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Abstract Optimizations are widely used along the lifecycle of software.
However, proving the equivalence between original and optimized ver-
sions is difficult. In this paper, we propose a technique to incrementally
verify different versions of a program with respect to a fixed property. We
exploit a safety proof of a program given by a safe inductive invariant.
For each optimization, such invariants are adapted to be a valid safety
proof of the optimized program (if possible). The cost of the adapta-
tion depends on the impact of the optimization and is often less than
an entire re-verification of the optimized program. We have developed a
preliminary implementation of our technique in the context of Software
Model Checking. Our evaluation of the technique on different classes of
industrial programs and standard LLVM optimizations confirms that the
optimized programs can be re-verified efficiently.

1 Introduction

Program verification is necessary for building reliable software intensive systems.
One challenge in using verification is deciding on the right level of abstraction.
On one hand, verifying the source code (or a high-level compiler representa-
tion) before optimizations gives meaningful verification results to the user. On
the other, verifying the binary (or a low-level compiler representation) after op-
timizations takes compiler out of the trusted computing base. Our experience
with the UFO [1] indicates that verification results at both levels are desired.

There are two common techniques for adapting verification results from an
original program P to an optimized program Q: (1) complete re-verification of Q;
(2) establish property preserving equivalence (typically a form of a simulation)
between P and Q. Re-verification is computationally expensive. Establishing
a simulation between P and Q often requires manual instrumentation of the
compiler which is hard to do and maintain [6]. In this paper, we propose an
alternative solution that combines the advantages of the two approaches.

We assume that the original program P comes with a property G, and that
P satisfies G (i.e., P |= G). Instead of showing an equivalence between P and Q,
?
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we show that Q satisfies G. First, by adapting the proof of P |= G, given by
an inductive invariant, to Q, and then strengthening it by re-verification as
needed. Our technique can be seen as a property-specific equivalence: P and Q
are equivalent iff they both satisfy G.

We evaluate our approach on the instcombine optimization of LLVM that
does local optimizations (such as turning x = 1 + 1 into x = 2). Our exper-
iments show that the approach is very effective. In many cases, the complete
safety proof can be transferred between the original and the optimized programs.
Whenever re-verification was required, it was insignificant.

2 From Optimization to Evolution

In this section, we formally define the problem of incremental property-directed
verification of optimizations. We begin with formal definitions of programs,
safety proofs, and admissible optimizations. A “large-block” representation of
a program is a tuple P = (V, en, err , E, τP ), where V is a set of cutpoints (i.e.,
locations which represent heads of some loops); en, err ∈ V are designated entry
and error locations, respectively; E ⊆ V × V is the control-flow relation (rep-
resent a loop-free program fragments), τP : E → Stmt∗ maps control edges to
loop-free program fragments. An example of a program is shown in Fig. 1a. We
call the graph (V,E) the Cut-Point Graph (CPG) which collapses the more fine
grained Control-Flow Graph (CFG).

We write ` X to mean that X is valid. Let Expr be a set of expressions over
program variables, pre, post ∈ Expr and S a loop-free program fragment. We
write ` {pre} S {post} to mean that pre and post are pre- and post-conditions
of S, i.e., whenever S starts in a state satisfying pre, if S terminates, it ends in a
state satisfying post. A safety proof of P is a mapping ψ : V → Expr such that

∀(u, v) ∈ E · ` {ψ(u)} τP (u, v) {ψ(v)} ψ(err)→ ⊥ (1)

An optimization of P is a program Q = (V, en, err , E, τQ), that differs from
P only in the labeling of the edges of the CPG. Note that this definition limits
optimizations to changes that do not affect the loop-structure of P (i.e., loops
cannot be added or removed). However, since we deal with “large-blocks”, loop
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Figure 1: A simple program and an optimization.

2



Algorithm 1: optVerify(P,ψ,Q)
Input: Original program P , safety proof ψ of P , new program Q
Output: A pair 〈res, ϕ〉 s.t. res → ϕ is safety proof of Q

1 σ ← guessMap(P,Q) . Guess a map between variables of P and Q
2 π ← mkInd(ψσ,Q, P ) . Weaken candidate ψσ until it is inductive for Q
3 res, ϕ← Verify(Q, π) . Strengthen ϕ until it is SAFE for Q
4 return 〈res, ϕ〉

unrolling is admissible. At the same time, we do not put any other restrictions
on Q. In particular, we do not require for Q to simulate P . An example of
optimization Q of P is shown at the Fig. 1b in which the variable y was removed

The problem of incremental property-directed verification is: Given a pro-
gram P , a safety proof ψ of P , and an optimization Q of P , adapt a safety proof
ψ to a safety proof ϕ of Q, or show that Q does not admit a safety proof (i.e.,
has a counterexample).

Thus, we view the problem as a variant of upgrade checking (as opposed to
verification). The key concept in upgrade checking is adapting verification results
from one program to another. We extend this concept to safety proofs. Let P ,
ψ, and Q be as above. An adaptation π of ϕ to Q is a weakening of ψ such that

∀w ∈ V · ψ(w)→ π(w) (2)
∀(u, v) ∈ E· ` {π(u)} τQ(u, v) {π(v)} (3)

Intuitively, (2) says that π is a weakening of ψ, and (3) says that π is inductive.
Note that if π(err) = ⊥, then π is a safety proof of Q. Otherwise, π is simply
an inductive invariant.

3 Our Solution

optVerify is shown in Alg. 1. The input is an original program P = (V, en, err , E, τP ),
a safety proof ψ : V → Expr of P and a new program Q = (V, en, err , E, τQ).
The output is a safety proof ϕ of Q or a counter-example. We require that P and
Q share the CPG (i.e., same loop-heads), and differ only in the labeling of edges.

OptVerify consists of three steps: (1) a mapping σ between the variables of
P and Q (line 1) is guessed and is used to syntactically transfer the safety proof
ψ to a candidate proof ψσ of Q. (2) ψσ is weakened to π using mkInd until π is
an inductive invariant (line 2). At this point, π is inductive, but not safe. (3) π
is strengthened if necessary (and possible) to ϕ by a standalone verifier (line 3).

In our implementation, σ is guessed by syntactically matching variable names:
a variable v of P is mapped to a variable v of Q if v exists in Q, and to a
fresh symbol otherwise. To implement Verify, we use UFO [1] that iteratively
strengthens the given inductive invariant. In particular, if π is already safe, UFO
returns immediately and ϕ ≡ π. A verifier that cannot work by strengthening a
given invariant would be useless as it would amount to verifying Q from scratch.
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Algorithm 2: mkInd(ψ,Q, P )
Input: Candidate invariant ψ, new program Q, original program P
Output: Inductive invariant π : V → Expr of Q

1 π ← ψ; W ← {(u, v) ∈ E | τP (e) 6= τQ(e)};
2 while W 6= ∅ do
3 (u, v)← getWtoSmallestEdge(W ); // according to the WTO
4 pre← π(u) ; post← π(v);
5 if (` {pre} τQ(u, v) {post}) then W ←W \ {(u, v)}; // use SMT-solver
6 else
7 π(v)← weakPost(pre, τQ(u, v), post); // see Alg 3
8 W ← (W \ {(u, v)}) ∪ {(v, x) ∈ E | x ∈ V }
9 return π

Our key contribution is an algorithm mkInd for weakening a candidate invariant.
We describe it in details in the rest of this section.

mkInd is shown in Alg. 2. The input is a candidate invariant ψ, a new
program Q and an original program P . The output is an inductive weakening
π of ψ (i.e., π satisfies (2) and (3)) for Q. mkInd maintains a work-list W ⊆ E
that is initialized with all the edges (u, v) ∈ E on which P and Q disagree (i.e.,
τP (u, v) 6= τQ(u, v)). In each iteration of the main loop, first, an edge (u, v) ∈W
that is least in the Weak Topological Ordering (WTO) [2] (in which inner loops
are traversed before outer loops) is picked. Second, an SMT-solver is used to
check whether the current values of π(u) and π(v) form a valid Hoare-triple for
the corresponding loop-free code fragment τQ(u, v). If this is not the case, the
post-condition π(v) is weakened until the triple becomes valid and all outgoing
edges of v are added to W . Soundness of mkInd is immediate – the work-list
is empty only if every edge is annotated with a valid pre- and post-condition
pair. Termination follows from the fact that at each iteration either the work-
list is reduced, or a post-condition is weakened, and, our implementation of
weakPost allows only for finitely many weakening steps.

weakPost is shown in Alg. 3. The input is a pre-condition pre, a post-
condition post and a loop-free program fragment S. The output is a weaken-
ing post′ of post such that {pre} S {post′} is valid. We assume that the post-
condition post is given as a conjunction of lemmas, i.e., post =

∧
i `i. The algo-

rithm computes the (possibly empty) subset of {`i} that forms a valid post-condition.
The naive implementation of weakPost iteratively checks whether each `i

is a post-condition. Instead, we use an incremental SMT solver to do this enu-
meration efficiently. We assume that in addition to the SmtSolve API, an SMT
solver has the method SmtAssert to add constraints to the current context.
First, we compute an SMT-formula that encodes the verification condition (VC)
of S. We use helper method mkVc that implements VC-generation from [5].
Second, we construct vc that determines the validity of pre- and post-condition
by conjoining the pre-condition and negation of the post-condition (line 2) to
the VC. Note that the post-condition is asserted under assumptions, encoded by
Boolean variables xi such that lemma `i is active iff xi is true. We then itera-
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Algorithm 3: weakPost(pre, S, post)
Input: pre, post ∈ Expr ; post =

∧n

i=0 `i; S ∈ Stmt∗
Output: post′ ∈ Expr , such that ` {pre} S {post′} is valid

1 let {xi | 0 ≤ i ≤ n} be fresh Boolean variables; U ← {0, . . . , n};
2 vc ← pre ∧ mkVC(S) ∧ ¬(

∧n

i=0(xi → `i));
3 SmtAssert(vc);
4 while SmtSolve( ) = SAT do
5 M ← SmtModel( );
6 foreach {0 ≤ i ≤ n |M |= xi} do SmtAssert(¬xi);U ← U \ {i};
7 post′ ← ∧{`i | i ∈ U};
8 return post′

tively check the validity of vc. In each iteration, if vc is satisfiable, we assert ¬xi

to disable the corresponding lemma(s). This terminates eventually since there
are finitely many lemmas and at least one is disabled at every iteration. The
conjunction of all active lemmas is returned as post′.

To summarize we illustrate mkInd on an example from Figs. 1a-1b. Given P ,
its safety proof ψ and Q, mkInd first checks the validity of the edge en→ v1, i.e.,
{>} x:=1 {x > 0∧y > 0}. It is clearly invalid, thus weakPost is used to weaken
π(v1) to x > 0. Next, the validity of the triple for the edge v1 → v2 is checked,
i.e., {x > 0} x++ {x > 0 ∧ y > 0}. Note that the post-condition constructed in
the previous step is now used as the pre-condition. Again, the triple is invalid
and the post-condition is weakened to x > 0. Finally, the edges v2 → v1 and
v1 → err are checked, and mkInd terminates. The final inductive invariant π of
Q is shown in Fig. 1c. In this case, π is also a safety proof (π(err) → ⊥, and,
therefore, ϕ ≡ π), so no further strengthening is required.

4 Evaluation

We have implemented optVerify in the UFO framework, and evaluated it on
the Software Verification Competition (SVCOMP’13) benchmarks and instcombine
optimization of LLVM. For each benchmark (300 - 5000 lines of source code), we
measured the verification time oV, time of optVerify (mkInd + Verify), and
time to re-verify from scratch (uV). Out of 397 safe benchmarks, we chose 108
that had non-trivial original verification time (oV > 1s). Due to lack of space,
results are available at http://www.inf.usi.ch/phd/fedyukovich/optVerify.pdf.

In all but 6 cases, re-verification (Verify) was insignificant (< 1s). Further-
more, in 67 cases the candidate invariant was already safe and no strengthen-
ing was needed. In 52 cases, optVerify was at least an order of magnitude
faster than re-verification (uV). This highlights the benefit of the approach. In
34 cases, instcombine dramatically reduced verification time (from minutes to
< 1s). This shows that sometimes it is better to verify the optimized program
first and then adapt the results to the original one. While this can be done using
optVerify, we have not done so yet.
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5 Related Work
There is a large body of related work on incremental verification, verifying com-
pilers, and translation validation. Here, we only survey some of the most relevant
techniques. Our algorithm is inspired by recent advancements in upgrade check-
ing [3] and witnessing compiler transformations [6].

The goal of upgrade checking is to adapt a verification result from an original
program P to an upgraded program Q, where Q is obtained from P by changing
some of its functions. Current techniques [3] apply to bounded programs with
functions, and work by adapting function summaries (i.e., relationship between
function’s inputs and outputs) from P to Q. In contrast, we work on unbounded
programs without functions and adapt safety proofs (i.e., safe inductive invari-
ants). Extending our approach to deal with functions is an interesting direction
for future work.

The goal of witnessing compiler transformations is to formally establish
equivalence (namely, stuttering simulation) between an original program P and
its optimization Q. Current technique [6] works by instrumenting every opti-
mization pass to output a witness relating its input and output. In contrast,
we are interested in an automated solution. In that, our work is more similar to
translation validation [7]. However, we only require equivalence with respect to a
given property. At the technical level, our use of CPGs makes the approach less
sensitive to many restructuring optimizations such as loop unrolling. We expect
that in practice the two approaches can be combined, extending our algorithm,
for example, to handle optimizations changing CPG structure.

At its core, our solution is similar to Houdini [4] inference algorithm that
constructs inductive invariant out of a set of candidate formulas. However, there
are many technical differences. One being our use of incremental SMT solver
to speed up the search. More importantly, we need to adapt candidates from
one program to another. Since based on discarding some candidate lemmas, our
current adaptation strategy is rather rough and might be replaced by a more
accurate one which weakens formulas on logical level and guided by results on
analysis of concrete optimizations. This remains a challenge for future work.
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