
An Extension of the Davis-Putnam Procedure
and its Application to Preprocessing in SMT

Roberto Bruttomesso

Università della Svizzera Italiana, Lugano, Switzerland

Abstract. We present a decision procedure for SMT(LRA) that works
by eliminating Boolean and rational variables. The algorithm we propose
(DPFM) is based on a combination of the Davis-Putnam procedure and
the Fourier-Motzkin elimination. We report on preliminary experiments
where DPFM is not directly used to solve the formula (as its prohibitive
complexity does not make it practical), but it is instead used in a con-
trolled manner as a simplification and preprocessing device.

1 Introduction

Decision procedures for Satisfiability Modulo the Theory of Linear Rational
Arithmetic (SMT(LRA)) have received a great attention in the area of formal
verification in the last decade, in particular for encoding and solving verification
conditions for software. Most state-of-the-art SMT-Solvers, such as Barcel-
ogic [3], CVC3 [2], MathSAT [5], Yices [8], and Z3 [7], currently implement
decision procedures for SMT(LRA).

In this paper we propose yet another procedure for SMT(LRA) that is based
on a combination of the Davis-Putnam [6] (DP) and the Fourier-Motzkin [11]
elimination procedures (DPFM). The main idea is to extend DP with a res-
olution rule, based on Fourier-Motzkin elimination, that natively operates on
SMT(LRA) clauses. Despite the high complexity of the procedure, we show
how DPFM can be used, in a controlled manner, to simplify the input formula
or to statically derive and learn knowledge about it. Our preliminary experi-
ments show that using DPFM as preprocessor may speed-up the overall solving
effort.

The closest work to ours is the one proposed by Strichman in [18,19]: it is an
eager 1 approach for SMT(LRA) that makes use of the Fourier-Motzkin elim-
ination procedure. The approach can be summarized as follows. Each distinct
LRA constraint ci in the input problem ϕ is replaced with a fresh Boolean vari-
able ei to obtain the Boolean abstraction ϕ′ of ϕ. Subsequently ϕ′ is enriched
with a sufficient number of implications of the form (ei ∧ ej → ek) where ek is
a fresh Boolean variable associated to a new LRA constraint. ek results from
the application of a Fourier-Motzkin step on the LRA constraints associated to
ei and ej . The final formula contains only propositional variables, and it can be
solved with any SAT-Solver.
1 See [1] for details about the eager and the lazy approach to SMT.

Our approach is also based on Fourier-Motzkin, which is however used to
eliminate rational variables, instead of generating theory lemmata. In particular
we use Fourier-Motzkin to derive a resolution rule for SMT(LRA) upon which we
define our DPFM procedure. DPFM allows to choose the amount of variables
to eliminate and which variables to eliminate. It is also possible to alternate
Boolean and rational variable elimination.

The other work that inspired our approach is the SATElite algorithm [10],
that is in turn an improved approach over the NiVER tool [20]. SATElite
is a preprocessor for SAT formulæ based on the variable elimination rule of
DP [6], which is applied under certain controlled conditions in order to produce
a simplified version of the input formula at a little computational cost. In this
work we follow the same philosophy of SATElite, in that we aim at simplifing
the formula using DPFM instead of DP.

After the submission of this paper, we learned about another work [12] al-
most simultaneously submitted and published at CAV092. The authors of [12]
introduce a generalized version of DPLL, called GDPLL. GDPLL can be used,
for instance, to explore rational values for variables in an SMT(LRA) formula
in a similar way as DPLL explores values for Booelans. The so-called shadow
rule that they introduce is extremely similar to our SMT(LRA) Resolution. An
application of the shadow rule is, in fact, equivalent to many applications of our
SMT(LRA) Resolution, after the trasformation in OCCF.

We also show that DPFM can be used as a device for performing static
learning. Static learning [4,22] is the process of eagerly learning some lemmata
before the actual search starts. We propose a static learning technique based on
DPFM that, in contrast to [4], is capable of learning clauses that mix Boolean and
theory atoms. Differently from [22] our method is controlled by two parameters,
centrality and trade-off, that can be used to control the amount and the quality
of information to be added. More importantly, the clauses learnt with DPFM
are not consequences of the theory under consideration, but only of the structure
of input formula. This is important in order to avoid learning combinations of
theory atoms that are already prevented by the Boolean structure of the formula.

Finally we report on a set of preliminary experiments on the DL fragment
of linear arithmetic that indicates that our preprocessing techniques effectively
simplify the input formula.

2 Background

2.1 Preliminaries

In the following we use the letters {x, y} to denote LRA variables, k to denote
a rational constant, and {p, q} to denote LRA polynomes. Also, we use {a} to
denote Boolean variables, and {C,D} to denote (either Boolean or SMT(LRA))
clauses. We shall assume that clauses do not contain duplicate literals, or both
the positive and the negative version of a literal.
2 We thank an anonymous reviewer for pointing us to that work.

For the sake of simplicity we assume that the only predicate symbol used
to express LRA-atoms is ≤. Notice that this is not a restriction as p < k can
be rewritten into p ≤ k + δ, where δ > 0 can be dealt with as an infinitesimal
parameter, as described in [9]. Similarly, we will assume that LRA-atoms always
appear non negated in clauses, since ¬(p ≤ k) is equivalent to k < p, and
therefore to −p ≤ −k + δ.

In the rest of the paper a bound is an expression of the form xi ≤ p (upper
bound), or−xi ≤ p (lower bound), if xi does not occur in p. If a variable xi occurs
(with a non-zero coefficient) in an LRA-atom p < k, then we can always rewrite
it into an upper or a lower bound with straightforward algebraic manipulations.
We shall denote a set of upper and lower bounds for a variable x with Bx and
B−x respectively.

In the following we will recall two well-known techniques for variable elimi-
nation.

2.2 Resolution for Booleans and the Davis-Putnam Procedure

Boolean Resolution has been first introduced by Robinson [15,16]. It allows the
derivation of an implied clause, called resolvent, from a pair of clauses that
contain a complementary literal, called pivot.

Definition 1 (Boolean Resolution). Let C = C1∨a∨C2 and D = D1∨¬a∨
D2 be two clauses. The resolvent C ⊗a D of C and D on the pivot variable a is
C1 ∨ C2 ∨D1 ∨D2.

This notion can be also lifted to sets of clauses as follows.

Definition 2 (Boolean Resolution for two sets of clauses). Let Sa, S¬a

two sets of clauses containg an occurrence of a or ¬a respectively. Then

Sa ⊗a S¬a = {C1 ⊗a C2 | C1 ∈ Sa, C2 ∈ S¬a}

An important property of Boolean Resolution is that it preserves equisatisfi-
ability, i.e., the set of clauses Sa ∪ S¬a is equisatisfiable with Sa ⊗a S¬a defined
above.

Boolean Resolution for sets of clauses is used in a well-known decision pro-
cedure for Boolean formulæ, described by M. Davis and H. Putnam in [6]3.
The procedure, named DP, takes as input a Boolean formula ϕ in Conjunctive
Normal Form (CNF), and iteratively applies the following three rules.

Rule I-B: Unit Propagation. If a variable ai appears in a unary clause l, set ai

to v, v being > if ai = l or ⊥ if ¬a = l. Then replace all positive occurences of
ai with v, and all occurrences of ¬ai with ¬v.

Rule II-B: Affirmative-Negative Rule. If a variable ai appears in ϕ only positively
resp. negatively, then set ai to > resp. ⊥ and remove clauses containing ai.
3 Notice that DP was invented before the pubblication of Robinson’s Resolution rule.

Rule III-B: Variable Elimination. This rule is an application of the Boolean
Resolution rule for sets of clauses.

Each rule aims at eliminating one Boolean variable from the set of clauses.
Rules I and II are just optimizations, and they are not needed for the method to
be complete. The algorithm terminates either when an empty clause is generated
(unsatisfiable formula) or when every clause is removed (satisfiable formula).

2.3 LRA Resolution and the Fourier-Motzkin Elimination Method

As observed in [21], a similar notion of resolution can be defined for LRA con-
straints. A LRA constraint of the form

∑
i kixi ≤ k plays a role similar to a

Boolean clause, where addition “+” is the correpondent of disjunction “∨” and
negative ki coefficients corresponds to negation “¬”. The obvious difference is
that, in linear arithmetic, coefficients may assume values in R. However if we
focus on a particular variable xi, it is always possible to rewrite a constraint in
the form of a bound ±xi ≤ p, where p is the polynome 1

ki
(k −

∑
j 6=i kjxj).

In order to stress the similarities with Boolean Resolution, we shall refer to
the variable elimination process for LRA as to LRA Resolution.

Definition 3 (LRA Resolution). Let Bx = x ≤ p an upper bound for x and
B−x = −x ≤ q a lower bound for x. Then Bx ⊗x B−x = −q ≤ p.

The resulting polynome can be then simplified into the canonical form
∑

i kixi ≤
k. As for Boolean Resolution, LRA Resolution can be lifted to sets of constraints.

Definition 4 (LRA Resolution for two sets of constraints). Let Sx be a
set of upper bounds for x and S−x a set of lower bounds for x. Then

Sx ⊗x S−x = {B1 ⊗x B2 | B1 ∈ Sx, B2 ∈ S−x}

To avoid unnecessary complication in the notation, we shall assume that
whenever we generate a new LRA constraint it is automatically put in its canon-
ical form. Similarly, we will not explicitly mention the rewriting process that is
necessary to obtain bounds from LRA constraints. Rewriting LRA constraints
is both conceptually and computationally easy.
LRA Resolution for two sets of constraints is the basic rule behind the well-

knonw Fourier-Motzkin Elimination method (see [17] for a thorough description).

3 An Extension of the Davis-Putnam Procedure to
SMT(LRA)

This section presents a method for eliminating an arbitrary variable, either
Boolean and Real, from an SMT(LRA) formula. In particular, we will intro-
duce a new form of resolution that can be seen as a combination of Boolean
and LRA Resolutions discussed above. We shall call the new rule SMT(LRA)
Resolution.

3.1 A preliminary preprocessing step

The decision procedure we are about to present is defined to work on a particular
format for SMT(LRA) formulæ, that we call One Constraint per Clause Form
(OCCF). Formally, an SMT(LRA) formula ϕ is in OCCF if (i) ϕ is in CNF,
and (ii) each clause in ϕ contains at most one LRA-atom.

Any SMT(LRA) CNF formula ϕ can be easily converted into an equisat-
isfiable OCCF in linear time in the number of literals, using an additional set
of fresh Boolean variables: the idea is to consider one clause at a time, and to
split those clauses that contain more than one LRA-atom into smaller ones. The
correspondence with original clauses is guaranteed by introducing new Boolean
variables acting as “links”.

For instance consider a clause C = (a1 ∨ x1 + x2 ≤ 5 ∨ x3 − x1 ≤ 10 ∨ a2).
In order to separate the two theory atoms x1 + x2 ≤ 5 and x3 − x1 ≤ 10,
we introduce a fresh Boolean variable a3, and split C into the clauses C ′ =
(a1 ∨ x1 + x2 ≤ 5 ∨ a3) and C ′′ = (¬a3 ∨ x3 − x1 ≤ 10 ∨ a2). C ′ and C ′′ are
both in OCCF, and they are equisatisfiable with C. In general one needs n+ 1
clauses to replace a clause containing n LRA-atoms.

3.2 Resolution for SMT(LRA)

In the following we introduce a notion of resolution that operates on SMT(LRA)
clauses in OCCF. The SMT(LRA) Resolution eliminates one rational variable
x from two clauses in which x appears in an upper and in a lower bound respec-
tively.

Definition 5 (SMT(LRA) Resolution). Let C = C1 ∨ (x ≤ p) ∨ C2 and
D = D1 ∨ (−x ≤ q) ∨D2 be two clauses in OCCF. The resolvent C ⊗x D of C
and D on the rational variable x is C1 ∨ C2 ∨ (−q ≤ p) ∨D1 ∨D2.

Example 1. Let C = (a1∨x1 ≤ 5−x2∨a2) and D = (a3∨−x1 ≤ 10−x3). Then
C ⊗x1 D = (a1 ∨ −(10− x3) ≤ 5− x2 ∨ ¬a2 ∨ a3) = (a1 ∨ x3 + x2 ≤ 15 ∨ a2).

We have the following lemma3.

Lemma 1 (Soundness of SMT(LRA) Resolution). Let C = C1 ∨ (x ≤
p) ∨ C2, D = D1 ∨ (−x ≤ q) ∨ D2 two clauses in OCCF. Then C ∧ D is
equisatisfiable with C ⊗x D.

As for the resolution methods recalled in § 2, we can extend SMT(LRA)
Resolution to a set of OCCF clauses as follows.

Definition 6 (SMT(LRA) Resolution for two sets of clauses). Let Bx

and B−x two sets of clauses in OCCF where x appears upper bounded and lower
bounded respectively. We define Bx⊗xB−x as the set of clauses {C1⊗xC2 | C1 ∈
Bx, C2 ∈ B−x}.
3 The proof is given in the Appendix

SMT(LRA) Resolution for two sets of clauses preserves satisfiability4.

Lemma 2 (Soundness of SMT(LRA) Resolution for sets of clauses).
Let Bx and B−x two sets of clauses in OCCF form, x appears upper bounded
and lower bounded respectively. Then Bx∪B−x is equisatisfiable with Bx⊗xB−x.

Using the variable elimination for SMT(LRA) defined above it is possible to
define a decision procedure for SMT(LRA) that works by eliminating variables,
both Boolean and Real.

DPFM
Input: ϕ in OCCF
Apply the following rules in a fair manner, until
every clause is removed or and empty clause is found:

Rule I-B: Unit Propagation for Booleans
Rule II-B: Affirmative-Negative Rule for Booleans
Rule III-B: Variable Elimination for Booleans5

Rule I-R: Unit Propagation for Reals
Rule II-R: Affirmative-Negative Rule for Reals
Rule III-R: Variable Elimination for Reals

5 Taking care of transforming newly added clauses in OCCF.

The first three rules are inherited from DP, while the remaining three rules
are described as follows.

Rule I-R: Unit Propagation for Reals. If two bounds x ≤ p and −x ≤ −p are
present in the formula as two unit clauses (i.e., x = p), then substitute x with p
in all the remaining clauses.

Rule II-R: Affirmative-Negative Rule. If a variable x appears only in lower or
upper bounds than all contraints containing x can be replaced with >, and
therefore all the clauses containing such constraints can be removed. In fact
suppose that in a formula ϕ x appears only in upper bounds. Let P = {x ≤
p1, . . . , x ≤ pn} be the set of the upper bounds, and let ϕ′ the formula resulting
from the removal of clauses containing x. If ϕ is satisfied by a model µ, than ϕ′

can be satisfied by µ, as it contains less clauses. On the other hand, let µ′ be
a model for ϕ′; we can extend µ′ by choosing a value for x that is lower than
min(µ′(p1), . . . , µ′(pn)), which satisfies all the clauses in ϕ \ ϕ′.

Rule III-R: Variable Elimination. This rule is an application of the SMT(LRA)
Resolution for set of clauses on a chosen real variable x.

4 Practical Applications

The DPMF procedure presented in the previous section yields a worst-case com-
putational complexity which cannot be inferior to the ones of DP and FM. In
both situations the amount memory required to store new constraints is O(m2n

),
where m is the number of initial constraints and n is the number of variables.
The high complexity makes the procedure as it is of impractical use for large
values of m and n.

However, as we are going to show in the following, we can still benefit from
a controlled execution of DPFM in order to simplify or generate new knowledge
about the formula, in order to speed up the solving time for a state-of-the-art
SMT-Solver. In particular we would like to follow the same philosophy underlying
the SATElite approach [10], where Boolean resolution steps are applied only
under certain controlled conditions.

In our approach in particular we focus on two structural aspects of the formula
that concern theory variables: centrality and trade-off. With the term “centrality”
for a variable x we indicate a measure of the degree of connection of x with
other theory variables. Precisely the centrality for x is the cardinality of the set
{y | y and x appear both in some LRA constraint }. The other parameter that
we consider is a “trade-off” value between the elimination of a theory variable
and the number of new clauses to be added. In other words the trade-off is the
maximum price, in terms of new clauses, that the procedure is allowed to pay
for eliminating one theory variable.

We implemented our DPFM procedure, parametrized with centrality and
trade-off values, within OpenSMT [13]. After DPFM the SATElite algorithm
is also run5 in order to further simplify the formula and in particular to remove
unnecessary auxiliary Boolean variables introduced during the OCCF transfor-
mation.

In the following we report on two preliminary experiments conducted on
some SMT(DL) formulæ taken from the SMT-LIB 6. We decided to restrict to
SMT(DL) as they allow a simpler implementation of DPFM. DL constraints
have the form x− y ≤ k, and they are therefore easier to manipulate. It is suffi-
cient to track positive and negative occurences of theory variables in constraints.
Notice also that an application of SMT(LRA) resolution to a pair of DL-atoms
is always guaranteed to produce another DL-atom. Since difference logic is a
fragment of linear arithmetic, our results can be still applied. As future work we
plan to extensively test our procedure on a wider set of benchmarks.

4.1 Formula Simplification

Empirically we observed that some SMT(DL) problems contain a relevant num-
ber of DL-variables with very low centrality value. For instance this is the case

5 Only on Boolean variables.
6 Logs available at www.inf.unisi.ch/postdoc/bruttomesso/SMT2009.

www.inf.unisi.ch/postdoc/bruttomesso/SMT2009

for the SMT-LIB qlock benchmarks, which encode a queuing locking mech-
anism, where around 40% of DL-variables have centrality 1 or 2. A selective
application of a DPFM-based preprocessing on those variables always results in
a simplified formula.

Table 1 shows a comparison of the structural properties of the qlock bench-
marks, without (WO) and with (W) the application of our DPFM-based pre-
processor, with centrality=2 and trade-off=128. In all benchmarks we observe a
reduction of clauses, Boolean atoms, DL-atoms, and DL-variables, at the cost of
few milliseconds in the preprocessing phase (preprocessing time includes parsing,
DPFM, and SATElite). At the same time, as shown in Table 2, the prepro-
cessed formulæ are also simpler to solve.

P.Time (s) Clauses BAtoms TAtoms TVars

Bench WO W WO W WO W WO W WO W

Ind 37 1.08 6.57 41137 35299 6580 5371 6129 5285 829 185
Ind 38 1.16 6.62 42265 36244 6757 5515 6299 5423 851 188
Ind 39 1.19 7.02 43381 37150 6934 5659 6467 5562 873 189
Ind 40 1.17 7.05 44457 38114 7111 5803 6619 5702 895 203
Base 18 0.80 1.87 18630 16314 2946 2405 2867 2559 375 137
Base 19 0.82 2.31 19780 17269 3123 2548 3045 2702 397 150
Base 20 0.95 2.47 20914 18246 3300 2693 3215 2851 419 151
Base 21 0.94 2.54 22052 19193 3477 2836 3389 2995 441 155

Table 1. Structural properties for qlock benchmarks without (WO) and with (W)
DPFM-based preprocessing with centrality=2 and trade-off=128. Columns show the
comparison of preprocessing time (P.Time), number of clauses (Clauses), number of
Boolean atoms (BAtoms), number of DL-atoms (TAtoms), number of DL-variables.
In both cases SATElite preprocessor is enabled.

Bench Time WO (s) Time W (s) Bench Time WO (s) Time W (s)

Base 18 61.3 59.0 Ind 37 90.5 18.0
Base 19 146.1 138.4 Ind 38 105.7 54.6
Base 20 > 1800 940.1 Ind 39 64.4 46.7
Base 21 1367.9 765.0 Ind 40 98.3 37.3

Table 2. Total run-time for the most challenging qlock instances (for OpenSMT)
with (W) and without (WO) preprocessing. For benchmarks Base 22 to 40 both versions
timeout. Tests were executed on an Intel Xeon 3.0 GHz, with a timeout of 1800 s.

Centr. Trade-Off T. Vars Elim. P.Time Clauses TAtoms BAtoms T.Time (s)

- - 0 0.05 216 612 0 > 1800

12 64 0 0.05 216 612 0 > 1800
12 256 2 0.06 458 832 22 180.0
12 1024 4 0.04 1094 968 42 91.4
12 4096 6 0.09 3076 1032 60 67.2
12 16384 6 0.10 3076 1032 60 67.1

18 64 0 0.02 216 612 0 > 1800
18 256 4 0.02 714 1054 56 192.3
18 1024 8 0.07 2005 1566 109 105.6
18 4096 12 0.15 5702 2254 156 125.6
18 16384 12 0.16 5702 2254 156 125.9

24 64 0 0.02 216 612 0 > 1800
24 256 4 0.03 781 1108 66 193.2
24 1024 8 0.07 1978 1638 117 157.1
24 4096 11 0.19 5005 2198 153 89.4
24 16384 12 0.32 5519 2294 163 92.2

Table 3. Structural properties and total run-time for a job-shop bench-
mark with 12 jobs and 2 machines (precisely, the SMT-LIB benchmark
QF IDL/job shop/jobshop12-2-6-6-2-4-9.smt) on an Intel Xeon 3.0 GHz. The
first row corresponds to running OpenSMT without any DPFM-based preprocessing
step (with SATElite enabled). The other rows show the behaviour of the preprocessor
with different values for centrality and trade-off parameters.

4.2 Mixed Boolean-Theory Static Learning

By running a set of controlled experiments we observed that the application
of our DPFM-based preprocessor to variables with centrality greater than 5,
generally does not reduce the size of the formula. Still the newly added clauses
may be learnt before starting the Boolean search.

Traditional static learning techniques [4,22] tend to generate clauses repre-
senting theory atoms incompatibilities, in order to prevent too many calls to the
theory solver at runtime. One possible drawback of these approaches, is that one
may add too many unnecessary clauses to the problem: the Boolean structure of
the formula itself may already prevent some theory atoms combinations. With
our procedure, instead, we statically learn clauses which mix Boolean atoms and
theory constraints that are implications of the original formula and not only
consequences of the specific theory under consideration.

In order to test the effectiveness of our mixed static learning with different
configurations of centrality and trade-off, we ran some experiments on some
job shop instances of the SMT-LIB. In particular we report, in Table 3, a
detailed analysis using multiple runs of an (unsatisfiable) job shop scheduling
benchmark with 12 jobs and 2 machines, where we play with different values for
centrality and trade-off (a similar trend can be also observed for other job shop
instances).

Using static learning generally results into smaller run-times. The combina-
tions for centrality and trade-off that result in the best performance are however
different for different benchmarks: as future work we want to investigate good
heuristics for choosing the values for the parameters, based on the formula’s
structure.

5 Conclusion and Future Work

We have presented a decision procedure for SMT(LRA) that is a combination
of the Davis-Putnam and Fourier-Motzkin proceudes. The procedure uses the
notion of SMT(LRA) resolution that allows the elimination of rational variables
from an SMT(LRA) formula. It can be used as a preprocessor and simplification
device.

As future work we plan to extend the current implementation of the pre-
processor in order to be able to experiment with a broader set of benchmarks,
including SMT(LIA) formulæ (using the integer version of Fourier-Motzkin de-
scribed in [14]), and to study heuristics for an optimal control of our simplifi-
cation parameters. Also we would like to experiment with different interleaving
strategies with the SATElite preprocessor.

Acknowledgments

We thank Edgar Pek for the interesting discussions and his support on the DL
solver.

References

1. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Handbook on Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, chapter Satis-
fiability Modulo Theories. IO Press, 2009.

2. C. Barrett and C. Tinelli. CVC3. In CAV’07, 2007.
3. M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez Carbonell, and A. Rubio.

The Barcelogic SMT Solver. In A. Gupta and S. Malik, editors, CAV’08, volume
5123 of Lecture Notes in Computer Science, pages 294–298. Springer, 2008.

4. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz,
and R. Sebastiani. MathSAT: Tight Integration of SAT and Mathematical Decision
Procedures. JAR, 35(1-3):265–293, 2005.

5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4 SMT Solver. In CAV, pages 299–303, 2008.

6. Martin Davis and Hilary Putnam. A Computing Procedure for Quantification
Theory. J. ACM, 7(3):201–215, 1960.

7. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08, pages
337–340, 2008.

8. B. Dutertre and L. de Moura. The Yices SMT Solver. Tool paper available at
http://yices.csl.sri.com/tool-paper.pdf.

http://yices.csl.sri.com/tool-paper.pdf

9. B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV’06, pages 81–94, 2006.

10. N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable and Clause
Elimination. In SAT, pages 61–75, 2005.

11. J.B.J. Fourier. Solution d’une question particulire du calcul des angalits. Oevres,
II:314–328, 1826.

12. K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing dpll to richer logics.
In CAV, pages 462–476, 2009.

13. OpenSMT. http://verify.inf.unisi.ch/opensmt.

14. William Pugh. The Omega Test: a Fast and Practical Integer Programming Algo-
rithm for Dependence Analysis. In Supercomputing, pages 4–13, 1991.

15. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J.
ACM, 12(1):23–41, 1965.

16. J. A. Robinson. A Generalized Resolution Principle. Machine Intelligence, 3:77–93,
1968.

17. A. Schrijver. Theory of linear and integer programming. Paperback, 1998.

18. Ofer Strichman. On Solving Presburger and Linear Arithmetic with SAT. In
FMCAD, pages 160–170, 2002.

19. Ofer Strichman. Deciding Disjunctive Linear Arithmetic with SAT. CoRR, 2004.

20. S. Subbarayan and D. K. Pradhan. NiVER: Non increasing variable elimination
resolution for preprocessing SAT instances. In SAT’04, pages 276–291, 2004.

21. H. P. Williams. Logic applied to integer programming and integer programming
applied to logic. European Journal of Operational Research, 81(3):605 – 616, 1995.

22. Y. Yu and S. Malik. Lemma Learning in SMT on Linear Constraints. In SAT,
pages 142–155, 2006.

A Proofs

Lemma 1 (Soundness of SMT(LRA) Resolution).
Let C = C1∨ (x ≤ p)∨C2, D = D1∨ (−x ≤ q)∨D2 two clauses in OCCF. Then
C ∧D is equisatisfiable with C ⊗x D.

Proof. Suppose that C∧D is satisfied by a model µ. If either (x ≤ p) or (−x ≤ q)
are evaluated to false by µ, then at least one of C1, C2, D1, D2 must evaluate
to true, and therefore C ⊗x D is satisfied.

Suppose that C⊗xD is satisfied by a model µ. If (−q ≤ p) evaluates to true,
then we can choose a value for x such that (µ(x) ≤ µ(p)) and (−µ(x) ≤ µ(q)). If
(−q ≤ p) evaluates to false, then at least one of C1, C2, D1, D2 must evaluate
to true. If C1 evaluates to true, than C is satisfied. In order to satisfy D we can
choose a value for x such that (−µ(x) ≤ µ(q)). ut

Lemma 2 (Soundness of SMT(LRA) Resolution for sets of clauses).
Let Bx and B−x two sets of clauses in OCCF form, x appears upper bounded and
lower bounded respectively. Then Bx ∪B−x is equisatisfiable with Bx ⊗x B−x.

Proof. Assume Bx ∪B−x and Bx ⊗x B−x to be of the form:

http://verify.inf.unisi.ch/opensmt

(x ≤ p1) ∨ C1

(x ≤ p2) ∨ C2

. . .
(x ≤ pn) ∨ Cn

. . .
(−x ≤ q1) ∨D1

(−x ≤ q2) ∨D2

. . .
(−x ≤ qm) ∨Dm︸ ︷︷ ︸

(−q1 ≤ p1) ∨ C1 ∨D1

(−q2 ≤ p1) ∨ C1 ∨D2

. . .
(−qm ≤ p1) ∨ C1 ∨Dm

. . .
(−q1 ≤ p2) ∨ C2 ∨D1

(−q2 ≤ p2) ∨ C2 ∨D2

. . .
(−qm ≤ pn) ∨ Cn ∨Dm︸ ︷︷ ︸

[B11]
[B12]
. . .
[B1m]
. . .
[B21]
[B22]
. . .
[Bnm]

Bx ∪B−x Bx ⊗x B−x

(n+m) clauses (nm) clauses

In order to prove that Bx ∪B−x and Bx ⊗x B−x are equisatisfiable we show
that (i) if a model µ for Bx ∪ B−x exists, then µ also satisfies Bx ⊗x B−x, and
(ii) that any model µ for Bx ⊗x B−x can be extended with a suitable value in
R for x to satisfy Bx ∪B−x.

(i) Suppose Bx ∪ B−x is satisfied by a model µ. Let C> = {Ci | µ |= Ci},
C⊥ = {Ci | µ 6|= Ci}, and let D> = {Di | µ |= Di}, D⊥ = {Di | µ 6|= Di}.
Then the set of clauses B> = {Bij | Ci ∈ C> or Dj ∈ D>} is also satisfied by
µ. Consider now the remaining Bij clauses ((Bx ⊗x B−x) \ B>). These clauses
contain constraints in Brest = {−qj ≤ pi | Ci ∈ C⊥, Dj ∈ D⊥}. However since
Bx ∪ B−x is satisfied by µ, then all {x ≤ pi,−x ≤ qj | Ci 6∈ C>, Dj 6∈ D>} are
satisfied by µ, and therefore all their combinations, i.e. Brest, are satisfied by µ,
as a consequence of the Fourier-Motzkin theorem.

(ii) Suppose Bx⊗xB−x is satisfied by a model µ, and C>, C⊥, D>, D⊥, B>,
Brest are defined as in (i). Since µ |= Brest for hypotesis, and since Brest contains
all the combinations of inequalities for {pi | Ci ∈ C⊥} and {−qj | Dj ∈ D⊥},
then, as a consequence of the Fourier-Motzkin theorem it is possible to extend
µ to a µ′ with a value for x such that all {x ≤ pi,−x ≤ qj | Ci 6∈ C>, Dj 6∈ D>},
and therefore Bx ∪B−x, are satisfied by µ′. ut

	An Extension of the Davis-Putnam Procedure and its Application to Preprocessing in SMT
	Roberto Bruttomesso

