
Detection of Security Vulnerabilities using

Guided Model Checking

Aliaksei Tsitovich
University of Lugano, Switzerland

aliaksei.tsitovich@lu.unisi.ch

1 Introduction

Software security problems are good candidates for application of verification
techniques. Usually it is not a complex task to represent certain security-related
property in a particular verification framework. For instance in any software
model checking environment (MC)[1] it is possible to state buffer overflow de-
tection as a reachability problem. The approach works in theory and in practice,
but has a major scalability drawback: the state-space, which represents all possi-
ble behaviors of the system, might grow exponentially in the size of the product
of a model and a property. From the other side MC has an important advantage
- a counter-example is produced automatically when the bug is found.

In contrast, several static analysis techniques [2,3] use abstract interpreta-
tion [4] to address security problems. They attempt to represent the nature of
the vulnerability in the values from some abstract domain and to calculate such
an abstract value for each location of the program. Carefully selected abstract
domains allow both scalable computation and fairly precise results [2]. The al-
gorithm is sound (no bugs are missed) but, 1) abstraction leads to detection of
false bugs (so called false positives) and 2) no counter-example can be produced.
Reported comparisons of tools, based on abstract interpretation, state that they
are inapplicable in a wide industrial practice because of the unacceptably high
number of false positives [5].

Dealing with program’s loops is Achilles heel of the most existing static anal-
ysis techniques. In order to reason about programs with (possibly infinite) loops
one has to unwind all loop iterations or to build an approximation of a program.
The first variant is a direct way to countless refinements and/or the state explo-
sion, the second one leads to false positives or even to the loss of soundness (if
under-approximation of the loop is used). In this research I particularly tackle
loops as a main source of both scalability and precision problems. I want to
explore how the existing techniques can be combined in a way that minimizes
the effect of their drawbacks in analysis of the program loops.

2 Goals and Achieved Results

The goal of my research is the development of automated methods to detect
security vulnerabilities in a large-scale software. I would like to come up with a
problem-driven algorithm, which combines model checking and abstract inter-
pretation in application to the reachability analysis. I see a following possible
way to achieve the goal:

1. Develop an algorithm, which creates an over-approximated model of a pro-
gram by summarization of the code fragments with a possibly infinite be-
haviors, i.e., loops.

2. Build reachability analysis using MC algorithms to verify “loop-less” models.
In particular bounded model checking (BMC) [6] is a promising candidate
because: 1) it targets bug detection but not a bug-absence proof; 2) it re-
moves loops, the main limitation of BMC.

3. Develop a strategy to refine the summarized program.

The first part of the work, dedicated to loop summarization, has been accom-
plished and presented in [7]. The summarization algorithm was implemented in
a tool called LoopFrog

1. It targets verification of ANSI-C programs for string-
related properties, e.g. buffer overflows. In [7] each loop is summarized with a
help of localized abstract domain tailored to the verified property. Abstract do-
main suggests invariant candidates which are checked to be inductive invariants
of a given loop. Repeating this procedure in a bottom-up manner gives an al-
gorithm to over-approximate every loop instance by its summary. A summary
is a combination of loop’s variants (i.e. nondeterministically assigned variables)
and discovered invariants. At the end of this summarization one obtains an over-
approximated loop-less model of the program. The important property of this
model is that any path in it is finite and, thus, is easily analyzable by BMC.

There are still a lot of ideas to explore such as abstract domains incremen-
tal strengthening, abstract counter-examples analysis, effective abstract trans-
formers computation or incremental BMC. Finally, I want to obtain “a guided
model-checker” - algorithm that delivers property-tailored and incremental ab-
straction/refinement scheme, which is applicable to a large-scale software.

References

1. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press,
Cambridge, MA, USA (1999)

2. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun detection
using linear programming and static analysis. In: Proceedings of CCS ’03, New York,
NY, USA, ACM (2003) 345–354

3. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19 (2002) 42–51

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

5. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. In: SIGSOFT FSE. (2004) 97–106

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58 (2003) 118–149

7. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: Proceedings of ATVA 2008, Springer
(2008) To appear.

1Loopfrog binaries, benchmarks results and examples are available at
http://www.verify.inf.unisi.ch/loopfrog

http://www.verify.inf.unisi.ch/loopfrog

	Detection of Security Vulnerabilities using Guided Model Checking
	Aliaksei Tsitovich University of Lugano, Switzerland aliaksei.tsitovich@lu.unisi.ch

