DOI 10.1007/s00165-010-0159-
BCS©2010 ’ Formal Aspects

Formal Aspects of Computing (2011) 23: 627-648 Of Com putin g

A model checking-based approach for security
policy verification of mobile systems

Chiara Braghin', Natasha Sharygina? and Katerina Barone-Adesi?
! Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano, via Bramante, 65, 26013 Crema, Italy.

E-mail: chiara.braghin@unimi.it
2 Faculty of Informatics, Universita della Svizzera Italiana, Lugano, Switzerland

Abstract. This article describes an approach for the automated verification of mobile systems. Mobile systems
are characterized by the explicit notion of location (e.g., sites where they run) and the ability to execute at different
locations, yielding a number of security issues. To this aim, we formalize mobile systems as Labeled Kripke Struc-
tures, encapsulating the notion of location net that describes the hierarchical nesting of the threads constituting
the system. Then, we formalize a generic security-policy specification language that includes rules for expressing
and manipulating the code location. In contrast to many other approaches, our technique supports both access
control and information flow specification. We developed a prototype framework for model checking of mobile
systems. It works directly on the program code (in contrast to most traditional process-algebraic approaches
that can model only limited details of mobile systems) and uses abstraction-refinement techniques, based also
on location abstractions, to manage the program state space. We experimented with a number of mobile code
benchmarks by verifying various security policies. The experimental results demonstrate the validity of the pro-
posed mobile system modeling and policy specification formalisms and highlight the advantages of the model
checking-based approach, which combines the validation of security properties with other checks, such as the
validation of buffer overflows.

Keywords: Software verification, Program security and safety, Mobile systems, Security policies, Access control,
Information flow

Correspondence and offprint requests to: C. Braghin, E-mail: chiara.braghin@unimi.it
This paper is an extended version of [Braghin C, Sharygina N, Barone-Adesi K (2007) Automated verification of security policies in mobile
code. In: Proceedings of IFM. Lecture notes in computer science, vol 4591, pp 37-53] [BSBAO7].

628 C. Braghin et al.

1. Introduction

Mobile code technologies have been widely deployed via web browsers for several years. Moreover, the applet
model is now being transferred to high-security embedded devices such as smart cards. Despite the promising
applications of mobile code technologies, they have not yet been widely deployed. A major problem of mobile
code is security: without appropriate security measures, a malicious applet could mount a variety of attacks
against the local computer, such as destroying data (e.g., reformatting the disk), modifying sensitive data (e.g.,
registering a bank transfer via a home-banking software), divulging personal information over the network, or
modifying other programs (e.g., Trojan horses attacks).

Moreover, programming over a wide area network such as the Internet not only introduces new issues to
the field of multi-threaded programming and analysis, but also breaks many postulates commonly assumed in
concurrent systems. For example, during the execution of a mobile program, a given thread may stop executing
at a site, and continue executing at another site. That is, threads may jump from site to site while retaining their
conceptual identity. The following issues distinguish mobile systems from a more general case of multi-threaded
programs:

e threads may run at different locations (e.g., administrative domains, hosts, physical locations, etc.);

e thread migration takes into account their geographical distribution (e.g., migration can only occur between
directly linked net locations);

e there exists distinction among local and global communication due to bandwidth fluctuations, node failures,
etc.

This paper describes an approach for modeling and static verification of mobile systems. They are formalized
as Labeled Kripke Structures (LKSs), which encapsulate the notion of location and unbounded thread creation
typical to mobile systems. We define the semantics of mobile systems where threads are always confined to loca-
tions and have the ability to move. The LKS notation allows modeling both the data and the communication
structures of the multi-threaded systems.

We formalize a language for specifying general-purpose security policies, and we show how mobile systems
can be statically and exhaustively analyzed against any security policy by using model-checking techniques. To
support features of mobile systems, the policy specification language defines rules for expressing and manipulat-
ing the code location. It works at the level of method calls and variable accesses, thus making it (in contrast to
most other approaches) suitable for specifying both access control and information flow policies or a mixture of
both.

The proposed modeling and security-policy specification formalisms are generic and are suitable for spec-
ification and model checking mobile programs implemented in a language of choice. We implemented and
experimented with a prototype framework for modeling and verifying mobile systems written in C. C is actively
used for mobile applications such as Wireless Sensor Networks (WSN) (for example, TinyOS[BC06], the most
popular WSN operating system used today, is written in nesC, a dialect of the C programming language optimized
for the memory limitations of sensor networks). Our experimental framework uses a model checker, SATABS
[CKSYO05], which implements a SAT-based counterexample-guided abstraction refinement framework (CEGAR
for short) for ANSI-C programs. A policy configuration file, specifying what permissions (i.e., which types of
system resource access) to deny, is given as an input to the model checker together with the program to be verified.
Then, the mobile program is annotated with information related to the security policy in such a way that if and
when the security policy is violated, the model checker returns a counter-example that led to such an error. In such
a way, we are able to discover both implementation and security-related errors. To cope with the computational
complexity of verifying mobile programs, we define projection abstractions, constructed by restricting a program
path to actions or states satisfying certain conditions. In particular, by exploiting the explicit notion of locations,
we define location-based projections, which allow efficient verification of location-specific security policies.

In summary, our approach to modeling and verifying mobile systems has several advantageous features:

e it explicitly models thread locations, location distribution and thread moving operations, which are essential
elements of mobile systems;

e it preserves both data and communication structures of mobile systems;

A model checking-based approach for security policy verification of mobile systems 629

e it defines a specification language for specifying generic security policies of mobile systems, which is suitable
for specifying both access control and information flow properties;

e it integrates model-checking technologies to support exhaustive analysis of security policies;
e itdefineslocation-specific abstractions which enable the efficient verification of large mobile code applications;

e itenables verification of mobile code, and not of a high level abstraction of a mobile system, as most approaches
do.

We experimented with a number of mobile code benchmarks, instantiated in our mobile code framework, by
verifying various security policies. The results of verifying security policies, dealing with both access permissions
of system actions and tracking the location net with respect to permissible location configurations, demonstrated
the applicability of the new formalisms and proved to scale to large instances of mobile programs.

The rest of the article is organized as follows. Section 2 gives an overview of the state of the art in the context
of mobile systems’ modeling and verification. Section 3 gives some preliminary information on mobile systems
and security policies. In particular, it discusses the subtle differences between general multi-threaded programs
and mobile systems (also called location-aware multi-threaded systems). It also outlines how the features specific
to mobile systems are supported by programming languages. Section 4 formalizes in a language-independent
way the features of mobile systems highlighted and defines formal semantics of mobile systems. In Sect. 5, we
present a policy specification language that defines rules for expressing also the code location. Section 6 maps the
modeling techniques to the SATABS-based model-checking approach, reporting also the experimental results
obtained by verifying a number of mobile code benchmarks against various security policies. Section 7 concludes
the paper with the summary of the contributions.

This article is an extended and revised version of [BSBAO07]; with respect to the extended abstract, the arti-
cle provides further details on location projections, has an extended background section describing the current
languages used for describing mobile systems from which we drew ideas, and expands the description of the
experimental results.

2. Related work

Modeling Mobile Systems. The most common approach to modeling mobile systems is the process-algebra-based
approach. Various location-aware calculi, with an explicit notion of location, have arisen in the literature to
directly model phenomena such as the distribution of processes within different localities, their migrations, or
their failures [CG00, HR98, DNFP98, FGL*96, Ste03].

The process algebra that mostly influenced this work is the Mobile Ambient calculus [Car99, CGO00]: this
specification language provides a simple framework that encompasses mobile agents, the domains where agents
interact and the mobility of the agents themselves. An ambient is a generalization of both agent and place notions.
Like an agent, an ambient can move across places (also represented by ambients) where it can interact with other
agents. Like a place, an ambient supports local undirected communication, and can receive messages (also rep-
resented by ambients) from other places [CG00]. The formal semantics we give to mobile systems draws many
ideas from the ambient calculus.

Moreover, we benefited from the Kell calculus papers [BS03, BSS05, SS04], where the problems raised by using
atomic actions (i.e., a sort of distributed synchronization) in wide-area networks are discussed. In particular, the
authors highlight the need of modeling different forms of failure; we kept this in mind when giving the semantics
of the moving capabilities.

Distributed process calculi have been introduced as foundations for distributed programming; for this reason
they describe mobile system at high level, in a concise form, with only few key operators and programming
primitives. Even though there exists process algebras such as Klaim [DNFP98] that deal with data structures,
they often specify only limited details of the systems and do not extensively model data and data manipulation
structures, since they concentrate on communication structures. In contrast to process algebra-based approaches,
the advantage of our formalism (by means of Labeled Kripke Structures) is that it provides full support of data.
In fact, the Labeled Kripke Structures give a low-level description of systems, closer to the code, allowing easy
translation from any programming language.

630 C. Braghin et al.

Verification of Mobile Systems. The use of mobile systems raises a number of security issues, including access
control (is the use of the resource permitted?), user authentication (to identify the valid users), data integrity
(to ensure data is delivered intact), data confidentiality (to protect sensitive data), and auditing (to track uses of
mobile resources). All but the first category are closely coupled with research in cryptography and are outside of
the scope of this paper. Our technique assumes that the appropriate integrity checking and signature validation
are completed before the security access policies are checked.

Certified code [NL97] is a general mechanism for enforcing security properties. In this paradigm, untrusted
mobile code carries annotations that allow a host to verify its trustworthiness. Before running the agent, the
host checks the annotations and proves that they imply the host’s security policy. Despite the flexibility of this
scheme, so far, compilers that generate certified code have focused on simple type safety properties rather than
more general security policies. The main difficulty is that automated theorem provers are not powerful enough
to infer properties of arbitrary programs and constructing proofs by hand is prohibitively expensive.

Process-algebraic verification techniques usually deal with coarse overapproximations during the analysis of
mobile systems. Overapproximations are useful to reduce the analysis complexity and guarantee that, if no errors
are found in the abstract system, then no errors are present in the actual system. However, if errors are found,
the verification techniques developed for process algebra fail to guarantee that they are real. There exists a num-
ber of efforts to model check process-algebra-based techniques. For example, [Dis00] and [CDZG*02] propose
techniques for model checking Mobile Ambients. In contrast to the process-algebraic approach, our technique
(in the context of the abstraction-based model checking) simulates the errors on the actual system and, if the
errors are found to be spurious, the approximated programs are refined. To the best of our knowledge, there are
no abstraction-refinement techniques that would support the process-algebraic analysis techniques.

Unable to prove security properties statically, real-world security systems such as the Java Virtual Machine
(JVM) have fallen back on run-time checking. Dynamic security checks are scattered throughout the Java libraries
and are intended to ensure that applets do not access protected resources inappropriately. However, this situation
is unsatisfying since tests rely on the implementation of monitors which are error-prone, and system execution
is delayed during the execution of the monitor. For this reason, in [CA09], the authors address the problem of
establishing at compile time that a given Java program preserves confidentiality of sensitive information. The
approach is evaluated by model checking a set of Java (J2ME) methods.

Several research projects deal with the problem of mobile code verification of security properties, but they all
restrict their working environment either to a specific programming language or to a not-so-general case study.
MOBIUS (Mobility, Ubiquity and Security) [mob] investigates trust and security for small devices which are
functioning as a part of global computers. The main objective is to enable proof-carrying code for Java on mobile
devices. It works at Java byte-code level in order to overcome the problem of dealing at the source level. The
drawback of the approach is the fact that it is highly language-dependent. In our case, the experimental frame-
work is independent from the theoretical contribution, thus the modeling and verification techniques we propose
can work with any programming language. S3MS (Security of Software and Services for Mobile Systems) [s3m]
is a Specific Targeted Research Project (STReP) that develops a framework based on security-by-contract for
trusted deployment and execution of mobile applications, in which the contract expresses the security features and
requirements. The security properties that they intend to verify are highly dependent on the mobile application
context, whereas our running environment and case studies are more heterogeneous.

Verification of Multi-threaded Systems. Formal verification of multi-threaded programs is an area of active
research; see [Rin01] for an excellent survey. Pushdown automata have been used as tools for analyzing sequential
programs with (recursive) procedures [BS95]. The expressive power of pushdown systems is equivalent to that
of sequential programs with (possibly recursive) procedures where all variables have a finite data type. MOPED
[ESO1] and Bepopr [BROO], for example, are BDD-based symbolic model checkers for this class of languages.
There has also been work on verifying concurrent software using pushdown automata with multiple stacks, e.g.,
see [CCK*06]. As reachability is undecidable in this case, the existing implementations are not fully automated.

The class of programs considered in this paper can be viewed as an instance of a parameterized system, i.e., a
system with a number of identical processes (threads in our case). Many approaches to this problem have been
developed over the years, including the use of symbolic automata-based techniques, network invariants, predicate
abstraction or system symmetry (see an excellent overview in [CTTV04]). Methods that are most closely related
to our work are based on abstraction (for example, an extension of Mur¢ uses abstraction for replicated identical
components [ID96]). In contrast to our approach, many of these methods are only partially automated, requiring

A model checking-based approach for security policy verification of mobile systems 631

at least some human ingenuity to construct a process invariant or a closure process (for example, the TLPVS tool
[PA03] is based on manual theorem proving).

Henzinger et al. use predicate abstraction in order to construct environment models from threads [HIMO04,
BCH"04]. When combined with a counter abstraction, an unbounded number of threads can be supported.
Flanagan and Qadeer propose to use the idea of thread states in order to obtain environment models for loosely-
coupled multi-threaded programs [FQO3]. In contrast to their algorithm, the model-checking approach we use
addresses the spurious behavior introduced by this overapproximation by (safely) restricting the thread states
that are passed, and by an automatic refinement procedure.

A number of tools for analysis of multi-threaded Java programs is available. While some of the tools compute
abstract models automatically, most are restricted to explicit state space exploration. Representative examples of
model checkers for Java are [Sto00] and JPF [HP00]. Yahav reports an implementation of a model checker for
Java with an unbounded number of threads using three-valued logic [YahO1]. Similarly to the approach we use,
an overapproximation is computed.

Model checking code. The modeling formalism and security policy specification language presented in this article
allow model checking of mobile systems at the implementation level. These constructs are language independent
and thus can be used with any software model checker. While there are no, to the best of our knowledge, tools for
model checking mobile code, there is a number of general purpose software model checking tools working at the
code level. Most of the code verifiers employ a counterexample guided abstraction refinement to cope with the
complexity of verification of real programs (see, for example, [BR01, STT09] describing respectively the basic and
optimized abstraction-refinement techniques). Among such tools are SLAM [BCLR04], COMFORT [CISWO05],
BLAST [BCH*04] and SATABS [CKSY05] (each designed for C programming language with SATABS being
the most complete tool as it provides both full support for ANSI-C and sound treatment of unbounded thread
creation in concurrent programs) and JPF and a tool of Stoller for Java (described above). Our experimental
framework for verification of mobile code uses SATABS. The mobile programs are annotated with the security
invariants (as discussed in Sect. 6) and given to the model checker to validate the security policies. The anno-
tation approach used in our framework is the approach of Schneider [Sch00]. The approach of Schneider was
implemented in two software-verification projects before: (1) SLIC [BR02] and (2) BLAST [BCH*04]. However,
this project provides major extensions and improvements over the two existing approaches: (a) SLIC and BLAST
are all about pure C, whereas our framework allows an extension of C that is suitable for mobile code; (b) The
previous approaches came with a general-purpose specification language, whereas our project comes with a very
sophisticated language that is particularly tailored to the verification of security properties of mobile code; (c)
Besides the programming language and specification language, also the verification engine is different: in this
project, SATABS is used.

3. Background: mobile systems and security policies
3.1. Mobile systems

In the last decade, the Web has rapidly evolved into a global computing platform, whose main characteristic is
the geographical distribution. As a consequence, computer systems have evolved from centralized monolithic
computing devices into client-server environments allowing complex forms of distributed computing. During
this evolution process, limited forms of code mobility have arisen: Java applets downloaded from web servers into
web browsers, JavaScript and Visual Basic scripts, ActiveX controls, Flash animations, and macros embedded
within Office documents. A new phase of evolution is now under way that goes one step further, in the form of
a software agent that can suspend its execution on a host computer, transfer itself to another agent-enabled host
on the network, and resume execution on the new host. A number of new generation programming languages
(e.g., Telescript, Obliq, Klaim, etc.) viewing the network and its resources as a global computational environ-
ment have been proposed, although none is used in practice and is used only for academic purposes. They are
characterized by the capability to provide some sort of code mobility, and to allow distributed multi-threading,
i.e., threads running concurrently at different locations. This programming paradigm demonstrates features that
make mobile programs different, and more complex, than the standard notion of multi-threaded computing.
These features are essential and we believe that they should be explicitly modeled and verified in order to become
usable in practice.

632 C. Braghin et al.

uu'nd.!| w1| I thread T,

L]
I.om.loni. \ Loeaﬁnn:] | Location £ Location ¢
Airline B Airline G

@i -

Location ¢,

Fig. 1. A shopping agent. Here, £ to ¢4 are locations representing sites, and 7' to T threads

A spectrum of differing shades of mobility exists, corresponding to the possible variations of relocating code
and state information, including the values of instance variables, the program counter, execution stack, etc. For
example, a Java applet [Mic95] has mobility of code through the movement of class files from a web server to
a web browser. However, no associated state information is conveyed. In contrast, Aglets [Cor99], originally
developed by the IBM Tokyo research laboratory and now hosted at SourceForge.net as an open source project,
builds upon Java to allow the values of instance variables, but not the program counter or execution stack, to be
conveyed along with the code as the agent relocates.

As an example demonstrating full mobility, we consider the Telescript language [Whi94]. Telescript is a rich,
object-oriented language conceived for the development of large distributed applications, oriented in particular
to the electronic market. It is an agent-based language that explicitly deals with locality and mobility: there are
two kinds of entities, agents, i.e., threads that can move, and places, i.e., physical locations that offer services
and can contain agents or places. A thread running on an interpreter (called engine in the Telescript jargon)
is able to migrate autonomously to another engine run by a different machine by executing a go instruction.
This operation causes the engine to suspend the thread, serialize it together with its state, and transmit it to the
destination engine specified as argument. There, the thread will be unserialized, and its execution will be resumed
from the instruction following the go. If a trip cannot be made, the go instruction fails and the thread throws
an exception. Migration is transparent by default, i.e., only the final destination is given by the agent, but the
go method allows the agent to request explicitly the route to follow. Agents do not communicate remotely with
other agents; rather, they move to some location and communicate locally when they get there by executing a
meet instruction.

Example 1 As an implementation example demonstrating the features of mobile programs, consider the Tele-
script implementation of the shopping agent example [Whi94]. The shopping agent scenario depicted in Fig. 1
consists of different locations representing a user’s personal computer and the servers hosting various airline
Web-sites. The shopping agent is a thread that migrates from its home location (i.e., the personal computer) to
the airline locations to collect informations on their flights in order to find the best airfare. The agent is given
various requirements, such as departure and destination time restrictions. After querying the airline databases, it
reports back the information to the user who made the request. In the Telescript programming language, migrat-
ing threads are called agents, whereas locations are called places. Moreover, user-defined classes for agents and
places are subclasses of the predefined Place and Agent classes. In our example, the shopping thread corresponds
to a Telescript agent, and two place classes must be defined: one for the airline locations (in the example they all
offer the same services), and one for the home location of the thread. In the following, we give the definition of
the three classes, omitting the details which are out of the scope of the paper. The Airline Location class is
defined as follows:

Airline_Location: class (Place) =
(
public
flightSearch: op (src, dest, date: String)
List = { /* body =*/ 1}
property
flightCatalog: Dictionary[String, Entryl];

A model checking-based approach for security policy verification of mobile systems 633

Note that within a class definition the three keywords public, private and property distinguish among public
and private methods, and local or global variables, respectively. In addition, List and Dictionary are predefined
types with the usual meaning. The meaning of the code is rather intuitive: an Airline_Location offers a method
to look for flights, given the desired source, destination and date of the trip. The method searches within the
flightCatalog and returns a, possibly empty, list of flights available. Each location ¢; to £,, from Fig. 1 will be
an object of this class, while £y, will be an instantiation of the following class:

Home_Location: class (Place) =

(
private
orderFlight: op (src, dest, date: String) =
{ Shopping_Agent (src, dest, date: String);
/* check returned list of flights */ }
)

This class has only one private method that creates an agent which goes to search in the Web for a cheap flight.
The places where to migrate must be given in the omitted body code.

Shopping_Agent: class (Agent) =
(

public
showReport: op () = { }
private
goShopping: op () = { };
checkPrice: op O ={ ... };
goHome: op O = { ... };

property
homeAddress, clientName: String;
desiredPrice, actualPrice: Integer;
source, destination, date: String;

)

The goShopping and goHome methods are based on the predefined method go. The goShopping method contains
the list of Airline locations to visit and possibly some of the route details specified by the user (e.g., the period of
time to do the research, the price range, etc.). o

We can infer, as for example in the above examples, that the key characteristics of mobile programs, disre-
garding any particular implementation language, are:

— an explicit notion of location (e.g., physical locations, hosts, administrative domains where threads run, etc.);

— locations are structured to capture the distributed environment of the Web (e.g., an application running on
several sites);

— the capability for a thread to migrate;

— the distinction between local and global thread communication to depict communication within a single
administrative domain or among different domains.

3.2. Security policies and models

There has been much debate in the security literature as to what exactly is meant by the terms security policy or
security model and indeed what, if any, is the distinction. A consensus has been reached by considering a policy
a set of rules and conditions that state which actions are permitted and which actions are prohibited, whereas a
model as a formal description of a security policy: it precisely and unambiguously conveys those aspects of the
security policy that are enforced by the system [McL94].

In the following subsections we illustrate different security models that have been proposed in the litera-
ture, not pretending to be exhaustive. Such security models will be used as an input when defining the language
for specifying location-aware security policies. In the descriptions, we consider a computer system consisting in

634 C. Braghin et al.

subjects, i.e., active entities requesting access to objects, such as a user or a process, and objects, i.e., passive entities
storing information, such as a file or a magnetic storage.

3.2.1. Access control policies

Access control is the process of mediating every request to the resources maintained by a system and determining
whether a request should be granted or denied. The aim is to limit disclosure of classified data and to guarantee
that only authorized access can take place. Access control policies [DoD85] can be broadly classified into man-
datory, discretionary and role-based access control policies depending on who is in charge of specifying access
rights and to whom permissions are given/assigned.

In discretionary access control (DAC) models, access control is at the discretion of the owner: the owner of a
resource decrees who is allowed to have access, by specifying the subjects, and the rights of the subjects to objects.
The file management of Unix is a classic example of DAC.

In mandatory access control (MAC) models, access regulations are mandated by a central system-wide author-
ity. This policy is used with highly confidential data, such as military or government. The most common for
mandatory access control policy is the multi-level security policy, based on the classification of subject and object
into clearance levels.

The essence of role-based access control (RBAC) models lies with the notions of user, role and permission.
Within an organization, roles are created for various job functions, and these roles are assigned permissions.
Staff are made members of appropriate roles and thus acquire the permissions assigned to those roles. This leads
to a greatly simplified administration of permissions. For example, a staff member can be immediately assigned
a new role when changing department, rather than closing all existing access, and creating a new set of access
controls. RBAC is more common in database management systems, and it is attracting increasing attention for
commercial applications.

3.2.2. Information flow models

The Bell-LaPadula Model. The model proposed by Bell and LaPadula (BLP) is one of the earliest and best known
models [BLP76]. It provides a framework for handling data of different classifications, and for this reason is also
called multi-level security model.

Security or clearance levels are arranged into a lattice (L, <) where £; < ¢, means that ¢, has a security
level lower than ¢, i.e., £, dominates £;. A particularly simple example is a linear hierarchy L = {unclassified,
confidential, secret, top secret} with unclassified < confidential < secret < top secret. More elaborate, non-
linear lattices representing partial orders are possible and indeed common. The security level associated with
an object reflects the sensitivity of the information contained in the object, i.e., the potential damage that could
result from the unauthorized disclosure of the information.

Then, a function f, : S U O — L is defined assigning to each member of the set of subjects S and objects O
a clearance level. The modes of access are usually two: read and write,! however it can be extended depending
on the type of the resource. Three basic rules are imposed by the model:

Simple Security Property— A subject s is allowed read access to an object o if and only if f.(s) > f.(0), i.e,
fe(s) dominates f.(0). That is, a subject has read access only to objects whose security level is equal or below
the subject’s current clearance level. This prevents a subject from getting access to information available in
security levels higher than its current clearance level. This property is also called no read up.

*-Property— A subject s is allowed write access to an object o if and only if f.(s) < f.(0), i.e., f.(0) dominates
fe(s). That is, a subject has write access to objects whose security level is equal to or higher than its current
clearance level. This prevents a subject from passing information to levels lower than its current level. This
property is also called no write down.

Tranquility Property— The tranquility property states that the security level of an object cannot be changed while
it is being processed by a computer system.

' In Bell and LaPadula’s formulation of the model, the append and write access modes are considered, but our simplification does not
affect the overall model.

A model checking-based approach for security policy verification of mobile systems 635

The purpose of the model is to confine sensitive data at its correct level: “no read up” prevents users from access-
ing information for which they are not cleared to access; “no write down” prevents users (or more importantly
software) from taking more sensitive information and writing it into a less sensitive document. In this manner,
the Bell-LaPadula model guarantees that data from a higher security level can never flow to a lower security
level. Still, it would be possible to transmit indirectly information through system side effects. These indirect ways
of transmitting information are called covert channels and are not prevented by the BLP model.

Example 2 Let us consider the shopping agent of Example 1 again. In this case, following a multi-level security
model, it would be safe to classify the shopping agent and the user personal computer as secret since they record
highly confidential information such as the user credit card number or personal information, whereas all the
airline Web-sites should be labelled as confidential since they need to use some of the highly confidential infor-
mation of the user in order to be able to book a ticket. All other sites should be classified as unclassified since
they are untrusted.

A mandatory access rule implementing the multi-level security model should not allow agents/sites labelled
either as secret or confidential to write/send confidential information to an unclassified site.

4. Formal semantics of mobile programs

In this section we formalize in a language-independent way the features of mobile systems highlighted in Sect. 3.1
and we formally describe the semantics of mobile programs.

4.1. Mobile programs

This section gives the syntax of mobile programs using a C-like programming language (which we believe is one
of the most popular general-purpose languages). We extend the standard definition of multi-threaded programs
with an explicit notion of location and moving actions. The syntax of a mobile program is defined using a finite
set of variables (either local to a thread or shared among threads), a finite set of constants, and a finite set of
names, representing constructs for thread synchronization, similar to the Java wait and notify constructs. It is
specified by the following grammar:

LT == location-aware threads
Ll T] single thread
| LT\ | LT parallel composition
T == threads
T | T, parallel composition
| Instr sequential execution
Instr = instructions
Instry ; Instry sequential execution
| x := Expr assignment
| if (Expr '= 0) Instr condition
| while (Expr '= 0) Instr loop
| skip skip
| m synchronised call
| new thread creation
| M_Instr moving action
Expr = expressions
c constant
| Expri(+]|-]%*|/)Expr, arithmetic operation
M_Instr = moving actions
| go_in(¥) | go_out (£) move in/out

In the grammar, x ranges over variables, ¢ over constants, and m over the names of synchronization constructs.
The meaning of the constructs for expressions and instructions is rather intuitive: an expression can be either a
constant or an arithmetic operation (i.e., sum, difference, product and division). The instruction set mainly con-
sists of the standard instructions for imperative languages: a sequential composition operator (;), the assignment

636 C. Braghin et al.

env

£0 32 £3 4

Fig. 2. The location net of Example 3

instruction, the control flow instructions if and while, and the skip statement. The instructions specific to the
threads package are the new instruction, which spawns a new thread that is an exact copy of the thread executing
the new instruction, and the call to a synchronization method m.

We further assume a set of location names Loc, and we let £, £1, £;, ... range over Loc. A thread is ¢[T'],
with ¢ being the location name of thread 7'. More than one thread may be bounded to the same location, that is
LI Ty | T»] (examples will be shown later). A mobile program is defined by the parallel composition of multiple
threads. A location can thus be seen as a bounded place, where mobile computation happens.

Conceptually, thread locations represent the geographical distribution of the Web. To capture this fact, we
use a special structure, called a location net, which encapsulates the hierarchical nesting of the Web. We define
the location net as a tree, whose nodes are labeled by unique location names, and the root labeled by the special
location name env, representing the external environment of the system under analysis. A tree ¢, is identified with
the set of its paths, i.e., ¢, will be a finite subset of Loc*.

Example 3 As a running example consider again the shopping agent program of Example 1. For simplicity,
let’s assume that the system is composed of threads T ... Ts which are distributed among various locations:
Loc = {env, £y, €1, £», {3, £4} and that a single thread is sent out. Here, ¢;, £3, £4 are the locations of various
websites; ¢; is the location of the agent, ¢ is the program sending out the agent, and env the generalized envi-
ronment location. Clearly, some of the locations are nested, and the location net corresponds to a tree, which
can be defined by the set of its paths, i.e., {, = {env.£y.L;, env.l,, env.€3, env.£4}, or can be depicted as in Fig. 2.
In the rest of the paper, when referring to nodes of the location net, we borrow standard vocabulary to define
the relationship among tree nodes, such as father, child and sibling. For instance, in our example, ¢, and ¢3 are
siblings, whereas ¢ is the father of ¢; (and ¢, is the child of ¢).

In the Mobile Ambient calculus, the calculus from which we drew most of the “mobility features”, the hier-
archy among localities (i.e., ambients) is inferred directly from the nesting among the ambient processes. Thus,
the location net depicted in Fig. 2 would be formalized with the following ambient process:

env[£0[81[0]] | Z2[0] | E3[0] | E4[0]]-

In order to highlight only the hierarchical structure of the ambients we intentionally defined the internal threads
as null processes. o

The location net represents the topology of thread locations. In fact, it implicitly represents the distribution
of threads. Location-aware threads can perform moving actions to change this distribution. These actions are
the moving instructions, go_in and go_out. The explicit notion of location and the existence of moving actions
affect the interaction among concurrent threads as follows (the formal definition will be given in Sect. 4.2):

— There are two types of composition: the parallel composition among threads bounded to the same loca-
tion (i.e., £] 71 | T»1), and the parallel composition among threads bounded to different locations (i.c.,
LI Ti] |l ¢, T>])—see the example below.

— The execution of moving actions changes the location net, i.e., mobility can be described by updates of the
location net.

— The execution of moving actions is constrained by the structure of the location net, i.e., moving actions can
be performed only if the thread location and the target location has the father-child or siblings relationship.

A model checking-based approach for security policy verification of mobile systems 637

Example 4 For example, if threads 77 and T represent a mail server and a browser running at site £, thread T3
the agent, and threads Ty ... Ty are each running at sites ¢, . . . £4, then the shopping agent program of Example 3
can be formalized as follows:

LT | T2 I GETs] 1 GITa) I 61 Ts] I €40 Tel

In this program, threads 77 and 75 are running in parallel locally since £,] T1 | 7>]. On the contrary, 73 and
Ty are running remotely since £, T3] || €,] T4]. Let us now suppose that thread ¢,[73] is defined as

T3 = go_out(fo); go_in(ly); Tj

and that the location net is as depicted in Fig. 2. In this case, the moving instruction go_out(£,) can be executed
since location £y and location ¢, are father and child, i.e., location ¢; is nested inside £y, thus a location-aware
thread bounded to location ¢ can go out of location £;.

In the Mobile Ambient calculus the full process would be formalized as follows:

envl &I Ty | T | Gloutloin & T3]] | I Tul | 61 Ts1 | €4l Tel .

Notice that the hierarchies among localities are less evident than with our formalization. o

4.2. The computational model

In this section we formalize the semantics of mobile programs. We first define the semantics of a single thread,
and then extend it to the case of a multi-threaded system. As done in the examples of the previous section, when
discussing multi-threaded systems consisting of n threads, we will use 7, with 1 < ¢ < n, as a unique identifier of
each thread T (i.e., we will write T;).

Definition 1 (Location-aware Thread) A thread is defined as a Labeled Kripke Structure [CCO*04] T = (S, Init,
AP, L, ¥, R) such that:

— S is a (possibly infinite) set of states;

— Init € S is the initial state;

— AP is the set of atomic propositions;

— L:8 — 247 is a state-labeling function;

— X is a finite set (alphabet) of actions;

- RCSxXx(SU{S x S§})isa total labeled transition relation.

A state s € S of a thread is defined as a tuple (V;, Vg, pc, ¢, n), where V; is the evaluation of the set of local
variables, V, is the evaluation of the set of global variables, pc is the program counter, ¢ : Loc < Loc is a
partial function denoting the location net (where Loc is the set of location names as defined in Sect. 4.1), and
n: N < Locis a partial function denoting the thread location. More specifically, ¢ describes the location net at
a given state by recording the father-child relationship among all nodes of the net (L in the case of env), whereas
n(4) returns the location name of 7; (i.e., the thread identified by ¢).

Example 5 Consider again the shopping agent program and its location net as defined in Example 3. In this case,
the location net function is ¢(£y) = env, p(£1) = £y, p(€2) = env, p(£3) = env, p(£4) = env. In addition, the
thread location function for threads 77 ... Ty is defined as n(1) = £y, n(2) = €y, n(3) = £1,n(4) = €, n(5) =
K3, 7](6) = 54. o

The transition relation R is labeled by the actions of which there are four types: moving, synchronization,
thread creation, and t actions, which are contained in the mutually disjoint sets =M, £5, 7 %7, respectively.
We use X to identify the set of all actions. T represents a generic action such as an assignment, a function call,

etc. We write s — s’ to mean (s, a, s') € R, with a € . Moreover, we write s =, s to specify which thread
performed the action. Note that, since we allow thread creation, if thread T; performs a new action, s’ can be

defined as a pair of states s.t. s AN i (8',3), where s is the next state of s, and s = Init; is an initial state of the
newly created thread (which corresponds to the initial state of T7).

Table 1 gives the inference rules for the labeled transition relation in the case of moving actions (go_in(¢),
go_out(¥)), thread creation action, new, and the synchronization action m. For the rules corresponding to the

638 C. Braghin et al.

Table 1. Inference rules for the labeled transition relation R for thread T

(NEW- ACTION)
Instr(s.pc) = new

2 (8,9) [s.pc = s.pc + 1; 5 = Init;]

(in- ACTION)
Instr(s.pc) = go_in(€) A (F1.41 := s.9(i) A s.p(l1) = s.¢(L))

“in(C
JREEELION i 8 [s'pc=spc+1; sp=s9U{l— L]

(out- ACTION)
Instr(s.pc) = go_out (£) A (.41 := s.n(i) A s.p(Ly) = L)

— ¢
s w} i 8 [s'pc=spc+1; sp=s90U{ — s.900)]

(SYNC- ACTION)
Instr(s.pc) =m

s ;8 [s.pc=s.pc+1]

Table 2. The labeled transition relation for the parallel composition of two threads

(SYNC- ACTION)

/1 /2
anIS/\sl—a>15 /\anf/\sz—a>25 /\sl.r)(l):sz.n(2)

/2

/1
(s],sz)—a>(s .S)

(L- PAR) (R- PAR)
1 . 2
aeElM/\s—%ls/ aeEzMAsz—%zsl
T 2
(s,)51 (s, (s s 52 (s s

generic operations the reader is referred to [CKS05]. The premises of the rules presented in Table 1 represent
guarded conditions for the execution of the actions. All rules check the value of Instr(s.pc), which determines
the instruction to be executed by the running thread. Then, depending on the type of the action, they check
further guarding conditions. In the consequences of the inference rules, we describe (within square brackets) the
updates of the thread state caused by the execution of an action. We use the standard notation ¢ U {£; — ¢»}
(with £, £, € Loc) to indicate the update to function ¢, i.e., the updates to the location net.

In the case of a “new” action, thread 7 spawns a new thread that is an exact copy of itself. As a consequence,
the program counter of T; is updated, and a new thread is created with an initial state 5. The initial state is a
copy of the initial state of T;.

In the case of a “go_in(£)” action, if £ is a sibling location to thread 7;’s location (i.e., s.¢(s.n(i)) = s.¢(£)),
then the thread makes a transition and changes the state accordingly: the program counter pc is incremented,
and the location net is updated (¢ is now the father location of T} location). If £ is not a sibling location, then
the action is not performed because the guard does not hold.

In the case of a “go_out (£)” action, if ¢ is the father location to thread T;’s location (i.e., s.¢(s.n(i)) = £),
then the thread makes a transition and changes the state accordlngly the program counter pc is incremented,
and the location net is updated (€ is now a sibling location of 7}’s location). If £ is not the father location, then
the action is not performed because the guard does not hold.

Note that the subtle features of mobile programs (namely, location, location net and unbounded thread
creation) are modeled explicitly.

Let T, ..., T}, be a set of threads initially present in the mobile program P, then P = T} || --- | T,. The
parallel composition operation is defined as follows.

A model checking-based approach for security policy verification of mobile systems 639

Definition 2 (Mobile Program). Let thread T} = (5, Init;, APy, L1, £1, R1) and thread T, = (5, Inity,
APy, Ly, 37, R;) be two Labeled Kripke structures. Then their composition is defined as follows:
T || T = (S1 x Sy, Inity x Inity, AP, L, ¥ U X5, R) with the labeled transition relation defined in Table 2.

In Table 2, a single state belonging to thread T; is denoted by s?, i.e., with 4 as superscript to indicate the
thread number. When needed, we also use a subscript (and variable j) to indicate the position of an element in the
path of execution steps (see Definition 3). For example, s/ is the initial state of thread T;. Given a state s* € S,
of thread T, sV}, s'.V,, s'.pc, s'.¢ and s'.n are the values of local variables V;, of global variables V,, of
program counter pe, of ¢ and of 5, respectively. Moreover, Instr(s®.pc) denotes the instruction pointed by pc in
thread 7T} at state s°. Note that Vi,5,i # j, £, N Z; = ¥ 9, that is, threads share only synchronization actions.
In other words, threads proceed independently on local actions and synchronize on shared actions (m € X7), or
on shared data (by definition of S;, S; N S, # §). This notion of composition is derived from CSP [Ros98].

The definition of a path of a mobile program reflects the possibility of unbounded thread creation during the
execution of the new instruction.

Definition 3 (Path). A path w = ((s{, s?,...,s/"), a1, (51,53, ...,87), a, ...) of a mobile program is an alter-
nating (possible infinite) sequence of tuples of states and events such that:
(i) n; eNand,Vi,j > 1,s{ = Init;, s; € S;, and a; € U; 3y
(i) either s/ BN siy ors) = sty for 1 < i < mjsp;
(i) if a; = new:
— then nj+; = n; + 1 and sﬁﬁ‘ = Inity, with s = 5;.11
- else nj+1 = ny.
A path includes tuples of states, rather than a single state. The reason for that is that when a new operation is
executed, the state of the newly created thread must be recorded. Our notation indicates each state s} by two
indices, ¢ and j, one to indicate the thread number, the other one to indicate the position in the path, respectively.
The size of the tuple of states (i.e., the number of the currently existing threads) increases only if a new is executed,
otherwise it remains unchanged (case (7ii)). In case of a new, index k identifies the thread that performed the
action. Thus, the state of the newly created thread is a copy of the initial state of thread 7%. Moreover, depending
on the type of action (i.e., shared or local) one or more threads will change state, whereas the others do not change
(case (ii)).

Example 6 Consider the following location-aware thread:
go_in(£); m; go_out({); new; new;
Then, a possible path 7 formalizing the semantics of the thread is:

(si,go_in(1), s}, m, s}, go_out (1), s, new, (s, s?), new, (s, 53, 57)).

5. Generic security-policies specification language

In order to support features of mobile systems, we devised a policy specification language that defines rules for
expressing also the code location. In this case, the active entities (i.e., subjects) requesting access to objects are
the running threads, whereas the resources (i.e., objects) that may be accessed are methods and variables. The
language is able to express rules in which an agent (i.e., a running thread) may be granted or denied to perform
a specific method call, or to invoke a method call with specific arguments (as in the mandatory access control
model). (Global) variables may be marked as having a high security level, and they cannot be assigned to variables
of a lower level; it is also possible to specify the security level of the arguments of a method (the no read up and no
write down rules of the information flow model). In this way, it is possible to express both access control policies
and information flow with the same language.

The BNF specification of the language is depicted in Fig. 3, where terminals appear in Courier, non terminals
are enclosed in angle brackets, optional items are enclosed in square brackets, items repeated one or more times
are enclosed in curly brackets, and alternative choices in a production are separated by the | symbol.

640 C. Braghin et al.

(policy) — {(sec_levels) | (operation_def) | (deny statement)}
(deny statement) — deny,to (deny_target) [(code base)] [(code origin)]
{ (permission entry) {, (permission entry)} »
(deny_target) — public| (entity list)
(entity list (entity_id) {, (entity_id)}
(entity_id) — (location_id)
(location_id) — (identifier)
(identifier) — ((letter) | (symbol)) {(letter) | (digit) | (symbol)}
(symbol _|-
(code base) — codeBase (IPv4 addr)
(code origin) — codeOrigin ((location) | remote)
(location, (location_id) {: (location_id)}
(permission entry) — permission (action)

(function) — function (function_id) (parameters)
(identifier)
(actual par) | (formal par) | high| e

(function_id
(parameters
(actual par " (string) "

(formal par) — args (vars) | " (location_id) " [*]
(identifier) {, (identifier)}

(operation) { (function_id) {, (function_id)} }

(vars
(operation_def
(operation) — operation (operation_id)
(identifier)
(sec_levels) — High={ (vars) }

(operation_id

)
) —
)
)
)
) —
)
)
) —
)
(action) — (function) | (operation)
)
) —
) —
) —
)
) —
) —
)
) —
)

Fig. 3. The policy specification language

A policy might contain: (¢) the definition of security levels; (i) a list of operation definitions; and (7i¢) a list
of deny statements, each one including one or more permission entries. In the definition of security levels, we
enumerate the high-level variables to specify a multi-level security policy. The definition of an operation collects
together functions with the same meaning or side-effect (e.g., scanf and fread). A deny statement specifies which
types of actions are not allowed to entities. By default, in the absence of deny statements, all actions are allowed
to every possible user.

The entities to deny permissions to consist of processes (e.g., agents), identified by their current location. The
keyword public means that the permission is denied to all entities. As we are dealing with mobile systems, an
entity can also be identified by the host address (via codeBase), or by the location (via codeOrigin) it came
from. The keyword remote identifies non-local locations.

A permission entry must begin with the keyword permission. It specifies actions to deny. An action can be
a function (either user-defined or from the standard library), or an operation (a collection of functions). If it is
a function, it is possible to also specify (i) formal parameters (variable names), (4i) actual parameters (the value
of the arguments passed), (#74) an empty string, denying access to the function regardless of the arguments to
it, or (iv) the keyword high (no high variables can be passed as arguments to this function). Notably, an actual
parameter may be a location (a trailing * prevents not only the location, but all sub-locations too).

Consider the Java sandbox: it is responsible for protecting a number of resources by preventing applets
from accessing the local hard disk and the network. In our language, a sketch of this security policy could be
expressed as:

operation read_file_system { fread, read, scanf, gets }
deny to public codeOrigin remote
{ permission function connect_to_location,

permission operation read_file_system }

A model checking-based approach for security policy verification of mobile systems 641

This is an example of access control policy, where the request to either open a TCP connection or to access a file
in the local file system is granted or denied depending on the credentials of the requester. In this case the decision
is taken according to the origin of the code making the request.

With the same language, it is possible to express a multi-level security policy as:

High={confidential_var, x }
deny to public codeOrigin remote
{ permission function fopen high }

In this case, two variables are labeled as high (i.e., they contain confidential information), whereas a code com-
ing from a remote and possibly unknown site is considered untrusted, thus labeled as low. The deny statement
expresses the “no read up” rule of the multi-level security policy described in the previous section.

6. A model-checking framework for verification of security policies

We implemented a prototype framework for the security analysis of mobile programs (shown in Fig. 4). It uses a
model checker for exhaustive and static analysis of mobile systems. A mobile program, P, and a security policy,
S, are provided as an input to the model-checking engine. It is also possible to provide a configuration file giving
details on the initial network configuration (i.e., the location net). If the file is not given, the policy is checked
against all possible network configurations.

These inputs are processed, creating a new program, P’, annotated with the security invariants. The procedure
for annotating the program with security invariants is a multi-step process. First, the intersection of methods in
the security policy and methods used within the agent to verify is found. Then, a wrapper method is created for
each of these methods. This wrapper contains an assert (0), either unconditionally, or within a guard, based on
the policy (this may check where the agent came from, and/or the arguments being passed to the method). The
handling of high-variable access is more complex (due to scoping and syntax), but analogous. This annotating
procedure is the implementation of Schneider’s security automata [Sch00]. In fact, the annotated program P’
consists of program P with inlined the reference monitor that enforces the security policy S. It has the following
property: an assertion assert (0) (a security invariant) is not reachable in P’ if and only if P enforces the security
policy S. Thus, it is sufficient to give P’ as an input to a model checker to statically determine whether or not an
assert(0) is reachable in P.

We experimented with mobile programs written in a C-based mobile language. The C programming language
is a popular choice for programming mobile middleware. For example, TinyOS, an operating system designed for
wireless embedded sensor networks, is a dialect of C with support for concurrency model and component-based
programming. We developed a mobile code framework from which different benchmarks of different complexity
can be instantiated.” In particular, it can be used for instantiation of mobile code agents of a shopping client-
server system [Whi94] and an updating system [BNLO02] (the benchmarks are described in more detail later in
this section). The mobile agents can be instantiated in two types of communication model: a pull model (i.e.,
client/server), where a client asks for code to run from a server, and then downloads and executes it, and a push
model, where a location listens for incoming code (i.e., agents), and then executes them. Since serialization is not
possible in C, our framework only allows code mobility (i.e., applet sending), running code cannot migrate. It is
straightforward to extend our approach to benchmarks written in other programming languages (e.g., Telescript,
Klaim, Java, JavaScript, etc.) by implementing/using a different front-end of a favorite model checker targeted
to the language of choice and with full mobility capabilities.

Our framework uses a model-checking toolset, SATABS [CKSYO05], which automatically extracts LKSs
from ANSI-C programs. Applying model checking to the analysis of mobile and multi-threaded systems is
complicated by several factors, ranging from the perennial scalability problems to thread creation that is potentially

2 The mobile code framework is available at http://www.verify.inf.unisi.ch/projectssf AVSPM C/tool.

http://www.verify.inf.unisi.ch/projects/AVSPMC/tool

642 C. Braghin et al.

Program P Policy S Location Net
Pre-processor
Annotated
Program P’
Model Policy violated
checker
Policy upheld

Fig. 4. The experimental framework

Formalization of Security

Fomakzation;and Policies and Verification

Abstraction

Mobile Abstract ‘Model || secure
Code > Program Checker >
CEGAR
|00P Counterexample

Abstraction NON SECURE
refinement | REfinement Simulator ———>
Virusfintrusion
L)L found
e
Spurious counterexample

Fig. 5. The CEGAR loop

unbounded and that thus leads to infinite state space. Predicate abstraction is one of the most popular and widely
applied methods for systematic state-space reduction of programs. It abstracts data by only keeping track of
certain predicates on the data. Each predicate is represented by a Boolean variable in the abstract program, while
the original data variables are eliminated. The resulting Boolean program is an overapproximation of the original
program. One starts with a coarse abstraction, and if it is found that an error-trace reported by the model checker
is not realistic, the error trace is used to refine the abstract program, and the process proceeds until no spurious
error traces can be found. The actual steps of the loop follow the abstract-verify-refine paradigm [Kur95]. SAT-
ABS implements the abstraction refinement loop by computing and refining abstract programs (see Fig. 5). The
procedure for the location-specific projections described in Sect. 6.1 can be seen as the extension of SATABS’s
abstraction procedures. Among various techniques employed by SATABS, there is a model checker for Boolean
programs (computed by the SATABS abstraction engine), BoPPO[CKS05] that handles unbounded thread cre-
ation. The execution of a new action potentially leads to the creation of an unbounded number of new threads.
SATABS implements a symbolic algorithm for overapproximating reachability in Boolean programs to support
arbitrary thread creation which is guaranteed to terminate [CKS06]. The devised algorithm is used as the under-
lying reachability engine in the CEGAR framework and is efficient. The SATABS ability to handle programs with
arbitrary thread creation was the key reason for using it as a model-checking engine of our security framework.

The initial configuration file, when provided, is used to test whether the policy is upheld in specific network
configurations (where the agent came from, both on the underlying network and the location network, and where
it’s currently running). Several functions exist within the mobile code framework to check these values; there is a
dynamic version to be used at run-time, and a static version which is generated from the specified initial configu-
ration. To check whether the policy holds under all possible conditions, it suffices to not provide these function
definitions to the model checker, which then treats the results as non-deterministic; this can be accomplished by

A model checking-based approach for security policy verification of mobile systems 643

telling the model checker to use the run-time version of the definitions, not providing an initial configuration, or
by not providing the generated location file as an input to the verifier.

6.1. Security and projection

To cope with the computational complexity of verifying mobile programs, we define projection abstractions.
Given a path of a multi-threaded program 77 || --- || T,,, one can construct projections by restricting the path to
the actions in the alphabet of threads, or to states satisfying some conditions. We exploit the explicit notion of
locations and define the location-based projections, which allow efficient verification of location-specific security
policies (security policies in which codeOrigin or codeBase is present). With a location-specific policy, only
processes which run on the indicated location need to be verified.

In the following, we assume only paths of finite length, as they are computed by the symbolic fix-point
algorithm to handle verification of systems with an unbounded number of threads. In addition, we write () for
the empty path, and we use the dot notation to denote the concatenation of sequences. The concatenation of
sequences will be used in the inductive definitions of projections to concatenate subsequences of paths. Notice that
. is the concatenation operator for sequences of characters, thus it is not affected by the presence of mismatched
parentheses.

Definition 4 (Location Projection, w |, £). Let P be T || --- || T,, and £ € Loc be a location. The projection
function Proj, : L(P)* — L(P)* is defined inductively as follows (we write 7 |, £ to mean Projy(m)):

L Ode=1

2. Ifs*.n(i) = £ then ((s").wr) L £ = (s").(r | £)

3. Ifs'.p(i)# £then ((sH).m) L L=m | ¢

4. Ifa e X;, with i s.t. s.n(3) = £, then ((a).w) | £ = (a).(w | £)

5. Ifa &%, withist. s.n(i) # £, then ((a, (s', s>, ..., s")m) L b=m | £

This projection traces the execution of threads for a particular location. The following information is collected:
(i) states of threads whose location is £ (i.e., threads T such that s*.n(i) = £), and (ii) actions that are performed
by the threads whose location is £ (i.e., actions a such that a € X;, with £] T;]). Here, the concatenation is done
on each state element of the path, since each single state is examined to satisfy condition (i) (rules 2-3). On the
contrary, once an action does not satisfy condition (ii), the next tuple is erased (rule 4).

With respect to what happens at a particular location during execution of a mobile program, there is no
loss of precision in this projection-based abstraction. The projection removes only states and actions which are
irrelevant to the particular location. Moreover, since security policies are defined in terms of a single location,
this abstraction does not introduce spurious counterexamples during the verification of security policies using
the codeOrigin entry.

Definition 5 (Moving Projection, w |). Let P be Ty || --- | T,. For 1 < ¢ < n, the projection function
ProjM : L(P)* — L(P)* is defined inductively as follows (we write 7 | i to mean Proj;(r)):

L Odmi=)

2. (((sf, 82, o sty) dar i = (sh)(r Las 9)

3. Ifae XM then ((a;, (s], 57, ..., s/)).7) bar i = (a;, 8)).(w Loy 9)
4. Ifa gz} then ((a, (s}, 57, ..., s/ N) Iy i =7 Las i

Here =M = { go_in(1), go_out (1) }. This allows keeping track of all the moving actions executed by thread
T;. Therefore, our framework is able to track the route followed by each thread.

Many other location-specific properties can be specified, e.g., which thread interacts with the other threads,
in what order and under which conditions, etc. This ability is of paramount importance since mobility requires
more than the traditional notion of authorization to run and to access information in certain domains: it involves
the authorization to enter or exit certain domains. Thus we can exploit our verification framework for security
analysis.

644 C. Braghin et al.

Definition 6 (Thread Projection, = |, i). Let P be T} || --- || Tp. For 1 < i < n, the projection function
Proj; : L(P)* — L(P)* is defined inductively as follows (we write 7 |, i to mean Proj;(r)):

L Qli=(
20 (st sty ey st) bar i = (s)).(m L)
3. Ifa e X, then ((q;, (sjl, 5]2, s sPNm) Li = (ay, 5;).(71 1 7)

4. If a & T then ((ay, (5], 57, ..., 8/))w) Li=m L.

Intuitively, the projection 7 | i of @ = ((s}, 7, .., s1"), a1, ...) on T; consists of the (possibly infinite) subse-
quence (s{, a;, ...) obtained by removing all pairs (a;, (s}, s/, ..., s/")) for which ¢; ¢ X; and by removing all
states s/ where | < ¢ < nand ¢ # i (i.e., those states that do not belong to 7).

As a consequence of Definition 6, the following theorem extends similar standard results obtained for CSP,
and enables efficient compositional analysis of multi-threaded programs: abstraction, counter-example valida-
tion, and refinement can all be done one thread at a time.

Theorem 6.1 (Soundness) Let 7w be a path, and || be defined as in Table 2, then:

1. Parallel composition is (well defined and) associative and commutative up to ~-equivalence.

2. LetT,..., T, be LKSs, andlet Ay, ..., A, be the respective abstractions of the T;: for each i, T; T A;. Then,
Tyl I ThE A |l A

3. LetTy,..., T, be LKSs with alphabets %1, ..., X, and let w be a path of T\ || --- || Tn. Then, w € L(T |
< | Ty) iff, for each i, there exists) € L(T;) such that w | i is a prefix of m/.

Sketch of the Proof. The correctness of the theorem follows directly from the Definitions 3 and 6, and from the
properties of set union. For the full proof we refer the reader to [Ros98].

The theorem states that parallel composition preserves the abstraction relation, and that it is possible to
check whether a path belongs to the language of a mobile program by projecting and examining the path on each
individual thread separately.

6.2. Experimental results

To validate the theoretical concepts presented in this paper, an experimental mobile code framework was devel-
oped, for which a number of examples of mobile code agents were generated. The mobile code agents were our
running example on a shopping agent [Whi94] and an updating agent [BNL02]. The shopping example deals
with a shopping query client, which sends several agents out to query simulated airline services in order to find
available airfares. The agent is run on a simulated airline server, which is a distinct location on the location net
from the original query client, and may be on a remote host. When the agent receives a reply, or fails to, it then
tries to report back to the shopping query client.

The updating example specifies a central update server and several clients. The clients contact the server, and
updates are sent as an executable agent whenever an update is available. This represents a way to keep the client
software up to date, without forcing the client to poll the update server.

Both sets of benchmarks were parameterized in the number of clients. The mobile code framework was used
to create mobile programs of various complexity to test the scalability of the verification framework. In both
examples the mobile agent contains a possibly “malicious” action, that is, opening a connection to the location
named “bad” for the shopping agent, and opening the /etc/passwd file for the updating agent example.

We verified the two examples against a number of security policies ranging from file access control to policies
that conditionally allowed the use of mobile code APIs based on the codeOrigin, as well as with different initial
location configurations. The security policies were either general or application-dependent. Moreover, we were
able to validate our technique on systems of different complexities, by changing the number of agents instantiated.

A model checking-based approach for security policy verification of mobile systems 645

The policies we used to test the updating agent, which opens the /etc/passwd file, are:

policy none, verifying the agent without any security policy, i.e., allowing any kind of action;
policy a, the Java-like policy described in Sect. 5:

operation read_file_system { fread, read, scanf, gets }
deny to public codeOrigin remote
{ permission function connect_to_location,

permission operation read_file_system }

policy b, disallowing the reading of the /etc/passwd file if and only if the agent came from a remote location,
whereas every other argument to fopen is allowed:

deny to public codeOrigin remote
{ permission function fopen "/etc/passwd" }

policy c, the security-level example policy also described in Sect. 5:

High={confidential_var, x }
deny to public codeOrigin remote
{ permission function fopen high }

The policies we used for the shopping agent, where an attempt to open a connection to the location named “bad”

is done, are:

1. policy none, verifying the agent without any security policy, i.e., allowing any kind of action;

2. policy no effect, i.e., a policy with no effect on this example. It demonstrates that there is no performance
penalty when no checks need to be added.

3. policy a, disallowing the opening of a TCP connection to any agent coming from location airc, which is the
name of the site which sent out the shopping agent:
deny to public codeOrigin airc
{ permission function connect_to_location }

4. policyb local, disallowing the opening of a TCP connection to agent coming from anywhere, i.e., non local.
In the location net specified in the initialization file, the agent’s codeOrigin is local, thus the action must be
allowed.
deny to public codeOrigin remote
{ permission function connect_to_location }

5. policy b remote, which is identical to the previous one. What changes is the location net specified in the
initialization file. In this case the shopping agent’s code origin is remote, thus the action must be denied.

6. policy ¢ codeBase, specifying codeBase (an IPv4 origin address) instead of codeOrigin, and tailored to
the “malicious action” found in the shopping agent (i.e., calls to connect_to_location with argument bad
are denied, calls with all other arguments are accepted):
deny to public codeBase 127.0.0.1
{ permission function connect_to_location bad }

7. policy c, a policy exactly like the previous one, except that it does not specify a codeBase (and so, applies to

all possible codeBases):

deny to public
{ permission function connect_to_location bad }

Whereas in the updating agent example we did not give any initial configuration file, the initial location net given
in input to the model checker for the shopping agent example is as follows:

location net: (air0 [127.0.0.1 3000] airl [127.0.0.1 4000] airc [127.0.0.1 3333]

airq [127.0.0.1 3555] bad [127.0.0.1 4444])

current execution location: airc:a0
codebase host: 127.0.0.1
code origin: airc

646 C. Braghin et al.

Table 3. Agent benchmarks (pv = policy violated, ua = updating agent, sa = shopping agent)

Policy Time (s) # Iterations # Predicates pv?
ua-none 0 1 0 No
ua-a 10.888 2 11 Yes
ua-b 34.812 14 18 Yes
ua-c 0.194 1 3 Yes
sa-none 0.001 1 0 No
sa-no_effect 0 1 0 No
sa-a 151.644 7 17 Yes
sa-b local 100.234 12 36 No
sa-b remote 524.866 5 15 Yes
sa-c codeBase 340.011 12 22 Yes
sa-c 108.564 6 16 Yes

The configuration file specifies the location net (both in terms of location identifiers and IP addresses), the
execution location, the code origin and the codebase of the agent to be verified. In our experiments, those were
thread a0, located in location airc with its IP address 127.0.0.1.

The results of the experiments, with a location projection (where £=the agent’s location) on the whole system,
are given in Table 3, where we report: (7) the total verification time (in sec); (i7) the number of CEGAR loop
iterations; (4i7) the number of predicates indicating the complexity of the abstracted models; and (iv) in the
column named pv?, if the policy to be verified is violated or not. The results reported in Table 3 demonstrate the
applicability and scalability of our tool, although we intend to enlarge the set of benchmarks.

The benchmarks we used in our experiments were parameterized in the number of the shopping agent clients
(for the shopping agent system) and in the number of clients (for the updating benchmark). The complexity of
analysis grew exponentially with the number of agents/clients and was problematic (without using the location
projection). We set a timeout limit of two hours for the model checker and it reached the timeout for experiments
with cases consisting more than four clients/agents. Statistics provided in Table 3 is given for cases when the
location projection was used to reduce the complexity of verification. The data reported in Table 3 corresponds
to benchmarks with five clients/agents.

It demonstrates that the used location projects reduced the complexity considerably as witnessed by time
needed to complete analysis.

Our tool correctly detected every security policy violation with no false positives. The experiments were run
on a machine with Redhat Linux 7.3, kernel 2.4.18-27.7.xsmp, dual processor 2.791 MHz machine with 3.78 GB
RAM.

7. Conclusion

In this article, we introduced a framework for the modeling and verification of mobile programs. The mobile
system semantics is defined as Labeled Kripke Structures, which encapsulate the essential features of mobile
programs: namely, thread location, location distribution and thread-moving operations. We introduced a new
data structure, called location net, which captures the hierarchical nesting of the thread distribution during the
execution of mobile program. The LKS formalism preserves both the data and the communication structures of
mobile systems, which outperforms the classical process-algebraic approach mostly focusing on the communica-
tion behavior only. The explicit modeling of these features enables the specification of generic security policies
for mobile systems, making both access control and information flow policies possible to define. We implemented
and validated our approach. The verification framework builds on an integrated model checking framework to
support exhaustive analysis of security policies. It exploits abstraction-refinement techniques that not only allow
the handling of unbounded state space, but also deal effectively with large systems.

Acknowledgments

This work was partially supported by the Italian Government under the project PRIN 2007 D-ASAP
(2007XKEHFA).

A model checking-based approach for security policy verification of mobile systems 647

References

[BCO06] Bellavista P, Corradi A (2006) The handbook of mobile middleware. Auerbach Publications, Boston

[BCH*04] Beyer D, Chlipala AJ, Henzinger TA, Jhala R, Majumdar R (2004) The BLAST query language for software verification. In:
LNCS. Springer, New York, pp 2-18

[BCLRO04] Ball T, Cook B, Levin V, Rajamani SK (2004) Slam and static driver verifier: technology transfer of formal methods inside
microsoft. In: Boiten EA, Derrick J, Smith G (eds) IFM, Lecture notes in computer science, vol 2999. Springer, New York,
pp. 1-20

[BLP76] Bell DE, La Padula LJ (1976) Secure computer systems: unified exposition and multics interpretation. ESD-TR-75-306,
MITRE MTR-2997, MITRE Corporation, March 1976

[BNLO02] Bettini L, De Nicola R, Loreti M (2002) Software update via mobile agent based programming. In: SAC. ACM, pp 32-36

[BROO] Ball T, Rajamani SK (2000) Bebop: a symbolic model checker for Boolean Programs. In: SPIN 00: SPIN workshop. LNCS
1885. Springer-Verlag, pp 113-130

[BRO1] Ball T, Rajamani SK (2001) The slam toolkit. In: Berry G, Comon H, Finkel A (eds) CAV. Lecture notes in computer science,
vol 2102. Springer, New York, pp 260-264

[BRO2] Ball T, Rajamani SK (2002) SLIC: a specification language for interface checking (of C). Technical report MSR-TR-2001-21,
Microsoft Research

[BS95] Burkart O, Steffen B (1995) Composition, decomposition and model checking of pushdown processes. Nord J Comput 2:
89-125

[BS03] Bidinger P, Stefani JB (2003) The Kell calculus: operational semantics and type system. In: Formal methods for open object-
based distributed systems, 6th IFIP WG 6.1 international conference, FMOODS 2003, Paris, France, 2005, Proceedings.
Lecture notes in computer science, vol 2884. Springer, New York

[BSBAO07] Braghin C, Sharygina N, Barone-Adesi K (2007) Automated verification of security policies in mobile code. In: Integrated
formal methods (IFM07), LNCS, vol 4591, pp 37-53

[BSS05] Bidinger P, Schmitt A, Stefani J-B (2005) An abstract machine for the Kell calculus. In: Formal methods for open object-based
distributed systems, 7th IFIP WG 6.1 international conference, FMOODS 2005, Athens, Greece, 2005, Proceedings. Lecture
notes in computer science, vol 3535, pp 43-58

[CA09] Cerny P, Alur R (2009) Automated analysis of Java methods for confidentiality. In: Computer aided verification (CAV09),
pp 173-187

[Car99] Cardelli L (1999) Wide area computation. In: Wiedermann J, van Emde Boas P, Nielsen M (eds) Proceedings of 26th inter-
national colloquium in automata, languages and programming (ICALP’99). Lecture notes in computer science, vol 1644.
Springer-Verlag, Berlin, pp 10-24 (Invited Paper)

[CCK*06] Chaki S, Clarke EM, Kidd N, Reps TW, Touili T (2006) Verifying concurrent message-passing C programs with recursive
calls. In: Hermanns H, Palsberg J (eds) Proceedings of the 12th international conference on tools and algorithms for the
construction and analysis of systems (TACAS). Lecture notes in computer science, vol 3920. Springer, New York, pp 334-349

[CCO™04] Chaki S, Clarke E, Ouaknine J, Sharygina N, Sinha N (2004) State/event-based software model checking. In: IFM 2004,
pp 128-147

[CDZG"02] Charatonik W, Zilio SD, Gordon AD, Mukhopadhyay S, Talbot J-M (2002) Finite-control mobile ambients. In: Proceedings
of European symposium on programming (ESOP02). Lecture notes in computer science, vol 2305. Springer-Verlag, Berlin,
pp 295-313

[CGO0] Cardelli L, Gordon AD (2000) Mobile ambients. Theor Comput Sci 240(1):177-213

[CISWO05] Chaki S, Ivers J, Sharygina N, Wallnau KC (2005) The comfort reasoning framework. In: Etessami K, Rajamani SK (eds)
CAV. Lecture notes in computer science, vol 3576. Springer, New York, pp 164169

[CKS05] Cook B, Kroening D, Sharygina N (2005) Symbolic model checking for asynchronous boolean programs. In: Proceedings of
SPIN. Springer-Verlag, New York, pp 75-90

[CKS06] Cook B, Kroening D, Sharygina N (2006) Over-approximating Boolean programs with unbounded thread creation. In
FMCAD 06: formal methods in system design. Springer-Verlag, New York

[CKSYO05] Clarke E, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction for ANSI-C. In: TACAS.
LNCS, vol 3440. Springer-Verlag, New York, pp 570-574

[Cor99] IBM Corporation (1999) Aglet software development kit

[CTTV04] Clarke E, Talupur M, Touili T, Veith H (2004) Verification by network decomposition. In: CONCUR 04. Springer-Verlag,
New York, pp 276-291

[Dis00] Distefano D (2000) A parametric model for the analysis of mobile ambients. In: 3rd Asian symposium on programming lan-
guages and systems (APLAS 2005). Tsukuba, Japan. LNCS 3780, pp 401-417. Springer 2005, pp 305-326. Kluwer Academic
Publishers

[DNFP98] De Nicola R, Ferrari G, Pugliese R (1998) Klaim: a Kernel language for agents interaction and mobility. IEEE Trans Softw
Eng 24(5):315-330

[DoDS85] US Department of Defence (1985) DoD trusted system evaluation criteria (The Orange Book), vol DOD 5200.28-STD.
June 1985

[ESO01] Esparza J, Schwoon S (2001) A BDD-based model checker for recursive programs. In: CAV, LNCS 2102. Springer-Verlag,
New York, pp 324-336

[FGL*96] Fournet C, Gonthier G, Lévy J-J, Maranget L, Rémy D (1996) A calculus of mobile agents. In: Proceedings of the 7th
international conference on concurrency theory (CONCUR’96). Springer-Verlag, Berlin, pp 406-421

[FQO3] Flanagan C, Qadeer S (2003) Thread-modular model checking. In: Proceedings of the 10th international workshop on model
checking software (SPIN). Lecture notes in computer science, vol 2648. Springer, New York, pp 213-224

[HIMO04] Henzinger TA, Jhala R, Majumdar R (2004) Race checking by context inference. In: Pugh W, Chambers C (eds) Proceedings

of the ACM SIGPLAN 2004 conference on programming language design and implementation (PLDI). ACM, pp 1-13

648

[HP0O]

[HR9S]
[ID96]

[Kur95]
[McL94]
[Mic95]
[mob]
[NL97]

[PAO3]

[Rin01]
[Ros98]
[s3m]
[Sch00]
[SS04]

[Ste03]
[Sto00]

[STT09]

[Whio4]
[Yaho1]

C. Braghin et al.

Havelund K, Pressburger T (2000) Model checking Java programs using Java PathFinder. Int J Softw Tools Technol Transfer
2(4)

Hennessy M, Riely J (1998) Resource access control in systems of mobile agents. In: HLCL °98, J TCS. Elsevier, pp 3-17

Ip CN, Dill DL (1996) Verifying systems with replicated components in Mur¢. In: Proceedings of CAV, vol 1102. Springer-
Verlag, pp 147-158

Kurshan R (1995) Computer-aided verification of coordinating processes. Princeton University Press, Princeton

McLean J (1994) Security models. In: Marciniak J (ed) Encyclopedia of software engineering. Wiley

Sum Microsystems (1995) The Java language specification

MOBIUS (Mobility, Ubiquity and Security) European Project. http://mobius.inria.fr

Necula GC, Lee P (1997) Research on proof-carrying code for untrusted-code security. In: IEEE symposium on security and
privacy, p 204

Pnueli A, Arons T (2003) TLPVS: a PVS-based LTL verification system. In: Verification-theory and practice: proceedings of
an international symposium in honor of Zohar Manna’s 64th birthday. Lecture notes in computer science. Springer-Verlag,
New York, pp 84-98

Rinard M (2001) Analysis of multithreaded programs. Lecture notes in computer science, vol 2126

Roscoe AW (1998) The theory and practice of concurrency. Prentice-Hall

S3MS (Security of Software and Services for Mobile Systems) European Project. http://www.s3ms.org

Schneider FB (2000) Enforceable security policies. ACM Trans Inf Syst Secur 3(1). February 2000

Schmitt A, Stefani JB (2004) The Kell calculus: a family of higher-order distributed process calculi. In: Global computing.
Lecture notes in computer science. Springer

Stefani JB (2003) A calculus of Kells. ENTCS 85(1)

Stoller S (2000) Model-checking multi-threaded distributed Java programs. In: SPIN 00: international SPIN workshop on
SPIN model checking and software verification. Springer-Verlag

Sharygina N, Tonetta S, Tsitovich A (2009) The synergy of precise and fast abstractions for program verification. In: Shin SY,
Ossowski S (eds) SAC. ACM, pp 566-573

White JE (1994) Telescript technology: the foundation of the electronic marketplace. Technical report, General Magic Inc
Yahav E (2001) Verifying safety properties of concurrent Java programs using 3-valued logic. In: POPL, pp 27-40

Received 20 February 2009

Revised 9 May 2010

Accepted in revised form 2 June 2010 by Tiziana Margaria, Daniel Kroning and Jim Woodcock
Published online 16 July 2010

http://mobius.inria.fr
http://www.s3ms.org

	A model checking-based approach for security policy verification of mobile systems
	Abstract
	1 Introduction
	2 Related work
	3 Background: mobile systems and security policies
	3.1 Mobile systems
	3.2 Security policies and models
	3.2.1 Access control policies
	3.2.2 Information flow models

	4 Formal semantics of mobile programs
	4.1 Mobile programs
	4.2 The computational model

	5 Generic security-policies specification language
	6 A model-checking framework for verification of security policies
	6.1 Security and projection
	6.2 Experimental results

	7 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

