
A Tool Demo

A.1 Overview

In this section we demonstrate the basics of using HiFrog on some illustrative
examples. Throughout the example, note that the HiFrog environment should
be prepared for analysis by cleaning the repository with

$ rm __summaries

before performing steps that do not use previous summaries. This is important
especially when verifying a new benchmark, as the summaries of previously ver-
ified benchmarks must be removed.

HiFrog uses the CProver framework. All loops and a recursive function calls
in the program should be unrolled using the command line --unwind <N>, where
<N> is the number of loop iterations and the recursive depth. Any non-defined
function is used to draw random values of an Integer, and any declared-only
function is used to draw random values of a specific type (commonly denoted
as nondet Int(), nondet Long(), etc.). The assumptions on the code for the
verification process are given using CPROVER assume() notation, and thus, we
can limit the values of non-deterministically chosen variables to a specific range
or interval.

A.2 Basic Functionality of HiFrog

Fig. 1. ex1 lra.c

In this section, we explain how HiFrog constructs a
function summary for an assertion (also referred to
as to claim) and reuses it for another claim. The first
example, shown in Fig. 1, consists of a function that
randomly gets 1000 integers and returns their sum.

Running your claim. In this example, we add as-
sertions to the C-program that HiFrog verifies. The
C-program with three assertions is shown in Fig. 1.

Run HiFrog to check the the first and the third
assertion as follows:

$ rm __summaries

$ ./hifrog --logic qflra ex1_lra.c --claim 1

$ ./hifrog --logic qflra ex1_lra.c --claim 3

Note that summaries should not be removed after
running the first claim.

Fig. 2 shows the relevant parts of the output from these two checks. On both
figures, HiFrog indicates that the program is safe, reporting VERIFICATION

SUCCESSFUL. Note that despite function nondetInt is declared-only, HiFrog is
able to automatically identify its return type (unsigned int) and exploit it for
verification. We can also see the solver time and total time for checking these
claims. The run time for the third claim is significantly lower than for the first
claim due to summaries usage.



Fig. 2. Results of running HiFrog on ex1 lra.c (claim 1 and claim 3)

What actually happened. When checking the second or third assertion HiFrog
reuses the previous verification results for verifying the new claims.

After the successful verification of the first assertion, HiFrog starts to gen-
erate the summaries which are stored for the subsequent verifications in the file
summaries. Since we specified the logic qflra, HiFrog generates the sum-

maries in QF LRA. We encourage the user to view the summaries file. When
checking the third assertion the generated summaries were substituted instead of
encoding the function into the solver, and the speed-up we observe results from
this. Since the verification of the third claim was successful, HiFrog updates
the summaries file with new function summaries.

A.3 Advanced Functionality of HiFrog

HiFrog offers a number of interesting features that set it apart from many
other model checkers. In this section, we discuss the use of user-provided sum-
maries, specification of different theories for modeling, automatically removal of
some redundant assertions, and options for controlling the summary generation
through interpolation.

Fig. 3. sin cos.c

User-Provided Summaries. HiFrog provides sev-
eral approaches that can be used if the logic used for
modeling is not sufficiently expressive. For example,
this might happen when a user has non-linear arith-
metics in the program. The LRA implementation of
HiFrog will attempt to prove these properties by
substituting the results of the unsupported operations
with completely nondeterministic behaviour to main-
tain soundness at the expense of providing spurious
counter-examples, but sometimes this is not sufficient.

One way around this problem is to use the feature that allows the users to
insert their own summaries for verification. These are provided in the SMT-LIB
v2 format. To shed light on this issue, suppose that there is a C-code, shown in
Fig. 3 which uses trigonometric functions and calculates Sin2(x) + Cos2(x).

Since Sin2(x) + Cos2(x) = 1 for any x, as it is a known trigonometric iden-
tity, we can utilize this knowledge and substitute the formula with a summary



stating exactly this identity. To help the user getting started with the summary
construction we provide a command for constructing a template.

./hifrog --logic qflra --list-templates sin_cos.c

Fig. 4. Example template for nonlin

Fig. 5. The user-provided function
summary stating that the return value
of the function nonlin is one.

This command dumps a list of tem-
plates for all functions used in the pro-
gram into the summaries file. Fig. 4
shows one of such the automatically
generated templates that contains the
define-fun statement, followed by the
function name (nonlin), the set of param-
eters, and the body of the function which
is empty (it is indicated by true). In Fig. 5
we have edited the template file to a new function summary which states that
the return value of the function is 1. The user can now link the summary of
functions to the code sin cos.c as follows.

$./hifrog sin_cos.c --load-summaries __summaries_sin_cos

Intuitively, the use of user-defined summaries is to some extent similar to
the use of user-defined assumptions. However, while assumptions just add addi-
tional constraints to the SMT formula and do not affect encoding of the original
code, our summaries are used to replace the code completely, thus (in program
sin cos.c) avoiding deal with complex nonlinear constraints.

Fig. 6. ex1 uf.c

Use of Uninterpreted Functions.
Fig. 6 shows a function that multiplies two
variables. Because of the non-linearity,
LRA is not able to verify this program.
Even though non-linear SMT solvers can
verify such operations, it is usually costly
and not supported by many solvers. The
program could also be encoded using
propositional logic, but due to the com-
plicity of multiplication encoding this
turns out to be expensive.

However, for this particular example,
the correctness of the program does not
depend on the exact interpretation of the



multiplication. In fact, it suffices to assume that a function returns the same
value when invoked with the same parameters. In the following we verify the
program specifying the logic QF UF.

$ ./hifrog --claim 1 --logic qfuf ex1_uf.c

Use of Propositional Logic. In some cases it is necessary to resort to the
bit-precise modelling of the software through propositional logic despite the in-
creased complexity this implies. This is supported in HiFrog currently through
a separately built binary. For this particular example, the propositional logic
check is done by running

$ ./hifrog-prop --claim 1 ex1_uf.c

Fig. 7. ex2 lra.c

Simplifying the Life of Users. Here we outline
various optimizations and unique features of HiFrog
that can be useful in different stages of verification.

Removing redundant assertions. Fig. 7 shows a
program calling a nondetermistic function sum1.
Thus, the three assertions in the program are vio-
lated. So the user can get a counter-examples for
each of them. Additionally, the user might be in-
terested in running a dependency analysis to re-
veal other useful information about the assertions.
In particular, HiFrog has an option --claims-opt

<steps> which identifies and reports the redundant
assertions using the threshold <steps> as the maxi-
mum number of SSA steps between the assertions including the SSA steps at
the functions calls (if any) between the assertions:

$ ./hifrog --claims-opt 20 ex2_lra.c

Fig. 8. Output for
ex2 lra.c

The expected result on Fig. 8 confirms existence
of the redundant assertion on line 17. Intuitively it
means that the user should fix the other assertions
first, and whenever it is done, the “redundant” asser-
tion will hold automatically. The approach we use for removing assertions is not
complete in the sense that not all dependencies between assertions are detected.
However the process is sound in the sense that all dependencies are guaranteed
to exist in the unwound version of the code.

Running HiFrog for the second assertion results in the output VERIFICATION
FAILED and the corresponding error trace that manifests the bug.



Tuning the Strength of Summaries. Interpolation can be tuned for strength
by command line parameters for propositional logic, QF LRA and QF UF.
The parameter --itp-algorith <algo> specifies the interpolation algorithm
for propositional logic, which is used for all theories. Variable <algo> ranges
from 0 to 5, where the numerical values represent the propositional interpo-
lation algorithms Ms, P , Mw, PS, PSw, PSs. The strength relation between
the interpolation algorithms is such as Ms is the strongest, Mw is the weakest,
PSs is stronger than PS and P , and PSw is weaker than P and PS. For more
details on propositional interpolation algorithms we refer the reader to [?]. The
specialized theory interpolation algorithms for QF LRA and QF UF can be spec-
ified, respectively, by --itp-lra-algorithm <algo> and --itp-uf-algorithm

<algo>, where <algo> is either 0 or 2, leading to, respectively, strong and weak
interpolants. For instance, verifying program uf interpolation.c with the fol-
lowing command lines leads to summaries of different strength.

$ rm __summaries

$ ./hifrog --verbose-solver 2 --logic qfuf \

--itp-algorithm 0 --itp-uf-algorithm 0 \

--claim 1 --save-summaries strong_summaries uf_interpolation.c

$ ./hifrog --verbose-solver 2 --logic qfuf \

--itp-algorithm 0--itp-uf-algorithm 2 \

--claim 1 --save-summaries weak_summaries uf_interpolation.c

Running HiFrog with the option --verbose-solver 2 enables printing of
interpolants. Figures 9 and 10 show the interpolants generated for function mix

(second interpolant printed by HiFrog), where the one generated with option
0 for --itp-uf-algorithm is strictly stronger than the one generated with
option 2. These interpolants are used in the summary c::mix#0 in the files
strong summaries and weak summaries.

Fig. 9. Strong interpolant

Fig. 10. Weak interpolant

Tuning the Size of Summaries. Proof compression directly affects the size of
interpolants, and can be enabled by the command line option --reduce-proof.
Setting --verbose-solver 1 lists the changes that were made on the proof by
the technique. For example, the following command enables proof reduction for
uf interpolation.c and proceeds with the interpolation afterwards.



Fig. 11. Proof compression information

$ ./hifrog --verbose-solver 1 --reduce-proof \

--logic qfuf --itp-uf-algorithm 0 --claim 1 \

--save-summaries strong_summaries uf_interpolation.c

Fig. 11 shows a table from the log of hifrog containing the effect of proof
reduction. The first column lists different types of components of a proof, such
as number of variables, nodes and edges. The second column represents the
corresponding statistics for the proof before reduction, and the third column –
for the proof after reduction. We can see in this example that the number of
nodes was reduced from 149 to 131 (12.08%), and the number of edges was
reduced from 172 to 136 (20.93%).


