Using Cross-Entropy for Satisfiability

Hana Chockler
IBM Research
Haifa, Israel
hanac@il.ibm.com

Simone Fulvio Rollini
University of Lugano
Lugano, Switzerland

rollinis@usi.ch

ABSTRACT

This paper proposes a novel approach to SAT solving by using the
cross-entropy method for optimization. It introduces an extension
of the Boolean satisfiability setting to a multi-valued framework,
where a probability space is induced over the set of all possible as-
signments. For a given formula, a cross-entropy-based algorithm
(implemented in a tool named CROiSSANT) is used to find a satis-
fying assignment by applying an iterative procedure that optimizes
an objective function correlated with the likelihood of satisfaction.

We investigate a hybrid approach by employing cross-entropy as
a preprocessing step to SAT solving. First CROiSSANT is run to
identify the areas of the search space that are more likely to contain
a satisfying assignment; this information is then given to a DPLL-
based SAT solver as a partial or a complete assignment that is used
to suggest variables assignments in the search.

We tested our approach on a set of benchmarks, in different con-
figurations of tunable parameters of the cross-entropy algorithm; as
experimental results show, it represents a sound basis for the devel-
opment of a cross-entropy-based SAT solver.

Categories and Subject Descriptors
F.5.3 [Mathematical Optimization]: Discrete Optimization; G.1.1

[Combinatorics]: Combinatorial Optimization—Cross-entropy; F.4.1

[Logic]: Logic and Verification—Satisfiability

Keywords

SAT, Cross-entropy, Optimization, Pre-processing, Multi-valued
Boolean logic

1. INTRODUCTION

The practical significance of the Boolean satisfiability problem
has led to major research efforts both among theoreticians and prac-
titioners in this area, which resulted in powerful tools. Nowadays,

*This work is partially supported by the European Community un-
der the call FP7-ICT-2009-5 — project PINCETTE 257647.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

Alexander lvrii
IBM Research
Haifa, Israel
alexi@il.ibm.com

Arie Matsliah
IBM Research
. Haifa, Israel
ariem@il.ibm.com

Natasha Sharygina
University of Lugano
Lugano, Switzerland

natasha.sharygina@usi.ch

SAT solvers are routinely used to solve real-life problems repre-
sented by formulae with millions of variables in a reasonable time.
Overall, however, there is no known procedure (as depicted by the
P versus NP problem) that can solve efficiently all instances of SAT.
Often these highly engineered tools cannot solve seemingly simple
problems. In general, it is virtually impossible to predict which in-
stances can be solved easily and which can not without trying to
find the actual solution.

Several techniques have been developed in the satisfiability frame-
work, both incomplete (unable to prove unsatisfiability of a for-
mula) and complete. Most of the successful SAT tools fall into two
main classes: 1) the ones (complete) which implement the Davis-
Putnam-Loveland-Logemann (DPLL) algorithm [10, 9], where the
tools systematically traverse and backtrack a binary tree whose
nodes represent partial assignments; and 2) the others (incomplete)
based on stochastic local search (SLS) where solvers guess a full
assignment and, if it is not a satisfying one, use different heuris-
tics to reassign the values to variables (see [42, 20] for compre-
hensive surveys). Various heuristics are employed by the stochas-
tic methods to escape local minima and to ensure that the previ-
ously tried combinations of values are not assigned in the subse-
quent tries. Based on the annual competitions of SAT solvers, the
DPLL-based tools demonstrate better performance when applied
to real-life problems as they take advantage of (and learn from) the
structure of the solved instances (see, for example, [32, 12]). On
the other hand, stochastic-based approaches tend to exhibit better
performance on random instances, especially in conjunction with
other techniques (for example, [26] proposes to use the power of
GPUs to speed-up SAT computations).

In the last years, many authors have dedicated themselves to
combining DPLL and stochastic search-based algorithms in an ef-
fective manner, trying to exploit the benefits of both worlds to ob-
tain a competitive complete hybrid solver [40].

These kinds of hybrid approaches have been proved particularly
successful; still, they offer many challenges in terms of finding op-
timal couplings of deterministic and stochastic techniques, global
and local strategies of exploration. In this paper, we propose a
novel approach to the satisfiability problem built on a model-based
stochastic technique known as the cross-entropy method and on its
adaptation to combinatorial optimization.

The cross-entropy method is a generic approach to rare event
simulation and to combinatorial optimization [36]. It derives its
name from the cross-entropy or the Kullback-Leibler divergence,
which is a fundamental concept of modern information theory [24].
It is an iterative approach based on minimizing the cross-entropy or
the Kullback-Leibler divergence between probability distributions.
The cross-entropy method was motivated by an adaptive algorithm

for estimating probabilities of rare events in complex stochastic net-
works [34]. Then, it was realized that a simple modification allows
the use of this method also for solving hard optimization problems,
in which there is a performance function associated with the inputs.
The cross-entropy method in optimization problems is used to find
a set of inputs on which the performance function reaches its global
maximum (or minimum), where the input space is assumed to be
too large to allow exhaustive exploration. The method is based on
an iterative sampling of the input space according to a given prob-
ability distribution over this space. Each iteration consists of the
following phases:

1. Generate a set of random samples according to a specified
mechanism.

2. Update the parameters of the random mechanism based on
the data to produce “better” samples in the next iteration,
where “better” depends on the chosen performance function.

The initial probability distribution is assumed to be a part of the in-
put. Samples are evaluated according to the performance function.
The procedure terminates when a sample with the maximal (or the
minimal) value of the performance function is generated, or, if the
global extremum is unknown in advance, when an extremum is de-
tected.

We propose an algorithm based on the cross-entropy method and
on an extension of the Boolean satisfiability problem to a multi-
valued setting. Given a Boolean formula ¢ in CNF over a set V
of propositional variables, we turn the Boolean range {0, 1} into
a discrete set D such that every element of D is between 0 and 1.
Intuitively, these values provide a measure of the “level of truth”
of a variable. The probability space is derived from all possible
assignments to) over D; a probability distribution P assigns a
probability to each variable and value. We define the semantics of
the Boolean connectives over D and examine some performance
functions S that correlate with the evaluation of ¢, in such a way
that, if ¢ is satisfiable, then a global minimum of S is reached un-
der a satisfying assignment. Starting with a uniform distribution,
we execute an algorithm based on the cross-entropy method with
S AT-specific optimizations to minimize the value of the chosen per-
formance function.

We carry out an investigation towards the development of a new
hybrid DPLL-stochastic technique by letting our cross-entropy al-
gorithm perform an initial fast exploration of the probability space.
Assuming a satisfying assignment has not been found, from the
values of the best-performing sample (following the intuition about
“level of truth”) a Boolean partial assignment is derived, which in
turn is used by the SAT solver to decide the polarities to be given
to variables during the search.

We implemented our variant of the cross-entropy method in a
tool named CROISSANT and tested it in combination with state-of-
the art SAT solvers on different sets of benchmarks; as the exper-
imental results show, it is a sound basis for the development of a
cross-entropy-based SAT solver.

In summary, the contributions of this paper are:

o A new theoretical framework that extends the standard Boolean
satisfiability problem to a multi-valued model, suitable for
optimization techniques like the cross-entropy method.

e The first systematic application of the cross-entropy method
to satisfiability (to the best of our knowledge), and the devel-
opment of a cross-entropy-based algorithm with SAT-specific
optimizations.

e A new hybrid DPLL-stochastic technique that consists in a
simple form of interaction between CROiSSANT and a SAT
solver, where the information provided by the former (in
terms of an optimal sample) is used by the latter to drive
variable polarities at decision time.

2. RELATED WORK

It is natural to consider satisfiability as an optimization prob-
lem on the space of complete variables assignments, with the per-
formance function evaluating, for example, the number of satis-
fied clauses. As such, there is considerable ongoing research on
applying optimization techniques to satisfiability. A number of
powerful stochastic solvers is based on various extensions of the
random walk model, see for example GSAT [41], WalkSAT [39],
HSAT [16], SDF [38], Novelty and R-Novelty [30], Novelty+ and
R-Novelty+ [19], UnitWalk [18].

In contrast to these techniques, our approach is to iteratively ad-
just the probability distribution, according to which assignments
are generated. Also, while nearly all known stochastic approaches
for Boolean satisfiability use a binary range for the variables, we
use smoother ranges, which allows a more gradual improvement.
Surprisingly there is no prior work on the application of the cross-
entropy method to satisfiability, to the best of our knowledge, apart
from a brief mention in [36]. At the same time, the cross-entropy
method is used in many other areas, including buffer allocation [1],
neural computation [11], DNA sequence alignment [22], schedul-
ing [28], graph problems [35], and, more recently, testing [5] and
replay [6] of concurrent programs. It was shown to be very effective
in discovering or approximating solutions to very hard problems
for which it is possible to define a “good” (smooth and gradually
improving) performance function.

In the last years there has been extensive research on combining
stochastic local search (SLS) and conflict driven clause learning.
Three main research branches have been followed: using DPLL as
an aid for SLS or vice versa SLS as a helper for DPLL, either before
or at solving time [8, 29, 15, 21, 13, 17]; letting the two techniques
interact in a synergistic way [14, 25, 4, 2, 3].

In [29] it is suggested, for an unsatisfiable formula, to use a
stochastic solver to try to identify its minimal unsatisfiable cores,
and then to use a complete solver on the smaller resulting subfor-
mula. Moreover, the scores delivered by the stochastic solver could
be used to guide the branching strategy of the complete solver.

Using a stochastic solver to suggest polarities for branching vari-
ables is probably even more natural, however to our knowledge it
has not been explicitly suggested in the literature. There is also a
strong connection between setting the initial branching polarities
and the progress saving heuristic, suggested in [33] and used in all
state of the art CDCL solvers.

The rest of the paper is organized as follows. We start with
the necessary definitions in Section 3. The extended satisfiability
framework, as well as the CROISSANT algorithm, are presented
in Section 4, while experimental results are described in Section 5.
We conclude the paper and discuss future work in Section 6.

3. PRELIMINARIES
3.1 SAT definitions

V is a set of propositional variables v1,...,v,; a literal [is a
variable, either with positive (v) or negative (v) polarity. A clause
C'is a finite disjunction of literals I1 V ... V l;¢; a formula ¢ in
conjunctive normal form (CNF) is a finite conjunction of clauses

CiA...ACm. ABoolean assignment e : V — {true, false}isa
function that assigns either value true or false to some variables
v € V; the assignment is complete if every variable is assigned a
value, otherwise it is partial. An assignment e is said to satisfy a
formula ¢ if ¢ evaluates to true under e; conversely, it falsifies ¢
if ¢ evaluates to false.

3.2 Cross-entropy for optimization

In this section, we present a brief overview of the cross-entropy
method for combinatorial optimization. The cross-entropy method
was originally developed in order to efficiently estimate probabil-
ities of rare events and was later shown to be effective in solving
combinatorial optimization problems [36].

In this setting, we are given a very large probability space X,
a probability distribution f defined on X', and a function S from
this space to R™, and we are searching for an element X of X on
which S reaches its global maximum. The function S is called the
performance function, and intuitively, it measures “fitness” of the
elements of X'. The space is assumed to be very large and infeasi-
ble to search exhaustively, and the global maximum is rare, so that
the probability of finding it by random sampling according to the
given probability distribution f is very low. In addition, in many
problems we do not know the value of the global maximum in ad-
vance. The problem would be solved if we had another distribution
g that increases the probability of finding the global maximum. The
ideal distribution here would be gs, which gives probability 1 to in-
puts on which S reaches its global maximum and O to all other
inputs. The cross-entropy method attempts to iteratively approxi-
mate gs by changing the probability distribution on X" so that the
distance between the current distribution and the ideal distribution
decreases in each iteration. The notion of distance used in this ap-
proximation is the Kullback-Leibler divergence or distance (also
called cross-entropy). The Kullback-Leibler divergence between g
and h is defined as:

(X)
D(g,h) = Egln =—— = /g(x) 1ng(x)da:—/g(x) In h(z)dz
h(X)
Note that this is not a distance in the formal sense, since in gen-
eral it is not symmetric. Since gs is unknown, the approximation
is done iteratively from the input distribution f = fy, where in
iteration ¢ we draw a random sample according to the current dis-
tribution f; and compute the (approximate) cross-entropy between
the f: and gs based on this sample. The probability distribution
fi+1 for iteration ¢ 4 1 is computed from f; and the sample in iter-
ation ¢ so that D(gs, ft+1) < D(gs, ft). The exact update formula
depends on the formulation of the problem, but, roughly speaking,
the probability distribution is modified based on the best quantile
of the current sample, so that the elements close to the best quantile
get a higher probability in the next iteration.

The process can be halted once the global maximum is reached,
if it is known in advance. When this is not the case, a common
criterion, which we adopt, is to stop when the best quantile does
not significantly change for a number of subsequent iterations. The
convergence of our cross-entropy algorithm is discussed in §4.2.

The reader is referred to the book on cross-entropy for a com-
plete description of the method [36].

4. THE CROISSANT APPROACH

In this section, we present the extension of the Boolean model
to the multi-valued one, together with the semantics of the Boolean
connectives; we also describe a probability space induced over the
multi-valued space and discuss the choice of an appropriate perfor-
mance function. We define the variant of the cross-entropy setting

adopted and illustrate the core algorithm of CROiSSANT in detail.
Then, we set out the mechanics of the interaction between CROiS-
SANT and a DPLL-based SAT solver and the intuitions behind that.
Finally, we discuss the relationships between the parameters of the
CROISSANT algorithm and their tuning in our experiments.

4.1 The multi-valued model

Intuitively, in order to guarantee convergence to a satisfying as-
signment of a given CNF formula ¢, we need a probability space
and a performance function that allow an “evolution” of the assign-
ments towards the satisfying assignment. In particular, this means
that the performance function reaches its global maximum on a sat-
isfying assignment, and that the value of the performance function
increases when the sample is getting closer to a satisfying assign-
ment. Moreover, the sample space should be dense enough to al-
low gradual changes of the probability distribution. In the stan-
dard Boolean logic every variable can have only two values, and
thus its value cannot change gradually. Our approach introduces a
multi-valued framework, inspired by fuzzy logic [43] and its use of
t-norms.

Assuming a domain D C [0, 1], an assignment functione : V —
D extends a standard Boolean assignment by associating each vari-
able of V with a value in D. The function e* evaluates an arbitrary
Boolean formula ¢ to a number in [0, 1], given an assignment e of
values to its variables:

o ¢*(v) = dife(v) =d
o " (—) =1—e"(3).

e (Y V) =e"(Y) xe(n).

e e" (¢ An) = max(e" (), e"(n)).

In our framework, O stands for true and 1 stands for false, contrary
to the traditional way of defining their meaning — this allows a more
efficient computation of the value of Boolean formulae.

Remark 1. While the above definition of e¢* does not correspond
to standard algebraic operations (in particular, there is no distribu-
tivity), it is easy to see that e* applied to A is a t-norm, that is,
generalizes conjunction, and that e* applied to V is a ¢-conorm,
that is, generalizes disjunction. In particular, when D = {0, 1}, e*
matches the standard definitions of A and V in De Morgan algebra.
Indeed, we have for d € D:

e ¢*(0Vd) =0, thatis, true V d = true;
o ¢*(1Vvd) =d, thatis, false V d = d;

e ¢*(1Ad) =1, thatis, false A d = false;
o ¢"(0Nd) =d, thatis, rue A d = d.

The domain D could in theory be the interval [0, 1]. Practically,
working in a continuous environment is unfeasible from a com-
putational point of view for a combinatorial problem like satisfi-
ability; thus we adopt a framework that approximates the contin-
uous domain by a discrete one, allowing a more efficient com-
putation of the performance function and a simpler mechanism
to update probabilities in the cross-entropy algorithm. For K €
N, K > 2, the range Dx of all variables in V is the set of val-
ues {0,1/(K —1),2/(K —1),...,1}. Alarger K provides finer
granularity and thus a denser space, while a smaller K leads to
more efficient computations.

In what follows, we assume an input formula ¢ in CNF over
a set of variables V, with [V| = n. A probability space is de-
fined over the set £ of all possible complete assignments e over

V, where e(v) € Dk for each v € V. A probability distribu-
tion P : £ — [0,1] gives to each assignment its probability in
the following way. Probabilities for individual variables v and val-
ues d are directly specified as P(v = d). In the cross-entropy
framework, variables are treated independently; thus, the probabil-
ity of an assignment e(v1) = d1, ..., e(vn) = d, is computed as
P((Ul = dl),...,(vn = dn)) = HZ 'P(U, = dl) Due to this
independence condition, the probability distribution is completely
represented by means of a matrix p of size n x K, whose generic
element p; ; is exactly P(v; = d;).

A performance function S, : € — [0, 1] assigns to each e € &
a value that denotes the “truth level” of ¢, that is how close ¢ is
to being satisfied under the assignment e. Dealing with formulae
in CNF, the most straightforward choice for S is the max function
based on e* as defined above: the value of a clause c is e*(c), the
product of its literals values, and the value of a formula is given by
the maximum value among its clauses. This way, a single clause
having value 1 (falsified) results in the whole formula having value
1, and assignments that satisfy all but one clause (a common sit-
vation in structured SAT instances) are very far from the global
minimum. However, based on our experiments, the max function
appears to not be smooth enough for our purposes, and it does not
allow for a sufficiently accurate discrimination among assignments:
indeed, all assignments which falsify at least one clause have the
same value 1 and are thus indistinguishable. A better choice is the
function S which we define as follows.

Definitionfi, Performance function S. Given a formula in CNF ¢

Ci A ... N Cy, and an assignment e, the performance function S
is defined for a clause C; as Sc; (e) = [];c¢, e(l), and for ¢ as
Se(e) = (2212 Sci(e)/m).
Note that if ¢ is satisfiable, then the global minimum of S is 0 and
it is reached on a satisfying assignment to ¢. In other words, we
replace the max function by the arithmetic average of the clauses
values; as we demonstrate in §5, this definition allows us to achieve
satisfactory convergence towards a global minimum in a reasonable
time for satisfiable instances.

4.2 The parameter setting

A generic cross-entropy algorithm for optimization involves two
main steps:

e Generate a number R of independent and identically dis-
tributed samples in the search space according to a specified
probability distribution p;.

e Update the parameters of p;, based on a certain amount Ry
of best performing samples (the elite samples set), by means
of cross-entropy minimization.

The cross-entropy method creates a sequence of levels 7o, ...
and parameter matrices Ppo, . .. such that the first sequence con-
verges to an optimal performance, while the second one converges
to the corresponding optimal parameter matrix. Usually a smoothed
updating rule is used, in which the parameter matrix is taken as a
linear combination (with smoothing parameter o) of the previous
matrix and the new one obtained from the elite samples set.

Several variants of the cross-entropy method ([36, 27, 23, 7])
are described in the literature: with or without smoothing, with or
without memory (the elite samples set is entirely computed from
the current iteration rather than accounting for the previous genera-
tions), with fixed or adaptive o, R and R;. We adopt a memoryless
approach, since it is more efficient in this framework. For the same
reason, we keep both R and R, fixed during the algorithm execu-
tion. As commonly done for combinatorial optimization problems,

we choose a smoothed updating procedure to avoid the degenera-
tion of the sequence of parameter matrices to a {0, 1}-matrix.

Different proofs can be found certifying the theoretical conver-
gence of the algorithms both in the continuous and in the combina-
torial setting; given the approach chosen and dealing with a discrete
problem, we mainly refer to [23] and [7]. In particular, [7] com-
pares the effects of adopting a constant or adaptive smoothing pa-
rameter: an appropriately decreasing sequence of « is guaranteed
to reach an optimal solution; using a constant but sufficiently small
«, the algorithm converges to an optimal solution with probability
arbitrarily close to 1. The price is in terms of speed of convergence;
this is why, following the considerations in the literature [36] and
our own experience, we use a constant smoothing parameter, even
though it might lead to non global optima.

4.3 The CROISSANT algorithm

Algorithm 1 illustrates our application of the cross-entropy method
to the satisfiability problem. The algorithm takes as input a CNF
formula ¢, a coarseness K of the discretization D, a number of
samples to generate in each iteration R, the performance function
S introduced in §4.1, a size of the elite samples set Ry, a smoothing
parameter «, a time limit.

begin
repeat
Initialize po;
t.=1;
repeat
Generate R assignments ey, . .
Pt—1;
Evaluate S(e;), sort from smallest to largest
Say < ... < Swry;
Extract the elite samples set € r_gr, +1),- - -, €(R);
Set Yt = S(R—R;,Jrl);
Calculate g from the elite set using (x);
Update p: := aq: + (1 — @) pr—1;
t:=t+1;
until a minimum is detected or the time limit is
reached ;
until the time limit is reached ;
Return information (see §4.4)
end

., er according to

Algorithm 1: CROiSSANT algorithm

The algorithm follows these steps. It starts by initializing the
probability matrix to the uniform distribution over the variables V
and the values D, moving then to the main loop. In each iteration
t, a number R of i.i.d. sample assignments from D% is drawn
according to the probability matrix p:— of the previous iteration.
The performance function S (which gives a measure of the “truth
level” of the formula ¢) is evaluated on the samples, and the results
are sorted in ascending order; the R best samples are taken to
form the new elite set and the new level v; (corresponding to the
performance of the worst sample in the elite set) is determined.
From this set, for each variable v and value d a probability q¢,v,q
is derived according to the following equation:

R
Loz LeeozmBem=a)
R)
2o Lis(en) e
where the function Z is an indicator function (or a characteristic

function): for a Boolean expression b the value of Zy;y is 1 if b
is true, O otherwise. In other words, the probability q;,.,q is the

qQt,v,d =

proportion of samples in the elite set for which v has value d (re-
call definitions from 4.1). Finally, the probability matrix p;— is
updated by “shifting" it (based on the smoothing parameter o) to-
wards the matrix q; generated from the elite set, thus making it
biased towards the current most successful samples.

We use a simple criterion in order to detect whether a minimum
has been found: the sequence of ~; steadily decreases (while the
probability matrix converges to an optimal one) although it exhibits
oscillations due to the stochastic nature of the algorithm. To ac-
count for this phaenomenon, we keep track of the current lowest
value among the ~;: if after a certain number of iterations such
value has not improved, we determine that a minimum has been
reached.

Since, as discussed, we are not guaranteed to converge to a global
minimum, the whole process is repeated for a series of runs until
the time limit is met.

In the end, the algorithm returns some information, for example
the overall best sample obtained throughout the various runs (see
§4.4).

4.4 Interaction with SAT solving

As a first attempt to create a new hybrid framework that exploits
the features of DPLL learning and stochastic optimization, we have
carried out a feasibility study by employing a cross-entropy algo-
rithm as a preprocessing step before SAT solving. CROiSSANT
performs a preliminary exploration of the search space, storing the
best assignment found; this is used to generate a partial Boolean
assignment which is given as input to the DPLL solver. Then, at
solving time, when branching on a variable v, the search is driven
by choosing its polarity according to that partial Boolean assign-
ment (of course if the variable is affected by the assignment).

The reason behind this approach lies in the relationship between
the granularity of the search space and the way the Boolean assign-
ments are produced. In §4.1 we introduced the multi-valued model
and discussed the extension of the Boolean domain to an arbitrary
discrete domain Dg with K values between 0 and 1. Intuitively,
the association of a value with a variable measures how that vari-
able is close to being either true or false: 2 values can distinguish
between true and false, 3 values allow “unknown” variables, and so
on. An initial exploration of the search space by CROiSSANT can
provide the SAT solver with useful information on the likelihood
of variables to be either true or false. By analyzing the best sample
found, we extract the subset of variables which have value 0 or 1
and use these values to guide the decision phase at solving time.

Notice that we tested one among several ways of interaction be-
tween CROISSANT and a SAT solver. Other approaches, still hav-
ing cross-entropy minimization as a preprocessing step, might in-
clude: employing a partial Boolean assignment also taking into ac-
count how many and which variables are involved; deriving from
the best sample a vector of probabilities based on which to as-
sign polarities; storing and using the probability matrix from which
the best sample was generated; exploiting structural dependencies
among clauses.

More complex approaches could be based on an integrated frame-
work, where a cross-entropy algorithm and a SAT solver are run
alternately while exchanging information; it would be interesting
to test learning techniques based on resolution, in line with [13],
where new clauses are added to reshape the space to remove cur-
rent local minima.

Cross-entropy can be combined with other stochastic optimiza-
tion methods, such as simulated annealing, swarm and evolution-
ary algorithms. A promising direction is also to enhance CROiS-
SANT with local techniques, for example stochastic local search:

intuitively, a cross-entropy-based algorithm can perform an initial
wide-scale narrowing of the search space, while local search will
be applied in a second phase for finding a global minimum in a
much smaller area.

We leave exploration of the aforementioned approaches as part
of the future work.

4.5 Tuning of the CROiISSANT algorithm

The input of the algorithm consists of a CNF formula ¢, a coarse-
ness K of the discretization Dg, a number R of samples to gen-
erate in each iteration, a performance function S, a size R; of the
elite samples set, a smoothing parameter « and a time limit.

Since our goal is to use cross-entropy as a fast preprocessing
technique, we give CROiSSANT a short timeout compared to the
total time dedicated to preprocessing plus solving. The reasons for
the choice of a specific S have been presented in §4.1; in order to set
a framework for experimentation we performed some preliminary
benchmarking, analyzing the relationships among R, R, «, with
respect to the timeout and to the size of the search space, dependent
on ¢ and Dg.

Larger values of R allow for deeper exploration at each iteration;
on the other hand, the generation of more samples comes at the
price of a smaller amount of iterations that can be carried out within
a given time limit. For our experimentation we chose a fixed R, but
we plan to investigate how to make the parameter adaptive to the
complexity of the instance at hand. A similar tradeoff exists for the
size of the elite set: values of Ry, close to R increase the preciseness
of the estimates (almost all samples are considered to update the
distribution), while smaller values allow for faster convergence; we
use a fixed Ry of 10% of R.

The adoption of a constant « entails an additional tradeoff be-
tween accuracy and speed of convergence: a smaller « increases
the probability of finding an optimal solution, but at the expense of
a greater amount of iterations.

Another parameter was added, to account for the possibility of
running into non global minima, as discussed in §4.1. Stopping
condition for the inner loop of the algorithm is the detection of a
minimum, in terms of a lack of improvement of the current low-
est value in the sequence of 7; for a certain number of iterations;
this amount, to which we will refer as “no improvement threshold”
(NIT), is also given as input. Notice that a good choice for the
threshold depends both on R and R, (more exploration increases
the chances of improvement), and on the size and characteristics of
the search space.

With regard to the coarseness of the discretization, a greater K
entails a more dense space, with advantages in terms of graduality
of convergence of the cross-entropy technique (§4.2) and accuracy
of the information supplied to the SAT solver (§4.4); nevertheless,
a larger space might make convergence slower and contain more
non global minima. We tested this tradeoff using different values
of K.

An interesting question that arose, while developing our approach,
was how likely it would be to come across the same minimum in
different runs, and, in that case, how to avoid the issue. We exper-
imented with manipulating the probability matrix in order to direct
the search away from the minima already found. Unfortunately,
one of the major points of the cross-entropy algorithm, that is be-
ing able to treat variables individually, turned out to be a hindrance
to our idea: in fact, by modifying the probabilities of the variables,
we would end up reducing the probability of generating not only
the minima themselves, but also many other unrelated sample as-
signments. In practice, we achieved the best performance by sim-
ply restarting from the uniform distribution: for a given timeout,

taking as input formulae of sufficiently high complexity (so as to
have a sufficiently large search space), we noticed that the algo-
rithm tended to visit different areas of the space in each run, leading
to different minima.

S. EXPERIMENTAL RESULTS

We implemented our variant of the cross-entropy-based opti-
mization algorithm in a tool named CROiSSANT written in C++.
In this section we present the results of executing CROiSSANT as a
preprocessor on a collection of benchmarks with different settings
of tunable parameters, following the considerations of §4.5.

Since our approach employs the cross-entropy method with the
aim of identifying the areas of the search space that are more likely
to contain a satisfying assignment, we considered it natural to fo-
cus on satisfiable benchmarks. We collected satisfiable instances
from the SAT Competition 2011 and the SAT Race 2010 and com-
pared the running time of the state-of-the-art DPLL-based SAT
solver MiniSat [31] alone with the running time of MiniSat after a
preprocessing by CROiISSANT. Given the stochastic nature of our
technique, we took into account not only the default deterministic
strategy of MiniSat (to always assign negative polarity), but also
the randomized strategy that assigns polarity positive or negative at
each branching step with equal probability.

Although not part of the initial aims of the research, at a later
stage additional experimentation was conducted on unsatisfiable
instances, to examine the behaviour of CROiSSANT on search
spaces where no satisfying assignment could be found. In this case,
the set of IBM hardware designs that are used at IBM for inter-
nal benchmarking was chosen. As SAT solver, we opted for Mage
[37], an IBM internal industrial tool aimed at verifying hardware
designs; its particular tuning allows Mage to constantly outperform
MiniSat on instances generated from hardware designs. The re-
sults' show that improvement exists also for unsatisfiable instances,
suggesting, perhaps, that if an instance is unsatisfiable, CROiS-
SANT can “focus” on the subset of variables that led to conflict,
enabling the SAT solver to prune the space faster.

5.1 Experimental Data

A set of 305 + 22 satisfiable benchmarks was initially extracted
by running MiniSat on the 900 new instances of SAT Competition
2011 and on the 100 instances of SAT Race 2010, setting a time
limit of 3h. The benchmarks were run with a total (preprocessing
plus solving) time limit of 1h on machines equipped with a Quad-
Core AMD Opteron(tm) processor 2344 HE 1000 MHz and 3Gb of
RAM memory.

Table 1 presents the results of executing CROiSSANT as a pre-
processor to MiniSat in different configurations compared to the
results of MiniSat alone; we show the average values obtained over
three runs using different seeds'. The first and the second config-
urations in the table consist in running just MiniSat respectively
with default and random polarities. The other configurations in-
clude preprocessing using 50 as number of samples per iteration
R, 0.1 as smoothing factor o and 50 as no improvement thresh-
old NIT, whereas preprocessing time and coarseness of the dis-
cretization K (as number of values) are shown; the best overall
(partial) assignment, not taking into account variables with values
different from 0 and 1, was given to MiniSat to suggest variable
polarities during branching. In the “Solved” column, the numbers
represent the amount of instances for which MiniSat could find a
satisfiable assignment. The “Average” column shows the average
time in seconds spent (after the preprocessing phase) by MiniSat

Data available on request

on the different families of instances, both solved and non solved;
preprocessing time is not included, apart from the few cases when
CROISSANT was able to find a satisfiable assignment itself, and
clearly MiniSat was not run.

5.2 Analysis

The experiments give some promising results. We see that in
the first configuration (2 minutes preprocessing, K = 2) the use
of CROiSSANT indeed improves MiniSat performance on all the
three classes of the SAT Competition instances. CRoiSSANT is
also noticeably superior (both in number of solved benchmarks
and average running times) on the crafted class: this mainly con-
tains problems of combinatorial origin, such as graph isomorphism,
Green Tao and Van der Waerden numbers, automata synchroniza-
tion. Instances of this kind tend to show regularities in the solution
space: global and non global minima might be close, so that the
information provided by CROiSSANT in terms of the assignment
with the best performance (that is, closest to a satisfying assign-
ment) would be particularly useful.

The adoption of a random in opposition to a non-random ap-
proach in assigning polarities has a major effect on the results over
structured and random instances; in particular, the random strategy
performs better than all the other techniques on random problems,
but systematically worse on structured problems.

Remark 2. In this set of experiments we limited the running time
of CROiSSANT, being focused on the total SAT solving time. This
implies that more complex instances were executed for longer but
fewer iterations, with the risk of less exploration and less accurate
information supplied to the SAT solver; the full data' shows that
the amount of iterations ranges from tens of thousands to just a few
(we need also to take into account the fact that a tool more engi-
neered and fine-tuned than CROiSSANT would have achieved a
greater level of exploration of the search space in the same prepro-
cessing time). A more appropriate choice from a probabilistic point
of view, and which would have likely allowed to obtain even better
overall performance, would have been to set a limit on the amount
of iterations instead; we leave this investigation as future work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we described a novel approach to the satisfiability
problem based on the cross-entropy method. Our framework ex-
tends the binary Boolean model to a multi-valued setting, where
variables can be assigned values in a discrete set; we induce a
probability space over the enlarged search space and define a per-
formance function that correlates with the likelihood of the input
formula to be satisfiable. We implemented our variant of the cross-
entropy algorithm in a tool named CROiSSANT, written in C++.
As a first step towards the development of a hybrid approach we
employ CROiISSANT as a preprocessor to a DPLL-based solver;
CROISSANT is executed with a time limit and the best assignment
found is exploited to suggest variables polarities at solving time.
We conducted experiments on different sets of benchmarks, using
CROIiSSANT in combination with the state-of-the-art solver Min-
iSat; the results show an improvement both in running times and
number of solved instances, providing evidence that our framework
is a sound basis for the development of a cross-entropy-based SAT
solver.

As future work, we plan on one side to improve the perfor-
mance of CROISSANT and to develop a deeper integration with
DPLL solving; on the other side, we will try to characterize the
classes of instances (as well as the structure of the correspond-
ing search spaces) and the areas, such as combinatorics, where the

Table 1: MiniSat on SAT Competition 2011 and SAT Race 2010 benchmarks (average values)

(1) MiniSat only (2) MiniSat random pol.
#bms | Solved Average | Solved Average
SAT Comp.2011 | 305 140.0 2126.56 | 145.7 2074.63
application 47 41.0 638.70 | 37.7 778.08
crafted 58 45.0 971.98 | 41.7 1226.05
random 200 54.0 2811.05 | 66.3 2625.40
SAT Race 2010 | 22 20.0 627.17 | 19.3 756.42
cryptography 11 11.0 556.39 | 10.3 704.38
hardware-verif. 1 1.0 10645 | 1.0 12.71
mixed 7 5.0 1070.14 | 5.0 1144.97
software-verif. 3 3.0 26.72 | 3.0 288.56
(3) 2 mins, K = 2 (4) 2 mins, K = 3 (5) 2 mins, K = 10
#bms | Solved Average | Solved Average | Solved Average
SAT Comp.2011 | 305 143.7 2017.71 | 139.7 2039.56 | 143.3 2026.79
application 47 42.0 619.41 | 39.7 654.00 | 40.0 687.45
crafted 58 47.7 798.19 | 48.3 794.50 | 50.7 769.28
random 200 54.0 2699.97 | 51.7 2726.23 | 52.7 272545
SAT Race 2010 | 22 19.3 736.80 | 20.3 624.69 | 19.3 668.95
cryptography 11 10.3 791.53 | 10.7 623.13 | 10.0 687.31
hardware-verif. 1 1.0 107.62 | 1.0 172.85 | 1.0 40.50
mixed 7 5.0 1035.19 | 5.7 942.05 | 5.3 1000.07
software-verif. 3 3.0 49.57 | 3.0 40.50 | 3.0 38.52

cross-entropy method is most effective. A second promising di-
rection is to combine CROiISSANT with local techniques, such as
stochastic local search: intuitively, the cross-entropy-based algo-
rithm can perform an initial narrowing of the search space, while
local search will be helpful in a later stage for finding a global min-
imum (a satisfying assignment) in a much smaller space.

7. REFERENCES

[1] G. Alon, D. Kroese, T. Raviv, and R. Rubinstein. Application
of the cross-entropy method to buffer allocation problem in
simulation-based environment. Annals of Operations
Research, 2004.

[2] G. Audemard, J. Lagniez, B. Mazure, and L. Sais.
Integrating conflict driven clause learning to local search. In
LSCS, pages 55-68, 2009.

[3] G. Audemard, J. Lagniez, B. Mazure, and L. Sais. Learning
in local search. In ICTAI, pages 417-424, 2009.

[4] A. Balint, M. Henn, and O. Gableske. A novel approach to
combine a SLS- and a DPLL-solver for the satisfiability
problem. In SAT, pages 284-297, 2009.

[5] H. Chockler, E. Farchi, B. Godlin, and S. Novikov.
Cross-entropy based testing. In FMCAD, pages 101-108,
2007.

[6] H. Chockler, E. Farchi, B. Godlin, and S. Novikov.
Cross-entropy-based replay of concurrent programs. In
FASE, pages 201-215, 2009.

[7]1 A. Costa, O. Jones, and D. Kroese. Convergence properties
of the cross-entropy method for discrete optimization. Op.
Res. Lett., 35(5):573-580, 2007.

[8] J. Crawford. Solving satisfiability problems using a
combination of systematic and local search. In Rutgers
University, 1996.

[9] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394-397, 1962.

[10] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of ACM, 7(3):201-215, 1960.

[11] U. Dubin. The cross-entropy method for combinatorial
optimization with applications. Master Thesis, The
Technion, 2002.

[12] N. Eén and N. Sorensson. An extensible SAT-solver. In SAT,
pages 502-518, 2003.

[13] H. Fang and W. Ruml. Complete local search for
propositional satisfiability. In Association for the
Advancement of Artificial Intelligence, pages 161-166, 2004.

[14] L. Fang and M. Hsiao. A new hybrid solution to boost SAT
solver performance. In DATE, pages 1307-1313, 2007.

[15] B. Ferris and J. Froehlich. Walksat as an informed heuristic
to DPLL in SAT solving. Technical report, 2004.

[16] I. Gent and T. Walsh. Towards an understanding of
hill-climbing procedures for SAT. In AAAI, pages 28-33,
1993.

[17] D. Habet, C. Li, L. Devendeville, and M. Vasquez. A hybrid
approach for SAT. In CP, pages 172-184, 2002.

[18] E. Hirsch and A. Kojevnikov. Unitwalk: A new SAT solver
that uses local search guided by unit clause elimination. Ann.
Math. Artif. Intell., 43(1):91-111, 2005.

[19] H. Hoos. On the run-time behaviour of stochastic local
search algorithms for SAT. In AAAI/IAAI pages 661-666,
1999.

[20] H. Hoos and T. Stiitzle. Stochastic Local Search. Foundations
and Applications. Morgan Kaufmann/Elsevier, 2004.

[21] N. Jussien and L. Olivier. Local search with constraint
propagation and conflict-based heuristics. Artif. Intell.,
139(1):21-45, 2002.

[22] J. Keith and D. Kroese. Rare event simulation and
combinatorial optimization using cross entropy: sequence
alignment by rare event simulation. In Proc. of the 34th
Winter Sim. Conf.: Exploring New Frontiers, pages 320-327.
ACM, 2002.

[23] D. Kroese, T.Taimre, and Z.I.Botev. Handbook of Monte
Carlo Methods. Probability and Statistics. Wiley, 2011.

[24] S. Kullback and R. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 22:79-86, 1951.

[25] F. Letombe and J. Marques-Silva. Improvements to hybrid
incremental SAT algorithms. In SAT, pages 168—181, 2008.

[26] P. Manolios and Y. Zhang. Implementing survey propagation
on graphics processing units. In SAT, pages 311-324, 2006.

[27] L. Margolin. On the convergence of the cross-entropy
method. Annals of Operations Research, 134(1):215-238,
1975.

[28] L. Margolin. Cross-entropy method for combinatorial
optimization. Master Thesis, The Technion, 2002.

[29] B. Mazure, L. Sais, and E. Grégoire. Boosting complete
techniques thanks to local search methods. Ann. Math. Artif.
Intell., 22(3-4):319-331, 1998.

[30] D. McAllester, B. Selman, and H. Kautz. Evidence for
invariants in local search. In AAAI/IAAI pages 321-326,
1997.

[31] MiniSAT Web page. http://minisat.se/.

[32] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver. In
DAC, pages 530-535, 2001.

[33] K. Pipatsrisawat and A. Darwiche. A lightweight component
caching scheme for satisfiability solvers. In SAT, pages
294-299, 2007.

[34] R. Rubinstein. Optimization of computer simulation models

with rare events. European Journal on Operations Research,
99:89-112, 1997.

[35] R. Rubinstein. The cross-entropy method and rare-events for
maximal cut and bipartition problems. ACM Trans. on Mod.
and Comp. Sim., 12(1):27-53, 2002.

[36] R. Rubinstein and D. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization,
Monte-Carlo Simulation and Machine Learning. Information
Science and Statistics. Springer-Verlag, 2004.

[37] RuleBase PE.
www.haifa.il.ibm.com/projects/verification/RB_Homepage.

[38] D. Schuurmans and F. Southey. Local search characteristics
of incomplete SAT procedures. Artif. Intell.,
132(2):121-150, 2001.

[39] B. Selman, H. Kautz, and B. Cohen. Noise strategies for
improving local search. In AAAI, pages 337-343, 1994.

[40] B. Selman, H. Kautz, and D. McAllester. Ten challenges in
propositional reasoning and search. In IJCAI (1), pages
50-54, 1997.

[41] B. Selman, H. Levesque, and D. Mitchell. A new method for
solving hard satisfiability problems. In AAAI, pages
440-446, 1992.

[42] J. P. M. Silva. The impact of branching heuristics in
propositional satisfiability algorithms. In EPIA, pages 62-74,
1999.

[43] L. A. Zadeh. Fuzzy logic. IEEE Computer, 21(4):83-93,
1988.

