
Table 1: Experimental evaluation
Benchmark Bootstrap Upgrade check

Name Total [s] Itp [s] Total [s] Diff [s] Itp [s] Speedup Result ISR
ABB_A 8.644 0.008 0.04 0.009 0.003 220x SAFE 0/7
ABB_B 6.236 0.009 0.006 0.006 — 935x SAFE 0/9
ABB_C 8.532 0.015 0.059 0.008 0.003 157x SAFE 0/8
VTT_A 0.512 0.001 0.006 0.006 — 85.5x SAFE 0/9
VTT_B 0.514 0.001 0.031 0.006 — 0.7x BUG 1/9
euler_A 12.56 0.099 0.179 0.001 0.016 70.4x SAFE 1/6
euler_B 12.547 0.095 2.622 0.001 0.031 4.74x SAFE 3/5
life_A 13.911 1.366 0.181 0.001 <0.001 77.0x SAFE 0/5
life_B 13.891 1.357 6.774 0.001 — 0.31x BUG 5/5
arithm_A 0.147 0.007 0.355 0.001 — 0.39x BUG 3/3
diskperf_A 0.167 0.001 0.024 0.008 <0.001 5.79x SAFE 0/21
diskperf_B 0.137 0.001 0.062 0.009 — 2.25x BUG 3/21
floppy_A 2.146 0.229 0.422 0.202 <0.001 5.02x SAFE 0/226
floppy_B 2.183 0.237 2.277 0.206 — 0.82x BUG 79/226
kbfiltr_A 0.288 0.011 0.081 0.023 0.001 3.40x SAFE 1/63
kbfiltr_B 0.320 0.009 0.088 0.023 0.001 1.85x SAFE 3/63

Table 1 represents results of the experiments. Each benchmark is shown in a separate
row, which summarizes statistics about the initial verification and verification of an up-
grade. Time (in seconds) for running the syntactic difference check (Diff) and for gen-
eration of the interpolants (Itp) represents the computational overhead of the upgrade
checking procedure, and included in the total running time (Total) of eVolCheck.
Note that interpolation can not be performed at the buggy examples (marked as "—"),
for which the corresponded PBMC formula is satisfiable. To show advantages of our
upgrade checking approach, for each change we calculated the speedup (Speedup) of
the upgrade check versus standalone verification of the changed code from scratch, per-
formed only for the sake of comparison reasons and thus not shown in the table. Finally,
the posteriori estimation of the upgrade check complexity is shown in the row ISR (In-
valid Summaries Ratio). This ratio represents the number of invalid summaries (due to
the change) with respect to the number of nodes in the call tree of the verified program.

Discussion. Our evaluation demonstrates good performance of eVolCheck. In
particular, the experiments show high efficiency of upgrade checking for safe upgrades
since they result in a small number of refinements (both, upward and downward). This
generally leads to a small number of invalidated summaries, as witnesses by the cor-
responding ISR (see, for example, the ABB_n cases, where summaries of all changed
functions were proven valid). It is less efficient (for some tests) in case of buggy up-
grades, since bugs frequently (as expected) effect larger portions of the program. In clas-
sical model checking, confirming the absence of bugs is usually more expensive (since
it requires the full state-space search) then detecting the bugs (where the search can
be terminated once the bug is detected) and we believe that the fact that eVolCheck
works so well to confirm safety is very useful for routine analysis of upgrades. In the
majority of experiments, the localized upgrade check provided by eVolCheck, as ex-
pected, outperforms the verification from scratch, which is indicated by speedup > 1.


