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Abstract. Function summarization can be used as a means of incre-
mental verification based on the structure of the program. HiFrog is
a fully featured function-summarization-based model checker that uses
SMT as the modeling and summarization language. The tool supports
three encoding precisions through SMT: uninterpreted functions, linear
real arithmetics, and propositional logic. In addition the tool allows opti-
mized traversal of reachability properties, counter-example-guided sum-
mary refinement, summary compression, and user-provided summaries.
We describe the use of the tool through the description of its architecture
and a rich set of features. The description is complemented by an exper-
imental evaluation on the practical impact the different SMT precisions
have on model-checking.

1 Introduction

Incremental verification addresses the unique opportunities and challenges that
arise when a verification task can be performed in an incremental way, as a se-
quence of smaller closely related tasks. We present an implementation of the in-
cremental verification of software with assertions that uses the insights obtained
from a successful verification of earlier assertions. As a fundamental building
block in storing the insights we use function summaries known to provide speed-
up through localizing and modularizing verification [9,13].

In this paper we describe the HiFrog verification tool that uses Craig inter-
polation [6] in the context of Bounded Model Checking (BMC) [4] for con-
structing function summaries. The novelty of the tool is in the unique way
it combines function summaries with the expressiveness of satisfiability mod-
ulo theories (SMT). The system currently supports verification based on the
quantifier-free theories of linear real arithmetics (QF LRA) and uninterpreted
functions (QF UF), in addition to propositional logic (QF BOOL). Compared
to our earlier tool FunFrog [9] constructing function summaries in the propo-
sitional logic, the SMT summaries are smaller and more efficient in verification.
They are also often significantly more human-readable, enabling their easier
reuse, as well as injection of summaries provided directly by the user. In addi-
tion, the tool offers a rich set of features such as verification of recursive pro-
grams, different ways of optimizing the summaries with respect to both size and



strength, efficient heuristics for removing redundant safety properties, and easy-
to-understand witnesses of property violations that can be directly mapped to
bugs in the source code.

The paper provides an architectural description of the tool, an introduction
to its use, and experimental evidence of its performance. The tool together with
a comprehensive demo is available at http://verify.inf.usi.ch/hifrog.

Related work. Incremental verification is a subject of extensive research in dif-
ferent domains, such as hardware verification, deductive verification, and model
checking. Due to the lack of space, here we provide recent related work close to
our problem domain. The CPAchecker tool is able to migrate predicates across
program versions [3]. Deductive verification tools such as Viper and Dafny of-
fer modular verification [12] and cashing the intermediate verification results [10]
respectively. In the context of software symbolic model checking, the closest body
of work is CBMC – a bounded model-checker for C that to a limited extent ex-
ploits incremental capabilities of a SAT solver4, but does not use or output any
reusable information like function summaries. The ESBMC tool, like HiFrog,
also shares the CProver infrastructure, is based on an SMT solver, but to the
best of our knowledge, does not support incremental verification [5].

2 Tool Overview

HiFrog consists of two main components SMT encoder and interpolating SMT
solver; and the function summaries (see Fig. 1). The components are configured
by initializing the theory and the interpolation algorithms. The assertions are
processed sequentially using the function summaries, when possible. The results
of a successful verification of an assertion are stored as interpolated function
summaries, and failed verifications trigger a refinement phase or the printing of
an error trace. In this section we describe the features of the tool in more detail.

Preprocessing. The source code is parsed and transformed into an intermediate
goto-program using the goto-cc symbolic compiler. The loops are unwound to
the pre-determined number of iterations. HiFrog identifies the set of assertions
from the source code, reads the user-defined function summaries (if any) in the
smtlib2-format, and makes them available for the subsequent analysis.

SMT encoding and Function Summarization. For a given assertion, the goto-
program is symbolically executed function-per-function resulting in the “modu-
lar” Static Single Assignment (SSA) form of the unwound program, i.e., a form
where each function has its own isolated SSA-representation. To reduce the size
of the SSA form, HiFrog performs slicing that keeps only the variables in the
SSA form that are syntactically dependent on the variables in the assertion.

When the SSA form is pruned, HiFrog creates the SMT formula in the pre-
determined logic (QF BOOL, QF UF or QF LRA). The modularity of the SSA

4 http://www.cprover.org
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Fig. 1. HiFrog overview. Grey and black arrows connect different modules of the tool
(dashed - optional). Blue arrows represent the flow of the input/output data.

form comes in handy when the function summaries of the chosen logic (either
user-defined, interpolation-based, or treated nondeterministically) are available.
If this is the case, the call to a function with the available summary is replaced
by the summary. The final SMT formula is pushed to an SMT solver to decide
its satisfiability.

Due to over-approximating nature of function summaries, the program en-
coded with the summaries may contain spurious errors. The summary refiner
identifies and marks summaries directly involved in the model generated by the
SMT solver. This way, HiFrog gets back to the encoding stage and replaces
the involved summary by the precise encoding of the function (for recursive
functions, it unrolls the function body one more time and treats recursive calls
nondeterministically). For an unsatisfiable SMT formula, HiFrog extracts func-
tion summaries using interpolation. The extracted summaries are serialized in a
persistent storage so that they are available for other HiFrog runs.

Theories. HiFrog supports three different quantifier-free theories in which the
program can be modelled: bit-precise QF BOOL, QF UF and QF LRA. The use
of theories beyond QF BOOL allows the system to scale to larger problems since
encoding in particular the arithmetic operations using bit-precision can be very
expensive. As the precise arithmetics often do not play a role in the correct-
ness of the program, substituting them with linear arithmetics, uninterpreted
functions, or even nondeterministic behavior might result in a significant reduc-
tion in model-checking time (see Sec. 3). If a property is proved using one of
the light-weight theories QF UF and QF LRA, the proof holds also for the ex-



act BMC encoding of the program. However, the loss of precision can sometimes
produce spurious counterexamples due to the over-approximating encoding. The
light-weight theories therefore need to be refined (i.e., using theory refiner) to
QF BOOL if the provided counter-example does not correspond to a concrete
counterexample.

Obtaining summaries by interpolation. HiFrog relies on different interpolation
frameworks for the different theories it supports. As a result the generation of
propositional, QF UF and QF LRA interpolants can be controlled with respect
to strength and size by specifying an interpolation algorithm for a theory. For
propositional logic we provide the Labeled Interpolation Systems [7] including
the Proof-Sensitive interpolation algorithms [1]. Interpolation for QF UF is im-
plemented with duality-based interpolation [2], and a similar extension is applied
to the interpolation algorithm for QF LRA based on [11]. HiFrog also provides
a range of techniques to reduce the size of the generated interpolants through
removing redundancies in propositional proofs [13]: (i) the RecyclePivotsWith-
Intersection (RPI) algorithm, (ii) the LowerUnits (LU) algorithm, (iii) structural
hashing (SH), (iv) and a set of local rewriting rules.

Assertion Optimizer. In addition to incremental verification of a set of asser-
tions, HiFrog supports the basic functionality of classical model checkers to
verify all assertions at once. For the cases when the set of assertions is too large,
it can be optimized by constructing an assertion implication relation and exploit-
ing it to remove redundant assertions [8]. In a nutshell, the assertion optimizer
considers pairs of spatially close assertions ai and aj and uses the SMT solver to
check if ai conjoined with the code between ai and aj implies aj (if there is any
other assertion between ai and aj then it is treated as assumption). If the check
succeeds then aj is proven redundant and its verification can be safely skipped.

3 HiFrog Usage

We provide a Linux binary of HiFrog which runs from the console. The binary
receives as input from the user a C-program with assertions to be verified, a set
of parameters and the function summaries (either interpolation-based or user-
defined) in the SMT-LIB Standard v. 2.0.

HiFrog exploits the CProver framework and inherits some of its options
(e.g., --unwind for the loop unrolling, --show-claims and --claim for man-
aging the assertions checks); the ability for the user to declare and to use a
nondet TYPE() function of a specific numerical type (e.g., int, long, double, un-
signed, in QF LRA only) or add a CPROVER assume() statement to limit the
domain to a specific range of values.

HiFrog uses QF LRA by default but can be switched to QF UF via the
--logic option. 5 HiFrog uses a variety of interpolation and proof compres-
sion algorithms to control the the precision (with --itp-uf-algorithm option

5 Currently the support for QF BOOL needs to be specified at compile time.
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Fig. 2. Running time by QF BOOL against QF UF and QF LRA.

for QF UF, --itp-lra-algorithm option for QF LRA, and --itp-algorithm

option for propositional interpolation) and the size (with --reduce-proof) of
summaries. The summary storage is controlled using the --save-summaries

and --load-summaries options. In between verification runs, the summaries
contained in the corresponding files for QF UF and QF LRA might be edited
manually. Note that due to the SMT encoding constraints HiFrog does not
allow interchanging summaries between the theories. Finally, HiFrog supports
the identification and reporting of redundant assertions with --claims-opt, a
useful feature for some automatically generated assertions [8].

In the end of each verification run, HiFrog either reports VERIFICATION

SUCCESSFUL or VERIFICATION FAILED accompanied by an error trace. An error
trace presents a sequence of steps with a direct reference to the code and the
values of variables in these steps. In most cases when QF UF and QF LRA intro-
duce a spurious error, HiFrog outputs a warning, and thus the user is advised
to use HiFrog with a more precise theory. HiFrog also reports the statistics
on the running time and the number of the summary-refinements performed.

Experimental Results. We evaluated HiFrog on a large set of C programs com-
ing from both academic and industrial sources such as SV-COMP. All bench-
marks contained multiple assertions to be checked. To demonstrate the advan-
tages of the SMT-based summarization, here we provide data for analysis of
benchmarks containing 1086 assertions from which 474 were proven to hold us-
ing QF BOOL(meaning that those properties satisfy the system specifications).
Even despite the over-approximating nature of QF UF and QF LRA, our ex-
periments witnessed a large amount of properties which were also proven to be
correct by employing the light-weight theories of HiFrog (namely, 50.65% and
69.2% of validated properties out of 474 for QF UF and QF LRA respectively).

Furthermore, those experiments revealed that model checking using the QF UF
and QF LRA-based summarization was extremely efficient. Fig. 2 presents two



logarithmic plots for comparison of running times6 of HiFrog with QF BOOL
to respectively QF UF and QF LRA. Each point represents a pair of verifica-
tion runs of a holding assertion with the two corresponding theories using the
interpolation-based summaries. Note that for most of the assertions, the ver-
ification with QF UF and QF LRA is in order of magnitude faster than the
verification with QF BOOL.
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A Tool Demo

A.1 Overview

In this section we demonstrate the basics of using HiFrog on some illustrative
examples. Throughout the example, note that the HiFrog environment should
be prepared for analysis by cleaning the repository with

$ rm __summaries

before performing steps that do not use previous summaries. This is important
especially when verifying a new benchmark, as the summaries of previously ver-
ified benchmarks must be removed.

HiFrog uses the CProver framework. All loops and a recursive function calls
in the program should be unrolled using the command line --unwind <N>, where
<N> is the number of loop iterations and the recursive depth. Any non-defined
function is used to draw random values of an Integer, and any declared-only
function is used to draw random values of a specific type (commonly denoted
as nondet Int(), nondet Long(), etc.). The assumptions on the code for the
verification process are given using CPROVER assume() notation, and thus, we
can limit the values of non-deterministically chosen variables to a specific range
or interval.

A.2 Basic Functionality of HiFrog

Fig. 3. ex1 lra.c

In this section, we explain how HiFrog constructs a
function summary for an assertion (also referred to
as to claim) and reuses it for another claim. The first
example, shown in Fig. 3, consists of a function that
randomly gets 1000 integers and returns their sum.

Running your claim. In this example, we add as-
sertions to the C-program that HiFrog verifies. The
C-program with three assertions is shown in Fig. 3.

Run HiFrog to check the the first and the third
assertion as follows:

$ rm __summaries

$ ./hifrog --logic qflra ex1_lra.c --claim 1

$ ./hifrog --logic qflra ex1_lra.c --claim 3

Note that summaries should not be removed after
running the first claim.

Fig. 4 shows the relevant parts of the output from these two checks. On both
figures, HiFrog indicates that the program is safe, reporting VERIFICATION

SUCCESSFUL. Note that despite function nondetInt is declared-only, HiFrog is
able to automatically identify its return type (unsigned int) and exploit it for
verification. We can also see the solver time and total time for checking these
claims. The run time for the third claim is significantly lower than for the first
claim due to summaries usage.



Fig. 4. Results of running HiFrog on ex1 lra.c (claim 1 and claim 3)

What actually happened. When checking the second or third assertion HiFrog
reuses the previous verification results for verifying the new claims.

After the successful verification of the first assertion, HiFrog starts to gen-
erate the summaries which are stored for the subsequent verifications in the file
summaries. Since we specified the logic qflra, HiFrog generates the sum-

maries in QF LRA. We encourage the user to view the summaries file. When
checking the third assertion the generated summaries were substituted instead of
encoding the function into the solver, and the speed-up we observe results from
this. Since the verification of the third claim was successful, HiFrog updates
the summaries file with new function summaries.

A.3 Advanced Functionality of HiFrog

HiFrog offers a number of interesting features that set it apart from many
other model checkers. In this section, we discuss the use of user-provided sum-
maries, specification of different theories for modeling, automatically removal of
some redundant assertions, and options for controlling the summary generation
through interpolation.

Fig. 5. sin cos.c

User-Provided Summaries. HiFrog provides sev-
eral approaches that can be used if the logic used for
modeling is not sufficiently expressive. For example,
this might happen when a user has non-linear arith-
metics in the program. The LRA implementation of
HiFrog will attempt to prove these properties by
substituting the results of the unsupported operations
with completely nondeterministic behaviour to main-
tain soundness at the expense of providing spurious
counter-examples, but sometimes this is not sufficient.

One way around this problem is to use the feature that allows the users to
insert their own summaries for verification. These are provided in the SMT-LIB
v2 format. To shed light on this issue, suppose that there is a C-code, shown in
Fig. 5 which uses trigonometric functions and calculates Sin2(x) + Cos2(x).

Since Sin2(x) + Cos2(x) = 1 for any x, as it is a known trigonometric iden-
tity, we can utilize this knowledge and substitute the formula with a summary



stating exactly this identity. To help the user getting started with the summary
construction we provide a command for constructing a template.

./hifrog --logic qflra --list-templates sin_cos.c

Fig. 6. Example template for nonlin

Fig. 7. The user-provided function
summary stating that the return value
of the function nonlin is one.

This command dumps a list of tem-
plates for all functions used in the pro-
gram into the summaries file. Fig. 6
shows one of such the automatically
generated templates that contains the
define-fun statement, followed by the
function name (nonlin), the set of param-
eters, and the body of the function which
is empty (it is indicated by true). In Fig. 7
we have edited the template file to a new function summary which states that
the return value of the function is 1. The user can now link the summary of
functions to the code sin cos.c as follows.

$./hifrog sin_cos.c --load-summaries __summaries_sin_cos

Intuitively, the use of user-defined summaries is to some extent similar to
the use of user-defined assumptions. However, while assumptions just add addi-
tional constraints to the SMT formula and do not affect encoding of the original
code, our summaries are used to replace the code completely, thus (in program
sin cos.c) avoiding deal with complex nonlinear constraints.

Fig. 8. ex1 uf.c

Use of Uninterpreted Functions.
Fig. 8 shows a function that multiplies two
variables. Because of the non-linearity,
LRA is not able to verify this program.
Even though non-linear SMT solvers can
verify such operations, it is usually costly
and not supported by many solvers. The
program could also be encoded using
propositional logic, but due to the com-
plicity of multiplication encoding this
turns out to be expensive.

However, for this particular example,
the correctness of the program does not
depend on the exact interpretation of the



multiplication. In fact, it suffices to assume that a function returns the same
value when invoked with the same parameters. In the following we verify the
program specifying the logic QF UF.

$ ./hifrog --claim 1 --logic qfuf ex1_uf.c

Use of Propositional Logic. In some cases it is necessary to resort to the
bit-precise modelling of the software through propositional logic despite the in-
creased complexity this implies. This is supported in HiFrog currently through
a separately built binary. For this particular example, the propositional logic
check is done by running

$ ./hifrog-prop --claim 1 ex1_uf.c

Fig. 9. ex2 lra.c

Simplifying the Life of Users. Here we outline
various optimizations and unique features of HiFrog
that can be useful in different stages of verification.

Removing redundant assertions. Fig. 9 shows a
program calling a nondetermistic function sum1.
Thus, the three assertions in the program are vio-
lated. So the user can get a counter-examples for
each of them. Additionally, the user might be in-
terested in running a dependency analysis to re-
veal other useful information about the assertions.
In particular, HiFrog has an option --claims-opt

<steps> which identifies and reports the redundant
assertions using the threshold <steps> as the maxi-
mum number of SSA steps between the assertions including the SSA steps at
the functions calls (if any) between the assertions:

$ ./hifrog --claims-opt 20 ex2_lra.c

Fig. 10. Output for
ex2 lra.c

The expected result on Fig. 10 confirms existence
of the redundant assertion on line 17. Intuitively it
means that the user should fix the other assertions
first, and whenever it is done, the “redundant” asser-
tion will hold automatically. The approach we use for removing assertions is not
complete in the sense that not all dependencies between assertions are detected.
However the process is sound in the sense that all dependencies are guaranteed
to exist in the unwound version of the code.

Running HiFrog for the second assertion results in the output VERIFICATION
FAILED and the corresponding error trace that manifests the bug.



Tuning the Strength of Summaries. Interpolation can be tuned for strength
by command line parameters for propositional logic, QF LRA and QF UF.
The parameter --itp-algorith <algo> specifies the interpolation algorithm
for propositional logic, which is used for all theories. Variable <algo> ranges
from 0 to 5, where the numerical values represent the propositional interpo-
lation algorithms Ms, P , Mw, PS, PSw, PSs. The strength relation between
the interpolation algorithms is such as Ms is the strongest, Mw is the weakest,
PSs is stronger than PS and P , and PSw is weaker than P and PS. For more
details on propositional interpolation algorithms we refer the reader to [1]. The
specialized theory interpolation algorithms for QF LRA and QF UF can be spec-
ified, respectively, by --itp-lra-algorithm <algo> and --itp-uf-algorithm

<algo>, where <algo> is either 0 or 2, leading to, respectively, strong and weak
interpolants. For instance, verifying program uf interpolation.c with the fol-
lowing command lines leads to summaries of different strength.

$ rm __summaries

$ ./hifrog --verbose-solver 2 --logic qfuf \

--itp-algorithm 0 --itp-uf-algorithm 0 \

--claim 1 --save-summaries strong_summaries uf_interpolation.c

$ ./hifrog --verbose-solver 2 --logic qfuf \

--itp-algorithm 0--itp-uf-algorithm 2 \

--claim 1 --save-summaries weak_summaries uf_interpolation.c

Running HiFrog with the option --verbose-solver 2 enables printing of
interpolants. Figures 11 and 12 show the interpolants generated for function
mix (second interpolant printed by HiFrog), where the one generated with
option 0 for --itp-uf-algorithm is strictly stronger than the one generated
with option 2. These interpolants are used in the summary c::mix#0 in the files
strong summaries and weak summaries.

Fig. 11. Strong interpolant

Fig. 12. Weak interpolant

Tuning the Size of Summaries. Proof compression directly affects the size of
interpolants, and can be enabled by the command line option --reduce-proof.
Setting --verbose-solver 1 lists the changes that were made on the proof by
the technique. For example, the following command enables proof reduction for
uf interpolation.c and proceeds with the interpolation afterwards.



Fig. 13. Proof compression information

$ ./hifrog --verbose-solver 1 --reduce-proof \

--logic qfuf --itp-uf-algorithm 0 --claim 1 \

--save-summaries strong_summaries uf_interpolation.c

Fig. 13 shows a table from the log of hifrog containing the effect of proof
reduction. The first column lists different types of components of a proof, such
as number of variables, nodes and edges. The second column represents the
corresponding statistics for the proof before reduction, and the third column –
for the proof after reduction. We can see in this example that the number of
nodes was reduced from 149 to 131 (12.08%), and the number of edges was
reduced from 172 to 136 (20.93%).




