
Towards Completeness in
Bounded Model Checking through

Automatic Recursion Depth Detection

Grigory Fedyukovich and Natasha Sharygina

Faculty of Informatics, University of Lugano
Via Guiseppe Buffi 13, CH-6904 Lugano, Switzerland

Abstract The presence of recursive function calls is a well-known bot-
tleneck in software model checking as they might cause infinite loops
and make verification infeasible. This paper proposes a new technique for
sound and complete Bounded Model Checking based on detecting depths
for all recursive function calls in a program. The algorithm of detection
of recursion depth uses over-approximations of function calls. It proceeds
in an iterative manner by refining the function over-approximations un-
til the recursion depth is detected or it becomes clear that the recursion
depth detection is infeasible. We prove that if the algorithm terminates
then it guarantees to detect a recursion depth required for complete pro-
gram verification. The key advantage of the proposed algorithm is that
it is suitable for generation and/or substitution of function summaries
by means of Craig Interpolation helpful to speed up consequent verifi-
cation runs. We implemented the algorithm for automatic detection of
recursion depth on the top of our SAT-based model checker FunFrog and
demonstrate its benefits on a number of recursive C programs.

1 Introduction

Model checking plays an important role in both proving program correctness
and finding bugs. It provides a powerful fully automated engine which is able to
search for an assertion violation among all possible combinations of the input val-
ues. These advantages are however hindered by the high complexity of analysis,
known as the state-space explosion phenomenon. To combat this problem, many
effective state-space reduction solutions have been developed to allow model
checking to scale to verification of complex systems. The most successful solu-
tions are symbolic model checking among which are Bounded Model Checking
(BMC) [2], and abstraction-based approaches such as predicate abstraction [8],
interpolation-based reasoning [11], and function summarization [12,13,1,19].

BMC has been shown to be particularly successful in safety analysis of
software. The state-of-the-art BMC-based tools such as CBMC [3], LLBMC [14],
VeriSoft [9], FunFrog [18], just to name a few, have been successfully applied
to verification of industrial-size programs. The well-known limitation of BMC is
that it is aimed at searching for errors in a program within the given number

(bound) of loop iterations and recursion depth. For this reason, BMC is suitable
only for program falsification, while for complete verification it requires finding a
sufficient bound. This problem remains open: the BMC tools analyze an under-
approximation of a program using some particular bound, defined a priori by
the user or set by the tool to some constant, and check the program only up to
this bound.

There exists a number of (direct and indirect) solutions for the automatic loop
bound detection (i.e., constant propagation, k-induction, loop summarization,
etc). However, dealing with recursive function calls is more complicated and
more expensive in practice. This paper proposes an approach for the automatic
recursion depth detection in BMC and shows its applicability in practice.

In particular, we present a BMC algorithm enhanced with automated con-
struction of the sufficient unwinding1. The algorithm iteratively explores the
program calltree and over-approximates recursive function calls while treating
precisely the other ones. The entire abstraction of the calltree is then checked on-
the-fly with respect to a given assertion. If the assertion holds in the current level
of abstraction then the corresponding unwinding is sufficient to guarantee com-
plete verification (and the length of the longest unwinding chain constitutes the
recursion depth). Otherwise, the algorithm identifies which over-approximated
function calls are responsible for the assertion violation. These function calls are
going to be refined and the algorithm goes to the next iteration.

Our approach is developed to reach efficiency in BMC. At each iteration, it
refines only a minimal set of over-approximated function calls, i.e., only those
responsible for spuriousness of the error on the previous iteration. Clearly, the
algorithm is not guaranteed to terminate when there are unbounded sequences of
recursive calls in the program. But if for every possible value of input parameters,
every recursive function in the real program is called a fixed number of times,
the algorithm automatically detects this number and terminates.

We further demonstrate how our algorithm can be made practical by extend-
ing our earlier work on construction and reusing of interpolation-based function
summaries in BMC [19] for checking different assertions. In the current work,
aside from checking user-provided assertions, we use a heuristic called assertion
decomposition to artificially implant helper-assertions into the recursive program.
These assertions are then checked incrementally to generate function summaries
that will be reused to speed up verification of the user-provided assertions.

We implemented the approach on the top of FunFrog BMC, previously re-
stricted to work only for a user-supplied recursion depth. We evaluated it on a
range of academic and industrial recursive programs requiring bitwise and non-
linear reasoning. Our experimentation confirmed that the summarization-based
recursion depth detection in many cases makes BMC complete and dramatically
improves its performance compare to the classical BMC approach (e.g., CBMC).

Algorithmically, the closest body of work is the Corral [10] tool (see related
work section for detailed comparison). It is a solver for a restricted version of the

1The algorithm relies on the output of a loop bound detection routine (e.g., con-
version loops to recursion) done by an external tool or set by the user.

reachability-modulo-theories problem, and it also uses summaries in its bounded
analysis to guarantee a practical solution. Unlike in our approach, in the Corral,
1) the depth of recursion is bounded by a user-supplied recursion depth and 2) an
external tool [7] is used to generate function summaries which in general may
not be helpful to verify the given assertion. Our approach is able to generate
relevant function summaries by itself. Moreover, it forces summaries to be bit-
precise and highly related to the given assertion. It makes our algorithm converge
more effectively and faster.

The rest of the paper is structured as follows. Sect. 2 defines the notation and
presents background on BMC, function summarization and refinement. Sect. 3
presents the BMC algorithm with automatic detection of recursion depth, proves
its correctness and demonstrates its application to function summarization-based
model checking. Sect. 4 discusses different experimentation scenarios of the ap-
proach including the assertion decomposition heuristic. Sect. 5 provides a com-
parison with the related work and Sect. 6 concludes the paper.

2 Preliminaries and Previous Work

We first define basic constructs required to present the new algorithm. In par-
ticular, we explicitly define recursion, function summaries and basic BMC steps.

2.1 Programs, function calls, recursion depth

Definition 1 (cf. [19]). An unwound program for a depth ν is a tuple Pν =
(F̂ν , f̂main, child), such that F̂ν is a finite set of function calls, unwound up to
the depth ν, f̂main ∈ F̂ν is a program entry point and child ⊆ F̂ν × F̂ν relates
each function call f̂ to all function calls invoked directly from it.

There is a fixed set F to represent functions declared in the program and a
possibly unbounded set F̂ to represent function calls. A call f̂ ∈ F̂ corresponds
to a call of a target function, determined by a mapping target : F̂ → F . A
subset F̂ν ⊆ F̂ is introduced to help handling recursion. There is exactly one
call of function fmain, but there may be several calls of the other functions. For
simplicity, later we will use primes (i.e., f̂ ′, f̂ ′′,..) and indexes (i.e., f̂1, f̂2,..) to
differentiate the calls of the same function f ∈ F in the unwound program.

The set of function calls F̂ together with the relation child can be represented
by a corresponding calltree with the root f̂main. We also use relation subtree ⊆
F̂×F̂ , a reflexive transitive closure of child. Now we can define recursive functions
using this notation.

Definition 2. A function f is recursive if for every call f̂i, there is another call
f̂ ′i in its subtree, and target(f̂i) = target(f̂ ′i) = f .

According to Def. 2, the calltree of a program with recursive functions is
infinite. As detailized later in this section, for classical BMC it has to be bounded.
A recursive function f is unwound ν times if there is a sequence of function calls

(later called an unwinding chain) f̂0, f̂1,.. f̂ν , where 1 ≤ i ≤ ν, target(f̂i) = f ,
and each f̂i+1 is in the subtree of f̂i. The set of function calls F̂ν and the relation
child define a finite corresponding calltree. If there are no recursive function calls
in the program Pν = (F̂ , f̂main, child) then F̂ν ≡ F̂ for any ν.

BMC is aimed at checking assertions in a program within the given bound
of loop iterations and recursion depth. If the unwinding number ν is provided
a priori, BMC unrolls the loops and recursion up to ν, encodes the program
symbolically and delegates the checking to a SAT solver. If the number is not
provided a priori, BMC may go into an infinite loop and not terminate. Typically
in the absence of the number or when the number is set too high, a predefined
timeout is used to cope with this problem.

BMC encodes the program into the Static Single Assignment (SSA) form,
where each variable is assigned at most once. The SSA form is then conjoined
with the negation of the assertion condition and converted into a logical formula,
called a BMC formula. The BMC formula is checked for satisfiability, and every
its satisfying assignment identifies an error trace. Otherwise, the program is safe
up to ν. Notably, this unwinding number may not be sufficient for complete
verification. A program can be proven safe for ν, but buggy for ν + 1.

Fig. 1 illustrates BMC encoding for a simple C program (Fig. 1a) with a
recursive function f. For this example, the recursion depth ν = 5 guarantees
complete verification.2 In this setting, it is assumed that this recursion depth is

int f(int a) {
if (a < 10)

return f (a + 1);
return a - 10;

}

void main() {
int y = 1;
int x = nondet();

if (x > 5)
y = f(x);

assert(y >= 0);
}

(a) C code

y0 = 1;
x0 = nondet();
if (x0 > 5) {

a0 = x0;
// f (unwind 1)
if (a0 < 10)

// f (unwind 2)
...
// end f (unwind 2)
ret0 = ...;

else
ret1 = a0 - 10;

ret2 = phi(ret0, ret1);
// end f (unwind 1)
y1 = ret2;

}
y2 = phi(y0, y1);
assert(y2 >= 0);

(b) SSA form

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
ret0 = ... ∧
... ∧
ret1 = a0 − 10 ∧
(x0 > 5 ∧ a0 < 10⇒

ret2 = ret0) ∧
(x0 > 5 ∧ a0 ≥ 10⇒

ret2 = ret1) ∧
y1 = ret2 ∧
(x0 > 5⇒ y2 = y1) ∧
(x0 ≤ 5⇒ y2 = y0) ∧
y2 < 0
(c) BMC formula

Figure 1: BMC formula generation

2see more details on termination in Sect. 3.1

given a priori. During unwinding (Fig. 1b), a call of function f is substituted
by its body. There will be five such nested substitutions, and the sixth call is
simply skipped in the example. The encoded BMC formula is shown on Fig. 1c.

Classical BMC algorithms use a monolithic BMC formula, as described in
details in [3]. For specialized BMC algorithms (such as in our earlier work on
function summarization [19] and upgrade checking [6], and the new algorithm
for automatic detection of recursion depth) it is convenient to use a so called
Partitioned BMC formula, which is going to be presented in Sect. 2.2.

2.2 PBMC encoding

Definition 3 (cf. [19]). Let F̂ν be an unwound calltree, π encodes an assertion,
φf̂ symbolically represent the body of a function f , a target of the call f̂ . Then
a partitioned BMC (PBMC) formula is constructed as ¬π ∧

∧
f̂∈F̂ν φf̂ .

Fig. 2 demonstrates creation of a PBMC formula for the example from
Fig. 1a. In the example program, unwound 5 times, the partitions for func-
tion calls f1,f2,..f5 and main are generated separately. They are bound together
using a special boolean variable callstart f̂ for every function call f̂ . Intuitively,
callstart f̂ is equal to true iff the corresponding function call f̂ is reached. Note
that the assertion π is not encoded inside φf̂main

, as in classical BMC, but sepa-
rated from the rest of the formula, such that it helps interpolation.3

Formula φf̂1
that encodes the function call f1 aims to symbolically represent

the function output argument ret0 by means of the function input argument a0,
symbolically evaluated in φf̂main

. At the same time, φf̂1
relies on the value of ret3

defined in φf̂2
by means of a1. Similar reasoning is applied to create each of the

following partitions: φf̂2
,.. φf̂5

.

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
x0 > 5⇔ callstart f̂1

∧

y1 = ret0 ∧
(x0 > 5⇒ y2 = y1) ∧
(x0 ≤ 5⇒ y2 = y0)

(a) formula φf̂main

y2 ≥ 0⇔ π

(b) definition of π

(a0 < 10⇔ callstart f̂2
) ∧

a1 = a0 + 1 ∧
ret1 = ret3 ∧
ret2 = a0 − 10 ∧
(callstart f̂1

∧ a0 < 10⇒
ret0 = ret1) ∧

(callstart f̂1
∧ a0 ≥ 10⇒

ret0 = ret2)

(c) formula φf̂1

Figure 2: PBMC formula generation
3see more details on interpolation in Sect. 2.3

2.3 Craig Interpolation and Function Summarization

Definition 4 (cf. [4]). Given formulas A and B, such that A ∧ B is unsatis-
fiable. Craig Interpolant of A and B is a formula I such that A → I, I ∧ B is
unsatisfiable and I is defined over the common alphabet to A and B.

For mutually unsatisfiable formulas A and B, an interpolant always exists [4].
For quantifier free propositional logic, an interpolant can be constructed from a
proof of unsatisfiability [16]. Interpolation is used to generate function summaries
to speed up incremental verification (see our earlier work [19,18]).

Definition 5 (cf. [19]). Function summary is an over-approximation of the
function behavior defined as a relation over its input and output variables.

A summary contains all behaviors of the function and (due to its over-
approximating nature) possibly more. The infeasible behaviors (detected dur-
ing analysis of abstract models) have to be refined by means of the automated
procedure, as will be described in Sect. 2.4.

If the program is safe with respect to an assertion π, then the PBMC formula
representing the program is unsatisfiable. The interpolation procedure is applied
repeatedly for each function call f̂ . It splits the PBMC formula into two parts,
φsubtree
f̂

and φenv
f̂

(1). The former encodes the subtree of f̂ . The latter corresponds
to the rest of the encoded program including a negation of assertion π.

φsubtree
f̂

≡
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ φenv
f̂
≡ ¬π ∧

∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ (1)

Since φsubtree
f̂

∧ φenv
f̂

is unsatisfiable, the proof of unsatisfiability can be used
to extract an interpolant If̂ for φsubtree

f̂
and φenv

f̂
. Such formula If̂ is then consid-

ered as a summary for the function call f̂ . While verifying another assertion π′,
the entire part φsubtree

f̂
of the PBMC formula will be replaced by the summary

formula If̂ .

2.4 Counter-Example Guided Refinement

Definition 6 (cf. [19]). A substitution scenario for function calls is a function
Ω : F̂ → {inline, sum, havoc}.

For each function call, a substitution scenario determines a level of approxi-
mation as one of the following three options: inline when it processes the whole
function body; sum when it substitutes the call by an existing summary, and
havoc when it treats the call as a nondeterministic function. Since havoc ab-
stracts away the function call, it is equivalent to using a summary true.

In the incremental abstraction-driven analyses [19,6], substitution scenarios
are defined recurrently. Algorithms start with the least accurate initial scenario

Ω0, and iteratively refine it. In (2) and (3), we adapt the definitions from [19]
to the recursive case.

Ω0(f̂) =

sum, if there exists a summary of f̂
inline, if f̂ is not recursive or ν is not exceeded
havoc, if f̂ is recursive and ν is exceeded

(2)

Ωi+1(f̂) =
{
inline, if Ωi(f̂) 6= inline and callstart f̂ = true
Ωi(f̂), otherwise

(3)

When a substitution scenario Ωi leads to a satisfiable PBMC formula (i.e.,
there exists an error trace ε), an analysis of ε is required to shows that the
error is either real or spurious. By construction of the PBMC formula, for each
function call f̂ , a variable callstart f̂ is evaluated to true iff f̂ appears along ε.
Consequently, each f̂ might be responsible for spuriousness of ε if f̂ was not
precisely encoded and callstart f̂ = true. If there is no function call, satisfying
the above mentioned conditions, ε is real and must be reported to the user.

3 Bounded Model Checking with Automated Detection
of Recursion Depth

This section presents an iterative abstraction-refinement algorithm for BMC
with automated detection of recursion depth. We first present a basic algorithm,
where all function calls are treated nondeterministically (Sect. 3.1). Then we
strengthen this algorithm to support generation and use of interpolation-based
function summaries (Sect. 3.2).

3.1 Basic Algorithm

An overview of the algorithm is depicted in Alg. 1. The algorithm starts with a
preset recursion depth ν4 and iterates until it detects the actual recursion depth,
needed for complete proof of the program correctness, or a predefined timeout
is reached. Notably, at each iteration of the algorithm, ν gets updated and is
equal to the length of the longest unwinding chain of recursive function calls. In
the end of the algorithm, all recursive calls are unwound exactly same number
of times as they would be called during the execution of the program.

The details of the computation are given below. First, the algorithm aims to
construct a PBMC formula φ using the sets F̂ν and T. Every function call f̂ ∈ F̂ν
is encoded precisely, every function call ĝ ∈ T is treated nondeterministically. In
particular, bodies of function calls from set F̂ν are encoded into the SSA forms

4The algorithm can be initialized with any number value as demonstrated in our
experiments.

Algorithm 1: BMC with automatic detection of recursion depth
Input: Initial recursion depth: ν; Program unwound ν times: Pν = (F̂ν , f̂main , child);

Assertion to be checked: π; TimeOut
Output: Verification result: {SAFE, BUG, TimeOut}; Detected recursion depth: ν; Error

trace: ε
Data: PBMC formula: φ; temporary set of function calls to be refined: T

1 while (¬TimeOut) do
2 T← {ĝ /∈ F̂ν | child(f̂ , ĝ), f̂ ∈ F̂ν}; // get refinement candidates
3 φ← ¬π ∧

∧
f̂∈F̂ν

CreateFormula(f̂) ∧
∧
ĝ∈T

Nondet(ĝ);
4 result, sat_assignment ← Solve(φ); // run SAT solver
5 if (result = UNSAT) then
6 return SAFE, ν;
7 else
8 ε← extract_CE(sat_assignment); // extract error trace
9 T← T ∩ extract_calls(ε); // filter out calls which do not affect SAT

10 if (T = ∅) then
11 return BUG, ν, ε;
12 else
13 F̂ν ← F̂ν ∪ T; // unwind the calltree on demand
14 ν ← max_chain_length(F̂ν); // update the depth
15 end
16 return TimeOut

(i.e., method CreateFormula) and put together into separate partitions (one
partition per each function call) of φ (line 3). At the same time, all function
calls from T are replaced by true (i.e., method Nondet). In total, φ encodes a
program abstraction containing precise and over-approximated parts, conjoined
by negation of an assertion π (line 3). Fig. 3a demonstrates a calltree of a program
with a single recursive function called twice at the first iteration of the algorithm.
In the example, F̂ν = {f̂main, ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely,
and T = {f̂3, f̂

′
2} (white nodes) are treated nondeterministically.

After the PBMC formula φ is constructed, the algorithm passes it to a SAT
solver. If φ is satisfiable, and the SAT solver returns a satisfying assignment
(line 7), function calls from T are considered as candidate calls to be refined.
To refine, the satisfying assignment is used to restrict T on the calls, appeared
along the error trace ε (i.e., in the satisfying assignment) (line 9). In the next
iteration of the algorithm, the calls from T are encoded precisely in the updated
PBMC formula. Technically, the algorithm extends F̂ν by adding function calls
from T (line 13), as shown, for example, on Fig. 3b. There, f̂ ′2 appears along ε
and therefore it has to be refined; f̂3 does not appear in ε, so it will be encoded
nondeterministically. If T = ∅ then no nondeterministically treated recursive
calls were found along the error trace, so the real bug is found (line 11), and the
algorithm terminates.

If the SAT solver proves unsatisfiability of φ then the program abstraction,
and consequently the program itself, are safe (line 6). This case is represented on
Fig. 3c. The final recursion depth ν is detected, and the algorithm terminates.

Theorem 1. Given the program P and an assertion π, if Alg. 1 terminates with

f̂main

f̂1

f̂2

ĝ1 ĥ1 1

2

3

0

⌫

⌫ � 1

(a) (b) (c)

f̂main

f̂1

f̂2

f̂⌫�1

ĝ1 ĥ1

f̂ 0
2

f̂main

f̂1

f̂2

ĝ1 ĥ1

f̂ 0
2

f̂ 0
3

f̂⌫

f̂3f̂3f̂3 f̂ 0
3

f̂ 0
2

?

?

?

!
!
!

!

!

Figure 3: Illustration of the individual steps of the Alg. 1 on the example with a single recursive
function f , called twice.
a) First iteration: F̂ν = {f̂main , ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely, T = {f̂3, f̂

′
2} (white

"?" nodes) are treated nondeterministically; the initial recursion depth is equal to 1.
b) Second iteration: solver returns SAT (corresponding to error trace ε = {f̂main , f̂1, f̂

′
2}), set T is

updated to contain only one function call ({f̂ ′
2} (black "!" nodes)). All calls from T are added to

current F̂ν . The current recursion depth is incremented, and equal to 2.
c) Final iteration: solver returns UNSAT or T = ∅, the detected recursion depth is equal to ν − 1.

an answer SAFE (BUG) then π holds (does not hold) for P .

Proof (Proof sketch). The proof is divided into two parts, for SAFE (line 6) and
BUG (line 11) outputs of the algorithm (and respectively, the PBMC formula φ
proven UNSAT or SAT).

Case SAFE. In this case φ is unsatisfiable. The formula φ represents some
abstraction of P which contains precise and over-approximated components (as
described in section 3.1). Since every abstracted formula can be strengthened
and turned into the corresponding precise encoding, and since unsatisfiability of
a weaker formula implies unsatisfiability of a stronger formula, then the PBMC
formula φinline encoding P without abstraction is also unsatisfiable, i.e., π holds.

Case BUG. In this case, φ is satisfiable, and the satisfying assignment rep-
resents an error trace. At the same time, the algorithm did not detect any non-
deterministically treated recursive function calls along the error trace (line 10).
It means that π is indeed violated within the current recursion depth. ut

Note on Termination. The algorithm is guaranteed to terminate within a
given timeout when it finds an error or proves that the assertion holds. Similar
to classical BMC, Alg. 1 terminates if the recursion depth is sufficient to disprove
the assertion. Classical BMC can prove the assertion up to some fixed recursion
depth, but the result might be incomplete if the recursion depth is insufficient. In
contrast, by Theorem 1, if our algorithm does not yield a timeout, it guarantees
that the detected recursion depth is complete to prove (disprove) the assertion.
The other benefit of our algorithm is that it does not require the recursion depth
to be given a priori, but instead it is detected automatically.

Algorithm 2: Summarization in BMC with Automatic Detection of Re-
cursion Depth

Input: Initial recursion depth ν; Program unwound ν times: Pν = (F̂ν , f̂main , child);
Assertion to be checked: π; Set of summaries: summaries; TimeOut

Output: Verification result: {SAFE, BUG, TimeOut}; Error trace: ε
Data: PBMC formula: φ; set of function calls: T; substitution scenario: Ω

1 φ← ¬π; // initialize φ

2 T← F̂ν ∪ {ĝ /∈ F̂ν | child(f̂ , ĝ), f̂ ∈ F̂ν}; // unwind the calltree initially
3 Ω ← init; // use (2) from Sect. 2.4 to create initial scenario
4 while (¬TimeOut) do
5 φ← φ ∧

∧
f̂∈T:Ω(f̂)=inline

CreateFormula(f̂) ∧
∧
ĝ∈T:Ω(ĝ)=sum

ApplySummaries(ĝ) ∧∧
ĥ∈T:Ω(ĥ)=havoc

Nondet(ĥ); // add partitions to φ (inline, summarize, havoc)

6 result, proof , sat_assignment ←Solve(φ);
7 if (result = UNSAT) then
8 foreach (f̂ ∈ T) do // split φ ≡ φsubtree

f̂
∧ φenv

f̂
as in Sect. 2.3

9 summaries(f̂)← Interpolate(proof , f̂);
10 end
11 return SAFE;
12 else
13 ε← extract_CE(sat_assignment);
14 if (∅ = {f̂ ∈ extract_calls(ε) | Ω(f̂) 6= inline}) then
15 return BUG, ε;
16 else
17 Ω ← Refine(Ω,T, extract_calls(ε)); // use (3) in Sect. 2.4
18 T← T ∪ {ĝ /∈ T | child(f̂ , ĝ), f̂ ∈ T, Ω(f̂) = inline}; //

// unwind the calltree on demand
19 end
20 return TimeOut

Based on our observations, termination of Alg. 1 depends on the termination
of the recursive program it was applied to. For example, the program with one
single recursive function from Fig. 1a terminates for any values of input data.
The recursion termination condition, ¬(a < 10) defines the upper bound 10 for
the value of a, and at the same time the function f monotonically increments
the value of a. Hence, the recursive function f is called a fixed number of times
and the program eventually terminates. Clearly, for complete analysis of this
program it is enough to consider the maximum possible number of recursive
function calls for every initial value of a which in this example is equal to 5.
At the same time, it introduces an upper bound for the size of the constructed
PBMC formula which is a sufficient condition to the SAT solver to terminate
while solving it.

3.2 Optimizations and Applications of Alg. 1

Incremental Formula Construction and Refinement. Possible optimiza-
tions of Alg. 1 are 1) the incremental construction of the PBMC formula φ and
2) more efficient handling of a set of the refinement candidates, T.

In the first optimization, φ is created in an incremental manner. At each iter-
ation, φ is not recomputed from scratch, but gets conjoined with new partitions.

These partitions precisely encode the refined function calls from the set T. In
this manner the PBMC formula is updated at the beginning of each iteration.

In the second optimization, the set of refinement candidates T is merged with
the whole set of unwound function calls F̂ν . Instead of handling those two sets,
it is enough to handle one. To distinguish function calls which were present in
T from the others present in F̂ν the substitution scenario Ω is used.

Summarization. The proposed algorithm for recursion depth detection can be
exploited for efficient incremental program verification (i.e., verification of the
same program with respect to different assertions [19].5 In this setting, function
summaries are computed by means of Craig Interpolation.

Alg. 2 shows how the optimized Alg. 1 can be integrated with summarization-
based verification. Interpolating procedure (line 9), that employs the PBMC
formula φ and its proof of unsatisfiability, is run after each assertion is proven.
The use of summaries makes the verification more flexible. Instead of treating
recursive function calls nondeterministically, the algorithm might apply existent
summaries, thus making entire program abstraction more accurate. Moreover,
the use of substitution scenario (line 5)enables summarization of any (not nec-
essarily recursive) function calls.

4 Experimental Evaluation

We implemented the automatic Recursion Depth Detection (RDD) and Summa-
rization-based RDD (SRDD) inside of the BMC tool FunFrog [18] and make
its binary (FunFrog+(S)RDD) available6. FunFrog supports interpolation-based
function summarization for C programs and uses the SAT-solver PeRIPLO [17] for
solving propositional formulas, proof reduction and interpolation. FunFrog fol-
lows CProver’s7 paradigm. In particular, it accepts a precompiled goto-binary,
a representation of the C program in an intermediate goto-cc language, and
runs the analysis on it.

We evaluated the new algorithms on a set of various recursive C programs
(taken from the SVCOMP’148 set (Ackermann X McCarthy, GCD, EvenOdd), ob-
tained from industry9 (P2P_Joints X), crafted by USI students for evaluation
of interpolation-based abstractions). We provide two verification scenarios to
evaluate the algorithms. In the first one, FunFrog+RDD verifies a single asser-
tion in each benchmark and detects the recursion depth. In the second one,
FunFrog+SRDD incrementally verifies a set of assertions and reuses function sum-
maries between its checks. In our experiments loop handling was done by means
of CProver (see Sect. 5 for more details).

5Recall that the analysis in [19] is restricted to programs, unwound fixed number
of times (i.e., without recursion).

6http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz
7http://www.cprover.org
8http://sv-comp.sosy-lab.org/2014/
9in scope of FP7-ICT-2009-5 — project PINCETTE 257647

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz
http://www.cprover.org
http://sv-comp.sosy-lab.org/2014/

benchmark FunFrog+RDD FunFrog CBMC
In≡1 1 < In < ν In≡ ν

name #R T Result In Time #It ν #Calls In Time #It In Time #It Time Time
Array A 5 a SAFE 1 664.02 15 15 75 10 513.986 6 15 121.381 1 3600+ 3600+
Array B 12 a SAFE 1 777.432 24 24 71 2 1781.92 23 24 3600+ — 3600+ 3600+
Array C 3 a SAFE 1 1113.68 27 16 106 14 991.724 3 16 557.281 1 3600+ 3600+
Ackermann A 2 b SAFE 1 55.758 34 20 2169 7 3493.64 10 20 3600+ — 3600+ 3600+
Ackermann B 2 b BUG 1 56.772 30 17 1942 7 3547.29 10 17 3600+ — 3600+ 3600+
Alternate A 2 c SAFE 1 35.068 50 50 100 30 22.206 20 50 0.902 1 3600+ 3600+
Alternate B 2 c BUG 1 92.314 77 77 154 50 53.315 28 77 1.681 1 3600+ 3600+
Multiply 10 a SAFE 1 710.517 110 10 110 7 569.559 4 10 226.659 1 3600+ 3600+
InterleaveBitsRec 1 a SAFE 1 150.053 33 33 33 15 125.241 19 33 8.188 1 3600+ 3600+
BitShiftRec A 1 a SAFE 1 128.074 64 64 64 20 13.416 45 64 2.413 1 3600+ 3600+
BitShiftRec B 2 b SAFE 1 65.537 12 12 4285 3 65.399 10 12 3600+ – 3600+ 3600+
P2P_Joints A 1 a SAFE 1 1234.71 4 4 4 2 1195.31 3 4 1092.26 1 3600+ 3600+
P2P_Joints B 1 a BUG 1 1266.38 4 4 4 2 1222.11 3 4 1120.03 1 3600+ 3600+

Table 1: Verification statistics for various BMC tools with and without auto-
mated detection of recursion depth.

4.1 Evaluating RDD

Table 1 summarizes the verification statistics of a set of benchmarks with dif-
ferent types (T) of recursion (a - single recursion, b - multiple recursion, c -
indirect recursion). The number of recursive functions present in each bench-
mark is depicted in the column marked #R. Each benchmark was verified using
CBMC, FunFrog10 without recursion depth detection and 3 different versions of
FunFrog+RDD. The first configuration of FunFrog+RDD performs the algorithm
with the initial recursion depth set to 1 (denoted as In ≡ 1 in the table), de-
tects recursion depth (ν) and also reports the number of unwound recursive calls
as #Calls. Then, in purpose of comparison, the second and the third configura-
tions perform the same algorithm with the another values of the initial recursion
depths (1 < In < ν and In ≡ ν respectively). For each experiment, we report
total verification time (in seconds) and a number of iterations of FunFrog+RDD
(#It). The verification results (SAFE/BUG) were identical for experiments with
all configurations and we placed them in the table in the section describing the
benchmarks.

Notably, for all different types of recursion, the experiments with CBMC and
pure FunFrog failed as they reached the timeout (3600+) of 1 hour without
producing the result. This in general was not a problem for any of the ex-
periments when FunFrog+RDD was used. We compare different configurations
of FunFrog+RDD in order to demonstrate possible behaviors of FunFrog+RDD de-
pending on the structure of benchmarks. The benchmarks Multiply, Alternate
A/B, Array A/C, InterleaveBitsRec and BitShiftRec A witness the overhead
of the procedure. In InterleaveBitsRec and BitShiftRec A there is a single
recursive function called one time; in Multiply and Alternate A/B there are
several recursive calls requiring the same recursion depth; in Array A and Array
C there are several recursive calls requiring different, but relatively close recursion
depths. That is, if we compare the first configuration with the third one, we can

10CBMC and FunFrog were run with default parameters

benchmark FunFrog+RDD FunFrog+SRDD
name #R T Result ν In TotalTime #It In #A TotalTime ItpTime #It
Arithm 1 a SAFE 100 1 128.47 100 1 20 9.676 2.036 119
McCarthy 2 b SAFE 11 1 3600+ — 1 5 10.495 4.859 24
GCD 3 b SAFE 11 1 145.381 64 1 4 54.185 0.409 37
EvenOdd 2 c SAFE 25 1 38.621 50 1 8 27.99 4.49 82
P2P_Joints C 1 a SAFE 4 1 1531.38 4 1 4 1151.72 68.10 4
P2P_Joints D 1 a SAFE 4 1 1192.28 4 1 4 1089.04 87.08 4

Table 2: Verification statistics of FunFrog+RDD and FunFrog+SRDD

see that such overhead exists. The first configuration takes more time to com-
plete verification than the second one, and the second configuration takes more
time to complete verification than the third one. This is because FunFrog+RDD
executes more iterations in the first configuration than in the second one and
more iterations in the second configuration than in the third one. Again, the
difference and the advantage is in the fact that the first and the second config-
urations do not know the recursion depth needed for verification and the third
one gets it provided (as an initial recursion depth for FunFrog+RDD). Therefore,
for the third configuration it is always enough to execute one iteration.

The benchmarks Array B, Ackerman A/B and BitShiftRec B show the op-
posite behavior, where the first configuration takes less time to complete than
the second and the third ones. These cases demonstrate the benefits of using
minimality feature of the FunFrog+RDD, since they require different recursion
depths for each recursive function call appearing in the code. In all configura-
tions we specify In by a fixed number which may fit well some of the recursive
calls, but for other ones it may be bigger than needed. In this case, FunFrog+RDD
creates unnecessary PBMC partitions, blows up the formula and consequently
slows down the verification process. While using In = 1, incremental unwinding
automatically finds depths for each recursive function call. It means that for such
cases the new approach for BMC not only detects the recursion depth sufficient
for verification but that it also performs it efficiently and allows to slice out parts
of the system which are redundant for verification purpose.

Interesting results are demonstrated by experimentation with the industrial
benchmark P2P_Joints A/B. It contains expensive nonlinear computations, a
complex calltree structure with relatively trivial recursion requiring unrolling 4
times. The experiments show that the difference in timings between different
FunFrog+RDD configurations is minor.

4.2 Evaluating SRDD

Another set of experiments of verifying recursive programs by applying FunFrog
+SRDD is summarized in Table 2. There are two configurations of FunFrog com-
pared in the table. The first one, FunFrog+RDD, is similar to the first con-
figuration in Table 1. The second one, FunFrog+SRDD, is SRDD driven by
assertion decomposition.

We explain the idea of assertion decomposition on the example from Fig. 1.
The assertion assert(y >= 0) (A1) can be used to derive a set the following
helper-assertions assert(x < 5 || y >= 0) (A2), assert(x < 7 || y >= 0)
(A3) and so on. It is clear that if A1 holds, then both A2 and A3 hold as well;
and if A2 holds then A3 holds as well. We will say that A3 is weaker than A2,
and A2 is weaker than A1.

In this experiment, we derive helper-assertions (number of them is denoted
#A in the table) by guessing values of the input parameters of recursive func-
tions, then order assertions by strength and begin verification from the weakest
one. If the check succeeds, the summaries of all (even recursive) functions are
extracted. They will be reused in verification of stronger assertions. This proce-
dure is repeated until the original assertion is proven valid. We summarize total
timings (TotalTime) for verification of each weaker assertion, which includes
the timings for interpolation (ItpTime).

For all benchmarks in the table, FunFrog+SRDD outperforms FunFrog+RDD.
Technically, it means that checking a single assertion may be slower than check-
ing itself and also several other assertions.11 The strongest result, we obtained, is
verifying a well-known McCarthy function. Running FunFrog+SRDD for it takes
around 10 seconds, while FunFrog+RDD, pure FunFrog and CBMC exceed time-
out. Notably, the interpolation may take up to a half of whole verification time.
In some cases, summarization increases the number of iterations. But in total,
FunFrog+SRDD remains more efficient that FunFrog+RDD.

5 Related Work

To the best of our knowledge, there is very little support for computing recur-
sion depths in BMC algorithms. One of the most successful BMC tools, CBMC [3],
attempts to find unwinding recursion depths using constant propagation. This
approach works only if the number of recursive calls is explicitly specified in the
source code (i.e., as a constant number in a termination condition of a recursive
call). If it cannot be detected by constant propagation, the tool gets into an
infinite loop and fails to complete verification. CBMC also supports explicit defi-
nition of a recursion depth ν which may lead to incomplete verification results.
In order to check correctness of the current unwinding, CBMC inserts and checks
so called unwinding assertions. If all unwinding assertions hold, the currently
used recursion depth is sufficient. If there is a violated unwinding assertion, the
current recursion depth has to be increased. To our knowledge, CBMC does not
have the refinement procedure and error trace analysis to make the recursion
depth detection complete.

The idea of processing function calls on demand was also researched by [10]
in the tool Corral. The method, called stratified inlining, relies on substituting
bodies of function calls by summaries, and checking the resulting program using
a theorem prover. If the given level of abstraction is not accurate enough, the

11A reader can find all these benchmarks with already inserted helper-assertions at
http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz

algorithm refines function calls in a similar way to our refinement. Despite some
similarity to Alg. 1, Corral relies on the external tool [7] to generate function
summaries. In contrast, our method automatically generates summaries using
Craig Interpolation inside Alg. 2 after an assertion is successfully checked, and
use already constructed summaries to check other assertions.

There are techniques designed to deal with recursion. For instance, [20] is able
to verify recursive programs in milliseconds, but it is limited only to functional
programs. BMC, in contrast, is not designed to deal with recursion, but it has
been applied to a wide range of verification tasks. FunFrog+(S)RDD itself is not a
standalone recursive model checker, but an extension of the existent SAT-based
BMC tool. In our previous work [18], it was already shown applicable to verify
industrial-size programs, supporting complete ANSI C syntax. Conversion to
SAT formulas allows to perform bit-precise checks, i.e., verify assertions in the
programs using bitwise operators.

Craig Interpolation is applicable to verification of recursive programs in a
rather different scenario. In Whale [1], it is used to guess summaries generated
from under-approximations of the function bodies behavior. Unfortunately, the
tool is not available for use, so we are unable to compare it with FunFrog+(S)RDD.

k-induction [5,15] is another under-approximation-driven technique for check-
ing recursion. First, it proves an induction base (i.e., that there is no assertion
violation in the unwinding chain with the length k). Then, if successful, it proves
an induction step (i.e., whenever the assertion holds in an unwinding chain with
the length k, it also holds in the unwinding chain with the length (k+1)). Fi-
nally, the approach is able to find an inductive invariant, which can be treated
as function summary. To our knowledge, there is no incremental model checker
based on k-induction which (re-)uses function summaries.

The overview of other summarization approaches to program analysis can be
found in our earlier work published at [19].

6 Conclusion and Future Work

This paper presented the new approach to automatically detect recursion depths
for BMC and applies it to function summarization-based approaches to model
checking. In principle, a similar idea may be applied to solve the problem of loop
bound detection where an algorithm abstracts away loop bodies and iteratively
refines one more body at a time. One can develop such algorithm in future. We
believe, there is a strong mapping between program termination and analysis
termination which can be investigated in future. In cases of multiple recursion,
the algorithm may be improved by using SAT solvers with support for Minimal
SAT. The approach of the summarization-based BMC might be extended to
support SMT theories. This way, the analysis in general might become more
efficient, but will lose bit-precision.

Acknowledgments. We thank Antti Hyvärinen for his notable contribution
during the work on this paper.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An interpolation-based al-
gorithm for inter-procedural verification. In: VMCAI. LNCS, vol. 7148, pp. 39–55.
Springer-Verlag (2012)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: TACAS ’99. LNCS, vol. 1579, pp. 193–207. Springer-Verlag (1999)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. pp. 168–176. LNCS, Springer-Verlag (2004)

4. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. In: J. of Symbolic Logic. pp. 269–285 (1957)

5. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software Verification Using
k-Induction. In: SAS. pp. 351–368. LNCS, Springer-Verlag (2011)

6. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental Upgrade Checker
for C. In: TACAS. LNCS, vol. 7795, pp. 292–307. Springer-Verlag (2013)

7. Flanagan, C., Leino, K.R.M.: Houdini, an Annotation Assistant for ESC/Java. In:
FME. pp. 500–517. LNCS, Springer-Verlag (2001)

8. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Computer
Aided Verification, CAV ’97. pp. 72–83. LNCS, Springer-Verlag (1997)

9. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. In: Theor. Comput. Sci. vol.
404, pp. 256–274 (2008)

10. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
CAV. LNCS, vol. 7358, pp. 427–443. Springer-Verlag (2012)

11. McMillan, K.L.: Applications of Craig Interpolation in Model Checking. In:
TACAS. pp. 1–12. LNCS, Springer-Verlag (2005)

12. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifica-
tion (CAV ’06). pp. 123–136. LNCS, Springer-Verlag (2006)

13. McMillan, K.L.: Lazy annotation for program testing and verification. In: Com-
puter Aided Verification (CAV’ 10). pp. 104–118. LNCS, Springer-Verlag (2010)

14. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++ Pro-
grams Using a Compiler IR. In: VSTTE. LNCS, vol. 7152, pp. 146–161. Springer-
Verlag (2012)

15. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling Unbounded Loops with
ESBMC 1.20 - (Competition Contribution). In: TACAS. LNCS, vol. 7795, pp.
619–622. Springer-Verlag (2013)

16. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. In: Journal of Symbolic Logic. vol. 62, pp. 981–998 (1997)

17. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A Framework for Producing Effective Interpolant-based Software Verification. In:
LPAR. LNCS, vol. 8312, pp. 683–693. Springer-Verlag (2013)

18. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded Model Checking with
Interpolation-based Function Summarization. In: ATVA. LNCS, vol. 7561, pp. 203–
207. Springer-Verlag (2012)

19. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries
in Bounded Model Checking. In: HVC. LNCS, vol. 7261, pp. 160–175. Springer-
Verlag (2012)

20. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: POPL. pp. 75–86. ACM (2013)

A Types of recursion

Fig. 4 demonstrates different types of possible recursive function calls up to the
depth ν.

Fig. 4a shows an example with a single recursive function f called two times,
once from function g and once from function fmain. In this example, the calltree
contains two chains of calls of function f : the first one consisting of one function
call {f̂2}, the other consisting of ν calls: {f̂1, f̂

′
2, ..f̂ν}, where the numbers 1 and

ν are recursion depths.
Fig. 4b shows an example with a recursive function f called multiple times

from itself (in the example, it is called 2 times). There are many chains of function
calls possible for such scenario, and every one consists of at most ν calls of f , as
demonstrated by a sample unwinding in the example. Notably, their unwinding
depths can be different (and our algorithm will be able to detect the longest
ones and stop exploring the chains for which the smaller depth is sufficient for
verification).

Fig. 4c shows an example with indirect recursive functions f and g, such that
each function is called not by itself, but by another function that it called. In the
example, both f an g are unwound at most bν2 c times (i.e., ν times altogether).

f̂main
f̂main f̂main

f̂1f̂1

f̂2 f̂2 f̂ �
2

f̂ν f̂ν f̂νf̂ �
ν f̂ ��

ν f̂ ���
ν

f̂ �
ν−1f̂ν−1 f̂ν−1 f̂ ��

ν−1
ĝν−1

ĝ1 ĝ1 f̂1ĥ1

f̂ �
2 ĝ2

f̂3 f̂3f̂3 f̂ �
3

1

2

3

0

ν

ν − 1

(a) (b) (c)

Figure 4: A program calltree with recursive functions unwound at most ν times:
a) single recursion; b) multiple recursion; c) indirect recursion

	 Towards Completeness in Bounded Model Checking through Automatic Recursion Depth Detection

