
1 Tool usage

The eVolCheck can be run from a command line as well as using the Eclipse plug-
in. Its Linux binaries, benchmarks used for evaluation, a tutorial explaining how to use
eVolCheck and explanation of the most important parameters are available on-line
for other researchers1.

The following shows the example of usage of eVolCheck from a command line 2:
1. Create a model of the base version of the program by running the goto-cc

compiler. Choose one of the *_orig.c files in examples directory, for example by
typing:

~/evolcheck$ ./goto-cc examples/valid/change_valid_orig.c
-o examples/valid/change_valid_orig.out

The file examples/valid/change_valid_orig.c is the input source code,
while examples/valid/change_valid_orig.out is the resulting goto-binary.
Note, that the upgrade checking environment should be prepared for analysis by clean-
ing the repository with ~/evolcheck$ rm __summaries __omega before per-
forming this step.

2. Run eVolCheck to perform the initial bootstrapping check of the program (pa-
rameter --init-upgrade-check):

~/evolcheck$ ./evolcheck --init-upgrade-check --unwind 10
examples/valid/change_valid_orig.out

Note that the parameter --unwind <N> is optional and specifies the maximal
number of unwindings of each loop.

3. Check the eVolCheck outputs. The following message at the end of the eVolCheck
output indicates either that the program is safe:

ASSERTION(S) HOLD(S).

or that the program is buggy:

ASSERTION(S) DO(ES)N’T HOLD.
A real bug found.

In the latter case, a corresponding error trace manifesting the bug is part of the out-
put as well. After a successful bootstrapping check, the summaries and their mapping
the calltree are created and stored for the subsequent upgrade checks, files __summaries
and __omega respectively.

4. When the program is upgraded, goto-binary model of the new version is created
again using the goto-cc compiler. Run it for the file corresponding *_upgr.c file
chosen in Step 2:

~/evolcheck$ ./goto-cc examples/valid/change_valid_upgr.c
-o examples/valid/change_valid_upgr.out

5. With the goto-binary model of the new version of the program, the actual upgrade
check is performed (parameter --do-upgrade-check <file>) as follows:

1 www.verify.inf.usi.ch/evolcheck
2 the running example can be found at http://www.inf.usi.ch/phd/fedyukovich/
evolcheck.lin32.tar.gz

www.verify.inf.usi.ch/evolcheck
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz


~evolcheck$ ./evolcheck --do-upgrade-check examples/valid/change_valid_upgr.out
--unwind 10 examples/valid/change_valid_orig.out

6. Check the eVolCheck output. There are several possible cases. Either the two
programs have identical models, i.e., no or only simple syntactical changes occurred
(examples for this case are located in the examples/ident folder), resulting in the
following output:

The program models are identical.

Or the upgraded program really changed but it remains correct (examples are lo-
cated in the examples/valid folder), resulting in the following message for each
checked function summary:

... summary was verified.

Or the upgraded program is buggy (examples are located in examples/not_valid).
The corresponding output contains the following message for the summary of the func-
tion main: ‘

Old summary is no more valid.
...
summary cannot be renewed. A real bug found.

7. Additional information about the usage of the tool can be found simply by typing

~/evolcheck$ ./evolcheck --help

Eclipse plug-in. Nowadays, IDEs form an essential part of software development
tool chains. Therefore, we integrated eVolCheck into Eclipse, which is one of
the most widely used IDE. Our plug-in hides some of the implementation details and
provides much more comfort compared to the command line tool. As expected, the
actual use of the plug-in follows the command line scenario.

Figure 1: Eclipse developing prospective



Figure 2: eVolCheck configuration window

Figure 3: eVolCheck invokes goto-diff (changed lines are highlighted)



Figure 4: eVolCheck error trace

1. The user develops a base version of the program. In order to specify properties,
the assertions should be placed in the code (Fig. 1) or generated automatically by the
tool. The examples of of the default properties are division by zero, pointers derefer-
encing, array out-of-bounds checks.

2. The user opens the Debug Configurations window and chooses the file(s) to be
checked and specifies the unwinding bound (Fig. 2). Eclipse then automatically cre-
ates the model (goto-binary) from the selected source files and keeps working with it.

3. The plug-in searches for the last safe version of the current program (goto-binary
created from the same selection of source files). If no such a version is found, it performs
the initial bootstrapping check. Otherwise, plug-in restores the summaries and outdated
goto-binary from the subsidiary storage. eVolCheck then identifies the modified code
by comparing call trees for both the current and the previous versions. The modified
lines of code are marked (Fig. 3) for the user review.

4. Then the localized upgrade check is performed. If it is unsuccessful, the plug-in
reports violation to the user and provides an error trace (Fig. 4). The user can traverse
the error trace line by line in the original code and see the valuation of all variables in all
states along the error-trace. If desired, the user fixes the reported errors and continues
from Step 3.

5. In case of successful verification, the positive result is reported (Fig. 5). The
plug-in stores the set of valid and new summaries and the goto-binary in the subsidiary
storage. In addition, graphical visualization of the change impact in the form of a col-
ored call-tree is available (Fig. 6).



Figure 5: eVolCheck successful verification report

Figure 6: eVolCheck change impact


