
A Scalable Decision Procedure for Fixed-Width Bit-Vectors

Roberto Bruttomesso
Università della Svizzera Italiana

Lugano, Switzerland

roberto.bruttomesso@usi.ch

Natasha Sharygina
Università della Svizzera Italiana

Lugano, Switzerland

natasha.sharygina@usi.ch

ABSTRACT

Efficient decision procedures for bit-vectors are essential for
modern verification frameworks. This paper describes a
new decision procedure for the core theory of bit-vectors
that exploits a reduction to equality reasoning. The proce-
dure is embedded in a congruence closure algorithm, whose
data structures are extended in order to efficiently manage
the relations between bit-vector slicings, modulo equivalence
classes. The resulting procedure is incremental, backtrack-
able, and proof producing: it can be used as a theory-solver
for a lazy SMT schema. Experiments show that our ap-
proach is comparable and often superior to bit-blasting on
the core fragment, and that it also helps as a theory layer
when applied over the full bit-vector theory.

1. INTRODUCTION
Fixed-width bit-vectors are fundamental data structures

commonly used to model hardware components, like regis-
ters and memories, as well software constructs, such as ba-
sic data-types. Properties on bit-vectors can be expressed
by means of a wide range of operators and relations, whose
semantics is defined in first order theory BV, the theory of
bit-vectors.

State-of-the-art decision procedures for BV fall into two
extremes. On the one hand, the system is decomposed into
a bit-level representation, and encoded into Boolean logic
(bit-blasting): each bit-vector can be encoded with a set of
Boolean variables, in the worst case one for each bit, while
operators and properties are encoded into propositional for-
mulæ. A SAT-Solver can then be employed as a decision
procedure. The major drawback of bit-blasting is that the
encoding of bit-vectors in terms of unrelated objects (bits)
results in the loss of the structure of the original design. On
the other hand some verifiers resort to decision procedures
that reason over bit-vectors as a whole, by keeping them
as individual entities, for instance by encoding words into
integers. This approach seems to be useful when large data-
paths are considered. However it may become inefficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM 978-1-60558-800-1/09/11 ...$10.00.

when the Boolean component is predominant.
An emerging technology is SMT (Satisfiability Modulo

Theories), a new generation of theorem provers that combine
the efficiency of modern SAT-Solvers and theory-specific de-
cision procedures (theory-solvers). Most SMT-Solvers follow
the so-called lazy approach where the theory-solver is called
on demand to detect the satisfiability of a set of constraints
enumerated by a DPLL SAT-Solver. The lazy approach was
shown to be effective for SMT.

In this paper we present a new decision procedure for the
core fragment of BV (for equalities, extraction, and concate-
nation, BVC) by developing a novel and efficient theory-
solver for a lazy SMT schema. The core fragment, although
decidable in polynomial time, is often handled by bit-blasting
(thus being solved as if it were an NP-Complete problem).
Our approach, instead, is inspired by the work of [8, 4], and
it relies on a reduction to the theory of equality (E) in order
to preserve the word-level structure of the problem and to
use decision procedures that run in polynomial time.

In summary, the contribution of this paper is an incremen-
tal, backtrackable and proof-producing decision procedure
for the core fragment, based on a state-of-the-art congru-
ence closure algorithm, that can be integrated in the lazy
schema for SMT. In particular:

• We investigate the theoretical aspects of an incremen-
tal reduction of bit-vector equalities into E by intro-
ducing the notion of base, an elegant and extensible
representation for bit-vector decompositions that guar-
antees the completeness of the approach.

• We define the concept of coarsest base, the decomposi-
tion for bit-vectors that minimizes the amount of slic-
ing on the fly, by exploiting a hierarchical structure of
equivalence classes.

• We show how our approach can be efficiently imple-
mented in a classical congruence closure algorithm with
the help of a novel data-structure, the CBE (coarsest
base modulo equivalence), that represents decomposi-
tions and equivalence classes in a simple and compact
manner. The algorithm is incremental, backtrackable,
and it partially handles uninterpreted functions and
negated equalities.

• We empirically demonstrate the applicability and the
advantages of our method, implemented in OpenSMT [19],
through a set of experiments.

The rest of the paper is structured as follows. In §2 we
recall some background notions. §3 describes our reduction

from BVC to E , that can be efficiently implemented using the
notion of CBE, as shown in §4. §5 reports on the applica-
bility of the solver for SMT. In §6 we evaluate our approach
with respect to bit-blasting. We conclude in §7.

1.1 Related Work
Cyrluk et al. [8] present a canonizer and a solver for BVC

based on a union-find algorithm (we discuss this approach in
more detail in §2.4). In contrast to our approach their proce-
dure is neither incremental nor backtrackable; no particular
insight is given about data structures to be used in a po-
tential implementation and no experiments are reported. In
addition our procedure can partially handle negated equali-
ties and uninterpreted functions.

A noteworthy extension to [8] is given in [4], where the
basic method is refined in particular to take into account
the case of bitwise operators. The algorithm is defined to
be integrated in Shostak’s combination framework, and it
consists of a set of normalization functions for bit-vectors
and slicing functions (cut, slice, dice) that take care of bit-
vectors decompositions. [4] also presents an extension to
non-fixed-width bit-vectors. Our approach also uses slic-
ing functions but, in contrast, it avoids duplicated work, in
particular when new equalities are asserted, by exploiting
equivalence classes. Moreover, our procedure is designed for
the integration in SMT-Solvers: it is defined as an extended
version of a congruence closure algorithm, and it acts as a
theory-layer for the core fragment, thus improving the sub-
sequent complete reduction to SAT.

[12] presents a decision procedure that handles separately
arithmetic operators and bitwise plus core operators, in two
different theory-solvers. Each solver iteratively computes
a normal form for bit-vectors (arithmetic normal form and
concatenational normal form) by means of a set of rewrite
rules. Information is exchanged by means of a Nelson-Oppen-
like communication. Our approach, instead, is based on a
congruence closure algorithm for the core fragment only, and
it is used as a layer before resorting to bit-blasting.

MathSAT [5] is a lazy SMT-Solver, and it employs a
layered approach, composed by a solver for EUF , and an
engine based on a set of inference rules. In contrast to our
method, the intermediate layers of MathSAT are not com-
plete w.r.t. BVC . To the best of our knowledge, tools Z3 [9],
Yices [11] and CVC3 [1] implement a lazy SMT schema
that resort to bit-blasting after a layer for EUF , without
any specific reasoning on BVC . STP [13] relies on a poly-
time decision procedure [2] for arithmetic before resorting
to bit-blasting. Other tools for BV based on eager reduc-
tions to SAT are BAT [16], Beaver [14], Boolector [3],
Spear [21], Sword [23], Uclid [7].

2. BACKGROUND

2.1 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) is the problem of

deciding the satisfiability of a (often quantifier-free) first or-
der formula with respect to a background decidable theory
T (SMT(T)). An SMT(T) formula is an arbitrary Boolean
combination of predicates of T (theory-atoms).

Theories of interest are the ones of equality (E), unin-
terpreted functions and predicates (EUF), linear arithmetic
over the reals or the integers (LRA, LIA), arrays (A),
and bit-vectors (BV). The following is an instance of an

SMT(LRA) formula:

((x − y < 10) ∧ (x + y = 5)) ∨ (y < 0)

The lazy approach is a well-established schema used in
many state-of-the-art SMT-Solvers such as z3, Yices, Math-
SAT, Barcelogic, and CVC3; it is based on a tight coop-
eration between a DPLL SAT-Solver, used as a model enu-
merator, and a decision procedure for T . For a complete
survey on lazy-SMT we refer the reader to [20].

2.2 A theory of Bit-Vectors
A bit-vector is an array of individual bits. In this work

we restrict our attention to fixed width bit-vectors. We use
the notation p[n] to indicate a bit-vector term of width n, or
simply p when the width is not important or can be deduced
from the context. We use letters x, y, z to denote variables,
p, q, s, t, u for generic terms, n, m for bit-vectors width, and
i, j, k, l for extraction indexes. A constant is either denoted
with c, or explicitly as a string of 0s and 1s, as for instance
0010. For all bit-vectors the most significant bit is the left-
most bit.

In the theory of bit-vectors (BV) terms can be built from
variables and constants with the application of a set of oper-
ators: Extraction x[n][i : j] (n−1 ≥ i ≥ j ≥ 0): represents a
bit-vector of width (i− j +1) whose k-th bit is equivalent to
the k + j-th bit in x. Concatenation x[n] :: y[m]: represents
a bit-vector of width (n + m) whose k-th bit is equivalent
to the k-th bit of y, if k < m, and to the (k + m)-th bit
of x otherwise. Arithmetic operators: include usual arith-
metic operators, such as addition x[n] + y[n], multiplication
x[n] · y[n], shifts x[n] ≪ k, etc. Bitwise operators: include
logical operators like and x[n]&y[n], not x[n] that compute
standard logical operations among corresponding bits of its
arguments.

Predicates such as equality = or less than < can be used
to express relations between bit-vector terms (we refer the
reader to [6] for a thorough presentation of bit-vector syntax
and semantics). The decision problem for a quantifier-free
conjunction of bit-vector atoms in BV is known to be NP-
Complete. However, the complexity reduces to P if only
extraction, concatenation and positive equalities are consid-
ered [8]. We shall refer to this sub-theory with BVC (core
theory of bit-vectors).

Core operators are commonly employed to encode the
data-path in a circuit, when data is extracted from a register
or when multiple wires combine into a single bus. They are
supported in widely-used hardware description languages
such as Verilog and VHDL. Moreover other operators can
be rephrased in terms of extraction and concatenation. We
report few examples:

• bit-masks: x[8] & 00001111 = 0000 :: x[3 : 0]

• shifts: x[8] ≪ 2 = x[5 : 0] :: 00

• multiplication by a power of two: x[8] · 00000010 =
x[6 : 0] :: 0

• zero/sign extensions: ZE(8, x[6]) = 00 :: x, SE(8, x[7]) =
x[6 : 6] :: x

2.3 Union-find algorithms and extensions
A union-find algorithm [22] is a decision procedure for E .

It receives as input a set of equalities E between elements

in a set X which may contain variables and constants. A
union-find algorithm maintains the collection of equivalence
classes induced by the axioms of equality and E. The al-
gorithm works incrementally. Initially each element is asso-
ciated with an individual equivalence class. Each class can
be efficiently maintained by keeping a representant. The
two main operations are union and find, that merge two
equivalence classes and retrieve the representant of the class
respectively. An inconsistency is detected when trying to
merge two classes containing different constants.

A widely used variation of [22] is the so-called quick-find
approach of [15, 10], where representants can be accessed
in constant time from any member of the equivalence class.
Most union-find algorithms rely on a graph-based represen-
tation, where the nodes are the members of the equivalence
classes, and the edges connect elements in the same class. In
the quick-find approach, a node can be stored with a record
node, containing a rep field, of type (node *) (pointer
to node) that points to the representant of the class. From
now the node associated with an element x will be written
using the typewriter font as x. Merging two equivalence
classes A and B, with |A| < |B|, corresponds to updating
the rep pointers of the nodes of A to point to the node
corresponding to the representant of B.

In the rest of the paper we shall refer to the union-find
algorithm with AssertEq.

2.4 The approach of Cyrluk et al.
Cyrluk et al. [8] propose a method to check the satisfia-

bility of a set E of BVC-equalities by reducing E into an
equisatisfiable set of equalities E′ over E . The reduction
works as follows. Each variable and constant appearing in a
BVC-equality p = q is decomposed into the concatenation of
individual bits as p(n−1) :: . . . :: p(0) = q(n−1) :: . . . :: q(0);
E′ is constructed with the set of equalities p(i) = q(i), for
each bit-vector position i. The original set of BVC-equalities
E is unsatisfiable if and only if E′ is unsatisfiable over E . In
Example 1 E′ (and therefore E) is unsatisfiable for its sub-
set {x(3) = 0, x(3) = y(3), y(3) = 1}. E′ can is checked for
consistency by using a union-find algorithm.

Example 1. Consider the following set of BVC-equalities
over two variables x[8], y[8]

E = {x[5 : 0] = 010110, y[7 : 2] = 000110, x = y}

Each equality in E is decomposed, resulting in the set E′

E
′ =

8

>

>

<

>

>

:

x(5) = 0, x(4) = 1, x(3) = 0, x(2) = 1
x(1) = 1, x(0) = 0, y(7) = 0, y(6) = 0
y(5) = 0, y(4) = 1, y(3) = 1, y(2) = 0

x(7) = y(7), . . . , x(0) = y(0)

9

>

>

=

>

>

;

E′ can be proven inconsistent using, for instance, a union-
find algorithm.

[8] refines the basic reduction to a decision procedure for a
Shostak combination framework in terms of a canonizer and
a solver. The solver, still based on a union-find algorithm,
is designed to minimize bit-vector decompositions.

3. REDUCING BVC TO E

In this section we develop a reduction from BVC to E by
means of the key concept of base. We show that a base can
be used in combination with a union-find algorithm to derive

a sound decision procedure for BVC . In contrast to [8], we
reduce bit-vector decompositions by exploiting the notion
of base, which elegantly captures the relations between bit-
vector slices modulo equality.

3.1 Preliminaries
In the rest of the paper we shall use the term slice to refer

to an extraction of bits from a bit-vector variable.

Definition 1 (Slice). A proper slice is any extraction
x[n][i : j], where x[n] is a bit-vector variable, and 0 < j ≤

i ≤ n − 1 or 0 ≤ j ≤ i < n − 1. A slice xi of x[n] is either
a proper slice or the whole vector of bits, x. We define two
slices x[i1 : j1] and x[i2 : j2] to be overlapping if they share
some bits; we say that they are consecutive if j1 = i2 + 1 or
j2 = i1 + 1.

Notice that a term p[n] :: q[m] = r can be rewritten as
p[n] = r[n + m − 1 : m], q[m] = r[m − 1 : 0], while p[n][i1 :
j1][i2 : j2] can be rewritten as p[n][i2 + j1 : j2 + j1]. It can be
shown that any equality in BVC can be rewritten in terms of
conjunctions of simplified equalities of the form p[n] = q[n],
where p and q are slices. For the sake of explanation, but
without loss of expressiveness, from now on we shall assume
to deal with conjunctions of simplified equalities.

The main intuition behind our approach is that when re-
ducing BVC to E it is necessary to reason about slices that
are not overlapping. Intuitively, in any model for a set of
BV constraints, overlapping slices must agree on the values
for the bits they share. Notice, however, that a decision
procedure for E applied to a set of BV constraints consid-
ers different slices as independent elements (since in E , core
operators are treated as uninterpreted). Consider again E

from Example 1. E can be rephrased as a set of equalities
involving non-overlapping slices as follows

E
′′ =

8

>

>

<

>

>

:

x[5 : 2] = 0101, x[1 : 0] = 10,

y[7 : 6] = 00, y[5 : 2] = 0110,

y[7 : 6] = x[7 : 6], y[5 : 2] = x[5 : 2]
y[1 : 0] = x[1 : 0]

9

>

>

=

>

>

;

E′′ is unsatisfiable in E for its subset {x[5 : 2] = 0101, x[5 :
2] = y[5 : 2], y[5 : 2] = 0110}. The fundamental step in
computing E′′ from E is choosing a suitable decomposition
for the variables in E.

Definition 2 (Base). Let E be a set of bit-vector equal-
ities. A base B(E) is a set of slices of variables in E such
that:

1. for each variable x, any two slices of x in B(E) are
not overlapping

2. for each variable x, any slice of x in E is equivalent to
exactly one concatenation xm−1 :: . . . :: x0, where xi

are consecutive slices of B(E)

3. it is possible to rewrite each equality xi = yj ∈ E into
the form xim−1 :: . . . :: xi0 = yjm−1 :: . . . :: yj0 where
xik and yjk are slices in B(E) having the same width,
for k = 0, . . . , m − 1

Intuitively, a base B(E) defines a unique decomposition
for a variable x into a concatenation of consecutive slices, in
such a way that no two slices share bits, either explicitly or
modulo E. A base B(E) can be seen as a function that maps

01234567

01234567

0123

01234567

01234567

0123

01234567

01234567

0123z[4]

x[8]

y[8]

(a) (b) (c)

Figure 1: Base computation for Example 2.

each variable x in E to a (unique) decomposition B(E, x).
We will omit E from the notation when it is clear from
the context. For instance, a base for E in Example 1 is
B = {x[7 : 6], x[5 : 2], x[1 : 0], y[7 : 6], y[5 : 2], y[1 : 0]},
and B(x) = x[7 : 6] :: x[5 : 2] :: x[1 : 0], or simply B(x) =
{0, 2, 6}. We refer to B(x) as to the set of cut points of
x in the base B. A base can be used to perform a sound
reduction from BVC to E .

Lemma 1 (BVC reduces to E). Let p[n] = q[n] be a
bit-vector equality, and let B be a base for p[n] = q[n]. Let

B(p[n]) = pm :: . . . :: p1, B(q[n]) = qm :: . . . :: q1. We

have that p[n] = q[n] is BVC-satisfiable iff
Vm

i=1 pi = qi is
E-satisfiable.

Notice that a set E may admit more than one base. We
define a partial order � over the bases of E.

Definition 3 (Coarser Base). Let E be a set of bit-
vector equalities. Let B(E) and B′(E) be two bases for E.
We write B(E) � B′(E) (B is coarser than B′) iff

∀x ∈ V ars(E). B(E, x) ⊆ B
′(E, x)

For instance B′ = {x[7 : 6], x[5 : 4], x[3 : 2], x[1 : 0], y[7 :
7], y[6 : 6], y[5 : 2], y[1 : 0]} is a valid base for E of Example 1.

For any set of equalities E, two special bases are always
defined, the Finest Base FB = {x(i) | x[n] ∈ V ars(E), i =
0, . . . , n−1}, where slices are individual bits, and the Coars-
est Base, the base CB such that CB � B, for any base B.
CB (FB) is the base with minimum (maximum) cardinality,
that decomposes the variables in E into the largest (small-
est) possible chunks.

3.2 Solving BVC using the Coarsest Base
The coarsest base for a set of equalities E can be computed

with an iterative refinement of a set CB, that keeps track
of the cut points for each variable. Each refinement is done
by propagating the cut points of the variables according to
the equalities in E, until a fix point is reached. We show
this process by means of the following example (depicted in
Figure 1).

Example 2. Let E = {x[8] = y[8], x[3 : 0] = z[4], z[3 :
2] = z[1 : 0]}. Initially CB = {x[7 : 4], x[3 : 0], y, z[3 :
2], z[1 : 0]} (Figure 1a). Since x = y in E, we propagate the
cut points of x over to y; since x[3 : 0] = z, we propagate
the cut points of z to x[3 : 0] (Figure 1b). In the second
iteration, we propagate again the cut points of x to y, and
no further propagation can be done. The resulting coarsest
base is CB = {x[7 : 4], x[3 : 2], x[1 : 0], y[7 : 4], y[3 :
2], y[1 : 0], z[3 : 2], z[1 : 0]} (Figure 1c).

In the following we shall refer to this iterative procedure as
to ComputeCB1. The consistency of a set of BVC-equalities
can be checked by means of a union-find algorithm as shown
in Figure 2.

The algorithm that computes the coarsest base (CheckCB)
works as follows. Initially the coarsest base CB for E is com-
puted (line 1). SplitEqClasses is defined as the procedure
that initializes the set of equivalence classes with one class
for each element of CB. Equalities in E are processed one at
a time (lines 4-6) in the main loop: first, the left- and right-
hand side of the equality are rewritten into their decom-
positions (CB(p), CB(q)); equalities among correspond-
ing slices are fed into the union-find procedure (AssertEq).
CheckCB is correct and complete for BVC :

Theorem 1 (Corr. and Compl. of CheckCB). Let
E be a set of BVC-equalities. Then E is BVC-satisfiable iff
CheckCB(E) returns true.

function CheckCB(E)
1 CB := ComputeCB(E)
2 SplitEqClasses(CB)
3 foreach p = q ∈ E

4 if ¬AssertBv(CB(p), CB(q))
5 return false

6 return true

end

function AssertBv(p, q)
7 // Let p be pm :: . . . :: p1

8 // Let q be qm :: . . . :: q1

9 for i := 1 to m

10 if ¬AssertEq(pi, qi)
11 return false

12 return true

end

Figure 2: A reduction from BVC to E that uses the
coarsest base and relies on a union-find algorithm
(AssertEq).

3.3 An incremental solver for BVC

So far we focused on solving a static set of BVC-equalities.
In this section we show how to produce an equivalent incre-
mental version of the algorithm of §3.2. The incremental
version presents two main advantages w.r.t. the static one,
(i) it may terminate earlier (ii) it is amenable for integration
in a state-of-the-art SMT-Solver. The pseudo-code is shown
in Figure 3.

In CheckCBInc equalities are processed one at a time in
the main loop of lines 4-9. As opposed to CheckCB, this
version computes, at any iteration i, the coarsest base for
the incrementally growing set of equalities E(i). For two
consecutive iterations we have CB(i−1) � CB(i), i.e. the
incremental algorithm works with a series of coarsest bases
of increasing granularity. This process increases the chances
of detecting an inconsistency in E caused by a subset of

1ComputeCB always terminates since we are dealing with
fixed-width bit-vectors.

function CheckCBInc(E)

1 CB(0) := V ars(E)

2 E(0) := ∅
3 // Let i be the iteration
4 foreach p = q ∈ E

5 E(i) := E(i−1) ∪ {p = q}
6 CB(i) := ComputeCB(E(i))

7 SplitEqClasses(CB(i))

8 if ¬AssertBv(CB(i)(p), CB(i)(q))
9 return false

10 return true

end

Figure 3: An incremental reduction.

equalities E(i), while reasoning on the coarsest possible base
for E(i).

Because of the incremental mechanism, in CheckCBInc

the coarsest base may change at any iteration; as a result,
at some iteration i, CB(i) may contain a slice, say xi which
is not part of CB(i−1). Recall that the introduction of a
new equivalence class for xi would not guarantee the com-
pleteness of the algorithm, as xi may overlap with other
slices represented in the union-find algorithm at step i. In
fact because objects are uninterpreted in E , the equivalence
classes for overlapping slices would be regarded as semanti-
cally different objects.

In order to keep the collection of equivalence classes syn-
chronized with CB(i) at any iteration i, we call the function
SplitEqClasses (line 7), which adjusts the status of equiv-
alence classes according to the modification of the coarsest
base. It works as follows. When a new slice x[h : j] ∈ CB(i)

needs to be represented, we consider the equivalence class
that contains the slice x[k : l] ∈ CB(i−1), with k ≥ h and
l ≤ j, and we replace the equivalence class for x[k : l] with
three new equivalence classes for x[k : h + 1], x[h : j], and
x[j − 1 : l].

We have the following result:

Theorem 2 (Corr. and Compl. of CheckCBInc).
Let E be a set of BVC-equalities. Then E is BVC-satisfiable
if and only if CheckCBInc(E) returns true.

Example 3. We run CheckCBInc over E of Example 1.
Initially we have CB(0) = {x, y} and only two equivalence
classes, as shown in Figure 4a. The first equality x[5 : 0] =

010110 is then considered: CB(1) = {x[7 : 6], x[5 : 0], y},
and the equivalence class for x splits. The equality is passed
to AssertBv which updates the equivalence classes. The re-
sult is shown in Figure 4b. When y[7 : 2] = 000110 is con-

sidered we have CB(1) = {x[7 : 6], x[5 : 0], y[7 : 2], y[1 : 0]},
and the equivalence class for y splits as in Figure 4c. When
x = y is processed we have CB = {x[7 : 6], x[5 : 2], x[1 :
0], y[7 : 6], y[5 : 2], y[1 : 0]}; the classes for x[5 : 0] and
y[7 : 2] split as in Figure 4d. The unsatisfiability is detected
in the subsequent call to AssertBv.

4. EFFICIENT BASE REPRESENTATION
In the previous section we presented a decision procedure

CheckCBInc for BVC that splits bit-vectors only when nec-
essary and that relies on a union-find algorithm as a satisfi-
ability procedure. The two key operations in CheckCBInc

are (i) the incremental computation of the coarsest base
and (ii) the splitting of equivalence classes. In this section
we show how these two operations can be efficiently imple-
mented within the data-structures of a union-find algorithm.

4.1 Representing Decompositions
The decomposition for a variable in terms of consecutive

slices can be represented by means of the same data struc-
tures used for union-find (recall §2.3) augmented with an
auxiliary field cb, an ordered list of (node *) that points
to the nodes representing the sub-slices of the considered
bit-vector slice2; for each term x, x->cb is initialized to
[x]. When it becomes necessary to represent a new slice of
x, say x[i : j], the field cb of x is updated to

[x[n− 1 : j], x[j− 1 : 0]] if i = n − 1 ∧ j > 0
[x[n− 1 : i + 1], x[i : 0]] if i < n − 1 ∧ j = 0
[x[n− 1 : i + 1], x[i : j], x[j− 1 : 0]] otherwise

The idea is to represent the relationships between a bit-
vector variable x and its set of its slices as a tree, linked by
the cb field. Any subsequent slice x[k : l] can be represented
with a recursive modification of the slices in the list x->cb
that represent slices overlapping with x[k : l]. The tree gen-
erated with this process can be used to retrieve the coarsest
decomposition for each slice.

Example 4. Suppose that we need representing, in order,
two slices, x[5 : 0] and x[7 : 3], for a bit-vector x[8]. Initially
x->cb is [x] (Figure 5a). In order to represent x[5 : 0], we
update x->cb to [x[7:6],x[5:0]] (Figure 5b). When
considering x[7 : 3] we recursively update the nodes in x->cb

that overlap with x[7 : 3], i.e., we update x[5:0]->cb to
[x[5:3], x[2:0]] as in Figure 5c. The leaves of the
tree rooted in x and linked by the cb fields is the coarsest
decomposition for x.

4.2 Representing and Manipulating the Coars-
est Base

It is easy to extend the representation for the coarsest
decompositions to a representation for the coarsest base:
it is sufficient to apply the aforementioned transformations
modulo equivalence classes. Precisely, whenever we need to
update the coarsest decomposition for a slice p, we recur-
sively update the representants of the slices linked by the
field p->cb. The data structure resulting from this process
is a DAG, whose leaves are, at each iteration, the represen-
tants of the equivalence classes defining the coarsest base.
We call this representation coarsest base modulo equivalence,
CBE for short.

When we modify the CBE with the addition of a new
slice, we obtain at the same time the computation of a new
coarsest base and the splitting of equivalence classes (lines
8-9 of Figure 3), as the coarsest base is implicitly represented
in the set of equivalence classes: a leaf p in the CBE rep-
resents the equivalence class of the slices of the terms that
can reach p by traversing the CBE.

Example 5. We show a possible evolution of the CBE

for E of Example 2. Initially CB(0) = {x, y, z}. When pro-
cessing x = y we adjust y->rep to point to x . When pro-
cessing x[3 : 0] = z we allocate x[7:4] and x[3:0], we up-
date x->cb to [x[7:4],x[3:0]], and we set x[3:0]->rep

2In our approach only three pointers to node are sufficient.
We use a list for simplicity in the description.

x[5 : 0]
010110

x[7 : 6] x[5 : 0]
010110

x[7 : 6]x

y y
y[7 : 2]
000110

y[1 : 0]

x[7 : 6] x[1 : 0]
10

x[5 : 2]
0101

y[7 : 6]
00 0110

y[5 : 2]
y[1 : 0]

(a) (b) (c) (d)

Figure 4: Equivalence classes maintained by CheckCBInc in Example 3

x

cb rep

x

cb rep

cb rep

x[7:6] x[5:0]

cb rep

x

repcb

cb

x[5:0]

cb rep

x[5:3]

x[7:6]

rep

cb rep

x[2:0]

repcb

(a) (b) (c)

Figure 5: Coarsest decompositions for x in Example 4: (a) initial, (b) after representing x[5 : 0], (c) after
representing x[7 : 3].

to z, as in Figure 6a. When processing z[3 : 2] = z[1 : 0]
we allocate z[3:2] and z[1:0] and adjust the pointers as
in Figure 6b. The leaves of the final CBE, x[7:4] and
z[1:0], represent, respectively, the two equivalence classes
{x[7 : 4], y[7 : 4]} and {x[3 : 2], x[1 : 0], y[3 : 2], y[1 : 0], z[3 :
2], z[1 : 0]}.

5. EXTENSIONS FOR LAZY SMT
For the sake of simplicity, we described CheckCBInc in

terms of manipulations of variables and extractions over
variables by means of a union-find algorithm. However the
idea can be straightforwardly extended to the case of generic
BV terms handled by a congruence closure algorithm; it is
sufficient to keep the CBE for any term whose outmost op-
erator is not extraction. For example the set {(x + y)[5 :
0] = 0001, (x+y)[7 : 3] = 00100} can be proven inconsistent
using our algorithm, by applying the same reasoning on the
uninterpreted term (x + y). In other words, our algorithms
improves the congruence closure algorithm by giving explicit
interpretation to the extraction operation.

The new data structure is built on top of the congruence
closure algorithm of [10], thus inheriting the incremental
and backtrackable mechanism, and the ability of handling
negated equalities3 (using the same infrastructure described

3We do not check finite-domain conditions, though.

in [10]). For computing explanations we adapted the proof-
production method of [17]. Finally notice that our proce-
dure can be used as a theory-layer before resorting to other
complete decision procedures for BV.

6. EXPERIMENTS
We evaluated the decision procedure based on CBE with

respect to bit-blasting. We implemented both algorithms
inside OpenSMT [19]. The bit-blaster uses a state-of-the-
art SAT-Solver (MiniSAT 2).

We compare two versions of OpenSMT: baseline im-
plements a standard congruence closure algorithm plus bit-
blasting, while cbe implements the congruence closure mod-
ified with CBE plus bit-blasting. In both versions, bit-
blasting is called only if the congruence closure fails to de-
tect an inconsistency, and only when a complete model is
enumerated.

In order to test the effectiveness of CBE we used three
suites of crafted benchmarks. The benchmarks are suitable
to test CBE as they stimulate (i) its incremental and back-
trackable behavior (requiring rich disjuntions of constraints),
and (ii) the mechanism of handling multiple bit-vector slices
(requiring core operators that could not be trivially simpli-
fied away). The benchmarks, included in the SMT-LIB, are
described as follows:

x

cb rep

y

cb rep

z

cb rep

x[7:4]

cb rep cb rep

x[3:0]

x

cb rep

y

cb rep

x[7:4]

cb rep cb rep

x[3:0]

cb rep cb rep

z

cb rep

z[3:2] z[1:0]

(a) (b)

Figure 6: Evolution of CBE for Example 5.

ec: encodes a set of basic properties on BVC , such as (x[15 :
4] = y[15 : 8] :: z ∧ x[11 : 0] = z :: y[7 : 0]) → y[11 : 8] =
y[7 : 4]. Benchmarks are parametric in the number and in
the width of the variables, and in the width of the smallest
slice in the formula. Since CBE is sufficient to decide these
benchmarks, with this test we evaluate the effectiveness of
CBE with respect to bit-blasting.

sp: encodes the behavior of n simple processors, based on
the Verilog code of Example 11.2 of [18]. Benchmarks are
parametric in the number of processors and in the width of
the data bus. They are defined over BV, but some theory-
conflicts are in BVC . With these benchmarks we evaluate
the effectiveness of CBE used as a theory-layer.

lfsr: encodes the behavior of a linear feedback shift reg-
ister, a circuit commonly used in pseudo-random number
generation. The benchmarks are parametric in the number
and width of registers, and the number of clock tics. We
verify that a lfsr cycles over non-zero values, unless the re-
set pin is activated. In these benchmarks no conflict is due
to BVC atoms (every call to CBE is satisfiable). With these
benchmarks we evaluate the overhead of the CBE layer. It
is an empirical evaluation of the computational cost of our
procedure.

As a reference, we include in the comparison the best four
solvers that participated in the SMTCOMP’08. As far as
we know, they are mostly based on bit-blasting. Notice,
however, that each of them implements a number of differ-
ent algorithms for preprocessing, and optimizations for the
bit-blaster, which makes it difficult to judge a direct com-
parison with our solver. Nevertheless we shall provide data
for the other solvers as an indication of the complexity of the
benchmarks used in our evaluation. Table 1 shows the num-
ber of instances that each solver was able to process within a
timeout of 1800 s, on an Intel Xeon 3.4 GHz running Linux.
Scatter-plots in Figure 7-9 detail the comparison between
the two variants of OpenSMT.

OpenSMT State-of-the-art Solvers
Suite cbe bsln Boolector Z3 Beaver MathSAT

v0.4 v3.2 v1.0 v4.2

ec 654 651 136 322 644 608

sp 37 12 32 44 39 28

lfsr 188 190 146 228 221 231

Table 1: Number of instances solved by each solver
within 1800 s.

Experiments show that using CBE stand-alone over BVC

(ec) results in a better performance than using bit-blasting
(see also Figure 7). In this case OpenSMT is also superior
to the other solvers. Using CBE as a theory-layer over BV
(sp) gives a considerable speedup over plain bit-blasting:
the activation of the CBE layer makes OpenSMT compa-
rable to the other SMT-Solvers. The last row of Table 1
(lfsr) shows that the reasoning on CBE data structures
can be done quite efficiently: it does not produce a signifi-
cant overhead over the baseline version when the reasoning
on BVC is not necessary.

ec

b
a
se

l
in

e

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

cbe

Figure 7: Scatter-plots comparing the two variants
of OpenSMT, with the CBE layer active (cbe) and
disabled (baseline).

7. CONCLUSION
We presented a new efficient decision procedure for the

core theory of bit-vectors that relies on a reduction to the
theory of equality E . We formalized the reduction by intro-
ducing the notion of base, a decomposition for bit-vectors
that ensures the completeness of the reduction. In order to
efficiently represent the base, we introduced a novel data-
structure, the CBE, a DAG that stores the decompositions
for terms modulo the equivalence classes. One of the ad-
vantages of the CBE is that it can be implemented with a
minor modification of the similar data-structures of a state-
of-the-art congruence closure algorithm.

sp

b
a
se

l
in

e

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

cbe

Figure 8: Scatter-plots comparing the two variants
of OpenSMT, with the CBE layer active (cbe) and
disabled (baseline).

lfsr

b
a
se

l
in

e

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

cbe

Figure 9: Scatter-plots comparing the two variants
of OpenSMT, with the CBE layer active (cbe) and
disabled (baseline).

Because the CBE can be easily modified or restored to
a previous state, the procedure supports incrementality and
efficient backtracking. A partial support for negated equal-
ities and uninterpreted functional symbols is automatically
inherited from the congruence closure algorithm. We im-
plemented the new procedure in our tool, OpenSMT. Our
experimentation and comparison with the state-of-the-art
SMT solvers show that the new approach is comparable and
often superior to bit-blasting on the core operations, and
furthermore, it also improves efficiency when applied over
the full bit-vector theory.

8. REFERENCES

[1] C. Barrett and C. Tinelli. CVC3. In CAV’07, 2007.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision
Procedure for Bit-Vector Arithmetic. In DAC, pages
522–527, 1998.

[3] A. Biere and R. Brummayer. The Boolector SMT
Solver. In TACAS, 2009.

[4] N. Bjørner and M. C. Pichora. Deciding Fixed and
Non-fixed Size Bit-vectors. In TACAS, pages 376–392,

1998.

[5] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio,
Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani. A
Lazy and Layered SMT(BV) Solver for Hard
Industrial Verification Problems. In CAV, pages
247–260, 2007.

[6] Roberto Bruttomesso. RTL Verification: from SAT to
SMT(BV). PhD thesis, University of Trento, 2008.
Available at http://www.inf.unisi.ch/
postdoc/bruttomesso/files/phdthesis.pdf.

[7] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling
and Verifying Systems using a Logic of Counter
Arithmetic with Lambda Expressions and
Uninterpreted Functions. In CAV, 2002.

[8] D. Cyrluk, M. O. Möller, and H. Rueß. An Efficient
Decision Procedure for the Theory of Fixed-Sized
Bit-Vectors. In CAV, pages 60–71, 1997.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In TACAS’08, pages 337–340, 2008.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. Journal of
ACM, 52(3):365–473, 2005.

[11] B. Dutertre and L. de Moura. The Yices SMT Solver.
Tool paper available at
http://yices.csl.sri.com/tool-paper.pdf.

[12] V. Ganesh, S. Berezin, and D. L. Dill. A Decision
Procedure for Fixed-Width Bit-Vectors. Technical
report, University of Stanford, 2005. Available at
http://theory.stanford.edu/~vganesh/

bitvector-tech-report.ps.

[13] V. Ganesh and D. L. Dill. A Decision Procedure for
Bit-Vectors and Arrays. In CAV, pages 519–531, 2007.

[14] S. Jha, R. Limaye, and S. A. Seshia. Beaver:
Engineering an Efficient SMT Solver for Bit-Vector
Arithmetic. In CAV, 2009.

[15] D. E. Knuth and A. Schönhage. The expected
linearity of a simple equivalence algorithm. Theoretical
Computer Science, 3(6):281–315, June 1978.

[16] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT:
The Bit-Level Analysis Tool. In CAV, pages 303–306,
2007.

[17] R. Nieuwenhuis and A. Oliveras. Proof-Producing
Congruence Closure. In RTA’05, pages 453–468, 2005.

[18] Peter M. Nyasulu. Introduction to Verilog. Available
at http://www.doe.carleton.ca/~shams/
97350/PetervrlK.pdf.

[19] OpenSMT.
http://verify.inf.unisi.ch/opensmt.

[20] R. Sebastiani. Lazy Satisfiability Modulo Theories.
JSAT, 3:144–224, 2007.

[21] Spear. http:
//www.cs.ubc.ca/~babic/index_spear.htm.

[22] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215–225, 1975.

[23] R. Wille, G. Fey, D. Große, S. Eggersglüß, and
R. Drechsler. SWORD: A SAT like prover using word
level information. In VLSI-SoC, pages 88–93. IEEE,
2007.

