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Abstract Verification methods based on SAT, SMT, and theorem proving often rely on
proofs of unsatisfiability as a powerful tool to extract information in order to reduce the
overall effort. For example a proof may be traversed to identify a minimal reason that led to
unsatisfiability, for computing abstractions, or for deriving Craig interpolants. In this paper
we focus on two important aspects that concern efficient handling of proofs of unsatisfiability:
compression and manipulation. First of all, since the proof size can be very large in general
(exponential in the size of the input problem), it is indeed beneficial to adopt techniques
to compress it for further processing. Secondly, proofs can be manipulated as a flexible
preprocessing step in preparation for interpolant computation. Both these techniques are
implemented in a framework that makes use of local rewriting rules to transform the proofs.
We show that a careful use of the rules, combined with existing algorithms, can result in an
effective simplification of the original proofs. We have evaluated several heuristics on a wide
range of unsatisfiable problems deriving from SAT and SMT test cases.
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1 Introduction

Symbolic verification methods rely on a representation of the state space as a set of formu-
lae, which are manipulated by formal engines such as SAT- and SMT-solvers. For example
bounded model checking [9] represents an execution trace leading to a state violating a prop-
erty as a propositional formula such that the state is reachable if and only if the formula
is satisfiable. When the formula is satisfiable, it is possible to infer a counterexample from
the model reported by the solver, showing a path that reaches a violating state. When the
formula is unsatisfiable, it is instead possible to extract information that better explains the
reason why the violating states are unreachable. For instance this can be useful to derive
an abstraction of a set of states as it is done in interpolation-based model checking [46] (to
abstract the initial states) or IC3 [13] (to derive a minimal set of clauses to put in a frame).

In this paper we describe a set of techniques that allow efficient manipulation of a propo-
sitional proof of unsatisfiability, the by-product of an unsatisfiable run of a state-of-the-art
solver that may be used to obtain abstractions in the applications mentioned above. In par-
ticular we focus on two important aspects: compression of a proof of unsatisfiability, and
rewriting to facilitate the computation of interpolants. These approaches are both realized by
means of a set of local rewriting rules that enable proof restructuring and compression.

1.1 Structure of the paper

The paper is organized as follows. §2 recalls some notions about SAT, SMT and resolution
proofs. §3 introduces a proof transformation framework consisting of a set of local rewrit-
ing rules and discusses its soundness. §4 addresses the problem of compressing resolution
proofs, proposing a collection of algorithms based on the transformation framework. It com-
pares them against existing compression techniques and provides experimental results of
running different tools over SMT and SAT benchmarks. §5 presents basic notions about
interpolation in first order theories and discusses some limitations of state-of-the-art interpo-
lation algorithms. It then proposes an application of the transformation framework aimed at
reordering resolution proofs, in such a way that interpolation is made possible. The approach
is demonstrated to be theoretically sound and experiments are provided to show that it is also
practically efficient. An algorithm is also provided to reorder resolution steps in a proposi-
tional proof to guarantee the generation of interpolants in conjunctive and disjunctive normal
form. §6 discusses some of the heuristics adopted in the application of rules by the transfor-
mation framework, with reference to §4 and §5. §7 reviews the existing literature on proof
manipulation; §8 draws the conclusions.

1.2 Improvement over previous own work

The present work builds upon and extends [17] and [56] in a number of ways: (i) it gives
a unified and richer description of the Local Transformation Framework and of the set of
rewriting rules on which this is based (§3); (ii) it provides a more thorough comparison
between the notions of resolution proof trees and DAGs, describing the application and
the effect of the rules (§2, §3); (iii) it gives a proof of correctness of the rules and of the
SubsumptionPropagation algorithm presented in [17] (§3); (iv) it proposes a new meta-
algorithm for proof transformation, TransformAndReconstruct, discussing its soundness and
how it can be instantiated to concrete algorithms with different goals (§3); (v) two new
compression algorithms, PushdownUnits and StructuralHashing, are proposed and discussed,
as well as their combination with the algorithms in [17] and [56] (§4); (vi) a thorough
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evaluation of previous and novel algorithms is carried out on a set of purely propositional
benchmarks from the literature (§4); (vii) in the context of interpolation we illustrate an
application of the Local Transformation Framework to reorder the pivots in a proof so as to
guarantee the generation of interpolants in conjunctive normal form (CNF) and DNF (§5);
(viii) a description of the heuristics adopted in the application of the rewriting rules has been
added, with reference both to compression and to transformation for interpolation (§6).

2 Background

The context of this paper is first order logic. We assume countable sets of individual variables
(x, y, z), function ( f, g) and predicate (P, Q) symbols. A function symbol of 0-arity is called
a constant (a, b, c), while a predicate symbol of 0-arity corresponds to a propositional variable
(o, p, q, r ). A term is built from function symbols and individual variables ( f (c, g(x))); an
atom is built from predicate symbols and terms (P(x, f (c))). A literal (s, t) is either an
atom (having positive polarity) or its negation (having negative polarity). A formula (φ,ψ)
is built from atoms and connectives; we are only interested here in quantifier-free formulae.
A sentence (or ground formula) is a formula without free variables. A clause C is a finite
disjunction of literals; a formula in CNF is a finite conjunction of clauses. The empty clause,
which represents unsatisfiability, is denoted by ⊥. We write clauses as lists of literals and
sub-clauses, omitting the “∨” symbol, as for instance pq D (an overline denotes negation).
We use C1 ⊆ C2 to indicate that C1 subsumes C2, that is the set of literals C1 is a subset
of the set of literals C2. Also we assume that clauses do not contain duplicated literals or
both the occurrence of a literal and its negation. Finally, we use v(s) to denote the variable
associated with a literal s.

A SAT-solver is a decision procedure that solves the propositional satisfiability prob-
lem; most successful state-of-the-art solvers rely on variants of the DPLL algorithm, as the
conflict-driven clause-learning (CDCL) [8,45], which are based on the resolution inference
system [35]. A first order theory T is a collection of sentences; we call SMT (T ) the problem
of deciding the satisfiability of a formula w.r.t. a theory T . A theory solver is an algorithm
that decides whether a conjunction of ground literals is satisfiable in T . If the conjunction is
unsatisfiable in T , then its negation is valid and is called a T -lemma: intuitively, T -lemmata
are formulae that encode facts valid in the theory T . An SMT (T )-solver is a procedure to solve
SMT(T ); in particular, a lazy solver integrates a theory solver with a CDCL SAT-solver [59].

2.1 The resolution system

The resolution system is an inference system based on a single inference rule, called resolution
rule:

p D pE
p

DE
Clauses pD and pE are the antecedents, DE is the resolvent and p is the pivot vari-
able. We also represent a resolution step (an application of the resolution rule) as DE =
Resp(pD, pE).

SAT- and SMT-solvers can be instrumented to generate, for unsatisfiable formulae, a cer-
tificate of unsatisfiability in the form of a proof of unsatisfiability or refutation. It is straight-
forward to instruct a state-of-the-art CDCL solver to return proofs: a resolution proof, in
particular, can be derived by logging the inference steps performed during conflict analy-
sis [69].
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Fig. 1 Resolution proof tree

Fig. 2 Resolution proof DAG

Throughout the paper we shall use the notions of resolution proof tree and resolution proof
DAG.

Definition 1 (Resolution Proof Tree) A resolution proof tree of a clause C from a set of
clauses C is a tree such that:

1. Each node n is labeled by a clause C(n).
2. If n is a leaf, C(n) ∈ C.
3. The root is a node n s.t. C(n) = C .
4. An inner node n has pivot piv(n) and exactly two parents n+, n− s.t. C(n) =

Respiv(n)(C(n+),C(n−))). C(n+) and C(n−) respectively contain the positive and neg-
ative occurrence of the pivot.

5. Each non-root node has exactly one child.

In the following, we equivalently use a graph-based representation (left) or an inference
rule-based representation (right) (Fig. 1).

In real-world applications proofs are rarely generated or stored as trees; for instance proofs
produced by CDCL solvers are represented as directed acyclic graph (DAGs). We therefore
introduce the following notion of resolution proof, which is more suitable for describing the
graph-based transformation algorithms illustrated in this paper.

Definition 2 (Resolution Proof DAG) A resolution proof DAG of a clause C from a set of
clauses C is a directed acyclic graph such that:

1.–4. hold as in Def. 1.
5. Each non-root node has one or more children.

Resolution proof DAGs extend the notion of resolution proof trees by allowing a node to
participate as antecedent in multiple resolution steps (Fig. 2).

We identify a node n with its clause C(n)whenever convenient; in general, different nodes
can be labeled by the same clause, that is C(ni ) = C(n j ) for i �= j . A proof P is a refutation
if C = ⊥. A subproof P ′, with subroot n, of a proof P is the subtree that derives C(n) from
a subset of clauses that label leaves of P; when referring to P and its root compared to P ′,
we call P global proof and its root global root.

It is always possible to turn a resolution proof tree into a resolution proof DAG, by merging
two or more nodes labeled by a same clause into a single node, which inherits the children
of the merged nodes. On the other hand, a resolution proof DAG can be “unrolled” into a
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resolution proof tree, possibly at exponential cost: it is in fact sufficient to traverse the DAG
bottom–up, duplicating nodes with multiple children so that each node is left with at most
one child.

Similarly to [5], we distinguish between a legal and an illegal proof; an illegal proof is a
proof which has undergone transformations in such a way that some clauses might not be the
resolvents of their antecedents anymore. In this paper however an illegal proof represents an
intermediate transformation step in an algorithm, and the proof can always be reconstructed
into a legal one, as explained in the next sections.

In the following, we will consider refutations as obtained by means of modern CDCL SAT-
solvers and lazy SMT-solvers, involving both propositional and theory atoms. Whenever the
theory content is not relevant to the problem at hand, it is convenient to represent each theory
atom with a new propositional variable called its propositional abstraction: for example an
atom x + y < 1 will be represented by a certain variable q .

2.2 Resolution proofs in verification

Resolution proofs find application in many verification techniques. For instance, Amla and
McMillan’s [4] method for automatic abstraction uses proofs of unsatisfiability derived from
SAT-based bounded model checking as a guide for choosing an abstraction for unbounded
model checking. Proofs can be used as justifications of specifications of inconsistency in
various industrial applications (e.g., product configuration or declarative modeling [60,62]).
In the context of proof-carrying code [50] a system can verify a property about an application
exploiting a proof provided with the application executable code. SAT-solvers and SMT-
solvers can be integrated into interactive theorem provers as automated engines to produce
proofs, that can be later replayed and verified within the provers [3,29,66]. An unsatisfiable
core, that is an inconsistent subset of clauses, can be extracted from a proof, to be exploited
for example during the refinement phase in model checking [4,37]. Another noteworthy
application is in the framework of interpolation-based model checking, where interpolants
are generated from proofs based on their structure and content [39,46–48].

3 The Local Transformation Framework

This section introduces a proof transformation framework based on local rewriting rules. We
start by assuming a resolution proof tree, and then extend the discussion to resolution proof
DAGs. All results related to proofs hold in particular for refutations.

The framework is built on a set of rewriting rules that transform a subproof with root C into
one whose subroot C ′ is logically equivalent or stronger than C (that is, C ′ �⇒ C). Each
rewriting rule is defined to match a particular context, identified by two consecutive resolution
steps (see Fig. 3). A context involves two pivots p and q and five clauses C1,C2,C4,C3,C ;
we call C the context root; the subproof rooted in C is the context subproof. Clearly p is
contained in C1 and C2 (with opposite polarity), and q is contained in C4 and C3 (again with
opposite polarity); q must be contained in C1 ∪ C2.

A clause C might be the root of two different contexts, depending on whether C1 and C2

are taken as the antecedents of either of the two antecedents of C ; in that case, to distinguish
among them we talk about left and right context.

Figure 4 shows a set of proof transformation rules. Each rule is associated with a unique
context, and, conversely, each context can be mapped to at least one rule (i.e., the set of rules is
exhaustive, modulo symmetry, for every possible context). A first property that characterizes
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Fig. 3 Rule context

the set of rules is locality: only the limited information represented by a context is in fact
needed to determine which rule is applicable. A second property is strengthening: the rules
either keep the context root unchanged or turn it into a logically stronger formula.

The classification of rules into S (swapping) and R (reducing) depends on the effect of
the rules on the context rooted in C : S1 and S2 swap the two resolution steps in the context
without modifying C , while R1, R2, R2′ and R3 replace C with a new C ′ such that C ′ ⊆ C ;
in other words, the R rules generate subproofs with stronger roots.

The influence of the S rules does not extend beyond the context where they are applied,
while that of the R rules possibly propagates down to the global root. The R rules essentially
simplify the proof and their effect cannot be undone, while an application of an S rule can be
reversed. In particular, the effect of rule S2 can be canceled out simply by means of another
application of the same S2. S1 has S1′ as its inverse (notice the direction of the arrow); S1′
is actually a derived rule, since it corresponds to the sequential application of S2 and R2.

The rules R2 and R2′ are associated with the same context; they respectively behave as S2
(with an additional simplification of the root) and R1. The decision whether to apply either
rule depends on the overall goal of the transformation. Note that the application of rule R2
to a context turns it into a new context which matches rule S1.

3.1 Extension to resolution proof DAGs

If the proof to be transformed is a DAG rather than a tree, some constraints are necessary on
the application of the rules.

Consider rules S1, S1′, S2, R2, and suppose clause C4 is involved in more than one
resolution step, having thus at least another resolvent C5 besides C . If C4 is modified by a
rule, it is not guaranteed that the correctness of the resolution step having C5 as resolvent
(and in turn of the resolution steps on the path from C5 to the global root) is preserved. This
problem does not concern clauses C1, C2, C3 and the subproofs rooted in them, which are
not changed by any rule.

A simple solution consists in creating a copy of C4, to which all resolvents of C4 besides
C are assigned, so that C4 is left with exactly one resolvent; at that point any modification to
C4 will affect only the context rooted in C . Since duplications increase the size of the proof,
they should be carried out with moderation (see §6).

A more efficient alternative exists in case of rules R1, R2′, R3, where C4 is detached by
the context rooted in C and loses C as resolvent, but keeps the other resolvents (if any). The
effect of the transformation rules is shown in Fig. 5: the presence of additional resolvents for
C4 is denoted by a dotted arrow.

3.2 Soundness of the Local Transformation Framework

In this section we first prove that the rewriting rules preserve the legality of the subproofs
rooted in the contexts where the rules are applied; then we discuss how the rules affect the
global proof and what steps must be taken to maintain it legal.
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Fig. 4 Local transformation rules for resolution proof trees
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Fig. 5 Local transformation rules for resolution proof DAGs
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3.2.1 Effect on a context

Based on the following observations, we claim that after a single application of a rule to a
context with root C , the legal subproof rooted in C is replaced by a legal subproof rooted in
C ′ ⊆ C .

Refer to Fig. 5. No additional subproofs are introduced by the rules and no modifications
are brought to the subproofs rooted in C1,C2,C3, which are simply recombined or detached
from the context. As for the S rules, C4 is either replaced by the resolvent of C1,C3 (S2)
or by the resolvent of the resolvents of C1,C3 and C3,C2 (S1, where a new clause C ′′4 =
Resv(s)(C2,C3) is also introduced). Note that in both cases C is not modified. The R rules
instead yield a more substantial change in the form of a stronger context root C ′ ⊆ C :

– In R1 and R2′, the subproofs with root C1 and C3 are combined to obtain a subproof with
root s DF ⊆ s DE F .

– R2 has a swap effect similar to S2, but replaces the root s DE F with DE F , removing a
single literal.

– In R3, the whole subproof is substituted by the subproof rooted in C2 = s E , which
subsumes C = s DE F .

All the above transformations involve updating the relevant clauses by means of sound
applications of the resolution rule.

3.2.2 Effect on the global proof

The application of a rule to a context yields a legal subproof rooted in a clause C ′ ⊆ C ;
however, the global proof could turn into an illegal one. In fact, the deletion of literals from
C affects the sequence of resolution steps that extends from C to the global root: some of these
steps might become superfluous, because they resolve upon a variable which was introduced
by C (but does not appear in C ′), and they should be appropriately removed. In the same
way, the elimination of a resolution step could itself lead to the disappearance of more literal
occurrences, leading to a chain reaction.

The following Algorithm 1, SubsumptionPropagation, has the purpose of propagating the
effect of the replacement of C by C ′ ⊆ C along the path leading from C to the global root.

The algorithm restructures the proof in a top–down manner analyzing the sequence of reso-
lution steps to ensure their correctness while propagating the effect of the initial subsumption.
We prove that, after an execution of SubsumptionPropagation following the application of
an R rule to a legal proof, the result is still a legal proof.

The idea at the base of the algorithm reflects the mechanisms of the restructuring proce-
dures first proposed in [5,28]:

1. It determines the effect range of the substitution of C by C ′, which corresponds to the
set of nodes reachable from the node labeled by C ′.

2. It analyzes, one by one, all reachable nodes; it is necessary that the antecedents of a
node n have already been visited (and possibly modified), in order to guarantee a correct
propagation of the modifications to n.

3. Due to the potential vanishing of literals from clauses, it might happen that in some
resolution step the pivot is not present in both antecedents anymore; if that is the case,
the resolution step is deleted, by replacing the resolvent with the antecedent devoid of
the pivot (if the pivot is missing in both antecedents, either of them is arbitrarily chosen),
otherwise, the resolution step is kept and the resolvent clause updated. At the graph level,
n is substituted by n+ or n−, assigning the children of n (if any) to it.

123



10 Form Methods Syst Des (2014) 45:1–41

Algorithm 1: SubsumptionPropagation.
Input: A legal proof modified by an R rule
Output: A legal proof
Data: W : set of nodes reachable from C ′, V : set of visited nodes

1 begin
2 V ← ∅
3 Determine W , e.g. through a visit from C ′
4 while W \ V �= ∅ do
5 Choose n ∈ W \ V such that:
6 (n+ ∈ W or n+ /∈ W ) and (n− ∈ W or n− /∈ W )

7 V ← V ∪ {n}
8 p← piv(n)
9 if p ∈ C(n+) and p ∈ C(n−) then

10 C(n)← Resp(C(n+),C(n−))
11 else if p /∈ C(n+) and p ∈ C(n−) then
12 Substitute n with n+
13 else if p ∈ C(n+) and p /∈ C(n−) then
14 Substitute n with n−
15 else if p /∈ C(n+) and p /∈ C(n−) then
16 Heuristically choose a parent, replace n with it
17 end
18 end

Theorem 1 Assume a legal proof P. The application of an R rule, followed by an execution
of SubsumptionPropagation, yields a legal proof P ′, whose new global root subsumes the
previous one.

Proof (by structural induction)
Base case Assume an R rule is applied to a context rooted in a clause C ; C is replaced by

C ′ ⊆ C and the subproof rooted in C ′ is legal, as previously shown. The subproofs rooted in
the clauses of nodes not reachable from C are not affected and thus remain legal.

Inductive step All nodes reachable from C are visited; in particular, a node n is visited
after its reachable parents. By inductive hypothesis C ′(n+) ⊆ C(n+), C ′(n−) ⊆ C(n−)
and the subproofs rooted in C ′(n+) and C ′(n−) are legal. We show that, after visiting n,
C ′(n) ⊆ C(n) and the subproof rooted in C ′(n) is legal. Let p = piv(n).

We have three possibilities:

– Case 1: the pivot still appears both in C ′(n+) and in C ′(n−); C ′(n) =
Resp(C ′(n+),C ′(n−)), thus C ′(n) ⊆ C(n).

– Case 2: the pivot is present only in one antecedent, let us say C ′(n+); the subproof rooted
in C(n) is replaced by the one rooted in C ′(n−) (legal by hypothesis). But C ′(n) =
C ′(n−) ⊆ C(n) since C ′(n−) does not contain the pivot.

– Case 3: the pivot is not present in either antecedent. Same reasoning as for Case 2, but
arbitrarily choosing an antecedent for the substitution.

In all three cases the subproof rooted in C ′(n) is legal and C ′(n) ⊆ C(n). 
�

Figure 6 shows the effect of R2 and the subsequent application of SubsumptionPropa-
gation on a small proof.

123



Form Methods Syst Des (2014) 45:1–41 11

Fig. 6 Example of rule application and subsumption propagation

3.3 A transformation meta-algorithm

The Local Transformation Framework defined by our rules leaves to the user the flexibility
of choosing a particular strategy and a termination criterion for their application.

Whenever a sizeable amount of rules has to be applied, rather than running Subsumption-
Propagation multiple times, it is more efficient to combine the application of all rules and
the propagation of the modifications into a single traversal of the proof.

Algorithm 2, TransformAndReconstruct, illustrates this approach. At first it performs a
topological sorting of the proof (line 2), in order to ensure that each node is visited after
its parents. Then it analyzes one node at a time, checking if the corresponding resolution
step is still sound (line 6). If the resolution step is sound, it updates the resolvent clause,
determining the node contexts (if any) and the associated rules. At most one rule is applied,
and the decision is based on local heuristic considerations (line 9). If the resolution step is not
sound and either antecedent does not contain the pivot (lines 11, 13, 15), then the resolution
step is removed by replacing the resolvent with that antecedent (which, missing the pivot,
subsumes the resolvent); at the graph level, n is substituted by n+ or n−.

Note that the antecedent not responsible for the substitution might have lost all its resol-
vents and thus does not contribute to the proof anymore; in that case it is pruned away,
together with the portion of the subproof rooted in it which has become detached from the
global proof.

A key point of the algorithm is the call to ApplyRule(left context, right context): this
method heuristically chooses at most one context (possibly none) rooted in n and applies the
corresponding rule. The instantiation of ApplyRule with different procedures yields concrete
algorithms suitable for particular applications, as illustrated in the next sections.

Based on the above observations and on Theorem 1, we have the following result:
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Theorem 2 TransformAndReconstruct outputs a legal proof.

Algorithm 2: TransformAndReconstruct.
Input: A legal proof, an instance of ApplyRule
Output: A legal proof
Data: T S: nodes topological sorting vector

1 begin
2 T S← topological_sorting_top_down(proof)
3 foreach n ∈ T S do
4 if n is not a leaf then
5 p← piv(n)
6 if p ∈ C(n−) and p ∈ C(n+) then
7 C(n)← Resp(C(n−),C(n+))
8 Determine left context lc of n, if any
9 Determine right context rc of n, if any

10 ApplyRule(rc, lc)
11 else if p /∈ C(n−) and p ∈ C(n+) then
12 Substitute n with n−
13 else if p ∈ C(n−) and p /∈ C(n+) then
14 Substitute n with n+
15 else if p /∈ C(n−) and p /∈ C(n+) then
16 Heuristically choose a parent, substitute n with it
17 end
18 end

4 Proof compression

Resolution proofs, as generated by modern solvers, find application in many verification
techniques. In most cases, the size of the proofs affects the efficiency of the methods in which
they are used. It is known that the size of a resolution proof can grow exponentially with
respect to the size of the input formula: even when proofs are representable in a manageable
memory space, it might be crucial for efficiency to reduce or compress them as much as
possible. Several compression technique have been developed and can be found in literature,
ranging from memoization of common subproofs to partial regularization [2,3,5,21,28,30,
61]; however, since the problem of finding a minimum proof is NP-hard, it is still an open
challenge to design heuristics capable of obtaining good reduction in practical situations.

This section discusses algorithms aimed at compressing proofs. We identify two kinds of
redundancies in resolution proofs and present a set of post-processing techniques aimed at
removing them; the techniques are independent from the way the refutation is produced and
can be applied to an arbitrary resolution proof of unsatisfiability. We also illustrate how to
combine these algorithms in an effective manner, and show the results of experimenting on
a collection of SAT and SMT benchmarks.

We do not address directly the problem of core minimization, that is nonetheless achieved
as a side effect of proof reduction. A rich literature exists on techniques aimed at obtaining a
minimum (a�2-complete problem), minimal (DP -complete), or small unsatisfiable core, that
is a subset of the initial set of clauses that is still unsatisfiable [15,19,26,36,41,44,49,52,68].

4.1 Proof redundancies

This paper focuses on two particular kinds of redundancies in resolution proofs.
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The first one stems from the observation that, along each path from a leaf to the root, it is
unnecessary to resolve upon a certain pivot more than once. The proof can be simplified, for
example by keeping (for a given variable and a path) only the resolution step closest to the
root, while cutting the others away. In the literature, a proof such that each variable is used
as a pivot at most once along each path from a leaf to the root is said to be regular [64].

The second kind of redundancy is related to the content of a proof. It might be the case that
there exist multiple nodes associated with equal clauses; such nodes can be merged, keeping
only one pair of parents and grouping together all the children. In particular, we call a proof
compact if C(ni ) = C(n j ) �⇒ i = j for any i, j , that is, different nodes are labeled by
different clauses.

4.2 Proof regularity

In this section we discuss how to make a proof (partially) regular. We show how to employ
Algorithm 2 for this purpose and present two algorithms explicitly devised for regulariza-
tion, namely RecyclePivots [5] and its refinement RecyclePivotsWithIntersection [30]. We
illustrate them individually and explain how they can be combined to obtain more powerful
algorithms.

4.2.1 Regularization in the Local Transformation Framework

The R rules are, as a matter of fact, a means to perform a “local” regularization; they are
applied to contexts where a resolution step on a pivot v(s) is immediately followed by a
reintroduction of the pivot with positive (R1, R2, R′2) or negative (R3) polarity (see Fig. 5).

Resolving on v(s) is redundant, since the newly introduced occurrence of the pivot will be
later resolved upon along the path to the global root; the R rules have the effect of simplifying
the context, possibly pruning subproofs which do not contribute anymore to the global proof.
Moreover, the rules replace the root of a context with a stronger one, which allows to achieve
further compression as shown below.

Consider, for example, the following proof:
pq po

p
qo pq

q
po

qr pq
q

pr
p

or os
o

rs

(1)

The highlighted context can be reduced via an application of R2 as follows:

pq pq
q

p

qr pq
q

pr
p

or os
o

rs

(2)

The proof has become illegal as the literal o is now not introduced by any clause. Since a
stronger conclusion (p ⊂ po) has been derived, o is now redundant and it can be eliminated
all the way down to the global root or up to the point it is reintroduced by some other resolution
step. In this example o can be safely removed together with the last resolution step which
also becomes redundant. The resulting legal (and stronger) proof becomes:

pq pq
q

p

qr pq
q

pr
p

r

(3)

At this stage no other R rule can be directly applied to the proof.
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Rule S2 does not perform any simplification on its own, however it is still used in our
framework. Its contribution is to produce a “shuffling” effect in the proof, in order to create
more chances for the R rules to be applied.

Consider again our running example. S2 can be applied as follows:

pq pq
q

p

qr pq
q

pr
p

r

(4)

qr

pq pq
q

p pq
p

q
q

r

(5)

S2 has now exposed a new redundancy involving the variable q . The proof can be readily
simplified by means of an application of R2′:

qr

pq pq
q

p pq
p

q
q

r

(6)

qr

pq pq
p

q
q

r

(7)

As discussed in §3.3, the rewriting framework defined by our rules allows the flexibility of
choosing a strategy and a termination criterion for their application.

A simple strategy is to eagerly apply the R rules until possible, shuffle the proof by means
of S2 with the purpose of disclosing other redundancies, and then apply the R rules again,
in an iterative fashion. However there is usually a very large number of contexts where S2
could be applied, and it is computationally expensive to predict whether one or a chain of S2
applications would eventually lead to the creation of contexts for an R rule.

For efficiency reasons, we rely on the meta-algorithm described in Algorithm 2, for a
particular instantiation of the ApplyRule method. Algorithm 2 does a single traversal of the
proof, performing shuffling and compression; it is run multiple times, setting a number of
traversals to perform and a timeout as termination criteria (whichever is reached first). The
resulting regularization procedure is ReduceAndExpose, listed as Algorithm 3.

Algorithm 3: ReduceAndExpose.
Input: A legal proof; timelimit: timeout; numtrav: number of transformation traversals; an instantiation

of ApplyRule
Output: A legal proof

1 begin
2 for i=1 to numtrav do
3 TransformAndReconstruct(ApplyRule)
4 if timelimit is reached then
5 break
6 end
7 end
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4.2.2 The RecyclePivots approach

The RecyclePivots algorithm was introduced in [5] as a linear-time technique to perform a
partial regularization of resolution proofs.

RecyclePivots is based on analyzing the paths of a proof, focusing on the pivots involved
in the resolution steps; if a pivot is resolved upon more than once on a path (which implies
that the pivot variable is introduced and then removed multiple times), the resolution step
closest to the root is kept, while the others are simplified away.

We illustrate this approach by means of an example. Consider the leftmost path of proof
(1). Variable p is used twice as pivot. The topmost resolution step is redundant as it resolves
upon p, which is reintroduced in a subsequent step (curly brackets denote the set RL of
removable literals, see later).

pq po
p

qo {p, q} pq
q

po {p}
qo pq

q
po

p
o

(8)

Regularization can be achieved by eliminating the topmost resolution step and by adjusting
the proof accordingly. The resulting proof is shown below.

pq pq
q

p

qo pq
q

po
p

o

(9)

Algorithm 4 shows the recursive version of RecyclePivots (RP in the following). It is
based on a depth-first visit of the proof, from the root to the leaves. It starts from the global
root, having as input a set of removable literals RL (initially empty). The removable literals
are essentially the (partial) collection of pivot literals encountered during the bottom–up
exploration of a path. If the pivot variable of a resolution step under consideration is in RL
(lines 15 and 18), then the resolution step is redundant and one of the antecedents may be
removed from the proof. The resulting proof is illegal and has to be reconstructed into a legal
one, which can be done in linear time, as shown in [5].

Note that in the case of resolution proof trees, the outcome of the algorithm is a regular
proof. For arbitrary resolution proof DAGs the algorithm is executed in a limited form (when
nodes with multiple children are detected) precisely by resetting RL (line 10); therefore the
result is not necessarily a regular proof.

4.2.3 RecyclePivotsWithIntersection

The aforementioned limitation is due to the same circumstance that restricts the application
of rules in the Local Transformation Framework, as discussed in §3.1. The set of removable
literals of a node is computed for a particular path from the root to the node (which is enough
in presence of proof trees), but does not take into account the existence of other possible
paths to that node. Thus, suppose a node n with pivot p is replaced by one of its parents (let
us say n+) during the reconstruction phase, and C(n+) � C(n); then, it might happen that
some of the literals in C(n+) \C(n) are not resolved upon along all paths from n to the root,
and are thus propagated to the root, making the proof illegal.

In order to address this issue, the authors of [30] extend RP by proposing RecyclePiv-
otsWithIntersection (RPI), an iterative version of which is illustrated in Algorithm 5. RPI
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Algorithm 4: RecyclePivots(n,RL).
Input: A node n, a set of removable literals RL

1 begin
2 if n is visited then
3 return
4 else
5 Mark n as visited
6 if n is a leaf then
7 return
8 else
9 if n has more than one child then

10 RL ← ∅
11 p← piv(n)
12 if p /∈ RL and p /∈ RL then
13 RecyclePivots(n+,RL ∪ {p})
14 RecyclePivots(n−,RL ∪ {p})
15 else if p ∈ RL then
16 n+ ← null
17 RecyclePivots(n−,RL)
18 else if p ∈ RL then
19 n− ← null
20 RecyclePivots(n+,RL)
21 end

Fig. 7 Computation of RL in RecyclePivots

refines RP by keeping track for each node n of the set of pivot literals RL(n) which get
resolved upon along all paths from n to the root.

The computation of RL in the two approaches is represented in Figs. 7 and 8. RP and RPI
behave in the same way whenever a node n has only one child. In case n has no children, i.e.,
it is the root, RPI takes into account the possibility for the root to be an arbitrary clause (rather
than only⊥, as in refutations) and sets RL to include all variables of C(n); it is equivalent to
having a path from n to⊥where all variables of C(n) are resolved upon. The major difference
between RP and RPI is in the way a node n with multiple children is handled: RP sets RL(n)
to ∅, while RPI sets RL(n) to the intersection

⋂
(RL(mi )∪ qi ) of the removable literals sets

of its children, augmented with the pivots of the resolution steps of which the children are
resolvents.

RPI starts in Algorithm 5 by computing a topological sorting of the nodes (line 2), from
the root to the leaves. RL(root) is computed as the set of literals in the root clause; for any
other node n, RL(n) is initialized and then iteratively refined each time one of its children
is visited (lines 10–18). Similarly to RecyclePivots, whenever visiting an inner node n, if
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Fig. 8 Computation of RL in RecyclePivotsWithIntersection

Algorithm 5: RecyclePivotsWithIntersection.
Input: A legal proof
Input: A proof to be reconstructed
Data: T S: nodes topological sorting vector; RL: vector of sets of removable literals;

1 begin
2 T S← topological_sorting_bottom_up(proof)
3 foreach n ∈ T S do
4 if n is not a leaf then
5 if n is the root then
6 RL(n)← {pi }pi∈C(n)
7 else
8 p← piv(n)
9 if p ∈ RL(n) then

10 n+ ← null
11 if n− not seen yet then
12 RL(n−)← RL(n)
13 Mark n− as seen
14 else RL(n−)← RL(n−) ∩ RL(n)
15 else if p ∈ RL(n) then
16 n− ← null
17 if n+ not seen yet then
18 RL(n+)← RL(n)
19 Mark n+ as seen
20 else RL(n+)← RL(n+) ∩ RL(n)
21 else if p /∈ RL(n) and p /∈ RL(n) then
22 if n− not seen yet then
23 RL(n−)← (RL(n) ∪ {p})
24 Mark n− as seen
25 else RL(n−)← RL(n−) ∩ (RL(n) ∪ {p})
26 if n+ not seen yet then
27 RL(n+)← (RL(n) ∪ {p})
28 Mark n+ as seen
29 else RL(n+)← RL(n+) ∩ (RL(n) ∪ {p})
30 end
31 end

piv(n) appears in RL(n) then the resolution step is redundant and can be simplified away
(lines 7–12); in that case, RL(n) is propagated to a parent of n without the addition of piv(n).

Figure 9 shows the effect of RPI on a small proof where RP cannot achieve any compres-
sion: RP sets RL(qr) = ∅ since qr has two children, while RPI sets RL(qr) = {r , p, q}
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Fig. 9 Compression of a proof by means of RecyclePivotsWithIntersection

and consequently simplifies the uppermost resolution step, since it is able to detect that p is
resolved upon along both paths from qr to the root.

4.2.4 RecyclePivots and the Local Transformation Framework

RecyclePivots (as well as its refinement RecyclePivotsWithIntersection) and ReduceAnd-
Expose both aim at compressing a proof by identifying and removing pivot redundancies
along paths from the root to the leaves. The main difference between the two approaches
is that RecyclePivots operates on a global perspective without changing the topology of the
proof (i.e., no shuffling), while ReduceAndExpose operates on local contexts and allows the
topology to change. Both approaches have advantages and disadvantages.

Operating on a global perspective without modifying the topology allows a one-pass
visit and compression of the proof. Maintaining a fixed topology, however, may prevent
the disclosure of hidden redundancies. For instance the application of RecyclePivots to the
example of §4.2.1 would have stopped to step (3), since no more redundant pivots can be
found along a path (the proof is regular). The local contexts instead have to be gathered and
considered multiple times. On the other hand, the ability of ReduceAndExpose to change the
topology allows more redundancies to be exposed.

Another advantage of RecyclePivots is that it can eliminate redundancies that are separated
by many resolution steps. The R rewriting rules instead are applicable only when there
is a reintroduction of a certain variable immediately after a resolution step upon it. Such
configurations, when not present in the proof, can be produced by means of applications of
the S2 rule.

The ability of the Local Transformation Framework to disclose redundancies and the effec-
tiveness of RecyclePivots at removing them can be combined in a simple hybrid approach,
shown in Algorithm 6.

The algorithm takes as input an overall time limit, a number of global iterations and a
number of transformation traversals for ReduceAndExpose. The time limit and the amount
of global iterations determine the execution time available to ReduceAndExpose during each
iteration. ReduceAndExpose and RecyclePivots are run one after the other by Algorithm 6,
alternately modifying the topology to expose redundancies and simplifying them away.

A similar, but more efficient algorithm can be obtained by simply replacing the call to
RecyclePivots with a call to RecyclePivotsWithIntersection.
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Algorithm 6: RP + RE.
Input: A legal proof; numloop: number of global iterations; numtrav: number of transformation

traversals for each global iteration; t imelimit : timeout; an instantiation of ApplyRule
Output: A legal proof

1 begin
2 timeslot = timelimit/numloop
3 for i=1 to numloop do
4 RecyclePivots(root ,∅)
5 // R Ptime is the time taken by RecyclePivots in the last call
6 ReduceAndExpose(t imeslot − R Ptime,numtrav,Apply Rule)
7 end
8 end

4.3 Proof compactness

The focus of this section is the notion of compactness as introduced in §4.1: a proof is compact
whenever different nodes are labeled with different clauses, that is C(ni ) = C(n j ) �⇒ i =
j for any i, j . We first present an algorithm to address redundancies related to the presence of
multiple occurrences of a same unit clause in a proof. Then we illustrate a technique based on
a form of structural hashing, which makes a proof more compact by identifying and merging
nodes having exactly the same pair of parents. We conclude by showing how to combine
these procedures with the Local Transformation Framework.

4.3.1 Unit clauses-based simplification

The simplification of a proof by exploiting the presence of unit clauses has already been
addressed in the literature in [30] and [5]. The two works pursue different goals. The Recy-
cleUnits algorithm from [5] uses learned unit clauses to rewrite subproofs that were derived
before learning them. On the other hand, the LowerUnits algorithm from [30] collects unit
clauses and reinserts them at the level of the global root, thus removing redundancies due to
multiple resolution steps on the same unit clauses.

Following the idea of [30], we present PushdownUnits, listed as Algorithm 7. First, the
algorithm traverses a proof in a top–down manner, detaching and collecting subproofs rooted
in unit clauses, while at the same time reconstructing the proof to keep it legal (based on
the schema of Algorithm 2); then, (some of) these subproofs are attached back at the end
of the proof, adding new resolution steps. PushdownUnits improves over LowerUnits by
performing unit collection and proof reconstruction in a single pass.

The algorithm works as follows. The proof is traversed according to a topological order.
When a node n is visited s.t. C(n) is the resolvent of a sound resolution step with pivot p, its
parents are examined. Assume n+ is a unit clause, that is C(n+) = p; then n is replaced by
the other parent n− and n+ is added to the set of unit clauses CU .

This transformation phase might add extra literals E L to the original global root r ; if this
is the case, the necessary resolution steps to make the proof legal are added at the end, starting
from the r . The nodes previously collected are taken into account one by one; for each m, if
C(m) = s and s is one of the extra literals E L , then a new resolution step is added and the
new root becomes m.

Note that not necessarily all these nodes will be added back to the proof. Multiple nodes
might be labeled by the same literal, in which case the correspondent variable will be used
only once as pivot. Also, a collected literal which was an antecedent of some resolution step
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Algorithm 7: PushdownUnits.
Input: A legal proof
Output: A legal proof
Data: T S: nodes topological sorting vector; CU : collected units set; E L: set of extra literals appearing

in the global root
1 begin
2 T S← topological_sorting_top_down(proof)
3 r ← global root
4 foreach n ∈ T S do
5 if n is not a leaf then
6 p← piv(n)
7 if p ∈ C(n−) and p ∈ C(n+) then
8 C(n)← Resp(C(n−),C(n+))
9 if C(n+) = p then

10 Substitute n with n−
11 CU ← CU ∪ {n+}
12 else if C(n−) = p then
13 Substitute n with n+
14 CU ← CU ∪ {n−}
15 else if piv(n) /∈ C(n−) and piv(n) ∈ C(n+) then
16 Substitute n with n−
17 else if piv(n) ∈ C(n−) and piv(n) /∈ C(n+) then
18 Substitute n with n+
19 else if piv(n) /∈ C(n−) and piv(n) /∈ C(n+) then
20 Heuristically choose a parent, substitute n with it;
21 end
22 E L ← extra literals of C(r)
23 foreach m ∈ CU do
24 s ← C(m)
25 if s ∈ E L then
26 Add a new node o s.t. C(o) = Resv(s)(C(r),C(m))
27 r ← o
28 end
29 end

might have been anyway resolved upon again along all paths from that resolution step to the
global root; if so, it does not appear in the set of extra literals. The subproofs rooted in these
unnecessary nodes can be (partially) pruned away to further compress the proof (Fig. 10).

4.3.2 Structural hashing

The work of [21] proposes an algorithm based on a form of structural hashing; it explicitly
takes into account how resolution proofs are obtained in CDCL SAT-solvers from a sequence
of subproofs deriving learnt clauses, and keeps a hash map which stores for each derived
clause its pair of antecedents. While building the global proof from the sequence of subproofs,
whenever a clause would be added, if its pair of antecedents is already in the hash map, then
the existing clause is used.

Taking inspiration from the idea at the base of this technique, we present a post-processing
compression algorithm, StructuralHashing, which aims at improving the compactness of a
proof. StructuralHashing is illustrated in Algorithm 8.

The proof is traversed in topological order. When a node n is visited, the algorithm first
checks whether its antecedents are already in the hash map; if so, another node m with the
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Fig. 10 Example of application of PushdownUnits. Note that the lowest occurrence of p is not added back
to the proof

Algorithm 8: StructuralHashing.
Input: A legal proof
Output: A legal proof
Data: T S: nodes topological sorting vector, H M : hash map associating a node to its pair of parents

1 begin
2 T S← topological_sorting_top_down(proof)
3 foreach n ∈ T S do
4 if n is not a leaf then
5 if < n+, n− >∈ H M then
6 m ← H M(< n+, n− >)
7 Replace n with m
8 Assign n children to m
9 else

10 H M(< n+, n− >)← n
11 end
12 end

same parents has been seen before. In that case, n is replaced by m and the children of n
are assigned to m. The use of a topological visit guarantees the soundness of the algorithm:
it is safe to replace the subproof rooted in n with that rooted in m since either (i) m is an
ancestor of n (and the subproof rooted in m is contained in the subproof rooted in n) or (i i)
m and n are not on a same path to the global root, so m is not involved in the derivation of
n.

Note that StructuralHashing does not guarantee a completely compact proof; if two nodes
n1, n2 have the same parents, then C(n1) = C(n2), but the converse is not necessarily true.
A complete but more computationally expensive technique might consist in employing a
hash map to associate clauses with nodes (rather than pairs of nodes with nodes as done in
StructuralHashing), based on a function that derives map keys from the clauses content; an
implementation of this technique can be found in [63].
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4.3.3 StructuralHashing and the Local Transformation Framework

StructuralHashing is a one-pass compression technique, like RecyclePivots and RecyclePiv-
otsWithIntersection. Nevertheless, it is still possible to exploit the Local Transformation
Framework in order to disclose new redundancies and remove them, in an iterative manner.
We illustrate this approach in Algorithm 9.

Algorithm 9: SH + RE.
Input: A legal proof; numloop: number of global iterations; numtrav: number of transformation

traversals for each global iteration; t imelimit : timeout; an instantiation of ApplyRule
Output: A legal proof

1 begin
2 timeslot = timelimit/numloop
3 for i=1 to numloop do
4 StructuralHashing()
5 // SHtime is the time taken by StructuralHashing in the last call
6 ReduceAndExpose(t imeslot − SHtime,numtrav,Apply Rule)
7 end
8 end

4.3.4 A synergic algorithm

It is possible to combine the compression techniques illustrated so far as shown in Algo-
rithm 10, exploiting their individual features for a synergistic effect. The combined approach
executes the algorithms sequentially for a given number of global iterations. Note that Push-
downUnits is kept outside of the loop: in our experience, SH, RPI and RE are unlikely to
introduce unit clauses in the proofs, thus for efficiency PushdownUnits is run only once
before the main loop.

Algorithm 10: PU + SH + RPI + RE.
Input: A legal proof; numloop: number of global iterations; numtrav: number of transformation

traversals for each global iteration; t imelimit : timeout; an instantiation of ApplyRule
Output: A legal proof

1 begin
2 timeslot = timelimit/numloop
3 PushdownUnits()
4 for i=1 to numloop do
5 StructuralHashing()
6 RecyclePivotsWithIntersection()
7 // SHtime and R P I time are the time taken by StructuralHashing

// and RecyclePivotsWithIntersection in the last call
8 ReduceAndExpose(t imeslot − SHtime − R P I time,numtrav,Apply Rule)
9 end

10 end

The overall complexity of the combined algorithm is parametric in the number of global
iterations and actual transformation traversals (also depending on the specified time limit).
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PushdownUnits performs a topological visit of the proof, collecting unit clauses and adding
them back at the level of the global root; the complexity is O(|V | + |E |), linear in the size
of the resolution proof DAG.

Complexity is O(|V | + |E |) also for StructuralHashing, which traverses the proof once,
making use of an hash table to detect the existence of multiple nodes with the same resolvents.

An iterative implementation of RecyclePivotsWithIntersection consists of a bottom–up
scan of the proof, while computing the sets of removable literals and pruning branches,
followed by a reconstruction phase; the complexity is again O(|V | + |E |).

Each execution of TransformAndReconstruct, on which ReduceAndExpose is based, com-
putes a topological sorting of the nodes and traverses the proof top–down applying rewriting
rules. If m transformation traversals are executed, the complexity of ReduceAndExpose is
O(m(|V | + |E |)).

Note that PushdownUnits, RecyclePivotsWithIntersection, TransformAndReconstruct
also perform operations at the level of clauses, checking the presence of pivots, identify-
ing rule contexts, updating resolvents. These operations depend on the width of the involved
clauses; in practice, this value is very small compared to the proof size, and the complexity
can be considered O(|V | + |E |).

Finally, if n global iterations are carried out, the total complexity is O(nm(|V | + |E |)).
There is a clear trade-off between efficiency and compression. The higher the value of m
is, the more redundancies are exposed and then removed; in practice, however, especially in
case of large proofs, a complexity higher than linear cannot be afforded, so the nm factor
should be kept constant in the size of the proofs.

Some heuristics on the application of the local rules in conjunction with RecyclePivots,
RecyclePivotsWithIntersection and StructuralHashing have been proved particularly suc-
cessful: we refer the reader to §4.4, §4.5 and §6 for details.

4.4 Experiments on SMT benchmarks

As a first stage of experimentation, we carried out an evaluation of the three algorithms
RecyclePivots (RP), ReduceAndExpose (RE), and their combination RP+RE. The algorithms
were implemented inside the tool OpenSMT [16], with proof-logging capabilities enabled.

We experimented on the set of unsatisfiable benchmarks taken from the SMT-LIB [54]
from the categories QF_UF, QF_IDL, QF_LRA, QF_RDL. For these sets of benchmarks
we noticed that the aforementioned compression techniques are very effective. We believe
that the reason is connected with the fact that the introduction of theory lemmata in SMT
is performed lazily: the delayed introduction of clauses involved in the final proof may
negatively impact the online proof construction in the SAT-solver.

All the experiments were carried out on a 32-bit Ubuntu server featuring a Dual-Core
2 GHz Opteron CPU and 4 GB of memory; a timeout of 600 seconds and a memory threshold
of 2GB (whatever is reached first) were put as limit to the executions.

The executions of RE and RP+RE are parameterized with a time threshold, which we
set as a fraction of the time taken by the solver to solve the benchmarks: more difficult
instances are likely to produce larger proofs, and therefore more time is necessary to achieve
compression. Notice that, regardless of the ratio, RE and RP+RE both perform at least one
complete transformation loop, which could result in an execution time slightly higher than
expected for low ratios and small proofs.
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Table 1 Results for SMT benchmarks

(a) #Bench RedNodes% RedEdges% RedCore% TranTime (s)

RP 1,370 6.7 7.5 1.3 1.7

(b) #Bench RedNodes% RedEdges% RedCore% TranTime (s)

Ratio RE RP+RE RE RP+RE RE RP+RE RE RP+RE RE RP+RE

0.01 1,364 1,366 2.7 8.9 3.8 10.7 0.2 1.4 3.5 3.4

0.025 1,363 1,366 3.8 9.8 5.1 11.9 0.3 1.5 3.6 3.6

0.05 1,364 1,366 4.9 10.7 6.5 13.0 0.4 1.6 4.3 4.1

0.075 1,363 1,366 5.7 11.4 7.6 13.8 0.5 1.7 4.8 4.5

0.1 1,361 1,364 6.2 11.8 8.3 14.4 0.6 1.7 5.3 5.0

0.25 1,357 1,359 8.4 13.6 11.0 16.6 0.9 1.9 8.2 7.6

0.5 1,346 1,348 10.4 15.0 13.3 18.4 1.1 2.0 12.1 11.5

0.75 1,339 1,341 11.5 16.0 14.7 19.5 1.2 2.1 15.8 15.1

1 1,335 1,337 12.4 16.7 15.7 20.4 1.3 2.2 19.4 18.8

#Bench reports the number of benchmarks solved and processed within the time/memory constraints,
RedNodes% and RedEdges% report the average compression in the number of nodes and edges of the proof
graphs, and RedCore% reports the average compression in the unsatisfiable core size. TranTime is the average
transformation time in seconds

Table 2 Results for SMT benchmarks

(a) MaxRedNodes% MaxRedEdges% MaxRedCore%

RP 65.1 68.9 39.1

(b) MaxRedNodes% MaxRedEdges% MaxRedCore%

Ratio RE RP+RE RE RP+RE RE RP+RE

0.01 54.4 66.3 67.7 70.2 45.7 45.7

0.025 56.0 77.2 69.5 79.9 45.7 45.7

0.05 76.2 78.5 78.9 81.2 45.7 45.7

0.075 76.2 78.5 79.7 81.2 45.7 45.7

0.1 78.2 78.8 82.9 83.6 45.7 45.7

0.25 79.3 79.6 84.1 84.4 45.7 45.7

0.5 76.2 79.1 83.3 85.2 45.7 45.7

0.75 78.2 79.9 84.4 86.1 45.7 45.7

1 78.3 79.9 84.6 86.1 45.7 45.7

MaxRedNodes% and MaxRedEdges% are the maximum compression of nodes and edges achieved by the
algorithms in the suite on individual benchmarks.

Table 1 shows the average proof compression after the application of the algorithms1.
Table 1a shows the compression obtained after the execution of RP. Table 1b instead shows
the compression obtained with RE and RP+RE parameterized with a timeout (ratio× solving
time). In the columns we report the compression in the number of nodes and edges, the

1 Full experimental data, as well as executables used in tests are available at http://verify.inf.usi.ch/sites/
default/files/FMSD2014.tar.gz
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compression of the unsatisfiable core, and the actual transformation time. Table 2 is organized
as Table 1 except that it reports the best compression values obtained over all the benchmarks
suites.

On a single run RP clearly achieves the best results for compression with respect to
transformation time. To get the same effect on average on nodes and edges, for example, RE
needs about 5 s and a ratio transformation time/solving time equal to 0.1, while RP needs
less than 2 s. As for core compression, the ratio must grow up to 1. On the other hand, as
already remarked, RP cannot be run more than once.

The combined approach RP+RE shows a performance which is indeed better than the
other two algorithms taken individually. It is interesting to see that the global perspective
adopted by RP gives an initial substantial advantage, which is slowly but constantly reduced
as more and more time is dedicated to local transformations and simplifications.

Table 2b displays some remarkable peaks of compression obtained with the RE and RP+RE
approaches on the best individual instances. Interestingly we noticed that in some bench-
marks, like 24.800.graph of the QF_IDL suite, RP does not achieve any compression, due
to the high amount of nodes with multiple resolvents present in its proof that forces Recy-
clePivots to keep resetting the removable literals set RL. RP+RE instead, even for a very
small ratio (0.01), performs remarkably, yielding 47.6 % compression for nodes, 49.7 % for
edges and 45.7 % for core.

4.5 Experiments on SAT benchmarks

A second stage of experimentation was preceded by an implementation of all the com-
pression algorithms discussed so far (Algorithms 1–10) within a new tool, PeRIPLO [55];
PeRIPLO, built on MiniSAT 2.2.0, is an open-source SAT-solver which features resolution
proof manipulation and interpolant generation capabilities 2.

We evaluated the following algorithms: PushdownUnits (PU), RecyclePivotsWithInter-
section (RPI), ReduceAndExpose (RE), StructuralHashing (SH) (Algorithms 3, 4, 7, 8)
and their combinations RPI+RE (Algorithm 6), SH+RE (Algorithm 9), PU+RPI+SH+RE
(Algorithm 10); the evaluation was carried out on a set of purely propositional bench-
marks from the SAT Challenge 2012 [57], the SATLIB benchmark suite [58] and the CMU
collection [22].

First, a subset of unsatisfiable benchmarks was extracted from the SAT Challenge 2012
collection by running MiniSAT 2.2.0 alone with a timeout of 900 s and a memory threshold of
14 GB; this resulted in 261 instances from the Application track and the Hard Combinatorial
track. In addition to these, another 125 unsatisfiable instances were obtained from the SATLIB
Benchmark Suite and the CMU collection, for a total of 386 instances.

The experiments were carried out on a 64-bit Ubuntu server featuring a Quad-Core 4GHz
Xeon CPU and 16 GB of memory; a timeout of 1,200 s and a memory threshold of 14 GB
were put as limit to the executions. The PeRIPLO framework was able to handle proofs up
to 30 million nodes, as in the case of the rbcl_xits_07_UNSAT instance from the Application
track in the SAT Challenge 2012 collection.

Differently from the case of SMT benchmarks, we decided to specify as termination
criterion an explicit amount of transformation traversals per global iteration, focusing on the
dependency between proofs size and time taken by the algorithms to move over proofs and
compress them.

2 Full experimental data, as well as executables used in tests are available at http://verify.inf.usi.ch/sites/
default/files/FMSD2014.tar.gz
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Table 3 Results for SAT benchmarks

(a) #Bench RedNodes% RedCore% RedEdges% TranTime (s) Ratio

PU 200 1.81 0.00 2.18 5.44 0.09

SH 205 5.90 0.00 6.55 4.53 0.07

RPI 203 28.48 1.75 30.66 14.32 0.21

RE 3 203 4.16 0.09 4.85 24.84 0.31

RE 5 203 5.06 0.14 5.88 37.86 0.41

RE 10 202 6.11 0.17 7.08 67.09 0.56

PU+SH+RPI 196 32.81 1.47 35.70 18.66 0.27

(b) RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime (s) Ratio

2.3 201 30.69 2.08 33.49 34.78 0.39

2.5 200 30.71 2.15 33.53 40.37 0.45

3.3 200 31.28 2.23 34.22 51.43 0.51

3.5 200 31.56 2.34 34.50 61.16 0.56

(c) SH+RE #Bench RedNodes% RedCore% RedEdges% TranTime (s) Ratio

2.3 204 17.33 0.09 19.20 33.87 0.38

2.5 204 19.81 0.15 21.92 48.40 0.47

3.3 204 21.68 0.16 23.96 56.39 0.51

3.5 202 23.69 0.18 26.17 70.75 0.59

(d) PU+SH+RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime (s) Ratio

2.3 195 39.46 1.89 43.34 35.23 0.44

2.5 195 40.46 1.93 44.49 38.49 0.46

3.3 195 41.68 2.06 45.86 47.41 0.51

3.5 195 42.41 2.05 46.71 52.91 0.54

#Bench reports the number of benchmarks solved and processed within the time/memory constraints,
RedNodes% and RedEdges% report the average compression in the number of nodes and edges of the proof
graphs, RedCore% the average compression in the unsatisfiable core size. TranTime is the average transfor-
mation time in seconds; Ratio is the ratio between transformation time and overall time

Table 3 reports the performance of the compression techniques. Table 3a shows the results
for the individual techniques PU, SH, RPI, RE, the latter tested for an increasing amount of
transformation traversals (3, 5, 10), and the combination PU+SH+RPI without RE. Table 3b–
d respectively report on the combinations RPI+RE, SH+RE, PU+SH+RPI+RE: in the first
column, a pair n,m indicates that n global iterations and m transformation traversals per
global iteration were carried out.

RPI is clearly the most effective technique on a single run, as for compression and ratio
transformation time/overall time. For this set of experiments we tuned RE focusing on its
ability to disclose new redundancies, so we did not expect exceptional results when running
the algorithm by itself; the performance of RE improves with the number of transformation
traversals performed, but cannot match that of RPI.

On the other hand, the heuristics adopted in the application of the rewriting rules (see §6)
have a major effect on SH, enhancing the amount of compression from about 6 % to more
than 20 %.

The combined approaches naturally achieve better and better results as the number of
global iterations and transformation traversals grows. In particular, Algorithm 10, which
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Table 4 Results for SAT benchmarks.

PU+SH+RPI+RE MaxRedNodes% MaxRedCore% MaxRedEdges%

2.3 83.7 21.5 83.7

2.5 84.9 21.6 85.2

3.3 87.1 22.1 87.4

3.5 87.9 22.2 88.2

MaxRedNodes% and MaxRedEdges% are the maximum compression of nodes and edges achieved by the
PU+SH+RPI+RE combination on a single benchmark

brings together the techniques for regularization, compactness and redundancies exposure,
reaches a remarkable average compression level of 40 %, surpassing (ratio being equal) all
other combined approaches.

We report for completeness in Table 4 the maximum compression obtained by the
PU+SH+RPI+RE combination on the best individual instances.

A limitation of the current version of PeRIPLO it that preprocessing by SATElite is not
enabled in case of proof-logging; this restriction, which entails higher solving times and
might yield larger proofs sizes, will be addressed in a future release of the tool.

5 Proof transformation for interpolation

Craig interpolants [23], since the seminal work by McMillan [46–48], have been extensively
applied in SAT-based model checking and predicate abstraction [39]. Formally, given an
unsatisfiable conjunction of formulae A ∧ B, an interpolant I is a formula that is implied
by A (i.e., A �⇒ I ), is unsatisfiable in conjunction with B (i.e., B ∧ I �⇒ ⊥) and
is defined on the common language of A and B. The interpolant I can be thought of as an
over-approximation of A that is still in conflict with B.

Several state-of-the art approaches exist to generate interpolants in an automated manner;
the most successful techniques derive an interpolant for A ∧ B from a proof of unsatisfi-
ability of the conjunction. This approach grants two important benefits: the generation can
be achieved in linear time w.r.t. the proof size, and interpolants themselves only contain
information relevant to determine the unsatisfiability of A ∧ B.

Krajíček and Pudlák [43,53] are probably the first to propose an efficient way to com-
pute interpolants in the context of propositional logic. McMillan [47] proposes an alternative
method that also handles the quantifier-free theories of uninterpreted functions, linear arith-
metic, and their combination. All these techniques adopt recursive algorithms, which initially
set partial interpolants for the axioms. Then, following the proof structure, they deduce a
partial interpolant for each conclusion from those of the premises. The partial interpolant of
the overall conclusion is the interpolant for the formula.

Yorsh and Musuvathi present in [67] a generalization of Pudlák’s method that can compute
interpolants for a formula defined modulo a theory T . The leaves of the proof of unsatisfi-
ability in this case are original clauses as well as T -lemmata involving original predicates,
generated by the prover during the solving process. It is then sufficient to compute a partial
interpolant for each theory lemma in order to derive the global interpolant.

The last technique, for its modularity, finds its natural implementation within SMT-
solvers [7], procedures that combine SAT-solvers and domain specific algorithms for a theory
T in an efficient way (see §2). Cimatti et al. [20] show that interpolant generation within
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SMT-solvers can outperform other known methods (e.g. [47]), as a result of using optimized
domain-specific procedures for T .

In the following we use A and B to denote two quantifier-free formulae in a theory T ,
for which we would like to compute an interpolant. Theories of interest are equality with
uninterpreted functions EUF , linear arithmetic over the rationals LRA and the integers LIA,
the theory of arrays AX , or a combination of theories, such as EUF ∪ LRA. Variables that
appear only in A or B are called A-local and B-local respectively. Variables that appear in
both A and B are called AB-common. A predicate is called AB-mixed if it is defined on
both A-local and B-local variables, it is called AB-pure otherwise. Notice that AB-mixed
predicates cannot appear in A and B.

Example 1 Let A ≡ (x = v ∧ f (x) = z), B ≡ (y = v ∧ f (y) = u ∧ z �= u) be two
formulae in the EUF theory. Variable x is A-local, y, u are B-local, z, v are AB-common (a
predicate x = y would be AB-mixed). An interpolant I for A ∧ B is f (v) = z, which is an
AB-pure predicate.

We consider resolution proofs are defined as in §2; recall that propositional variables in
a proof may represent the propositional abstraction of theory predicates. In this case we say
that a propositional variable is AB-mixed if such is the predicate associated with it.

One limitation of the approach of [67] is that theory lemmata, appearing in a proof of
unsatisfiability, must not contain AB-mixed predicates. However, several decision procedures
defined for SMT-solvers heavily rely on the creation of new predicates during the solving
process. Examples are delayed theory combination (DTC) [12], Ackermann’s expansion [1],
lemmas on demand [25] and splitting on demand [6] (see §5.2). All these methods may
introduce new predicates, which can potentially be AB-mixed.

In this section we show how to compute an AB-pure proof from an AB-mixed one
but without interfering with the internals of the SMT-solver; our technique applies to any
approach that requires the addition of AB-mixed predicates (see §5.2 for a set of examples).
We illustrate how to employ the Local Transformation Framework to effectively modify the
proofs, in such a way that the generic method of [67] can be applied; in this way it is possible
to achieve a complete decoupling between the solving phase and the interpolant generation
phase, provided that an interpolation procedure is available for a conjunction of atoms in T .

A sketch of the approach is depicted in Fig. 11. The idea is to move all AB-mixed predicates
(in grey) toward the leaves of the proof (Fig. 11b) within maximal AB-mixed subproofs.

Definition 3 (AB-mixed subproof ) Given a resolution proof P , an AB-mixed subproof is a
subproof P ′ of P rooted in a clause C , whose intermediate pivots are all AB-mixed predicates.
P ′ is maximal if C does not contain AB-mixed predicates.

When dealing with a background theory T we note the following fact: if P ′ is a maximal
AB-mixed subproof rooted in a clause C , then C is a valid theory lemma for T .

This observation derives from Definition 3 and from the fact that (i) AB-mixed predicates
can only appear in theory lemmata (as they do not appear in the original formula) and (ii) a
resolution step over two theory lemmata generates another theory lemma.

Once AB-mixed maximal subproofs are formed, it is possible to replace them with their
root clauses (Fig. 11c). The obtained proof is now free of AB-mixed predicates and can
be used to derive an interpolant applying the method of [67], provided that an interpolant
generating procedure is available for the theory T .

The crucial part of our approach is an algorithm for proof transformation. It relies on the
Local Transformation Framework discussed in §3. An ad-hoc application of the rules can
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(a) (b) (c)

Fig. 11 An overview of our approach. a is the proof generated by the SMT-solver. White points represent
A-local predicates, black points represent B-local predicates, grey points represent AB-mixed predicates. b
AB-mixed predicates are confined inside AB-mixed trees. c AB-mixed trees are removed and their roots are
valid theory lemmata in T

be used to transform a proof P into a proof P ′, where all AB-mixed variables are confined
in AB-mixed subproofs. Each rewriting rule can effectively swap two pivots p and q in the
resolution proof, or perform simplifications, depending on the particular context.

In the following, to facilitate the understanding of the algorithm, we will call AB-mixed
and AB-pure predicates light and heavy respectively. The rules are applied when a light
predicate is below a heavy predicate in the proof graph. The effect of an exhaustive application
of the rules is to lift light predicates over heavy predicates as bubbles in water.

5.1 Pivot reordering algorithms

The Local Transformation Framework can be effectively employed to perform a local reorder-
ing of the pivots. Each rule in Fig. 5 either swaps the position of two pivots (S1, S2, R2), or it
eliminates at least one pivot (R1, R2′, R3). This feature can be used to create an application
strategy aimed at sorting the pivots in a proof P , by transforming it into a proof P ′ such that
all light variables are moved above heavy variables.

In order to achieve this goal it is sufficient to consider only unordered contexts, i.e. those in
whichv(t) is a light variable andv(s) is a heavy variable. Therefore a simple non-deterministic
algorithm can be derived as Algorithm 11.

Algorithm 11: PivotReordering.
Input: A legal proof
Output: A legal proof without unordered contexts
Data: U : set of unordered contexts

1 begin
2 Determine U , e.g. through a visit of the proof
3 while U �= ∅ do
4 Choose a context in U
5 Apply the associated rule, and SubsumptionPropagation if necessary
6 Update U
7 end
8 end

The algorithm terminates: note in fact that each iteration strictly decreases the distance of
an occurrence of a heavy pivot w.r.t. the global root, until no more unordered contexts are
left.
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Algorithm 12: ApplyRuleForPivotReordering.
Input: A left context lc, a right context rc

1 begin
2 if lc is ordered and rc is unordered then
3 Apply rule for rc
4 else if lc is unordered and rc is ordered then
5 Apply rule for lc
6 else if lc is unordered and rc is unordered then
7 Heuristically choose between lc and rc and apply rule
8 end

A more efficient choice is to make use of Algorithm 2 TransformAndReconstruct, by
instantiating the ApplyRule method so that it systematically pushes light variables above
heavy ones; a possible instantiation is shown in Algorithm 12. An algorithm for pivot reorder-
ing would then consist of a number of consecutive runs of TransformAndReconstruct, stop-
ping when no more unordered contexts are found: Algorithm 13, PivotReordering2, imple-
ments this approach.

Algorithm 13: PivotReordering2.
Input: A legal proof
Output: A legal proof without unordered contexts

1 begin
2 while unordered contexts are found do
3 TransformAndReconstruct(Apply RuleFor Pivot Reordering)
4 end
5 end

5.2 SMT-solving and AB-mixed predicates

In this section we show a number of techniques currently employed in state-of-the-art SMT-
solvers that can potentially introduce AB-mixed predicates during the solving phase. If
these predicates become part of the proof of unsatisfiability, the proof reordering algorithms
described in §5.1 can be applied to produce an AB-pure proof.

5.2.1 Theory reduction techniques

Let Tk and T j be two decidable theories such that Tk is weaker (less expressive) than T j .
Given a T j -formula ϕ, and a decision procedure SMT(Tk) for quantifier-free formulae in Tk ,
it is often possible to obtain a decision procedure SMT(T j ) for quantifier-free formulae in
T j by augmenting ϕ with a finite set of Tk-lemma ψ . These lemmata (or axioms) explicitly
encode the necessary knowledge such that Tk |� ϕ ∧ ψ if and only if T j |� ϕ. Therefore a
simple decision procedure for T j is as described by Algorithm 14.

In practice the lemmata generation function can be made lazy by plugging it inside the
SMT-solver directly; this paradigm is known as lemma on demand [25] or splitting on
demand [6]. We show some reduction techniques as follows.

Reduction of AX to EUF We consider the case where Tk ≡ EUF , the theory of equality
with uninterpreted functions, and T j ≡ AX , the theory of arrays with extensionality. The
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Algorithm 14: A reduction approach for SMT(T j ).
Input: ϕ for T j

1 begin
2 ψ = generateLemmata(ϕ)
3 return SMT(Tk )(ϕ ∧ ψ)
4 end

(a)

(b)

Fig. 12 Clauses from Example 2. ϕ ≡ {1, 2, 3, 4}, ψ ≡ {5, 6}. Clauses 7–9 are theory lemmata discovered
by the EUF solver. a Is a possible proof obtained by the SMT-solver (for EUF) on ϕ ∧ ψ . b Is a proof after
swapping p4 and p5 by means of rule S2; in the resulting proof all mixed literals (p5–p8) appear in the upper
part of the proof in an AB-mixed proof subtree. The root of the AB-mixed subtree p1 p2 p3 p4 is a valid theory
lemma in AX

axioms of EUF are the ones of equality (reflexivity, symmetry, and transitivity) plus the
congruence axioms ∀x, y. x = y �⇒ f (x) = f (y), for any functional symbol of the
language.

The theory of arrays AX is instead axiomatized by:

∀x, i, e. rd(wr(x, i, e), i) = e (1)

∀x, i, j, e. i = j ∨ rd(wr(x, i, e), j) = rd(x, j) (2)

∀x, y. x = y ⇐⇒ (∀i. rd(x, i) = rd(y, i)) (3)
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State-of-the-art approaches for AX implemented in SMT-solvers [10,14,24,32] are all
based on reduction to EUF . Instances of the axioms of AX are added to the formula in a lazy
manner until either the formula is proven unsatisfiable or saturation is reached. The addition
of new lemmata may require the creation of AB-mixed predicates when a partitioned formula
is considered.

Example 2 Let ϕ ≡ A ∧ B, where A ≡ x = wr(y, i, e), and B ≡ rd(x, j) �=
rd(y, j) ∧ rd(x, k) �= rd(y, k) ∧ j �= k. Variables {i, e} are A-local, { j, k} are B-local,
and {x, y} are AB-common. To prove ϕ unsatisfiable with a reduction to EUF , we need
to instantiate axiom (2) twice as ψ ≡ (i = j ∨ rd(wr(y, i, e), j) = rd(y, j)) ∧ (i =
k ∨ rd(wr(y, i, e), k) = rd(y, k)). Notice that we introduced four AB-mixed predicates.
Now we can send ϕ ∧ ψ to an SMT-solver for EUF to produce the proof of unsatisfiability.
Figure 12 shows a possible resolution proof generated by the SMT-solver, and how it can be
transformed into a proof without AB-mixed predicates.

Reduction of LIAto LRA Decision procedures for LIA (linear integer arithmetic) often
rely on iterated calls to a decision procedure for LRA (linear rational arithmetic). An example
is the method of branch-and-bound: given a feasible rational region R for a set of variables
x = (x1, . . . , xn), and a non-integer point c ∈ R for x, then one step of branch-and-bound
generates the two subproblems R ∪ {xi ≤ �ci�} and R ∪ {xi ≥ �ci�}. These are again
recursively explored until an integer point c is found.

Note that the splitting on the bounds can be delegated to the propositional engine by
adding the lemma ((xi ≤ �ci�)∨ (xi ≥ �ci�)). In order to obtain a faster convergence of the
algorithm, it is possible to split on cuts, i.e. linear constraints, rather than on simple bounds.
However cuts may add AB-mixed predicates if A-local and B-local variables are mixed into
the same cut.

Example 3 Let ϕ ≡ A ∧ B in LIA, where A ≡ 5x − y ≤ 1 ∧ y − 5x ≤ −1, and
B ≡ 5z− y ≤ −2∧ y−5z ≤ 3. The axiomψ ≡ ((x−z ≤ 0)∨(x−z ≥ 1)) (which contains
two AB-mixed literals) is sufficient for ϕ∧ψ to be proven unsatisfiable by a solver for LRA,
by discovering two additional theory lemmata ((5x − y �≤ 1)∨ (y− 5z �≤ 3)∨ (x − z ≤ 0))
and ((5x − y �≤ −1) ∨ (y − 5z �≤ −2) ∨ (x − z ≥ 1)).

Ackermann’s Expansion When T j is a combination of theories of the form EUF∪Tk , Acker-
mann’s expansion [1] can be used to reduce the reasoning from T j to Tk . The idea is to use as
ψ the exhaustive instantiation of the congruence axiom ∀x, y (x = y �⇒ f (x) = f (y))
for all pairs of variables appearing in uninterpreted functional symbols and all uninterpreted
functional symbols f in ϕ. This instantiation generates AB-mixed predicates when x is
instantiated with an A-local symbol and y with a B-local one.

Example 4 Let Tk ≡ LRA. Let ϕ ≡ A ∧ B and A ≡ (a = x + y ∧ f (a) = c), B ≡ (b =
x + y ∧ f (b) = d ∧ c �= d). The axiom ψ ≡ ((a �= b) ∨ ( f (a) = f (b)) is sufficient for
LRA to detect the unsatisfiability of ϕ ∧ ψ , by discovering two additional theory lemmata
(( f (a) �= f (b)) ∨ ( f (a) �= c) ∨ ( f (b) �= d) ∨ (c �= d)) and ((a �= x + y) ∨ (b �=
x + y) ∨ (a = b)).

5.2.2 Theory combination via DTC

A generic framework for theory combination was introduced by Nelson and Oppen in [51].
We recall it briefly as follows.
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Given two signature-disjoint and stably-infinite theories T1 and T2, a decision procedure
for a conjunction of constraints in the combined theory T1 ∪ T2 can be obtained from the
decision procedures for T1 and T2. First, the formula ϕ is flattened, i.e. auxiliary variables
are introduced to separate terms that contain both symbols of T1 and T2. Then the idea is that
the two theory solvers for T1 and T2 are forced to exhaustively exchange interface equalities
i.e. equalities between interface variables (interface variables are those that appear both in
constraints of T1 and T2 after flattening).3

DTC implements a non-deterministic version of the Nelson–Oppen framework, in which
interface equalities are not exchanged by the deciders directly, but they are guessed by the
SAT-solver. With DTC it is possible to achieve a higher level of modularity w.r.t. the classical
Nelson–Oppen framework. DTC is currently implemented (with some variations) in most
state-of-the-art SMT-solvers.

If no AB-mixed interface equality is generated, an interpolant can be derived with the
methods already present in the literature; otherwise our method can be applied to reorder the
proof, as an alternative to the techniques described in [20,33].

Example 5 Consider again ϕ of Ex. 4. Since a, b, f (a), f (b) appear in constraints of both
theories, we need to generate two interface equalities a = b and f (a) = f (b). The guessing
of their polarity is delegated to the SAT-solver. The SMT-solver will detect the unsatisfiability
after the EUF-solver discovers the two theory lemmata ((a �= b) ∨ ( f (a) = f (b)) and
(( f (a) �= f (b)) ∨ ( f (a) �= c) ∨ ( f (b) �= d) ∨ (c �= d)) and the LRA-solver discovers the
theory lemma ((a �= x + y) ∨ (b �= x + y) ∨ (a = b)).

5.3 Experiments on SMT benchmarks

For the purpose of this experimentation we chose to focus on one particular application
among those of §5.2, namely Ackermann’s expansion for theory combination.

We evaluated the proof transformation technique on the set of QF_UFIDL formulae from
the SMT-LIB [54] (QF_UFIDL refers to the combined theory EUF ∪ IDL). The suite
contains 319 unsatisfiable instances. Each formula was split in half to obtain an artificial
interpolation problem (in the same fashion as [20].)4

The pivot reordering algorithm Algorithm 13 was realized by means of the Local Trans-
formation Framework and implemented in OpenSMT [16]. Proof manipulation was applied
when the proof contained AB-mixed predicates, in order to lift them up inside AB-maximal
subproofs and replace them with their roots.

We ran the experiments on a 32-bit Ubuntu server equipped with Dual-Core 2 GHz Opteron
2212 CPU and 4 GB of memory. The benchmarks were executed with a timeout of 60 min
and a memory threshold of 2 GB (whatever was reached first): 172 instances, of which
82 proofs contained AB-mixed predicates,5 were successfully handled within these limits.
We have reported the cost of the transformation and its effect on the proofs; the results are
summarized in Table 5. We grouped benchmarks together following the original classification
used in SMT-LIB and provided average values for each group 4.

The results in Table 5 demonstrate that our proof transformation technique induces, on
average, about 13 % overhead with respect to plain solving time. The average increase in

3 Note that in practice flattening can be avoided. For instance in Example 5 we do not perform any flattening.
4 The benchmarks and the detailed results are available at http://verify.inf.usi.ch/sites/default/files/
FMSD2014.tar.gz
5 Notice that in some cases AB-mixed predicates were produced during the search, but they did not appear
in the proof.
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Table 5 The effect of proof transformation on QF_UFIDL benchmarks summarized per group: #Bench—
number of benchmarks in a group, #AB—average number of AB-mixed predicates in a proof, Time%—
average time overhead induced by transformation, Nodes% and Edges%—average difference in the proof size
as a result of transformation

Group #Bench #AB Time% Nodes% Edges%

RDS 2 7 84 −16 −19

EufLaArithmetic 2 74 18 187 193

pete 15 20 16 66 68

pete2 52 13 6 73 80

uclid 11 12 29 87 90

Overall 82 16 13 74 79

Fig. 13 McMillan interpolation algorithm

size is around 74 %, but not all the instances experienced a growth; we observed in fact that
in 42 out of 82 benchmarks the transformed proof was smaller than the original one both in
the number of nodes and edges. Overall it is important to point out that the creation of new
nodes due to the application of the S rules did not entail any exponential blow-up in the size
of the proofs during the transformation process.

Another interesting result to report is the fact that only 45% of the proofs contained AB-
mixed predicates and, consequently, required transformation. This is another motivation for
using off-the-shelf algorithms for SMT-solvers and have the proof transformed in a second
stage, rather than tweaking (and potentially slowing down) the solver to generate clean proofs
upfront.

5.4 Pivot reordering for propositional interpolation

This section concludes our discussion on interpolation by moving back from the context of
SMT to that of SAT. We complete the analysis begun by the authors of [42] and illustrate how,
in the case of purely propositional refutations, a transformation technique can be devised to
generate interpolants directly in conjunctive or disjunctive normal form.

Assuming a refutation of a formula A∧ B, we distinguish whether a variable p is local to
A (p ∈ A), local to B (p ∈ B) or common to A and B (p ∈ AB). Figure 13 shows McMillan
interpolation algorithm for propositional logic [28,47]. The algorithm initially sets a partial
interpolant for the clauses that label the refutation leaves; in particular, the partial interpolant
of a clause in A is its restriction C |AB to the propositional variables common to A and
B. Then, recursively, a partial interpolant for each resolvent is computed from those of the
antecedents depending on whether the pivot appears only in A (I1 ∨ I2) or not (I1 ∧ I2); the
partial interpolant of the global root is the interpolant for A ∧ B. In Fig. 13, C[I ] means
that clause C has a partial interpolant I . I1, I2 and I are the partial interpolants respectively
associated with the two antecedents C1∨ p, C2∨ p and the resolvent C1∨C2 of a resolution
step.
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Fig. 14 McMillan′ interpolation algorithm

Algorithm 13, PivotReordering2, can be employed to restructure a refutation so that
McMillan interpolation algorithm generates an interpolant in CNF. It is sufficient in fact
to modify the definition of light and heavy predicates given in §5, so that a context is con-
sidered unordered whenever v(t) is local to A (light) and v(s) is a propositional variable in
B or in AB (heavy). Effect of the proof transformation is to push up light variables, so that,
along every path from the leaves to the root, light variables appear before heavy variables.

We need to show that this condition is sufficient in order for McMillan algorithm to
produce an interpolant in CNF.

Theorem 3 Assume a refutation P without unordered contexts. McMillan interpolation algo-
rithm generates an interpolant in CNF from P.

Proof (by structural induction)
Base case The partial interpolant for a leaf labeled by a clause C is either � or C |AB , so

it is in CNF.
Inductive step Given an inner node n and the associated pivot p = piv(n), assume the

partial interpolants I1 and I2 for C(n+) = C1 ∨ p and C(n−) = C2 ∨ p are in CNF. We
have four possibilities:

– Case 1: I1 and I2 are both in clausal form; then either n+, n− are leaves or they are inner
nodes with light pivot variables. p can be either light or heavy: in the first case I is itself
a clause, in the second case I is a conjunction of clauses, so it is in CNF.

– Case 2: I1 is a clause, I2 is a conjunction of at least two clauses; then n+ can be either a
leaf or an inner node with a light pivot, but I2 must be an inner node with a heavy pivot
(due to ∧ being the main connective of I2). Since P does not have unordered contexts, p
must be a heavy variable, thus I = I1 ∧ I2 is in CNF.

– Case 3: I1 is a conjunction of at least two clauses, I2 is a clause. Symmetric to Case 2.
– Case 4: Both I1 and I2 are a conjunction of at least two clauses. As for Case 2 and Case 3.

A similar argumentation holds for the generation of interpolants in disjunctive normal form.
Let us consider the algorithm dual to McMillan, which we address as McMillan′ [28], illus-
trated in Fig. 14.

Algorithm 13 can be employed to transform the refutation; in this case a context is
unordered if v(t) is a variable local to B (light) and v(s) is a variable local to A or shared
(heavy). The effect of pushing up light variables is that, during the construction of the inter-
polant, the connective ∧ will be introduced before ∨ along each path, so that the resulting
interpolant will be in disjunctive normal form (note that the partial interpolant of a leaf is
already in DNF, being a conjunction of literals).

We can thus state the following theorem:

Theorem 4 Assume a refutation P without unordered contexts. McMillan′ interpolation
algorithm generates an interpolant in DNF from P.

As already pointed out in [42], the price to pay for a complete transformation might be an
exponential increase of the proof size, due to the node duplications necessary to apply rules
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S1, S2, R2 to contexts where C4 has multiple children (see Fig. 5). A feasible compromise
consists in performing a partial CNFization or DNFization by limiting the application of
such rules to when C4 has a single child; in this case, the proof growth depends only on the
application of rule S1, and the increase is maintained linear.

6 Heuristics for the proof transformation algorithms

In this section we discuss some of the heuristics implemented in OpenSMT and PeRIPLO to
guide the application of the Local Transformation Framework rules and the reconstruction
of proofs, with reference to compression (§4) and pivot reordering for interpolation (§5).

Some of the algorithms presented so far (Algorithms 1, 2, 7) need to handle the presence of
resolution steps which are not valid anymore since the pivot is missing from both antecedents;
in that case, the resolvent node n must be replaced by either parent. A heuristics which has
been proven useful for determining the replacing parent is the following. If one of the parents
(let us say n+) has only n as child, then n is replaced by n−; since n+ loses its only child,
then (part of) the subproof rooted in n+ gets detached from the global proof, yielding a
simplification of the proof itself. If both parents have more than one child, then the parent
labeled by the smaller clause is the one that replaces n, aiming at increasing the amount of
simplifications performed while moving down to the global root.

As far as the heuristics for the application of rewriting rules are concerned, the ApplyRule
method adheres to some general lines. Whenever a choice is possible between a left and
a right context, a precedence order is respected: (X > Y means: the application of X is
preferred over that of Y ):

R3 > {R2′, R1} > R2 > S1′ > S2 > S1

The compression rules R have always priority over the shuffling rules S, R3 being the favorite,
followed by R2′ and R1. Among the S rules, S1′ is able to perform a local simplification,
which makes it preferred to S2 and especially to S1, which increases the size of the proof;
between equal S rules, the one which does not involve a node duplication (see Fig. 5) is
chosen.

Additional constraints depend on the actual goal of the transformation. If the aim is pivot
reordering, the constraints are as illustrated in Algorithm. 13, with ties broken according to the
general lines given above. If the aim is compression, then S1 is never applied, since it increases
the size of the proof and it is not apparent at the time of its application whether it would bring
benefits in a second moment, neither are applied R2, S1′, S2 if they involve a duplication.
A strategy which proved successful in the application of S rules is to push up nodes with
multiple resolvents whenever possible, with the aim of improving the effect of RecyclePivots
and RecyclePivotsWithIntersection; interestingly, this technique shows as a side effect the
disclosure of redundancies which can effectively be taken care of by StructuralHashing.

These heuristics have been discovered through experimentation and have been adopted due
to their practical usefulness for compression, in a setting where the large size of proofs allows
only a few traversals (and thus a limited application of rules) by means of ReduceAndExpose,
and where the creation of new nodes should be avoided; it is thus unlikely that, arbitrarily
increasing the number of traversals, they would expose and remove all pivots redundancies.
A more thorough, although practically infeasible, approach could rely on keeping track of
all contexts and associated rules in a proof P . Since the S rules are revertible, an equivalence
relation ≡S could be defined among proofs so that P ≡S P ′ if P ′ can be obtained from P
(and vice versa) by means of a sequence of applications of S rules. A backtracking-based
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algorithm could be employed to systematically visit equivalence classes of proofs, and to
move from an equivalence class to another thanks to the application of an R rule.

7 Related work

Various proof manipulation techniques have been developed in the last years, the main goal
being compression.

In [2], Amjad proposes an algorithm based on heuristically reordering the resolution steps
that form a proof, trying to identify a subset of the resolution steps that is still sufficient to
derive the empty clause. The approach relies on using an additional graph-like data structure
to keep track of how literals of opposite polarity are propagated from the leaves through the
proof and then resolved upon.

Sinz [61] explicitly assumes a CDCL context, where a resolution-based SAT-solver gen-
erates a sequence of derivations called proof chains, combined in a second moment to create
the overall proof. He presents an algorithm that works at the level of proof chains, aiming at
identifying and merging shared substructures to generate a smaller proof.

Amjad further develops this approach in [3]. He adopts a representation of resolution
proofs that allows the use of efficient algorithms and data structures for substring matching;
this feature is exploited to perform memoization of proofs by detecting and reusing common
subproofs.

Cotton introduces in [21] two compression methods. The first one is based on a form
of structural hashing, where each inner node in a proof graph is associated with its pair of
antecedents in a hash map. The compression algorithm traverses the sequence of proof chains
while updating the hash map, and adds a resolution step to the overall proof only if it does
not already exist. The second one consists of a rewriting procedure that, given in input a
proof and a heuristically chosen propositional variable p, transforms the proof so that the
last resolution step is on p; this might result in a smaller proof.

Bar-Ilan et al. [5] present a technique that exploits learned unit clauses to rewrite sub-
proofs that were derived before learning them. They also propose a compression algorithm
(RecyclePivots) that searches for resolution steps on the same pivot along paths from leaves
to the root in a proof. If a pivot is resolved upon more than once on a path (which implies
that the pivot variable is introduced and then removed multiple times), the resolution step
closest to the root is kept, while the others are simplified away. The algorithm is effective on
resolution proof trees, but can be applied only in a limited form to resolution proof DAGs,
due to the possible presence of multiple paths from a node to the root.

This restriction is relaxed in the work of Fontaine et al. [30], who extend the algorithm
of [5] into RecyclePivotsWithIntersection to keep track, for each node, of the literals which
get resolved upon along all paths from the node to the root. [30] also presents an algorithm
that traverses a proof, collecting unit clauses and reinserting them at the level of the global
root, thus removing redundancies due to multiple resolution steps on the same unit clauses;
this technique is later generalized in [11] to lowering subproofs rooted in non-unit clauses.

[38] builds upon [5] in developing three variants of RecyclePivots tailored to resolution
proof DAGs. The first one is based on the observation that the set of literals which get resolved
in a proof upon along all paths from the node to the root must be a superset of the clause
associated to the node, if the root corresponds to the empty clause. The second and third
ones actually correspond respectively to RecyclePivotsWithIntersection and to a parametric
version of it where the computation of the set of literals is limited to nodes with up to a certain
amount of children.
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Our set of compression techniques has been illustrated with reference to [5,61] and [30]
in §4.

Besides compression, a second area of application of proof manipulation has been inter-
polation, both in the propositional and in the first order settings.

D’Silva et al. [27] introduce a global transformation framework for interpolation to reorder
the resolution steps in a proof with respect to a given partial order among pivots; compression
is shown to be a side effect for some benchmarks. Compared to [27], our approach works
locally, and leaves more freedom in choosing the strategies for rule applications. Also our
target is not directly computing interpolants, but rather rewriting the proof in such a way that
existing techniques can be applied.

The same authors focus in [28] on the concept of strength of an interpolant. They present
an analysis of existing propositional interpolation algorithms, together with a method to
combine them in order to obtain weaker or stronger interpolants from a same proof of
unsatisfiability. They also address the use and the limitations of the local transformation
rules of Jhala and McMillan [42]. The rewriting rules corresponding to S1 and S2 in the
Local Transformation Framework (§3) were first introduced in [42] and further examined
in [28] as a way to modify a proof to obtain stronger or weaker interpolants, once fixed
the interpolation algorithm; we devised the remaining rules after an exhaustive analysis
of the possible proof contexts. [42] also discusses the application of S1 and S2 to gener-
ate interpolants in conjunctive normal form; however, not all the contexts are taken into
account, and, as pointed out in [28], the contexts for S1 and S2 are not correctly identi-
fied.

Note that S1 and S2 have also a counterpart in Gentzen’s sequent calculus system L K [31]:
S1 corresponds to swapping applications of the structural cut and contraction rules, while
S2 is one of the rank reduction rules.

Interpolation for first order theories in presence of AB-mixed predicates is addressed
in [20], only for the case of DTC, by tweaking the decision heuristics of the solver, in
such a way that it guarantees that the produced proof can be handled with known meth-
ods. In particular the authors define a notion of ie-local proofs, and they show how to
compute interpolants for this class of proofs, and how to adapt an SMT-solver to produce
only ie-local proofs. [33] the relaxes the constraint on generating ie-local proofs by intro-
ducing the notion of almost-colorable proofs. We argue that our technique is simpler and
more flexible, as different strategies can be derived with different applications of our local
transformation rules. Our method is also more general, since it applies not only to theory
combination but to any approach that requires the addition of AB-mixed predicates (see
§5.2).

More recently, a tailored interpolation algorithm has been proposed in [18] for the com-
bined theory of linear arithmetic and uninterpreted functions; it has the notable feature of
allowing the presence of mixed predicates, thus making proof manipulation not necessary
anymore.

Clausal Proofs. This paper addresses resolution proofs in the context of transformation for
compression and Craig interpolation; state-of-the-art algorithms, as described in the previous
sections, rely on representing and manipulating proofs in the form of directed acyclic graphs.
However, alternative approaches exist; for example, CDCL SAT-solvers can be instrumented
to generate proofs in clausal format, as a sequence of learned clauses [34,40,65]. The devel-
opment of compression techniques tailored to clausal proofs is an interesting topic, which
will be investigated as future work.
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8 Conclusions

In this paper we have presented a proof transformation framework based on a set of local
rewriting rules and shown how it can be applied to the tasks of proof compression and pivot
reordering.

As for compression, we discussed how rules that effectively simplify the proof can be
interleaved with rules that locally perturbate the topology, in order to create new opportunities
for compression. We identified two kinds of redundancies in proofs, related to the notions of
regularity and compactness, and presented and compared a number of algorithms to address
them, moving from existing techniques in the literature. Individual algorithms, as well as
their combinations, were implemented and tested over a collection of benchmarks both from
SAT and SMT libraries, showing remarkable levels of compression in the proof size.

As for pivot reordering, we described how to employ the rewriting rules to isolate and
remove AB-mixed predicates, in such a way that standard procedures for interpolation in
SMT can be applied. The approach enables the use of off-the-shelf techniques for SMT-
solvers that are likely to introduce AB-mixed predicates, such as Ackermann’s expansion,
lemma on demand, splitting on demand and DTC. We showed by means of experiments that
our rules can effectively transform the proofs without generating any exponential growth in
their size. Finally, we explored a form of interaction between LISs and proof manipulation
by providing algorithms to reorder resolution steps in a propositional proof to guarantee the
generation of interpolants in conjunctive or disjunctive normal form.
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43. Krajíček J (1997) Interpolation theorems, lower bounds for proof systems, and independence results for

bounded arithmetic. J Symb Log 62(2):457–486
44. Lynce I, Marques-Silva J (2004) On computing minimum unsatisfiable cores. In: SAT, pp 305–310
45. Marques-Silva J, Sakallah K (1996) GRASP—a new search algorithm for satisfiability. In: ICCAD, pp

220–227
46. McMillan K (2003) Interpolation and SAT-based model checking. In: CAV, pp 1–13
47. McMillan K (2004) An interpolating theorem prover. In: TACAS, pp 16–30
48. McMillan K (2004) Applications of Craig interpolation to model checking. In: CSL, pp 22–23
49. Mneimneh M, Lynce I, Andraus Z, Marques-Silva J, Sakallah K (2005) A branch-and-bound algorithm

for extracting smallest minimal unsatisfiable formulas. In: SAT, pp 467–474
50. Necula G (1997) Proof-carrying code. In: POPL, pp 106–119
51. Nelson G, Oppen D (1979) Simplification by cooperating decision procedures. ACM Trans Progr Lang

Syst 1(2):245–257
52. Oh Y, Mneimneh MN, Andraus ZS, Sakallah KA, Markov IL (2004) AMUSE: a minimally-unsatisfiable

subformula extractor. In: DAC, pp 518–523
53. Pudlák P (1997) Lower bounds for resolution and cutting plane proofs and monotone computations. J

Symb Log 62(3):981–998
54. Ranise S, Tinelli C The satisfiability modulo theories library (SMT-LIB). http://www.smtlib.org. Accessed

24 April 2014
55. Rollini S Proof transformer and interpolator for propositional logic (PeRIPLO). http://verify.inf.usi.ch/

content/periplo. Accessed 24 April 2014

123

http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://www.smtlib.org
http://verify.inf.usi.ch/content/periplo
http://verify.inf.usi.ch/content/periplo


Form Methods Syst Des (2014) 45:1–41 41

56. Rollini S, Bruttomesso R, Sharygina N (2010) An efficient and flexible approach to resolution proof
reduction. In: HVC, pp 182–196

57. SAT Challenge (2012) http://baldur.iti.kit.edu/SAT-Challenge-2012/. Accessed 24 April 2014
58. SATLIB Benchmark Suite http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html . Accessed 24 April 2014
59. Sebastiani R (2007) Lazy satisfiability modulo theories. JSAT 3:144–224
60. Shlyakhter I, Seater R, Jackson D, Sridharan M, Taghdir M (2003) Debugging overconstrained declarative

models using unsatisfiable cores. In: ASE, pp 94–105
61. Sinz C (2007) Compressing propositional proofs by common subproof extraction. In: EUROCAST, pp

547–555
62. Sinz C, Kaiser A, Kuchlin W (2003) Formal methods for the validation of automotive product configuration

data. AI EDAM 17(1):75–97
63. Skeptik Proof Theory Library https://github.com/Paradoxika/Skeptik. Accessed 24 April 2014
64. Tseitin GS (1968) On the complexity of derivation in the propositional calculus. In: Slisenko AO (ed)

Studies in constructive mathematics and mathematical logic. Plenum, New York, pp 115–125
65. Van Gelder A (2008) Verifying RUP proofs of propositional unsatisfiability. In: ISAIM
66. Weber T, Amjad H (2009) Efficiently checking propositional refutations in hol theorem provers. J Appl

Log 7(1):26–40
67. Yorsh G, Musuvathi M (2005) A combination method for generating interpolants. In: CADE, pp 353–368
68. Zhang L, Malik S (2003) Extracting small unsatisfiable cores from unsatisfiable Boolean formulas. In:

SAT
69. Zhang L, Sharad M (2003) Validating SAT solvers using an independent resolution-based checker: prac-

tical implementations and other applications. In: DATE, pp 10,880–10,885

123

http://baldur.iti.kit.edu/SAT-Challenge-2012/
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://github.com/Paradoxika/Skeptik

	Resolution proof transformation for compression  and interpolation
	Abstract
	1 Introduction
	1.1 Structure of the paper
	1.2 Improvement over previous own work

	2 Background
	2.1 The resolution system
	2.2 Resolution proofs in verification

	3 The Local Transformation Framework
	3.1 Extension to resolution proof DAGs
	3.2 Soundness of the Local Transformation Framework
	3.2.1 Effect on a context
	3.2.2 Effect on the global proof

	3.3 A transformation meta-algorithm

	4 Proof compression
	4.1 Proof redundancies
	4.2 Proof regularity
	4.2.1 Regularization in the Local Transformation Framework
	4.2.2 The RecyclePivots approach
	4.2.3 RecyclePivotsWithIntersection
	4.2.4 RecyclePivots and the Local Transformation Framework

	4.3 Proof compactness
	4.3.1 Unit clauses-based simplification
	4.3.2 Structural hashing
	4.3.3 StructuralHashing and the Local Transformation Framework
	4.3.4 A synergic algorithm

	4.4 Experiments on SMT benchmarks
	4.5 Experiments on SAT benchmarks

	5 Proof transformation for interpolation
	5.1 Pivot reordering algorithms
	5.2 SMT-solving and AB-mixed predicates
	5.2.1 Theory reduction techniques
	5.2.2 Theory combination via DTC

	5.3 Experiments on SMT benchmarks
	5.4 Pivot reordering for propositional interpolation

	6 Heuristics for the proof transformation algorithms
	7 Related work
	8 Conclusions
	References


