
A Proof-Sensitive Approach for Small
Propositional Interpolants

Leonardo Alt, Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha
Sharygina

Formal Verification Lab, USI, Switzerland

Abstract. The labeled interpolation system (LIS) is a framework for
Craig interpolation widely used in propositional-satisfiability-based model
checking. Most LIS-based algorithms construct the interpolant from a
proof of unsatisfiability and a fixed labeling determined by which part of
the propositional formula is being over-approximated. While this results
in interpolants with fixed strength, it limits the possibility of generating
interpolants of small size. This is problematic since the interpolant size
is a determining factor in achieving good overall performance in model
checking. This paper analyses theoretically how labeling functions can be
used to construct small interpolants. In addition to developing the new
labeling mechanism guaranteeing small interpolants, we also present its
versions managing the strength of the interpolants. We implement the
labeling functions in our tool PeRIPLO and study the behavior of the
resulting algorithms experimentally by integrating the tool to a variety
of model checking applications. Our results suggest that the new proof-
sensitive interpolation algorithm performs consistently better than any
of the standard interpolation algorithms based on LIS.

1 Introduction

In SAT-based model checking, a widely used workflow for obtaining an inter-
polant for a propositional formula A is to compute a proof of unsatisfiability for
the formula φ = A∧B, use a variety of standard techniques for compressing the
proof (see, e.g., [17]), construct the interpolant from the compressed proof, and
finally simplify the interpolant [4]. The labeled interpolation system (LIS) [9] is a
commonly used, flexible framework for computing the interpolant from a given
proof that generalizes several interpolation algorithms parameterized by a la-
beling function. Given a labeling function and a proof, LIS uniquely determines
the interpolant. However, the LIS framework allows significant flexibility in con-
structing interpolants from a proof through the choice of the labeling function.

Arguably, the suitability of an interpolant depends ultimately on the appli-
cation [17], but there is a wide consensus that small interpolants lead to better
overall performance in model checking [3,21,17]. However, generating small in-
terpolants for a given partitioning is a non-trivial task. This paper presents, to
the best of our knowledge, the first thorough, rigorous analysis on how labeling
in the LIS framework affects the size of the interpolant. The analysis is backed

up by experimentation showing also the practical significance of the result. We
believe that the results reported here will help the community working on inter-
polation in designing interpolation algorithms that work well independent of the
application. Based on the analysis we present the proof-sensitive interpolation
algorithm PS that produces small interpolants by adapting itself to the proof of
unsatisfiability. We prove under reasonable assumptions that the resulting inter-
polant is always smaller than those generated by any other LIS-based algorithms,
including the widely used algorithms Ms (McMillan [13]), P (Pudlák [16]), and
Mw (dual to Ms [9]).

In some applications it is important to give guarantees on the logical strength
of the interpolants. Since the LIS framework allows us to argue about the result-
ing interpolants by their logical strength [9], we know that for a fixed problem
A ∧ B and a fixed proof of unsatisfiability, an interpolant constructed with Ms

implies one constructed with P which in turn implies one constructed with Mw.
While PS is designed to control the interpolant size, we additionally define two
variants controlling the interpolant strength: the strong and the weak proof-
sensitive algorithms computing, respectively, interpolants that imply the ones
constructed by P and that are implied by the ones constructed by P.

We implemented the new algorithms in the PeRIPLO interpolation frame-
work [17] and confirm the practical significance of the algorithms with an exper-
imentation. The results show that when using PS, both the sizes of the inter-
polants and the run times when used in a model-checking framework compare
favorably to those obtained with Ms,P, and Mw, resulting occasionally in sig-
nificant reductions.

1.1 Related Work

Interpolants can be compacted through applying transformations to the reso-
lution refutation. For example, [17,18] compare the effect of such compaction
on the interpolation algorithms Ms,P, and Mw in connection with function-
summarization-based model checking [10,20]. A similar approach is studied in [9]
combined with an analysis on the strength of the resulting interpolant. Differ-
ent size-based reductions are further discussed in [4,11]. While often successful,
these approaches might produce a considerable overhead in large problems. Our
approach is more light-weight and uses directly the flexibility of LIS to perform
the compression. An interesting analysis similar to ours, presented in [3], con-
centrates on the effect of identifying subsumptions in the resolution proofs. A
significant reduction in the size of the interpolant can be obtained by considering
only CNF-shaped interpolants [21]. However, the strength of these interpolants is
not as easily controllable as in the LIS interpolants, making the technique harder
to apply in certain model checking approaches. A light-weight interpolant com-
paction can be performed by specializing through simplifying the interpolant
with a truth assignment [12].

In many verification approaches using counter-examples for refinement it is
possible to abstract an interpolant obtained from a refuted counter-example.
For instance, [19,2] present a framework for generalizing interpolants based on

templates. A related approach for generalizing interpolants in unbounded model-
checking through abstraction is presented in [5] using incremental SAT solving.
While this direction is orthogonal to ours, we believe that the ideas presented
here and addressing the interpolation back-end would be useful in connection
with the generalization phase.

Linear-sized interpolants can be derived also from resolution refutations com-
puted by SMT solvers, for instance in the combined theory of linear inequalities
and equalities with uninterpreted functions [14] and linear rational arithmetic [1].
These approaches have an interesting connection to ours since they also contain a
propositional part. It is also possible to produce interpolants without a proof [7].
However, this method gives no control over the relative interpolant strength and
reduces in the worst case to enumerating all models of a SAT instance. Finally,
conceptually similar to our work, there is a renewed interest in interpolation
techniques used in connection with modern ways of organizing the high-level
model-checking algorithm [15,6].

2 Preliminaries

Given a finite set of propositional variables, a literal is a variable p or its negation
¬p. A clause is a finite set of literals and a formula φ in conjunctive normal form
(CNF) is a set of clauses. We also refer to a clause as the disjunction of its literals
and a CNF formula as the conjunction of its clauses. A variable p occurs in the
clause C, denoted by the pair (p, C), if either p ∈ C or ¬p ∈ C. The set var(φ)
consists of the variables that occur in the clauses of φ. We assume that double
negations are removed, i.e., ¬¬p is rewritten as p. A truth assignment σ assigns
a Boolean value to each variable p. A clause C is satisfied if p ∈ C and σ(p) is
true, or ¬p ∈ C and σ(p) is false. The propositional satisfiability problem (SAT)
is the problem of determining whether there is a truth assignment satisfying
each clause of a CNF formula φ. The special constants > and ⊥ denote the
empty conjunction and the empty disjunction. The former is satisfied by all truth
assignments and the latter is satisfied by none. A formula φ implies a formula
φ′, denoted φ → φ′, if every truth assignment satisfying φ satisfies φ′. The size
of a propositional formula is the number of logical connectives it contains. For
instance the unsatisfiable CNF formula

φ = (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1) (1)

of size 14 consists of 4 variables and 5 clauses. The occurrences of the variable
x4 are (x4,¬x2 ∨ x4) and (x4,¬x2 ∨ ¬x3 ∨ ¬x4).

For two clauses C+, C− such that p ∈ C+, ¬p ∈ C−, and for no other variable
q both q ∈ C− ∪ C+ and ¬q ∈ C− ∪ C+, a resolution step is a triple C+, C−,
(C+ ∪ C−) \ {p,¬p}. The first two clauses are called the antecedents, the latter
is the resolvent and p is the pivot of the resolution step. A resolution refutation
R of an unsatisfiable formula φ is a directed acyclic graph where the nodes are
clauses and the edges are directed from the antecedents to the resolvent. The
nodes of a refutation R with no incoming edge are the clauses of φ, and the rest

of the clauses are resolvents derived with a resolution step. The unique node
with no outgoing edges is the empty clause. The source clauses of a refutation
R are the clauses of φ from which there is a path to the empty clause.

Given an unsatisfiable formula A∧B, a Craig interpolant I for A is a formula
such that A → I, I ∧ B is unsatisfiable and var(I) ⊆ var(A) ∩ var(B). An
interpolant can be seen as an over-approximation of A that is still unsatisfiable
when conjoined with B. In the rest of the paper we assume that A and B only
consist of the source clauses of R.

The labeled interpolation system [9] (LIS) is a framework that, given proposi-
tional formulas A, B, a refutation R of A ∧B and a labeling function L, computes
an interpolant I for A based on R. The refutation together with the partitioning
A,B is called an interpolation instance (R,A,B). The labeling function L assigns
a label from the set {a, b, ab} to every variable occurrence (p, C) in the clauses
of the refutation R. A variable is shared if it occurs both in A and B; otherwise
it is local. For all variable occurrences (p, C) in R, L(p, C) = a if p is local to
A and L(p, C) = b if p is local to B. For occurrences of shared variables in the
source clauses the label may be chosen freely. The label of a variable occurrence
in a resolvent C is determined by the label of the variable in its antecedents.
For a variable occurring in both its antecedents with different labels, the label
of the new occurrence is ab, and in all other cases the label is equivalent to the
label in its antecedent or both antecedents.

An interpolation algorithm based on LIS computes an interpolant with a
dynamic algorithm by annotating each clause of R with a partial interpolant
starting from the source clauses. The partial interpolant of a source clause C is

I(C) =

{∨{l | l ∈ C and L(var(l), C) = b} if C ∈ A, and∧{¬l | l ∈ C and L(var(l), C) = a} if C ∈ B,
(2)

The partial interpolant of a resolvent clause C with pivot p and antecedents C+

and C−, where p ∈ C+ and ¬p ∈ C−, is

I(C) =

 I(C+) ∨ I(C−) if L(p, C+) = L(p, C−) = a,
I(C+) ∧ I(C−) if L(p, C+) = L(p, C−) = b, and
(I(C+) ∨ p) ∧ (I(C−) ∨ ¬p) otherwise.

(3)

The interpolation algorithms Ms, P, and Mw mentioned in the introduction
can be obtained as special cases of LIS by providing a labeling function returning
b, ab, and a for the shared variables, respectively.

In some applications it is useful to consider different interpolants constructed
from a fixed interpolation instance, but using different interpolation algorithms [10].
For such cases the LIS framework provides a convenient tool for analyzing
whether the interpolants generated by one interpolation algorithm always imply
the interpolants generated by another algorithm. If we order the three labels
so that b ≤ ab ≤ a, it can be shown that given two labeling functions L and
L′ resulting in the interpolants IL and IL′ in LIS and having the property that
L(p, C) ≤ L′(p, C) for all occurrences (p, C), it is true that IL → IL′ . In this case

x1 ∨ x2 [⊥]¬x2 ∨ x4 [x2] ¬x2 ∨ ¬x3 ∨ ¬x4 [x2] x1 ∨ x3 [¬x1]

¬x1 [x1]
x1 ∨ ¬x2 ∨ ¬x4 [¬x1 ∧ x2]

x1 ∨ ¬x4
[¬x1 ∧ x2]

¬x4 [(¬x1 ∧ x2) ∨ x1]
¬x2

[((¬x1 ∧ x2) ∨ x1) ∧ x2]

x2 [x1]

⊥
I = [(((¬x1 ∧ x2) ∨ x1) ∧ x2) ∨ x1]

[x1 ∨ x2][⊤] [⊤] [⊤]

[⊤]
[⊤]

[x1 ∨ x2]

[x1 ∨ x2]

[x1 ∨ x2]

[x1 ∨ x2]

I = [x1 ∨ x2]

A = (x1 ∨ x2) B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)Partitioning P1:

L = {(x2,C1):b, (x4,C1):b,
(x2,C2):b, (x3,C2):b, (x4,C2):b,
(x1,C3):b, (x3,C3):b, (x1,C4):b,
(x1,C5):b, (x2,C5):b}

L = {(x2,C1):a, (x4,C1):b,
(x2,C2):a, (x3,C2):b, (x4,C2):b,
(x1,C3):a, (x3,C3):b, (x1,C4):a,
(x1,C5):a, (x2,C5):a}

C1 C2 C3

C4

C5

Mw
Ms

Mw

Ms

Ms

Mw Mw Mw Mw

Mw

Mw

Mw

Mw

Mw

Mw

Ms Ms Ms

Ms

Ms

Ms

Ms

Ms

Ms

Fig. 1. Different interpolants obtained from the refutation using the partitioning P1.

we say that the interpolation algorithm obtained from LIS using the labeling L′

is weaker than the interpolation algorithm that uses the labeling L.
We define here two concepts that will be useful in the next section: the class

of uniform labeling functions, and the internal size of an interpolant.

Definition 1. A labeling function is uniform if for all pairs of clauses C,D ∈ R
containing the variable p, L(p, C) = L(p,D), and no occurrence is labeled ab.
Any interpolation algorithm with uniform labeling function is also called uniform.

An example of non-uniform labeling function is Dmin, presented in [8]. Dmin is
proven to produce interpolants with the least number of distinct variables.

Definition 2. The internal size IntSize(I) of an interpolant I is the number of
connectives in I excluding the connectives contributed by the partial interpolants
associated with the source clauses.

Typically, an interpolant constructed by a LIS-based algorithm will contain
a significant amount of subformulas that are syntactically equivalent. The struc-
tural sharing, i.e., maintaining a unique copy of the syntactically equivalent sub-
formulas, while completely transparent to the satisfiability, is of critical practical
importance. Similarly important for performance is the constant simplification,
consisting of four simple rewriting rules: > ∧ φ φ, ⊥ ∧ φ ⊥, > ∨ φ >,
and ⊥ ∨ φ φ, where φ is an arbitrary Boolean formula.

The following example illustrates the concepts discussed in this section by
showing how LIS can be used to compute interpolants with two different uniform
algorithms Ms and Mw.

Example 1. Consider the unsatisfiable formula φ = A∧B where φ is from Eq. (1)
and A = (x1∨x2) and B = (¬x2∨x4)∧(¬x2∨¬x3∨¬x4)∧(x1∨x3)∧(¬x1). Fig-
ure 1 shows a resolution refutation for φ and the partial interpolants computed
by the interpolation algorithms Ms and Mw. Each clause in the refutation is asso-
ciated with a partial interpolant ψ generated by labeling LMs

(denoted by [ψ]Ms)

and a partial interpolant ψ′ generated by labeling LMw
(denoted by [ψ′]Mw). The

generated interpolants are IMs
= x1∨x2 and IMw

= (((¬x1∧x2)∨x1)∧x2)∨x1.
Now consider a different partitioning φ′ = A′ ∧ B′ for the same formula where
the partitions have been swapped, that is, A′ = B and B′ = A. Using the
same refutation (figure omitted for lack of space), we get the interpolants I ′Ms

=
(((x1 ∨¬x2)∧¬x1)∨¬x2)∧¬x1 = ¬IMw

and I ′Mw
= ¬(x1 ∨x2) = ¬IMs

We use
both structural sharing and constant simplification in the example. The internal
size of IMs is 0, whereas the internal size of IMw is 4.

The two partitionings illustrate a case where the interpolation algorithm
Ms, in comparison to Mw, produces a small interpolant for one and a large
interpolant for another interpolation instance. Since the goal in this work is
to develop LIS-based interpolation algorithms that consistently produce small
interpolants, the labeling function of choice cannot be LMs

or LMw
. Note that

while in this case the interpolants IMs
and IMw

are equivalent, the representation
of IMw

is considerably smaller than the representation of IMs
. Since minimizing

a propositional formula is an NP-complete problem, producing interpolants that
are small in the first place is a very important goal.

3 Labeling Functions for LIS

This section studies the algorithms based on the labeled interpolation system in
an analytic setting. Our main objective is to provide a basis for developing and
understanding labeling functions that construct interpolants having desirable
properties. In particular, we will concentrate on three syntactic properties of the
interpolants: the number of distinct variables; the number of literal occurrences;
and the internal size of the interpolant. In most of the discussion in this section
we will ignore the two optimizations on structural sharing and constraint simpli-
fication. While both are critically important for practicality of interpolation, our
experimentation shows that they mostly have similar effect on all the interpola-
tion algorithms we studied, and therefore they can be considered orthogonally
(see Sec. 4.4). The exception is that the non-uniform labeling functions allow a
more efficient optimization compared to the uniform labeling functions through
constraint simplification. More specifically, the main results of the section are
the following theorems.

(i) If an interpolation instance is not p-annihilable (see Def. 3), which in our
experimentation turns out almost always to be the case, then all LIS inter-
polants constructed from the refutation have the same number of distinct
variables (Theorem 1);

(ii) For a given interpolation instance, the interpolants In obtained with any
non-uniform labeling function and Iu obtained with any uniform labeling
function satisfy IntSize(Iu) ≤ IntSize(In). (Theorem 2); and

(iii) Among uniform labeling functions, the proof-sensitive labeling function (see
Def. 4) results in the least number of variable occurrences in the partial
interpolants associated with the source clauses (Theorem 3).

From the three theorems we immediately have the following:

Corollary 1. For not p-annihilable interpolation instances, the proof-sensitive
labeling function will result in interpolants that have the smallest internal size,
the least number of distinct variables, and least variable occurrences in the source
partial interpolants.

The proof-sensitive interpolant strength can only be given the trivial guarantees:
it is stronger than IMw and weaker than IMs . At the expense of the minimality
in the sense of the above corollary, we introduce in Equations (6) and (7) the
weak and strong versions of the proof-sensitive labeling functions.

3.1 Analysing Labeling Functions

An interesting special case in LIS-based interpolation algorithms is when the
labeling can be used to reduce the number of distinct variables in the final
interpolant. To make this explicit we define the concepts of a p-pure resolution
step and a p-annihilable interpolation instance.

Definition 3. Given an interpolation instance (R,A,B), a variable p ∈ var(A)∪
var(B) and a labeling function L, a resolution step in R is p-pure if at most one
of the antecedents contain p, or both antecedents C,D contain p but L(p, C) =
L(p,D) = a or L(p, C) = L(p,D) = b. An interpolation instance (R,A,B) is
p-annihilable if there is a non-uniform labeling function L such that L(p, C) = a
if C ∈ A, L(p, C) = b if C ∈ B, and all the resolution steps are p-pure.

The following theorem shows the value of p-annihilable interpolation in-
stances in constructing small interpolants.

Theorem 1. Let (R,A,B) be an interpolation instance, p ∈ var(A) ∩ var(B),
and I an interpolant obtained from (R,A,B) by means of a LIS-based algorithm.
If p 6∈ var(I), then (R,A,B) is p-annihilable.

Proof. Assume that (R,A,B) is not p-annihilable, p ∈ var(A) ∩ var(B), but
there is a labeling L which results in a LIS-based interpolation algorithm that
constructs an interpolant not containing p. The labeling function cannot have
L(p, C) = b if C ∈ A or L(p, C) = a if C ∈ B because p would appear in the
partial interpolants associated with the sources by Eq. (2). No clause C in R
can have L(p, C) = ab since all literals in the refutation need to be used as a
pivot on the path to the empty clause, and having an occurrence of p labeled ab
in an antecedent clause would result in introducing the literal p to the partial
interpolant associated with the resolvent by Eq. (3) when used as a pivot. Every
resolution step in the refutation R needs to be p-pure, since if the antecedents
contain occurrences (p, C) and (p,D) such that L(p, C) 6= L(p,D) either the
label of the occurrence of p in the resolvent clause will be ab, violating the
condition that no clause can have L(p, C) = ab above, or, if p is pivot on the
resolution step, the variable is immediately inserted to the partial interpolant
by Eq. (3). ut

While it is relatively easy to artificially construct an interpolation instance
that is p-annihilable, they seem to be rare in practice (see Section 4.4). Hence,
while instances that are p-annihilable would result in small interpolants, it has
little practical significance at least in the benchmarks available to us. However,
we have the following practically useful result which shows the benefits of labeling
functions producing p-pure resolution steps in computing interpolants with low
number of connectives.

Theorem 2. Let (R,A,B) be an interpolation instance. Given a labeling func-
tion L such that the resolution steps in R are p-pure for all p ∈ var(A∧B), and
a labeling function L′ such that at least one resolution step in R is not p-pure
for some p ∈ var(A ∧B), we have IntSize(IL) ≤ IntSize(IL′).

Proof. For a given refutation R, the number of partial interpolants will be the
same for any LIS-based interpolation algorithm. By Eq. (3) each resolution step
will introduce one connective if both occurrences in the antecedents are labeled
a or b and three connectives otherwise. The latter can only occur if the labeling
algorithm results in a resolution step that is not p-pure for some p. ut

Clearly, p-pure steps are guaranteed with uniform labeling functions. Therefore
we have the following corollary:

Corollary 2. Uniform labeling functions result in interpolants with smaller in-
ternal size compared to non-uniform labeling functions.

The main result of this work is the development of a labeling function that is
uniform, therefore producing small interpolants by Corollary 2, and results in the
smallest number of variable occurrences among all uniform labeling functions.
This proof-sensitive labeling function works by considering the refutation R when
assigning labels to the occurrences of the shared variables.

Definition 4. Let R be a resolution refutation for A∧B where A and B consist
of the source clauses, fA(p) = |{(p, C) | C ∈ A}| be the number of times the
variable p occurs in A, and fB(p) = |{(p, C) | C ∈ B}| the number the variable
p occurs in B. The proof-sensitive labeling function LPS is defined as

LPS(p, C) =

{
a if fA(p) ≥ fB(p)

b if fA(p) < fB(p).
(4)

Note that since LPS is uniform, it is independent of the clause C. Let ShA be
the set of the shared variables occurring at least as often in clauses of A as in B
and ShB the set of shared variables occurring more often in B than in A:

ShA = {p ∈ var(A) ∩ var(B) | fA(p) ≥ fB(p)} and
ShB = {p ∈ var(A) ∩ var(B) | fA(p) < fB(p)} (5)

Theorem 3 states the optimality with respect to variable occurrences of the
algorithm PS among uniform labeling functions.

A = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)
B = (x1 ∨ x2)

LPS= {(x 2,C1):a, (x4,C1):a, (x2,C2):a, (x3,C2):a, (x4,C2):a,
 (x1,C3):a, (x3,C3):a, (x1,C4):a, (x1,C5):a, (x2,C5):a}

Sh = {x1, x2}, ShA = {x1, x2}, ShB = {}

x1∨x2 [¬(x1∨x2)]¬x2∨x4 [⊥] ¬x2∨¬x3∨¬x4 [⊥] x1∨x3 [⊥]

¬x1 [⊥]
x1∨¬x2∨¬x4 [⊥]

 x1∨¬x4[¬(x1∨x2)]

¬x4 [¬(x1∨x2)]

 ¬x2[¬(x1∨x2)]

 [¬(x1∨x2)]

⊥
IPS = [¬(x1∨x2)]

x2

A = (x1 ∨ x2)
B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)

LPS = {(x2,C1):b, (x4,C1):b, (x2,C2):b, (x3,C2):b, (x4,C2):b,
 (x1,C3):b, (x3,C3):b, (x1,C4):b, (x1,C5):b, (x2,C5):b}

Sh = {x1, x2}, ShA = {}, ShB = {x1, x2}

x1∨x2 [x1∨x2]¬x2∨x4 [⊤] ¬x2∨¬x3∨¬x4 [⊤] x1∨x3 [⊤]

¬x1 [⊤]x1∨¬x2∨¬x4 [⊤]

 x1∨¬x4[x1∨x2]

¬x4 [x1∨x2]

 ¬x2[x1∨x2]

[x1∨x2]

⊥
IPS = [x1∨x2]

x2

C1 C2 C3

C4

C5 C1 C2 C3

C4

C5

Fig. 2. Interpolants obtained by PS.

Theorem 3. For a fixed interpolation instance (R,A,B), the interpolation al-
gorithm PS will introduce the smallest number of variable occurrences in the
partial interpolants associated with the source clauses of R among all uniform
interpolation algorithms.

Proof. The interpolation algorithm PS is a uniform algorithm labeling shared
variables either as a or b. Hence, the shared variables labeled a will appear in the
partial interpolants of the source clauses from B of R, and the shared variables
labeled b will appear in the partial interpolants of the source clauses from A of
R. The sum of the number of variable occurrences in the partial interpolants
associated with the source clauses by PS is

nPS =
∑

v∈ShB

fA(v) +
∑

v∈ShA

fB(v).

We will show that swapping uniformly the label of any of the shared variables
will result in an increase in the number of variable occurrences in the partial
interpolants associated with the source clauses of R compared to nPS. Let v be a
variable in ShA. By (4) and (5), the label of v in PS will be a. Switching the label
to b results in the size n′ = nPS − fB(v) + fA(v). Since v was in ShA we know
that fA(v) ≥ fB(v) by (5), and therefore −fB(v) + fA(v) ≥ 0 and n′ ≥ nPS.
An (almost) symmetrical argument shows that swapping the label for a variable
v ∈ ShB to a results in n′ > nPS. Hence, swapping uniformly the labeling of
PS for any shared variable will result in an interpolant having at least as many
variable occurrences in the leaves. Assuming no simplifications, the result holds
for the final interpolant. ut

Example 2. Fig. 2 shows the interpolants that PS would deliver if applied to the
same refutation R of φ and partitionings A∧B and A′ ∧B′ given in Example 1.
Notice that PS adapts the labeling to the best one depending on the refutation
and partitions, and gives small interpolants for both cases.

Because of the way LPS labels the variable occurrences, we cannot beforehand
determine the strength of PS relative to, e.g., the algorithms Ms,P, and Mw.

Although it is often not necessary that interpolants have a particular strength, in
some applications this has an impact on performance or even soundness [17]. To
be able to apply the idea in applications requiring specific interpolant strength,
for example tree interpolation, we propose a weak and a strong version of the
proof-sensitive interpolation algorithm, PSw and PSs. The corresponding label-
ing functions LPSw

and LPSs
are defined as

LPSw(p, C) =

a if p is not shared and C ∈ A or p ∈ ShA
b if p is not shared and C ∈ B
ab if p ∈ ShB

(6)

LPSs
(p, C) =

a if p is not shared and C ∈ A
b if p is not shared and C ∈ B, or p ∈ ShB

ab if p ∈ ShA

(7)

Finally, it is fairly straightforward to see based on the definition of the label-
ing functions that the strength of the interpolants is partially ordered as shown
in the diagram below.

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms

4 Experimental Results

We implemented the three interpolation algorithms within the PeRIPLO [17]
toolset and compare them with the Dmin algorithm, as well as with the popu-
lar algorithms Ms, P and Mw in the context of three different model-checking
tasks: (i) incremental software model checking with function summarization us-
ing FunFrog [20]; (ii) checking software upgrades with function summarization
using eVolCheck [10]; and (iii) pre-image overapproximation for hardware
model checking with PdTRAV [5]. The wide range of experiments permits the
study of the general applicability of the new techniques. In experiments (i) and
(ii) the new algorithms are implemented within the verification process allowing
us to evaluate their effect on the full verification run. Experiment (iii) focuses on
the size of the interpolant, treating the application as a black box. Unlike in the
theory presented in Section 3, all experiments use both structural sharing and
constraint simplification, since the improvements given by these practical tech-
niques are important. Experiments (i) and (ii) use a large set of benchmarks each
containing a different call-tree structure and assertions distributed on different
levels of the tree. For (iii), the benchmarks consisted of a set of 100 interpolation
problems constructed by PdTRAV. All experiments use PeRIPLO both as the
interpolation engine and as the SAT solver.

Fig. 3 shows a generic verification framework employing the new labeling
mechanism for interpolation. Whenever the application needs an interpolant for
the problem A ∧ B, it first requests the refutation from the SAT solver. After

SAT solverInterpolator Labeling

Application

φ = A ∧ B SAT or
UNSAT

Proof of
UNSAT

Interpolant I
A → I
B ∧ I → ⊥

Partitions
A and B

Labeling
function

Partitions
 A and B

Proof
analysis

Strength
requirement

fA

Partitions
A and B

fB

Fig. 3. Overall verification/interpolation framework.

the refutation is generated, the application provides the partitioning to the proof
analyser, which will generate functions fA and fB (Def. 4). The labeling engine
then creates a labeling function based on the partitions A and B, the functions
fA and fB , and a possible strength requirement from the application, and then
passes it to the interpolator. The latter will finally construct an interpolant and
return it to the application.

As mentioned in Section 1, different verification tasks may require different
kinds of interpolants. For example, [17] reports that the FunFrog approach
works best with strong interpolants, whereas the eVolCheck techniques rely on
weaker interpolants that have the tree-interpolation property. As shown in [18],
only interpolation algorithms stronger than or equal to P are guaranteed to have
this property. Therefore, we evaluated only Ms, P and PSs for (ii), and Ms, P,
Mw, PS, PSw and PSs for (i) and (iii). Dmin was evaluated against the other
algorithms for (i), but couldn’t be evaluated for (ii) because it does not preserve
the tree interpolation property. For (iii), Dmin was not evaluated due to its poor
performance in (i).

In the experiments (i) and (ii), the overall verification time of the tools and
average size of interpolants were analysed. For (iii) only the size was analysed.
In all the experiments the size of an interpolant is the number of connectives in
its DAG representation.

The tool and experimental data are available at http://verify.inf.usi.

ch/periplo.

4.1 Incremental Verification with Function Summarization

FunFrog is a SAT-based bounded-model-checker for C designed to incremen-
tally check different assertions. The checker works by unwinding a program up
to some predefined bound and encoding the unwound program together with
the negation of each assertion to a BMC formula which is then passed to a SAT
solver. If the result is unsatisfiable, FunFrog reports that the program is safe
with respect to the provided assertion. Otherwise, it returns a counter-example
produced from the model of the BMC formula.

Craig interpolation is applied in FunFrog to extract function summaries
(relations over input and output parameters of a function that over-approximate
its behavior) to be reused between checks of different assertions with the goal
of improving overall verification efficiency. Given a program P , and an asser-
tion π, let φP,π denote the corresponding BMC formula. If φP,π is unsatisfiable,

FunFrog uses Craig Interpolation to extract function summaries. This is an
iterative procedure for each function call f in P . Given f , the formula φP,π is
partitioned as φP,π ≡ Af ∧Bπ, where Af encodes f and its nested calls, Bπ the
rest of the program and the negated assertion π. FunFrog then calls PeRIPLO
to compute an interpolant If,π for the function f and assertion π.

While checking the program with respect to another assertion π′, FunFrog
constructs the new BMC formula φP,π′ , ≡ If,π ∧ Bπ′ ; where If,π is used to
over-approximate f . If φP,π′ is unsatisfiable then the over-approximation was
accurate enough to prove that π′ holds in P . On the other hand, satisfiability of
φP,π′ could be caused by an overly weak over-approximation of If,π. To check

this hypothesis, φP,π′ is refined to φrefP,π′ , in which If,π is replaced by the precise

encoding of f and the updated formula is solved again. If φrefP,π′ is satisfiable,

the error is real. Otherwise, the unsatisfiable formula φrefP,π′ is used to create new
function summaries in a similar manner as described above.

In our previous work [20,17] FunFrog chooses the interpolation algorithm
from the set {Ms,P,Mw} and uses it to create summaries for all function calls
in the program. In this paper, we add the algorithms PS, PSw and PSs to the
portfolio of the interpolation algorithms and show that in particular the use of
PS and PSs improves quality of function summaries in FunFrog and therefore
makes overall model checking procedure more efficient.

Experiments. The set of benchmarks consists of 23 C programs with different
number of assertions. FunFrog verified the assertions one-by-one incrementally
traversing the program call tree. The main goal of ordering the checks this way is
to maximize the reuse of function summaries and thus to test how the labeling
functions affect the overall verification performance. To illustrate our setting,
consider a program with the chain of nested function calls

main(){f(){g(){h(){}assertg}assertf}assertmain},

where assertF represents an assertion in the body of function F . In a successful
scenario, (a) assertg is detected to hold and a summary Ih for function h is
created; (b) assertf is efficiently verified by exploiting Ih, and Ig is then built
over Ih; and (c) finally assertmain is checked against Ig.

Figure 4 (left) shows FunFrog’s performance with each interpolation al-
gorithm. Each curve represents an interpolation algorithm, and each point on
the curve represents one benchmark run using the corresponding interpolation
algorithm, with its verification time on the vertical axis. The benchmarks are
sorted by their run time. The PS and PSs curves are mostly lower than those
of the other interpolation algorithms, suggesting they perform better. Table 1
(left) shows the sum of FunFrog verification time for all benchmarks and the
average size of all interpolants generated for all benchmarks for each interpola-
tion algorithm. We also report the relative time and size increase in percents.
Both PS and PSs are indeed competitive for FunFrog, delivering interpolants
smaller than the other interpolation algorithms.

 10

 100

 1000

 0 5 10 15 20 25

V
e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

M
P

Ms
PS

PS
PSs

Dmin

 10

 100

 1000

 0 5 10 15 20 25

V
e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

P

Ms

PSs

Fig. 4. Overall verification time of FunFrog (left) and eVolCheck (right) using
different interpolation algorithms.

4.2 Upgrade Checking using Function Summarization

eVolCheck is an Upgrade Checker for C, built on top of FunFrog. It takes
as an input an original program S and its upgrade T sharing the set of func-
tions calls {f}. eVolCheck uses the interpolation-based function summaries
{IS,f}, constructed for S as shown in Sect. 4.1 to perform upgrade checking. In
particular, it verifies whether for each function call f the summary IS,f over-
approximates the precise behavior of T . This local check is turned into showing
unsatisfiability of ¬IS,f ∧ AT,f , where AT,f encodes f and its nested calls in
T . If proven unsatisfiable, eVolCheck applies Craig Interpolation to refine the
function summary with respect to T .

Experiments. The benchmarks consist of the ones used in the FunFrog ex-
periments and their upgrades. We only experiment with Ms, P and PSs since
eVolCheck requires algorithms at least as strong as P. Figure 4 (right) demon-
strates that PSs, represented by the lower curve, outperforms the other algo-
rithms also for this task. Table 1 (right) shows the total time eVolCheck re-
quires to check the upgraded versions of all benchmarks and average interpolant
size for each of the three interpolation algorithms. Also for upgrade checking, the

Table 1. Sum of overall verification time and average interpolants size for the Fun-
Frog (left) and eVolCheck (right) using the applicable labeling functions.

FunFrog eVolCheck
Ms P Mw PS PSw PSs Dmin Ms PSs P

Time (s) 2333 3047 3207 2272 3345 2193 3811 4867 4422 5081
increase % 6 39 46 3 52 0 74 10 0 16

Avg size 48101 79089 86831 43781 95423 40172 119306 246883 196716 259078
increase % 20 97 116 9 137 0 197 26 0 32

Table 2. Average size and increase relative to the winner for interpolants generated
when interpolating over A (top) and B (bottom) in A ∧B with PdTRAV.

Ms P Mw PS PSw PSs

Avg size 683233 724844 753633 683215 722605 685455
increase % 0.003 6 10 0 6 0.3

Avg size 699880 694372 649149 649013 650973 692434
increase % 8 7 0.02 0 0.3 7

interpolation algorithm PSs results in smaller interpolants and lower run times
compared to the other studied interpolation algorithms.

4.3 Overapproximating pre-image for Hardware Model Checking

PdTRAV [5] implements several verification techniques including a classical ap-
proach of unbounded model checking for hardware designs [13]. Given a design
and a property, the approach encodes the existence of a counterexample of a fixed
length k into a SAT formula and checks its satisfiability. If the formula is unsat-
isfiable, proving that no counterexample of length k exists, Craig interpolation
is used to over-approximate the set of reachable states. If the interpolation finds
a fixpoint, the method terminates reporting safety. Otherwise, k is incremented
and the process is restarted.

Experiments. For this experiment, the benchmarks consist of interpolation in-
stances generated by PdTRAV. We compare the effect of applying different
interpolation algorithms on the individual steps of the verification procedure.1

Table 2 (top) shows the average size of the interpolants generated for all the
benchmarks using each interpolation algorithm, and the relative size compared to
the smallest interpolant. Also for these approaches the best results are obtained
from Ms, PS and PSs, with PS being the overall winner. We note that Ms

performs better than Mw likely due to the structure of the interpolation instances
in these benchmarks: the partition B in A ∧ B is substantially larger than the
partition A. This structure favors algorithms that label many literals as b, since
the partial interpolants associated with the clauses in B will be empty while
the number of partial interpolants associated with the partition A will be small.
To further study this phenomenon we interchanged the partitions, interpolating
this time over B in A∧B for the same benchmarks resulting in problems where
the A part is large. Table 2 (bottom) shows the average size of the interpolants
generated for these benchmarks and the relative size difference compared to the
winner. Here Mw and PSw perform well, while PS remains the overall winner.

We conclude that the experimental results are compatible with the analysis
in Sec. 3. In the FunFrog and eVolCheck experiments, PSs outperformed the

1 The forthcoming research question is how interpolants generated using PS affect the
convergence. This study is however orthogonal to ours and left for future work.

other interpolation systems with respect to verification time and interpolant size.
PdTRAV experiments confirm in addition that PS is very capable in adapting
to the problem, giving best results in both cases while the others work well in
only one or the other.

4.4 Effects of Simplification

It is interesting to note that in our experiments the algorithm PS was not always
the best, and the non-uniform interpolation algorithm PSs sometimes produced
the smallest interpolant, seemingly contradicting Corollary 1. A possible reason
for this anomaly could be in the small difference in how constraint simplification
interacts with the interpolant structure. Assume, in Eq. (3), that I(C+) or I(C−)
is either constant true or false. As a result in the first and the second case
respectively, the resolvent interpolant size decreases by one in Eq. (3). However
in the third case, potentially activated only for non-uniform algorithms, the
simplification if one of the antecedents’ partial interpolants is false decreases the
interpolant size by two, resulting in partial interpolants with smaller internal
size. Therefore, in some cases, the good simplification behavior of non-uniform
algorithms such as PSs seems to result in slightly smaller interpolants compared
to PS. We believe that this is also the reason why P behaves better than Ms and
Mw in some cases.

We also observed (detailed data not shown) that in only five of the bench-
marks a labeling function led to interpolants with less distinct variables, the dif-
ference between the largest and the smallest number of distinct variables being
never over 3%, suggesting that p-annihilable interpolation instances are rare. Fi-
nally, we measured the effect of structural sharing. The results (see Appendix A)
show that there is no noticeable, consistent difference between any of the algo-
rithms, suggesting that the theory developed in Sec. 3 suffices to explain the
experimental observations.

5 Conclusion and Future Work

This paper studies the labeled interpolation system (LIS), a framework for con-
structing interpolation algorithms for propositional proofs. In particular, we
study how different labeling functions influence the resulting interpolants by
analyzing how the choice of labeling affects several size metrics. Based on the
results we construct three new interpolation algorithms: the algorithm PS that
decides the labeling based on the resolution refutation, and its strong and weak
variants. We show that under certain practical assumptions PS results in the
smallest interpolants among the framework. Experimentally, when fully inte-
grated with two software model checkers, PS or its stronger variant outperforms
widely used algorithms. The results are similarly encouraging when we overap-
proximate pre-image in unbounded model checking with PS. We believe that
this result is due to the size reduction obtained by the new algorithms.

In the future we plan to study why p-annihilable proofs are rare and how to
make them common. We also plan to integrate our framework more tightly with
other model checkers through efficiently exchanging proofs and interpolants.

Acknowledgements. We thank our colleagues Professor Gianpiero Cabodi and
Danilo Vendraminetto from the University of Turin, Italy for the benchmarks and
instructions related to PdTRAV. This work was funded by the Swiss National
Science Foundation (SNSF), under the project #200021 138078.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: CAV. pp. 313–329
(2013)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: LPAR. pp. 46–61 (2012)

3. Bloem, R., Malik, S., Schlaipfer, M., Weissenbacher, G.: Reduction of resolution
refutations and interpolants via subsumption. In: HVC. pp. 188–203 (2014)

4. Cabodi, G., Lolacono, C., Vendraminetto, D.: Optimization techniques for Craig
interpolant compaction in unbounded model checking. In: DATE. pp. 1417–1422
(2013)

5. Cabodi, G., Murciano, M., Nocco, S., Quer, S.: Stepping forward with interpolants
in unbounded model checking. In: ICCAD. pp. 772–778 (2006)

6. Cabodi, G., Palena, M., Pasini, P.: Interpolation with guided refinement: Revisiting
incrementality in SAT-based unbounded model checking. In: FMCAD. pp. 43–50
(2014)

7. Chockler, H., Ivrii, A., Matsliah, A.: Computing interpolants without proofs. In:
HVC, pp. 72–85 (2012)

8. D’Silva, V.: Propositional interpolation and abstract interpretation. In: ESOP. pp.
185–204 (2010)

9. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: VMCAI. pp. 129–145 (2010)

10. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental upgrade checker
for C. In: TACAS. pp. 292–307 (2013)

11. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: propositional resolution proofs via
partial regularization. In: CADE. pp. 237–251 (2011)

12. Janćık, P., Kofron, J., Rollini, S.F., Sharygina, N.: On interpolants and variable
assignments. In: FMCAD. pp. 123–130 (2014)

13. McMillan, K.L.: Interpolation and SAT-based model checking. In: CAV. pp. 1–13
(2003)

14. McMillan, K.L.: An interpolating theorem prover. In: TACAS. pp. 16–30 (2004)
15. McMillan, K.L.: Lazy annotation revisited. In: CAV. pp. 243–259 (2014)
16. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone

computations. Journal of Symbolic Logic 62(3), 981–998 (1997)
17. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:

A framework for producing effective interpolants in SAT-based software verifica-
tion. In: LPAR. pp. 683 – 693 (2013)

18. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: CAV. pp. 193–209 (2012)

19. Rümmer, P., Subotic, P.: Exploring interpolants. In: FMCAD. pp. 69–76 (2013)
20. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded model checking with

interpolation-based function summarization. In: ATVA. pp. 203–207 (2012)
21. Vizel, Y., Ryvchin, V., Nadel, A.: Efficient generation of small interpolants in CNF.

In: CAV. pp. 330–346 (2013)

Appendix A Experiments on simplifications by structural
sharing

To investigate the effect of structural sharing on simplifications, we analysed
two parameters: the number of connectives in an interpolant on its pure tree
representation (SizeTree), and the number of connectives in an interpolant on
its DAG representation (SizeDAG), which is the result of the application of
structural sharing. Thus, we believe that the ratio SizeTree/SizeDAG is a good
way to measure the amount of simplifications due to structural sharing.

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 0 5 10 15 20 25

S
iz

e
T
re
e
 /

 S
iz

e
D
A
G

Benchmarks

Mw
P

Ms
PS

PSw
PSs

Fig. 5. Relation SizeTree/SizeDAG on FunFrog benchmarks for different interpola-
tion algorithms

Figure 5 shows the results of this analysis on FunFrog benchmarks. Each
vertical line represents a benchmark, and each point on this line represents the
ratio SizeTree/SizeDAG of the interpolant generated by each of the interpolation
algorithms for the first assertion of that benchmark. The reason why only the
first assertion is considered is that from the second assertion on, summaries
(that is, interpolants) are used instead of the original code, and therefore it is
not guaranteed that the refutations will be the same when different interpolation
algorithms are applied.

It is noticeable that the existence of more/less simplifications is not related
to the interpolation algorithms, since all of them have cases where many/few
simplifications happen. Therefore, there is no difference between any of the al-
gorithms with respect to structural sharing.

