
OpenSMT2: An SMT Solver for Multi-Core and
Cloud Computing

Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha
Sharygina

Faculty of Informatics, University of Lugano
Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

Abstract. This paper describes a major revision of the OpenSMT solver
developed since 2008. The version 2 significantly improves its predecessor
by providing a design that supports extensions, several critical bug fixes
and performance improvements. The distinguishing feature of the new
version is the support for a wide range of parallelization algorithms both
on multi-core and cloud-computing environments. Presently the solver
implements the quantifier free theories of uninterpreted functions and
equalities and linear real arithmetics, and is released under the MIT
license.

1 Introduction

SMT solvers constitute an attractive approach for constraint programming that
combines the efficiency of the solvers for propositional formulas with the expres-
siveness of higher-order logics. While the underlying principle of SMT solvers is
simple the state-of-the-art SMT solvers are wonderfully complex software that,
while offering superior performance, are challenging to approach for developers
new to the code. In this paper we present the OpenSMT2 SMT solver. The
new release puts a particular emphasis to easy approachability by being com-
pact but still supporting the important quantifier-free theories of uninterpreted
functions and equalities (QF UF) and linear real arithmetics (QF LRA). The
solver is available at http://verify.inf.usi.ch/opensmt and is open source
under the relatively liberal MIT license. Compared to the previous version [2]
the major improvements are the complete re-design of the data structure used
for representing terms, which is now detached from the underlying theories; a
modular framework for building expressions in different logics matched with a
similarly modular framework for logic solvers; and several critical bug fixes. We
have also improved the performance of the solver in particular on the instances
of QF LRA. The system supports scalability through parallel SMT solving on
both multi-core and cloud computing environments with impressive increase in
performance for cloud computing.

to CNF

SMT parser Theory solvers
SAT solver

APIProgram

Theory specific

simplification

results

smt2 file

results

translation
c

c′φs
φCNF

φ

σ

Fig. 1. Overview of the OpenSMT2 architecture.

Logic

SAT solverTHandler

TSolverHandler

UFTHandler LRATHandler

TSolver

Egraph LRASolver

Theory

UFTheory LRATheory

LRALogicEL

ES

ET

Fig. 2. The architecture of the theory framework in OpenSMT2. The element EL con-
tains the logic implementation, ES contains the solver implementation, and ET contains
the theory elements that glue the logic to the solvers.

2 OpenSMT2

This section gives an overview of the implementation of OpenSMT2. For a more
detailed and generic description the reader is referred to [3]. Figure 1 describes
the functionality of OpenSMT2 on a high-level. The solver supports reading
an smt-lib file and interacting through an application-program-interface. The
problem is then converted into an SMT formula φ and simplified into φs using
both simplifications working on the propositional level, where for example nested
conjunctions are flattened and Boolean constraints removed, as well as on the
theory level, where for instance asserted equalities are used to compute variable
substitutions. The resulting formula is translated into conjunctive normal form
φCNF. The formula φCNF is fed to the SAT solver which initializes the theory
solvers based on the variables seen by the solver. The SAT solver then provides
the theory solvers with assignments σ satisfying φCNF. If a theory solver deems σ
unsatisfiable it returns a clause c that prevents the SAT solver from reproducing
similar inconsistent assignments. The clauses are simplified to learned clauses
c′ using resolution guided by the conflict graph [8] and the CNF formula is
updated to φCNF := φCNF ∧ c′. The process finishes when either φCNF becomes
unsatisfiable or the SAT solver finds a theory-consistent truth assignment σ.

Table 1. Abstract methods that must be overridden in the classes described in Fig. 2
to implement new theories.

Method Description

Theory
simplify Entry point for theory specific simplifications.

Logic
mkConst Create logic-specific constants.
isUFEquality Check whether a given equality is uninterpreted.
isTheoryEquality Check whether a given equality is from a theory.
insertTerm Insert a theory term.
retrieveSubstitutions Get the substitutions based on the logic.

TSolverHandler
assertLit special Assert literals in the simplification phase.

TSolver
assertLit Assert a theory literal.
pushBacktrackPoint,
popBacktrackPoint

Incrementally add and remove asserted theory literals.

check Check theory consistency of the asserted literals.
getValue obtain a value of a theory term once a model has been found.
computeModel compute a concrete model for the theory terms once the theory

solver finds a model consistent.
getConflict return a compact explanation of the theory-inconsistency in the

form of theory literals.
getDeduction get theory literals implied under the current assignment.
declareTerm inform the theory solvers about a theory literal.

Figure 2 shows an abstraction the framework OpenSMT2 uses for implement-
ing theories together with two concrete examples, QF UF [3] and QF LRA [4].
The figure follows a UML-style representation where the boxes with rounded cor-
ners represent abstract classes that cannot be instantiated, and sharp-cornered
boxes represent concrete classes. The dashed arrows point to base classes while
solid arrows point to instances held by a particular class. The framework imple-
ments the interactions in Fig. 1 related to the API, theory specific simplifications,
and the theory solvers. The architecture is divided into three elements: the Logic
element EL implementing the logical language, the Solver element ES that imple-
ments the solver, and the Theory element ET which combines the logic and the
solver. Extending the solver with new theories is done by introducing classes for
the new theory solver and theory solver handler to ES , the new logic to EL and
the new theory to ET . Table 1 provides a brief overview of the most important
methods that need to be implemented for the classes.

Figure 3 compares the solver performance to other solvers and the previous
version OpenSMT1 in the QF UF and QF LRA categories of smt-lib. The solver
is competitive in particular in the logic QF UF compared to other solvers, and
is a clear improvement over the previous version in QF LRA.

6100

6200

6300

6400

6500

6600

6700

1 10 100 1000

N
u
m
b
er

of
so
lv
ed

in
st
an

ce
s

Time (s)

OpenSMT1
OpenSMT2

CVC4
MathSAT5

Z3
Yices

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1 10 100 1000

N
u
m
b
er

of
so
lv
ed

in
st
an

ce
s

Time (s)

OpenSMT1
OpenSMT2

CVC4
MathSAT5

Z3
Yices

Fig. 3. Number of solved instances in a given timeout for OpenSMT1, OpenSMT2,
and certain other solvers for the logics QF UF (left) and QF LRA (right).

3 The Parallel Solvers

This section describes two parallel SMT solvers based on OpenSMT2. Section 3.1
details an implementation designed to run on a distributed cloud computing
environment, and Sec. 3.2 describes a thread-based parallel SMT solver. The
implementation of both parallel solvers is based on the safe partitioning algo-
rithm [6,7] where an input formula φCNF is partitioned into φ1CNF . . . φ

n
CNF that

are pairwise unsatisfiable (φiCNF ∧ φjCNF is unsatisfiable whenever i 6= j) and
whose disjunction is equisatisfiable with φCNF (

∨n
i=1 φ

i ≡ φCNF). Each partition
is then solved with a set Si of SMT solvers each using different random seeds.
When a partition φiCNF is shown satisfiable the parallel solver terminates show-
ing also φCNF satisfiable, whereas if φiCNF is shown unsatisfiable for all i, also
φCNF is unsatisfiable. In case φiCNF is shown unsatisfiable, the parallel implemen-
tations reallocate the solvers Si evenly for solving the yet unsolved partitions.
We also consider an important special case of safe partitioning where n = 1
called the portfolio approach.

3.1 OpenSMT2 for Cloud Computing

This tool consists of a framework using OpenSMT2 to provide an SMT solver
designed to run on distributed cloud computing environments. The design follows
a client-server model: the server receives input instances in the smt-lib format
from the user, handles the connection with the clients, and acts as a front-
end to the user. Both client disappearance and asynchronous connection of new
clients at run-time are handled transparently by the server making the system
more user-friendly and maintaining the soundness of the result also in case of
disappearing clients. The clients are OpenSMT2 solvers whose task is to solve
the instance φCNF received from the server. Depending on the configuration of
the server the system runs either in the safe partitioning or portfolio mode.
Figure 4 gives an overview of the framework.

...

FIFO Channel

Filter
Heuristic

Server

Clause DB

Selection
Heuristic

Cluster
Head node

Client

SMT Solver

Client

SMT Solver

Client

SMT Solver

C , C , ... ,C1 2 nC , C , ... ,C1 2 nC , C , ... ,C1 2 n

Partition
Heuristic

Input
instances

Fig. 4. The distributed SMT solver framework with clause sharing

The cloud computing implementation supports learned clause sharing among
the clients Si working on the same partition φiCNF. During the solving task, each
client periodically sends new learned clauses through a FIFO channel which acts
as a light push mechanism to the server. The clauses are stored to the Clause
DB (see Fig. 4) where the clients periodically query new clauses. Heuristics for
filtering promising clauses are used both when storing clauses to the Clause
DB and when answering the client queries. In the current implementation the
heuristics prefer short clauses over longer clauses. The connection required to
update the clients is bidirectional since it is not possible to foresee when a client
is ready to accept new clauses. The bidirectional connections are shown with
dashed lines with double arrows.

In order to partition and share clauses the system must ensure that the inter-
nal clausal representation of each instance is the same in every client. The smt-lib
format does not guarantee this since small changes in the input formula might
result in optimizations that will dramatically change the formula φCNF. Instead
OpenSMT2 uses a custom binary format storing its state. This format is used
both for data transfers between each client and the server, and for initializing
the solvers in the multi-threaded implementation.

The Clause DB and the FIFO queue are implemented with the in-memory
database REDIS1. We chose REDIS since it supports both the publisher / sub-
scriber messaging paradigm used as FIFO channel for clauses exchange, and the
hash set feature which is useful to store clauses and handling sets operations
used by both the filter and the selection heuristics.

Figure 5 reports an experimental evaluation of the cloud computing version
on selected instances from QF UF (left) and QF LRA (right). The server is
executed with six different configurations: partitioning the input instance into
one (portfolio), two and eight partitions and spreading them among the 64 solvers

1 http://redis.io

0

10

20

30

40

50

60

70

1 10 100 1000

N
u
m
b
er

of
so
lv
ed

in
st
an

ce
s

Time (s)

OSMT2
s1
s2
s8

s1 CS
s2 CS
s8 CS

0

10

20

30

40

50

60

1 10 100 1000

N
u
m
b
er

of
so
lv
ed

in
st
an

ce
s

Time (s)

OSMT2
s1
s2
s8

s1 CS
s2 CS
s8 CS

Fig. 5. OpenSMT2 cloud version comparison between partitioning in 1,2 and 8 parti-
tions with and without clause sharing on QF UF (left) and QF LRA (right). sn stands
for partitioning into n, and CS stands for using clause sharing and filtering clauses that
contain more than 5 literals.

in the cloud, with and without clause sharing. As a reference we also report the
corresponding result with OpenSMT2. In general clause sharing seems to be very
helpful in obtaining speed-up. The safe partitioning approach works better on
QF UF than on QF LRA, suggesting that the role of the partitioning heuristic
in QF LRA might be more critical.

3.2 Multi-Threaded OpenSMT2

The multi-threading feature of OpenSMT2 can be activated by setting the -p

and -t arguments to integer values representing respectively the number of par-
titions and solving threads. For example to solve instance.smt2 by partitioning
the instance into two and solving the partitions using four parallel threads, the
following command should be executed:

opensmt −p2 −t4 i n s t anc e . smt2

The client dispatching is similar to the cloud-computing version. A main
thread partitions the input instance, creates the requested number of POSIX
threads, and starts clients on the threads for solving the partitions. The commu-
nication between the main thread and the solver threads are handled with the
efficient POSIX pipes.

4 Conclusions

This work presents the SMT solver OpenSMT2, its architecture, two parallel
variants, and a brief performance evaluation. The solver is used as the back-end
in model-checking tools eVolCheck [5], FunFrog [10], and PeRIPLO [9,1]. We
are currently working on improving the solver performance and its capabilities
in theory interpolation.

References

1. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive ap-
proach for small propositional interpolants. In: Proc. VSTTE 2015. LNCS, vol.
9593, pp. 1–18. Springer (2016)

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Proc. TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer (2010)

3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. Journal of the ACM 52(3), 365–473 (2005)

4. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer (2006)

5. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental upgrade checker
for C. In: Proc. TACAS 2013. LNCS, vol. 7795, pp. 292–307. Springer (2013)

6. Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space partitioning for
parallelizing SMT solvers. In: Theory and Applications of Satisfiability Testing,
SAT 2015, 18th International Conference, Austin, TX, USA, September 24-27,
2015. Proceedings. pp. 369–386 (2015)

7. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning search spaces of a ran-
domized search. Fundamenta Informaticae 107(2-3), 289–311 (2011)

8. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

9. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in SAT-based software verifica-
tion. In: Proc. LPAR 2013. LNCS, vol. 8312, pp. 683–693. Springer (2013)

10. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded model checking with
interpolation-based function summarization. In: Proc. ATVA 2012. LNCS, vol.
7561, pp. 203–207. Springer (2012)

