tion summarization [4], [5], [6], [7], etc.). Most state-of-the-

art model checking tools implement some (or combinations) of

these methods in order to deal with complex designs. Notably,

combinations of such techniques are known to be crucial for

combating the high complexity of verification.

This paper presents a solution to the upgrade checking

problem that extends the existing efficient techniques known

to work well for standalone verification to the problem of

analysis of system changes. In particular, it presents an incre-

mental bounded model checking approach that uses function

summarizations for local upgrade checks. The upgrade check-

ing algorithm maintains program function summaries (i.e.,

over-approximations of the actual behavior of the functions,

in our case computed by means of Craig interpolation [7])

and when a new version arrives, it checks if the summaries

of the modified functions are still valid over-approximations.

This is a local and cheap check. If it succeeds, the upgrade

is safe with respect to both the preserved and newly added

behaviors. If not, the check is propagated by the call tree

traversal to the caller of the modified function. As soon as the

safety is established, new summaries are generated using Craig

interpolation for all the functions with invalid summaries. If

the check fails for the call tree root (the main function of the

program), an error trace is created and reported to the user as

a witness to the violation.

The upgrade checking algorithm implements the refinement

strategy for dealing with spurious behaviors which can be

introduced during computation of the over-approximated sum-

maries. The refinement procedure for upgrade checks builds

on ideas of using various summary substitution scenarios [7],

[8] and extends it to 1) handle summaries of nested function

calls and 2) consequently to use them to further simplify the

validity checks of the upgraded functions summaries. Failures

of such checks may be due to the use of too weak summaries,

in which case, the refinement is used to expand the involved

function calls on demand.

We developed a prototype implementation of the proposed

algorithm and evaluated it using a set of industrial benchmarks.

Our experimentation confirms that the incremental analysis of
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upgrades containing incremental changes is often orders of

magnitude faster than analysis performed from scratch.

Although we implemented the proposed upgrade checking

algorithm in the context of bounded model checking, the

algorithm itself is more general and can be employed in other

contexts, where over-approximative function summaries are

used. For example, the WHALE approach [6] designed for

standalone verification could be easily extended to incremental

upgrade checking using our algorithm.

In summary, the contributions of the paper are as follows:

• It presents a fully automated model-checking-based tech-

nique for verification of incremental upgrades. It is able

to re-validate all previously established safety properties

and to detect newly introduced errors.

• It efficiently combines bounded model checking with

function summarization for local and incremental analy-

sis of changes. The use of Craig interpolation to compute

summaries allows capturing symbolically all execution

traces through the function and, together, with the local

per-function checks of the new algorithm, results in the

efficient analysis procedure.

• It reports on the prototype implementation of the new

technique and its validation on industrial benchmarks.

The rest of the paper is organized as follow. Sect. II

defines the notation and presents background on function

summarization in BMC. Sect. III presents the new upgrade

checking algorithm and proves its correctness. Sect. IV de-

scribes implementation and evaluation of the approach. Sect. V

discusses the related work and Sect. VI concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

Craig Interpolation [9] is a popular abstraction technique

widely used in Model Checking. Given a pair of formulas

(A,B), Craig interpolant of (A,B) is a formula I such

that A → I , I ∧ B is unsatisfiable, and I contains only

free variables common to A and B. For an unsatisfiable

pair of formulas (A,B), an interpolant always exists [9].

As shown in [10], an interpolant can be constructed from a

proof of unsatisfiability by an algorithm referred as Pudlák’s
algorithm. Although other algorithms exist, we will focus

on Pudlák’s throughout the paper. Interpolants are useful in

various verification gambits including refinement of predicate

abstraction [4], and bounded model checking [3] to name

a few. The following outlines how interpolation is used for

function summarization in BMC [7].

BMC is aimed at searching for errors in a program within

the given number (bound) of loop iterations and recursion

depth. First, it unwinds the program according to the bound.

Second, it constructs the Static Single Assignment (SSA) form

of the program, supplies it with the negated property to be

checked, and encodes it into a logical formula, a BMC formula.

The formula is satisfiable if and only if an error is reachable

in the unwound program. If the formula is satisfiable, a

satisfying assignment identifies a trace leading to an error.

If unsatisfiable, the program is safe.

Standard BMC constructs a monolithic BMC formula with

all function calls inlined. To make interpolation applicable for

extraction of function summaries, we construct BMC formula

so that each function call is represented by a separate conjunct,

and call it a partitioned BMC (PBMC) formula. To describe

construction of PBMC formula in more details, we use the

notion of an unwound program in terms of its call tree.
An unwound program for a bound ν is a tuple Pν =

(F, fmain), s.t. F is a finite set of functions, fmain ∈ F is

an entry point and every loop and recursive call is unrolled

(unwound) ν times. In addition, we define a relation child
⊆ F × F which relates each function f to all the functions

invoked by f . Relation subtree ⊆ F ×F is a transitive closure

of child. F̂ denotes the finite set of unique function calls,

with f̂main being the implicit call to the program entry point.

The relations child and subtree are naturally extended to F̂ ,

s.t. ∀f̂ , ĝ ∈ F̂ : child(f̂ , ĝ) → child(f, g), and subtree is a

transitive closure of the extended relation child. A summary
of a function is a relation over its input and output variables,

which over-approximates the precise behavior of the given

function. This means that a summary contains all possible

behaviors of the function (under the given bound ν) and

possibly more. We use S to denote the set of all summaries.
Algorithm 1 summarizes the method for construction of

function summaries in BMC. There are two major differences

from the standard BMC algorithm that should be pointed out.

First, the PBMC formula is constructed as a conjunction of

parts representing individual functions. Second, function sum-

maries are extracted using interpolation for every individual

part of the PBMC formula.
PBMC formula construction (line 1). The PBMC formula

is constructed in the recursive method CreateFormula as

follows.
CreateFormula(f̂) � φf̂∧∧

ĝ∈F̂ :child(f̂ ,ĝ)

CreateFormula(ĝ)

For a function call f̂ ∈ F̂ , the formula is constructed by

conjunction of the partition φf̂ reflecting the body of the

function and a separate partition for every nested function call.

The logical formula φf̂ is constructed from the SSA form of

the body of the function f . The bodies of the nested calls

are encoded into separate logical formulas (using a recursive

call to CreateFormula) and thus separate partitions in

the resulting PBMC formula. In addition, φf̂ contains spe-

cial propositional symbols to bind the individual partitions

together. An example of such a symbol is errorf̂ , which is

constrained to be true if and only if the function call f̂ results

in an error. Consequently, errorf̂main
encodes reachability of

an error in the entire program (for further details see [7]).
Summarization (line 6). If the PBMC formula is unsat-

isfiable, i.e., the program is safe, the algorithm proceeds

with interpolation. The function summaries are constructed

as interpolants from a proof of unsatisfiability of the PBMC

formula. In order to generate the interpolant, for each function

call f̂ the PBMC formula is split into two parts. First, φsubtree
f̂
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Algorithm 1: Function summarization in BMC [7]

Input: Unwound program Pν = (F, fmain) with function

calls F̂
Output: Verification result: {SAFE, UNSAFE}, mapping

of function calls to their summaries summaries
Data: φ: PBMC formula

1 φ← CreateFormula(f̂main) ∧ errorf̂main
;

2 result, proof ← Solve(φ) ; // run SAT-solver
3 if result = SAT then
4 return UNSAFE;

5 foreach f̂ ∈ F̂ do // extract summaries

6 summaries(f̂)← Interpolate(proof, f̂ );

7 end
8 return SAFE;

corresponds to the partitions representing the function call f̂
and all the nested functions. Second, φenv

f̂
corresponds to the

context of the call f̂ , i.e., to the rest of the encoded program.

φsubtree
f̂

�
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ

φenv
f̂

� errorf̂main
∧

∧

ĥ∈F̂ :¬subtree(f̂ ,ĥ)
φĥ

Therefore, for each function call f̂ , the Interpolate
method separates the PBMC formula into A ≡ φsubtree

f̂
and

B ≡ φenv
f̂

and generates an interpolant If̂ for the pair (A,B).

Such interpolant If̂ is a summary for the function f . The

generated interpolants are associated with the function calls

by a mapping1 summaries: F̂ → S, i.e., summaries(f̂) = If̂ .

Refinement. When the same program is being verified again

(e.g., with respect to a different property), the exact function

calls can be substituted by the constructed summaries. In

this case, the method CreateFormula of Algorithm 1 is

replaced by the following:

CreateFormula(f̂) � φf̂ ∧( ∧

ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=inline

CreateFormula(ĝ)
)

( ∧

ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=sum

summaries(ĝ)
)

where a substitution scenario Ω : F̂ → {inline, sum, havoc}
determines how each function call should be handled. Initially,

Ω depends on existence of function summaries. If a summary

of a function exists, it is used to represent the function - sum. If

not, the function is either represented precisely - inline (eager
scenario), or abstracted away - havoc (lazy scenario).

If the resulting formula is satisfiable, it may be due to

too coarse summaries. Refinement, first, identifies which sum-

1Here, we consider only a single summary per a function call for the sake
of simplicity. This still means multiple summaries per a single function called
multiple times. Our prototype implementation does not have this restriction.

maries affect satisfiability of the PBMC formula. This is

done by analyzing the occurrence of summaries along an

error trace, determined by a satisfying assignment and by

dependency analysis. Second, the refined substitution scenario

Ω′ is constructed from Ω by mapping the function calls

corresponding to the identified summaries to inline. Then, the

next iteration of the algorithm is run using Ω′. If no summary

is identified for refinement, the error is real.

III. UPGRADE CHECKING

This section describes our solution to the upgrade check-

ing problem, the incremental summary-based model checking

algorithm. As an input, the algorithm takes two versions of

the system, old and new, and the function summaries of the

old version. If the old version or its function summaries are

not available (e.g., for the initial version of the system), a

bootstrapping verification run is needed to analyze the entire

new version of the system and to generate the summaries,

which are then maintained during the incremental runs.

The incremental upgrade check is performed in two phases.

First, in the preprocessing phase, the two versions are com-

pared at the syntactical level. This allows identification of

functions that were modified (or added) and which summaries

need rechecking (or they even do not exist yet). An additional

output of this phase is an updated mapping summaries, which

maps function calls in the new version to the old summaries.

For example, Figure 1-a depicts an output of the preprocess-

ing, i.e., a call tree of a new version with two changed function

calls (gray fill). Their summaries need rechecking. In this

case, all function calls are mapped to the corresponding old

summaries (i.e., functions were possibly removed or modified,

but not added). Summaries of all the function calls marked by

a question mark may yet be found invalid. Although the code

of the corresponding functions may be unchanged, some of

their descendant functions were changed and may eventually

lead to invalidation of the ancestor’s summary.

In the second phase, the actual upgrade check is performed.

Starting from the bottom of the call tree, summaries of all

functions marked as changed are rechecked. That is, a cheap

local check is performed to show that the corresponding

summary is still a valid over-approximation of the function’s

behavior. If successful, the summary is still valid and the

change (i.e., rightmost node in Figure 1-b) does not affect

correctness of the new version. If the check fails, the summary

is invalid for the new version and the check needs to be

propagated to the caller, towards the root of the call tree

(Figure 1-b,c). When the check fails for the root of the call

tree (i.e., program entry point f̂main), a real error is identified

and reported to the user. The following first presents this basic

algorithm in more details and then describes its optimization

with a refinement loop and proves its correctness. Note that

we will describe the upgrade checking algorithm instantiated

in the context of bounded model checking. However, the algo-

rithm is more general and can be applied in other approaches

relying on over-approximative function summaries.
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valid summary nondet summary

affected summary

validated/new summary

invalid summary

(a) (b) (c)

changed function

Figure 1: Progress of the upgrade checking algorithm; the faded parts of the call tree were not yet analyzed by the algorithm

(a) (b) (c)

Figure 2: Sample outcomes of Alg. 2; analyzing the faded parts of call tree is not required to decide safety of the upgrade

A. Basic Algorithm

We proceed by presenting the basic upgrade checking

algorithm (Alg. 2). As an input, Alg. 2 takes the unwound

new version of the program, a mapping summaries from the

function calls in the new version to the summaries from the

old version, and a set changed marking the function calls

corresponding to the functions that were changed or added

in the new version (as an output of the preprocessing).

The algorithm keeps a set D of function calls that require

rechecking. Initially, this set contains all the function calls

marked by changed (line 1). Then the algorithm repeatedly

removes a function call f̂ from D and attempts to check

validity of the corresponding summary in the new version.

The algorithm picks f̂ so that no function call in the subtree

of f̂ occurs in D (line 3). This ensures that summaries in the

subtree of f̂ were already analyzed (shown valid or invalid).

The actual summary validity check occurs on lines 6,

7. First, the PBMC formula encoding the subtree of f̂ is

constructed and stored as φ. Then, conjunction of φ with a

negated summary of f̂ is passed to a solver for the satisfiability

check. If unsatisfiable, the summary is still a valid over-

approximation of the function’s behavior. Here, the algorithm

obtains a proof of unsatisfiability which is used later to create

new summaries to replace the invalid or missing ones (line 9-

11). If satisfiable, there is a combination of inputs and outputs

of the function f that is not covered by its original summary,

thus the summary is not valid for the new version (line 14).

In this case, either a real error is identified (lines 16, 17) or

the check is propagated to the function caller (line 18).

Note that if the chosen function call f̂ has no summary, e.g.,

due to being a newly added function, the check is propagated

to the caller immediately (condition at line 5) and the summary

of f̂ is created later when the check succeeds for an ancestor

function call.

The algorithm always terminates with either SAFE or

UNSAFE value. Creation of each PBMC formula terminates

because they operate on the already unwound program. The

algorithm terminates with SAFE result (line 20) when all func-

tion calls requiring rechecking were analyzed (line 2). Either

all the summaries possibly affected by the program change

are immediately shown to be still valid over-approximations

(see Figure 2-a) or some are invalid but the propagation stops

at a certain level of the call tree and new valid summaries

are generated (see Figure 2-b). The algorithm terminates with

UNSAFE result (lines 17), when the check propagates to the

call tree root, f̂main, and fails (see Figure 2-c). In this case, a

real error is encountered and reported to the user.

B. Optimization and Refinement

To optimize the upgrade check, old function summaries

can be used to abstract away the function calls. Consider the

validity check of a summary of a function call f̂ . Suppose

there exists a function call ĝ in the subtree of f̂ together with

its old summary, already shown valid. Then this summary can

be substituted for ĝ, while constructing the PBMC formula of

f̂ (line 6). This way, only a part of the subtree of f̂ needs

to be traversed and the PBMC formula φ can be substantially

smaller compared to the encoding of the entire subtree.

If the resulting formula is SAT, it can be either due to

a real violation of the summary being checked or due to

too coarse summaries used to substitute some of the nested

function calls. In our upgrade checking algorithm, this is

handled in similar way as in the refinement of the standalone
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Algorithm 2: Upgrade checking algorithm

Input: Unwound program Pν = (F, fmain) with function

calls F̂ , mapping summaries : F̂ → S, set

changed ⊆ F̂
Output: Verification result: {SAFE, UNSAFE}
Data: D ⊆ F̂ : function calls to recheck, φ: PBMC

formula, invalid ⊆ S: set of invalid summaries

1 D ← {f̂ | f̂ ∈ changed}, invalid← ∅;
2 while D 
= ∅ do
3 choose f̂ ∈ D, s.t. ∀ĥ ∈ D : ¬subtree(f̂ , ĥ);
4 D ← D \ {f̂};
5 if f̂ ∈ dom(summaries) then
6 φ← CreateFormula(f̂ );

7 result, proof ← Solve(φ ∧ ¬summaries(f̂));

8 if result = UNSAT then
9 for ĝ ∈ F̂ : subtree(f̂ , ĝ) ∧ (ĝ /∈

dom(summaries) ∨ summaries(ĝ) ∈ invalid)
do

10 summaries(ĝ)← Interpolate(proof, ĝ);

11 end
12 continue;

13 end
14 invalid← invalid ∪ {summaries(f̂)};
15 end

16 if f̂ = f̂main then
17 return UNSAFE; // real error found

18 D ← D ∪ {parent(f̂)}; // check parent
19 end
20 return SAFE; // system is safe

verification by analyzing the satisfying assignment. The set of

summaries used along the counter-example is identified. Then

it is further restricted by dependency analysis to only those

possibly affecting the validity. Every summary in the set is

marked as inline in the next iteration. If the set is empty, the

check fails and the summary is shown invalid. This refinement

loop (replacing lines 6, 7 in Alg. 2) iterates until validity of

the summary is decided.

This optimization does not affect termination of the algo-

rithm (in each step at least one of the summaries is refined).

Regarding complexity, in the worst case scenario, i.e. when a

major change occurs, the entire subtree is refined one summary

at a time for each node of the call tree. This may result in a

number of solver calls quadratic in the size of the call tree,

where the last call is as complex as the verification of the entire

program from scratch. This paper focuses on incremental

changes and thus for most cases there is no need for the

complete call graph traversal. Moreover, the quadratic number

of calls can be easily mitigated by limiting the refinement

laziness using a threshold on the number of refinement steps

and disabling this optimization when the threshold is exceeded.

C. Correctness

This section demonstrates the correctness of the upgrade

checking algorithm, i.e., given an unwinding bound ν, the

algorithm always terminates with the correct answer w.r.t. ν.

Note that throughout this section, program safety is understood

considering the bound ν2. Also, we use σf̂ as a shortcut for

summaries(f̂). The key insight for the correctness is that after

each successful run of Alg. 2 (i.e., when SAFE is returned),

the following two properties are maintained.

errorf̂main
∧ σf̂main

→ ⊥ (1)

Given each function call f̂ and its children calls ĝ1, . . . , ĝn:

σĝ1 ∧ . . . ∧ σĝn ∧ φf̂ → σf̂ (2)

Theorem 1 is needed to prove the correctness of Alg. 2. It

considers properties of interpolants (a.k.a. tree interpolants)

generated from the same resolution proof using Pudlák’s

algorithm (we kindly refer reader to [10] for details).

Theorem 1. Let X1 ∧ . . . ∧Xn ∧ Y ∧ Z be an unsatisfiable
formula and let IX1

, . . ., IXn
, and IXY be Craig interpolants

for pairs (X1, X2 ∧ . . . ∧Xn ∧ Y ∧ Z), . . ., (Xn, X1 ∧ . . . ∧
Xn−1 ∧ Y ∧ Z), and (X1 ∧ . . . ∧ Xn ∧ Y, Z) respectively,
derived using Pudlák’s algorithm over a resolution proof P.
Then (IX1

∧ . . . ∧ IXn
∧ Y )→ IXY .

We first state and prove a version of Theorem 1 limited to

two partitions abstracted by interpolants, then we generalize.

Lemma 1. Let X ∧Y ∧Z be an unsatisfiable formula and let
IX , IY , and IXY be Craig interpolants for pairs (X,Y ∧Z),
(Y,X∧Z), and (X∧Y, Z) respectively, derived using Pudlák’s
algorithm over a resolution proof P. Then (IX ∧ IY )→ IXY .

Proof: By structural induction over the resolution proof,

we show that (IX ∧ IY ) → IXY for all partial interpolants

at all nodes of the proof P. As a base case, there is a clause

C and we need to consider three cases: C ∈ X , C ∈ Y , and

C ∈ Z. When C ∈ X , we have (false ∧ true) → false,

which holds. The case C ∈ Y is symmetric. When C ∈ Z,

we have (true∧ true)→ true, which again obviously holds.

As an inductive step, we have a node C1 ∨C2 representing

resolution over a variable x with parent nodes x∨C1 and ¬x∨
C2. From the inductive hypothesis, we have partial interpolants

I1X , I1Y , and I1XY for the node x∨C1 so that (I1X∧I1Y )→ I1XY

and partial interpolants I2X , I2Y , and I2XY for the node ¬x∨C2

so that (I2X ∧ I2Y )→ I2XY . We need to consider the different

cases of coloring of x based on its occurrence in different

subsets of the parts of the formula X ∧ Y ∧Z. The cases are

summarized in Table I. In case x ∈ X , we have:

IX ≡ I1X ∨ I2X , IY ≡ I1Y ∧ I2Y

IXY ≡ I1XY ∨ I2XY

2 We expect the same ν for the old and new version. To keep correctness,
if the user increases the bound for a specific loop, the corresponding function
has to be handled as if modified.
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Table I: Variable classes; a, b: x occurs only in A, resp. B,

ab: x occurs in both A and B

x in
class of x for partial interpolant

IX IY IXY

X a b a
Y b a a
Z b b b

X + Y ab ab a
X + Z ab b ab
Y + Z b ab ab

X + Y + Z ab ab ab

Using the inductive hypothesis, we have ((I1X ∨ I2X) ∧ I1Y ∧
I2Y )→ (I1XY ∨I2XY ), which is the required claim (IX∧IY )→
IXY . The case x ∈ Y is symmetric.

In case x ∈ Z, we have:

IX ≡ I1X ∧ I2X , IY ≡ I1Y ∧ I2Y

IXY ≡ I1XY ∧ I2XY

Using the inductive hypothesis, we have (I1X∧I2X∧I1Y ∧I2Y )→
(I1XY ∧ I2XY ), which is the required claim (IX ∧ IY )→ IXY .

In case x ∈ X + Y + Z, using sel(x, S, T ) as a shortcut

for (x ∨ S) ∧ (¬x ∨ T ), we get:

IX ≡ sel(x, I1X , I2X), IY ≡ sel(x, I1Y , I
2
Y )

IXY ≡ sel(x, I1XY , I
2
XY )

Using the inductive hypothesis and considering both possible

values of x, we have (sel(x, I1X , I2X) ∧ sel(x, I1Y , I
2
Y )) →

sel(x, I1XY , I
2
XY ), which is the required claim (IX ∧ IY ) →

IXY . The other cases where x ∈ X+Y or x ∈ X+Z or x ∈
Y +Z are subsumed by this case as (P∧Q)→ sel(x, P,Q)→
(P ∨Q). Structural induction yields (IX ∧IY )→ IXY for the

root of the proof tree and for the final interpolants.

When we apply the result of Lemma 1 iteratively, we obtain

a generalized form for cases using multiple interpolants mixed

with original parts of the formula, i.e., a proof of Theorem 1.

Proof: By iterative application of Lemma 1, we get (IX1
∧

. . .∧ IXn
∧ IY )→ IXY , where IY is Craig interpolant for the

pair (Y,X1 ∧ . . .∧Xn ∧Z) derived using Pudlák’s algorithm

over the resolution proof P. Using Y → IY , we obtain the

claim (IX1 ∧ . . . ∧ IXn ∧ Y )→ IXY .

In the following two lemmas, we first show that the proper-

ties (1, 2) hold after an initial whole program check. Then we

show that the properties are maintained between the individual

successful upgrade checks.

Lemma 2. After an initial whole-program check, the proper-
ties (1, 2) hold over the call tree annotated by the generated
interpolants.

Proof: Recall that the summaries are constructed only

when the program is safe. In other words, errorf̂main
∧φsubtree

f̂main
→

⊥. Thus, by definition of interpolation, errorf̂main
∧ If̂main

is ob-

viously unsatisfiable, i.e., the property (1) holds. The property

(2) follows from Theorem 1. It suffices to choose Xi ≡ φsubtree
ĝi

for i ∈ 1..n, Y ≡ φf̂ , and Z ≡ φenv
f̂

.

Lemma 3. The properties (1, 2) are reestablished whenever
the upgrade checking algorithm successfully finishes (SAFE is
returned).

Proof: The property (1) could be affected only when

the summary of f̂main is recomputed (line 10). However, this

happens only when we are checking the root of the tree and,

at the same time, the check succeeds (line 8). Therefore, by

definition of interpolation, the property (1) is maintained.

If Alg. 2 successfully finishes, then each function call f̂
with an invalidated summary must have been assigned a new

summary σf̂ (line 10) when some of its ancestors ĥ passed the

summary validity check (line 8). Otherwise, the invalidation

would propagate to the root of the call tree and eventually

produce an UNSAFE result. Therefore, it suffices to show that

the newly generated interpolants satisfy the property (2). For

this purpose, we can use the same argument as in the proof of

Lemma 2, again relying on Theorem 1. Note that if any already

valid summaries are used in the summary validity check, we

keep those (see condition on line 9) instead of generating new

ones. This is sound as we know that σĝi → IXi , which is

consistent with our claim. Analogically, we also keep the old

summary σĥ for the root of the subtree that passed the check

and caused generation of the new summaries. This is sound

as Iĥ → σĥ is implied by the summary validity check.

We now show that the properties (1, 2) are strong enough

to show that the entire program is safe.

Theorem 2. When the program call tree annotated by in-
terpolants satisfies the properties (1, 2), then errorf̂main

∧
φsubtree
f̂main

→ ⊥ (i.e., the entire program is safe).

Proof: The property (1) yields errorf̂main
∧ σf̂main

→ ⊥.

Repeated application of the property (2) to substitute all

interpolants on the right hand side yields the claim errorf̂main
∧

φsubtree
f̂main

→ ⊥.

We proved correctness of the upgrade checking algorithm

in the context of bounded model checking and interpolation-

based function summaries. The upgrade checking algorithm,

however, is not bound to this context and can be employed also

in other verification approaches based on over-approximative

function summaries (including the use of other interpolation

algorithms). The key ingredient of the correctness proof, the

property (2), has to be ensured for the particular application.

IV. EVALUATION

We implemented a prototype, eVolCheck, of the upgrade

checking algorithm for incremental verification. It performs

the checks of upgrades using outputs of the previous check and

provides its own outputs to the next one. The required input

is function summaries of the previous version. eVolCheck

communicates with FunFrog [7] for bootstrapping (to create

function summaries of the original code) and exploits its

interface with the OpenSMT solver [11] to solve a PBMC

formula, encoded propositionally, and to generate interpolants.

Altogether, the tool implements two major tasks: syntactic

difference check, and the actual upgrade check.
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For the first task, we implemented a syntactic difference

tool called goto-diff. First, goto-diff extracts inter-

mediate representations of a pair of (old and new) programs

expressed in simple statements (assignments, guards, gotos,

function calls) and constructs a so called goto-binary.

For this, we use the goto-cc3 verification front-end. Since,

goto-binary is a semantically clean representation of the

source code, some syntactically different programs may result

in an equivalent representation, i.e., some refactoring changes

may be shown safe already at this stage without running the

upgrade checking algorithm. Second, goto-diff compares

the call trees of the programs. For each pair of matching func-

tions, goto-diff analyzes their bodies.4 Unreachable func-

tions of the programs are not processed. Finally, goto-diff
outputs the new call tree, marked by old summaries and the

changed set of modified functions. Afterwards, eVolCheck

performs the actual upgrade check by following the steps of

Alg. 2. After its completion, the result of the change validation

is returned to the user. If the upgrade is unsafe, an error is

reported and the user is expected to fix it. When the fix is done,

it is checked against the latest correct version. Otherwise, the

program is correct, the new call tree and the summaries are

stored for the use by the next upgrade checking run.
Experiments. We evaluated eVolCheck on a set of industrial

benchmarks. Four of them (VTT_n) were provided by our

industrial partner, the VTT company. The rest is derived from a

library of Windows device drivers (floppy_n, kbfiltr_n,

diskperf_n). We invented all changes artificially.
Safety of all benchmarks was verified against assertions,

either existing in the code or inserted by us into code without

assertions. Table II contains results of the experiments. Each

row corresponds to a different benchmark, groups of columns

represent statistics about the bootstrapping verification and

verification of two upgrades, respectively. NoI estimates the

size of the original source code as a number of instructions

in the goto-binary (NoI is an accurate representation of

code without definitions, and often represents much higher

number of lines of code). IC represents the number of changed

instructions between current and the previous version. The

overhead introduced by upgrade checking, i.e. the syntactic

difference check (Diff) and the interpolants generation (Itp), is

also included in the total running time (Total). To show advan-

tages of our upgrade checking approach, for each change we

calculated the speedup (Speedup) of the upgrade check versus

verification of the changed code from scratch, performed only

for the sake of comparison reasons and hidden from the table.
In order to demonstrate different performance of our tech-

nique, we chose two different classes of changes for each

benchmark. The first class (1st change) represents changes

with small impact. As expected, those can be verified with

a few local checks. The second one (2nd change) presents

upgrades that affect large portion of the code, potentially

causing traversal of the complete call tree of the program.

3http://www.cprover.org/goto-cc/
4Two functions match iff their signatures are the same (function name,

types and order of arguments, and return type).

Our experiments demonstrate that for the class of problem

with small impact, the upgrade checking approach outperforms

the standalone verification (order(s) of magnitude speedup).

For the second class of changes, the performance of the

upgrade check varies. For some cases, analysis could be done

locally and the speedup is still substantial. For cases where

the algorithms needed to analyze large portion of the call

tree, the performance, as expected, degrades. Note that the

bad performance occurs when the change introduces a bug

(indicated by ‘—’ in the Itp column; the PBMC formula is

satisfiable and interpolants are not generated). In this case,

the upgrade check traverses to the root of the call tree, in

order to reconstruct a complete error trace. Of course, this

can be an easy task when the change is close to the root of

the call tree (e.g., in the floppy_D benchmark). The results

support our initial intuition that upgrade checking works well

for incremental changes, which is the most common class in

the evolution of systems.

V. RELATED WORK

The area of software upgrade checking is not as studied as

model checking of standalone programs. The idea of reusing

information learned during analysis of the previous program

version was employed in [12], [13], [14]. The approaches

in [13], [14] store the entire abstract reachable state space

and revalidate the affected parts after a change. Our approach

works on a function level and stores only the summaries and

not the entire abstract state space.

In [12], the authors study substitutability of updated com-

ponents of a system. Their algorithm is based on inclusion

of behaviors and uses a CEGAR loop combining over- and

under-approximations of the component behaviors. First, a

containment check is performed, ensuring behaviors of the

old component occur also in the new one. Second, learning-

based assume-guarantee reasoning algorithm is used to to

check compatibility, i.e., that the new component satisfies a

given property when the old component does. When com-

pared, our approach focuses on real low-level properties of

code expressed as assertions rather than abstract inclusion of

behaviors. The use of interpolants also appears to be a more

practical approach as compared to the application of learning

regular languages techniques employed in [12].

The authors of [15] study effects of code changes on

function summaries used in compositional directed testing

(white-box fuzzing), using must summaries as an under-

approximation of the behavior. Their goal is to identify sum-

maries that are affected by the change and cannot be used to

analyze the new version. The actual testing is performed using

the preserved summaries. In contrast, our algorithm uses over-

approximative interpolation-based function summaries and

performs the actual verification during the analysis.

Another group of related work aims at equivalence checking

of programs [16], [17], [18]. Differential Symbolic Execu-

tion [16] attempts to show equivalence of two versions of code

using symbolic execution or to compute a behavioral delta

when not equivalent. The comparison is function-by-function,
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Table II: Experimental evaluation

benchmark bootstrap 1st change 2nd change
name NoI Total [s] Itp [s] IC Total [s] Diff [s] Itp [s] Speedup IC Total [s] Diff [s] Itp [s] Speedup
VTT_A 329 4.889 0.133 2 0.318 0.006 <0.001 15.6x 10 15.102 0.006 — 0.3x
VTT_B 332 23.178 0.003 6 7.793 0.007 0.007 3.0x 6 7.805 0.007 0.014 3.0x
VTT_C 129 0.144 0.001 2 0.017 0.002 <0.001 8.4x 1 0.187 0.002 — 0.8x
VTT_D 247 24.735 0.001 0 0.008 0.008 <0.001 3098.0x 2 46.910 0.006 — 0.8x
floppy_A 292 1.025 0.015 2 0.039 0.009 0.002 26.1x 6 0.201 0.009 0.013 5.0x
floppy_B 294 0.763 0.003 2 0.038 0.009 <0.001 19.8x 7 0.046 0.009 0.001 16.4x
floppy_C 2082 1.280 0.004 2 0.383 0.182 <0.001 3.4x 7 0.394 0.183 0.001 3.2x
floppy_D 2099 60.469 0.257 6 0.374 0.182 <0.001 161.7x 23 3.614 0.189 — 16.8x
kbfiltr_A 529 1.307 0.014 2 0.030 0.011 <0.001 43.1x 6 0.111 0.012 0.006 10.6x
kbfiltr_B 529 1.040 0.001 1 0.052 0.011 0.001 19.6x 2 1.835 0.011 — 0.6x
kbfiltr_C 1010 2.522 0.014 2 0.063 0.021 0.002 40.2x 23 0.124 0.021 0.002 20.3x
kbfiltr_D 1011 3.060 0.009 2 0.061 0.022 <0.001 50.5x 7 0.231 0.022 0.003 7.0x
diskperf_A 486 1.028 0.001 1 0.033 0.008 <0.001 31.3x 2 1.751 0.008 — 0.6x
diskperf_B 492 2.580 0.049 2 0.091 0.009 0.006 28.3x 12 2.468 0.009 0.029 1.1x
diskperf_C 1664 1.126 0.001 1 0.072 0.034 <0.001 15.6x 4 0.097 0.034 0.001 11.5x
diskperf_D 1685 38.609 1.179 1 0.295 0.035 0.016 130.4x 2 0.508 0.035 0.020 75.7x

the unchanged portions of code are abstracted by the same

uninterpreted functions. A similar approach is implemented in

the SymDiff tool [17], which decides conditional partial equiv-

alence, i.e., equivalence under certain input constraints. More-

over, SymDiff also allows extraction of the constraints and

reports them to the user. Regression Verification [18] employs

model checking to prove partial equivalence of programs. As

in our algorithm, regression verification starts with syntactic

difference check, that identifies the set of modified functions.

Then it also traverses the call graph bottom-up, and separately

checks equivalence between the old and new versions of the

functions, while other functions are abstracted again using

the same uninterpreted functions. In these approaches, if the

versions do differ, the user is alerted and possibly informed

what the different output is and for which input it occurs.

For evolving systems, the versions almost always differ and

thus the user is distracted by many such reports. In contrast,

our algorithm focuses on checking safety of the versions with

respect to assertion violation and the user is only alerted

when a new violation is introduced by the change. Also, our

approach may skip processing parts of the program, if they do

not influence safety of the code.

Last group of related work includes approaches using

interpolation-based function summaries (such as [4], [5], [6]).

Although these do not consider upgrade checking, we believe

that our incremental algorithm may be instantiated in their

context similar to how we instantiated it in the context of [7].

VI. CONCLUSION

We presented a new upgrade checking algorithm using

interpolation-based function summaries. Instead of model

checking the entire new version of a program, the modified

functions are first compared against their over-approximative

summaries from the old version. If this local check succeeds,

the upgrade is safe. We proved that the proposed algorithm

is sound, if the summaries are generated from the same proof

using the original Pudlák’s algorithm. Experimental evaluation

using our prototype implementation supports our intuition

about ability to check system upgrades locally and demon-

strates that the algorithm significantly speeds up checking

programs with incremental changes.
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