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Abstract. This paper describes an approach for the automated verification of
mobile programs. Mobile systems are characterized by the explicit notion of lo-
cations (e.g., sites where they run) and the ability to execute at different locations,
yielding a number of security issues. We give formal semantics to mobile systems
as Labeled Kripke Structures, which encapsulate the notion of the location net.
The location net summarizes the hierarchical nesting of threads constituting a
mobile program and enables specifying security policies. We formalize a lan-
guage for specifying security policies and show how mobile programs can be
exhaustively analyzed against any given security policy by using model checking
techniques.

We developed and experimented with a prototype framework for analysis of
mobile code, using the SATABS model checker. Our approach relies on SA-
TABS’s support for unbounded thread creation and enhances it with location net
abstractions, which are essential for verifying large mobile programs. Our exper-
imental results on various benchmarks are encouraging and demonstrate advan-
tages of the model checking-based approach, which combines the validation of
security properties with other checks, such as for buffer overflows.

1 Introduction

Despite the promising applications of mobile code technologies, such as web services
and applet models for smart cards, they have not yet been widely deployed. A major
problem is security: without appropriate security measures, a malicious applet could
mount a variety of attacks against the local computer, such as destroying data (e.g.,
reformatting the disk), modifying sensitive data (e.g., registering a bank transfer via a
home-banking software), divulging personal information over the network, or modify-
ing other programs.

Moreover, programming over a wide area network such as the Internet introduces
new issues to the field of multi-threaded programming and analysis. For example, dur-
ing the execution of a mobile program, a given thread may stop executing at a site, and
continue executing at another site. That is, threads may jump from site to site while re-
taining their conceptual identity. The following issues distinguish mobile systems from
a more general case of multi-threaded programs:
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– threads may run in different locations (e.g., administrative domains, hosts, physical
locations, etc.);

– communication among threads and threads migration take into account their geo-
graphical distribution (e.g., migration can only occur between directly linked net
locations).

To protect mobile systems against security leaks, security policies are defined, i.e., rules
or conditions that state which actions are permitted and which are prohibited in the sys-
tem. The rules may concern access control or information flow, and are usually verified
on the fly during the system execution. The dynamic approach has several drawbacks:
it slows down the system execution, there is no formal proof that the dynamic checks
are done properly, and the checks are not exhaustive.

This paper describes an approach for modeling and verifying mobile programs. We
give formal semantics to mobile systems as Labeled Kripke Structures (LKSs), which
encapsulate the notion of location and unbounded thread creation typical to mobile
systems. We define the semantics of mobile programs where thread locations are hier-
archically structured, where threads are always confined to locations and where threads
may move within the Internet. The LKS notation allows modeling both data and com-
munication structures of the multi-threaded systems. Consequently, it outperforms the
traditional process algebra approach that captures only the communication behavior.

We formalize a language for specifying general-purpose and application-dependent
security policies, and we show how mobile programs can be statically and exhaustively
analyzed against those security policies by using model checking techniques. A policy
configuration file, specifying what permissions (i.e., which types of system resource
access) to deny, is given as an input to the model checker together with the program
to be verified. To support features of mobile systems, the policy specification language
defines rules for expressing and manipulating the code location.

We implemented a prototype framework for modeling and verifying mobile pro-
grams written in C. In our approach, a mobile program is annotated with information
related to the security policy in such a way that if and when the security policy is vio-
lated, the model checker returns a counter-example that led to such an error. In such a
way, we are able to discover both implementation and malicious errors. Our framework
uses the SATABS model checker [1], which implements a SAT-based counterexample-
guided abstraction refinement framework (CEGAR for short) for ANSI-C programs.

To cope with the computational complexity of verifying mobile programs, we define
projection abstractions. Given a path of a multi-threaded program, one can construct
projections by restricting the path to actions or states satisfying certain conditions. We
exploit the explicit notion of locations and define location-based projections, which
allow efficient verification of location-specific security policies.

In summary, our approach to modeling and verifying mobile programs has several
advantageous features:

– it explicitly models thread location, location distribution and thread moving opera-
tions, which are essential elements of mobile programs;

– it preserves both data and communication structures of mobile systems;
– it defines a specification language for specifying security policies of mobile code;
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– it integrates model checking technologies to support exhaustive analysis of security
policies;

– it defines location-specific abstractions which enable the efficient verification of
large mobile code applications.

We experimented with a number of mobile code benchmarks by verifying various secu-
rity policies. The results of verifying security policies, dealing with both access permis-
sions of system actions and tracing the location net with respect to permissible location
configurations, were encouraging.

2 Related Work

The use of mobile systems raises a number of security issues, including access control
(is the use of the resource permitted?), user authentication (to identify the valid users),
data integrity (to ensure data is delivered intact), data confidentiality (to protect sensitive
data), and auditing (to track uses of mobile resources). All but the first category are
closely coupled with research in cryptography and are outside of the scope of this paper.
Our techniques assume that the appropriate integrity checking and signature validation
are completed before the security access policies are checked.

Trust management systems (TMS) [2] address the access control problem by requir-
ing that security policies are defined explicitly in a specification language, and relying
on an algorithm to determine when a specific request can be allowed. An extensive sur-
vey of trust management systems and various authorization problems can be found in
[3,4,5]. The major difference from our work is that these techniques rely on encryp-
tion techniques or proof-carrying code certification. For example, in the SPKI/SDSI
framework, all principals are represented by their public keys, and access control is
established by checking the validity of the corresponding public keys. In contrast, our
security analysis reduces access control problems to static reachability analysis.

Certified code [6] is a general mechanism for enforcing security properties. In this
paradigm, untrusted mobile code carries annotations that allow a host to verify its trust-
worthiness. Before running the agent, the host checks the annotations and proves that
they imply the host’s security policy. Despite the flexibility of this scheme, so far, compil-
ers that generate certified code have focused on simple type safety properties rather than
more general security policies. The main difficulty is that automated theorem provers are
not powerful enough to infer properties of arbitrary programs and constructing proofs by
hand is prohibitively expensive. Unable to prove security properties statically, real-world
security systems such as the Java Virtual Machine (JVM) have fallen back on run-time
checking. Dynamic security checks are scattered throughout the Java libraries and are
intended to ensure that applets do not access protected resources inappropriately. How-
ever, this situation is unsatisfying for a number of reasons: 1) dynamic checks are not
exhaustive; 2) tests rely on the implementation of monitors which are error-prone; and
3) system execution is delayed during the execution of the monitor.

Modeling of Mobile Systems. The most common approach to modeling mobile pro-
grams is the process algebra-based approach. Various location-aware calculi, with an
explicit notion of location, have arisen in the literature to directly model phenomena
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such as the distribution of processes within different localities, their migrations, or their
failures [7,8,9,10].

The π calculus [11] is often referred to as mobile because it features the ability to
dynamically create and exchange channel names. While it is a de facto standard for
modeling concurrent systems, the mobility it supports encompasses only part of all the
abstractions meaningful in a distributed system. In fact, it does not directly and explic-
itly model phenomena such as the distribution of processes within different localities,
their migrations, or their failures. Moreover, mobility is not expressed in a sufficiently
explicit manner since it basically allows processes only to change their interconnection
structures, even if dynamically. Indeed, name mobility is often referred to as a model
of labile processes or as link mobility, characterized by a dynamic interaction structure,
and distinguished from calculi of mobile processes which exhibit explicit movement.

Seal [12] is one of the many variants spawned by π calculus. The principal ingredient
added, the seal, is the generalization of the notions of agents and locations. Hierarchi-
cal locations are added to the syntax, and locations influence the possible interaction
among processes. As in the π calculus, interaction takes place over named channels.
Communication is constrained to take place inside a location, or to spread over two lo-
cations that are in a parent-child relationship. Locations are also the unit of movement,
abstracting both the notions of site and agent: a location, together with its contents, can
be sent over a channel, mimicking mobility of active computations.

Djoin [10] extends the π calculus with location, migration, remote communication
and failure. The calculus allows one to express mobile agents roaming on the net, how-
ever, differently from the Mobile Ambient calculus, the details of message routing are
hidden.

The most famous one is the Mobile Ambient calculus [13,7]: this specification lan-
guage provides a very simple framework that encompasses mobile agents, the domains
where agents interact and the mobility of the agents themselves. An ambient is a gen-
eralization of both agent and place notions. Like an agent, an ambient can move across
places (also represented by ambients) where it can interact with other agents. Like a
place, an ambient supports local undirected communication, and can receive messages
(also represented by ambients) from other places [14]. The formal semantics we give to
mobile systems draws many ideas from the ambient calculus.

The disadvantages of process algebra-based approaches, however, is that they model
only limited details of the systems (they are restricted only to communication structures
and do not preserve any information about data). This restricts the set of properties that
can be analyzed to a set of control-specific properties. Additionally, process-algebraic
techniques usually deal with coarse over approximations during the analysis of mobile
systems. Over-approximations are useful to reduce the analysis complexity and guaran-
tee that, if no errors are found in the abstract system, then no errors are present in the
actual system. However, if errors are found, the verification techniques developed for
process algebra fail to guarantee that they are real. In contrast to the process algebraic
approach, our techniques not only model both data and communication structures but
also (in the context of the abstraction-based model checking) simulate the errors on the
actual system and, if the errors are found to be spurious, the approximated programs are
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refined. To the best of our knowledge, there are no abstraction-refinement techniques
that would support the process algebraic analysis techniques.

3 Formal Semantics of Mobile Programs

3.1 Mobile Programs

This section gives the syntax of mobile programs using a C-like programming language
(which we believe is one of the most popular general-purpose languages). We extend
the standard definition of multi-threaded programs with an explicit notion of location
and moving actions1. The syntax of a mobile program is defined using a finite set of
variables (either local to a thread or shared among threads), a finite set of constants,
and a finite set of names, representing constructs for thread synchronization, similar to
the Java wait and notify constructs. It is specified by the following grammar:

LT ::= location-aware threads
| �[[T ]] single thread
| LT1 ‖ LT2 parallel composition

T ::= threads
T1 | T2 parallel comp.

| Instr sequential exec.
Instr ::= instructions

Instr1 ; Instr2 sequential exec.
| x := e assignment
| if (Expr != 0) Instr condition
| while (Expr != 0) Instr loop
| skip skip
| m sync. call
| fork thread creation
| M Instr moving action

Expr ::= expressions
c constant

| Expr1 ( + | - | * | /) Expr2 arith. operation
M Instr ::= moving actions

| go in(�) | go out(�) move in/out

In the grammar, x ranges over variables, c over constants, and m over the names of
synchronization constructs. The meaning of the constructs for expressions and instruc-
tions is rather intuitive: an expression can be either a constant or an arithmetic operation
(i.e., sum, difference, product and division). The instruction set mainly consists of the
standard instructions for imperative languages: a sequential composition operator (;),
the assignment instruction, the control flow instructions if and while, and the skip
statement. The instructions specific to the threads package are the fork instruction,
which spawns a new thread that is an exact copy of the thread executing the fork
instruction, and the call to a synchronization method m.

We further assume a set of location names Loc, and we let �, �1, �2, . . . range over
Loc. A thread is �[[T ]] , with � being the location name of thread T . More than one

1 For detailed discussion on programming languages for mobile code and their syntax the reader
can refer to [15].
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thread may be identified by the same location, that is �[[T1 | T2 ]] (examples will be
shown later). A mobile program is defined by the parallel composition of multiple
threads. A location can thus be seen as a bounded place, where mobile computation
happens.

Conceptually, thread locations represent the geographical distribution of the Web. To
capture this fact, we use a special structure, called a location net, which encapsulates
the hierarchical nesting of the Web. We define the location net as a tree, whose nodes
are labeled by unique location names, and the root is labeled by the special location
name env, representing the external environment of the system under analysis. A tree
t� is identified with the set of its paths.

Example 1. As a running example consider a shopping agent program, where several
agents are sent out over the network to visit airline Web-sites to find the best airfare.
Each agent is given various requirements, such as departure and destination time re-
strictions. After querying the airline database, it reports back the information to the
user who made the request.

For simplicity, let’s assume that the system is composed of threads T1...T6 which
are distributed among various locations: Loc = {env, �0, �1, �2, �3, �4} and that a sin-
gle thread is sent out. Here, �2, �3, �4 are the locations of various websites; �1 is the
location of the agent, �0 is the program sending out the agent, and env the gener-
alized environment location. Clearly, some of the locations are nested, and the lo-
cation net corresponds to a tree, which can be defined by the set of its paths, i.e.,
t� = {env.�0.�1, env.�2, env.�3, env.�4}, or can be depicted as follows.

In the rest of the paper, when referring to nodes of the location net, we borrow stan-
dard vocabulary to define the relationship among tree nodes, such as father, child and
sibling. For instance, in our example, �2 and �3 are siblings, whereas �0 is the father of
�1 (and �1 is the child of �0). �

The location net represents the topology of thread locations. In fact, it implicitly repre-
sents the distribution of threads. Location-aware threads can perform moving actions to
change this distribution. These actions are the moving instructions,go in and go out.
The explicit notion of location and the existence of moving actions affect the interaction
among concurrent threads as follows (the formal definition will be given in Section 3.2):

- There are two types of composition: the parallel composition among threads iden-
tified by the same location (i.e., �[[T1 | T2 ]] ), and the parallel composition among
threads identified by different locations (i.e., �1[[T1 ]] ‖ �2[[T2 ]] ) - see the example
below.

- The execution of moving actions changes the location net, i.e., mobility can be
described by updates of the location net.



Automated Verification of Security Policies in Mobile Code 43

- The execution of moving actions is constrained by the structure of the location net,
i.e., moving actions can be performed only if the thread location and the target
location has the father-child or siblings relationship.

Example 2. For example, if threads T1 and T2 represent a mail server and a browser
running at site l0 and threads T3...T6 are each running at sites l1...l4, then the shopping
agent program of Example 1 can be formalized as follows:

�0[[T1 | T2 ]] ‖ �1[[T3 ]] ‖ �2[[T4 ]] ‖ �3[[T5 ]] ‖ �4[[T6 ]]

In this program, threads T1 and T2 are running in parallel locally since �0[[T1 | T2 ]] .
On the contrary, T3 and T4 are running remotely since �1[[T3 ]] ‖ �2[[T4 ]] . �

3.2 The Computational Model

In this section we formalize the semantics of mobile programs. We first define the se-
mantics of a single thread, and then extend it to the case of a multi-threaded system.
As done in the examples of the previous section, when discussing about multi-threaded
systems consisting of n threads, we will use i, with 1 ≤ i ≤ n, as a unique identifier of
each thread T (i.e., we will write Ti).

Definition 1 (Location-aware Thread). A thread is defined as a Labeled Kripke Struc-
ture T = (S, Init, AP, L, Σ, R) such that:

- S is a (possibly infinite) set of states;
- Init ∈ S is the initial state;
- AP is the set of atomic propositions;
- L : S → 2AP is a state-labeling function;
- Σ is a finite set (alphabet) of actions;
- R ⊆ S × Σ × (S ∪ { S × S }) is a total labeled transition relation.

A state s ∈ S of a thread is defined as a tuple (Vl, Vg, pc, ϕ, η), where Vl is the evalu-
ation of the set of local variables, Vg is the evaluation of the set of global variables, pc
is the program counter, ϕ : Loc ↪→ Loc is a partial function denoting the location net
(where Loc is the set of location names as defined in Section 3.1), and η : N ↪→ Loc is a
partial function denoting the thread location. More specifically, ϕ describes the location
net at a given state by recording the father-child relationship among all nodes of the net
(⊥ in the case of env), whereas η(i) returns the location name of Ti (i.e., the thread
identified by i).

Example 3. Consider again the shopping agent program and its location net as de-
fined in Example 2. In this case, the location net function is ϕ(�0) = env, ϕ(�1) =
�0, ϕ(�2) = env, ϕ(�3) = env, ϕ(�4) = env. In addition, the thread location function
for threads T1 · · · T6 is defined as η(1) = �0, η(2) = �0, η(3) = �1, η(4) = �2, η(5) =
�3, η(6) = �4. �

The transition relation R is labeled by the actions of which there are four types: moving,
synchronization, thread creation, and τ actions, which are contained in the mutually
disjoint sets ΣM , ΣS, ΣT , Στ , respectively. We use Σ to identify the set of all ac-
tions. τ represents a generic action such as an assignment, a function call, etc. We write
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s
a−→ s′ to mean (s, a, s′) ∈ R, with a ∈ Σ. Moreover, we write s

a−→ i s′ to specify
which thread performed the action. Note that, since we allow thread creation, if thread

Ti performs a fork action, s′ can be defined as a pair of states s.t. s
fork−−−−−→ i (s′, s),

where s′ is the next state of s, and s = Initi is an initial state of the newly created
thread (which corresponds to the initial state of Ti).

Table 1 gives the inference rules for the labeled transition relation in the case of
moving actions (go in(�), go out(�)), thread creation action, fork, and the synchro-
nization action m. For the rules corresponding to the generic operations the reader is
referred to [16]. The premises of the rules presented in Table 1 represent guarded con-
ditions for the execution of the actions. All rules check the value of Instr(s.pc), which
determines the instruction to be executed by the running thread. Then, depending on
the type of the action, they check further guarding conditions. In the consequences of
the inference rules, we describe (within square brackets) the updates of the thread state
caused by the execution of an action. We use the standard notation ϕ∪{�1 
→ �2} (with
�1, �2 ∈ Loc) to indicate the update to function ϕ, i.e., the updates to the location net.

In the case of a ”fork” action, thread Ti spawns a new thread that is an exact copy
of itself. As a consequence, the program counter of Ti is updated, and a new thread is
created with an initial state s. The initial state is a copy of the initial state of Ti.

In the case of a ”go in(�)” action, if � is a sibling location to thread Ti location
(i.e., s.ϕ(s.η(i)) = s.ϕ(�)), then the thread makes a transition and changes the state
accordingly: the program counter pc is incremented, and the location net is updated (�
is now the father location of Ti location). If � is not a sibling location, then the action is
not performed because the guard does not hold.

In the case of a”go out(�)” action, if � is the father location to thread Ti location
(i.e., s.ϕ(s.η(i)) = �), then the thread makes a transition and changes the state accord-
ingly: the program counter pc is incremented, and the location net is updated (� is now
a sibling location of Ti location). If � is not the father location, then the action is not
performed because the guard does not hold.

Note that the subtle features of mobile programs (namely, location, location net and
unbounded thread creation) are modeled explicitly.

Let T1, · · · , Tn be a set of threads initially present in the mobile program P , then
P = T1 ‖ · · · ‖ Tn. The parallel composition operation is defined as follows.

Definition 2 (Mobile Program). Let thread T1 = (S1, Init1, AP1, L1, Σ1, R1) and
thread T2 = (S2, Init2, AP2, L2, Σ2, R2) be two Labeled Kripke structures. Then their
composition is defined as follows: T1 ‖ T2 = (S1 × S2, Init1 × Init2, AP, L, Σ1 ∪
Σ2, R) with the labeled transition relation defined in Table 2.

In Table 2, a single state belonging to thread Ti is denoted by si, i.e., with i as super-
script to indicate the thread number. When needed, we also use a subscript (and variable
j) to indicate the position of an element in the path. For example, si

1 is the initial state
of thread Ti. Given a state si ∈ Si of thread Ti, si.Vl, si.Vg , si.pc, si.ϕ and si.η are
the values of local variables Vl, of global variables Vg , of program counter pc, of ϕ
and of η, respectively. Moreover, Instr(si.pc) denotes the instruction pointed by pc in
thread Ti at state si. Note that ∀i, j, i �= j, Σi ∩ Σj = ΣS, that is threads share only
synchronization actions. In other words, threads proceed independently on local actions
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Table 1. Inference rules for the labeled transition relation R for thread Ti

(FORK-ACTION)

Instr(s.pc) = fork

s
fork−−−→ i (s′, s) [s′.pc = s.pc + 1; s = Initi]

(in-ACTION)

Instr(s.pc) = go in(�) ∧ (∃�1.�1 := s.η(i) ∧ s.ϕ(�1) = s.ϕ(�))

s
go in(�)−−−−−→ i s′ [s′.pc = s.pc + 1; s′.ϕ = s.ϕ ∪ {�1 �→ �}]

(out-ACTION)

Instr(s.pc) = go out(�) ∧ (∃�1.�1 := s.η(i) ∧ s.ϕ(�1) = �)

s
go out(�)−−−−−−→ i s′ [s′.pc = s.pc + 1; s′.ϕ = s.ϕ ∪ {�1 �→ s.ϕ(�)}]

(SYNC-ACTION)

Instr(s.pc) = m

s
m−→ i s′ [s′.pc = s.pc + 1]

and synchronize on shared actions (m ∈ ΣS), or on shared data (by definition of Si,
S1 ∩ S2 �= ∅). This notion of composition is derived from CSP [17].

The definition of a path of a mobile program reflects the possibility of unbounded
thread creation during the execution of the fork instruction.

Definition 3 (Path). A path π = 〈(s1
1, s

2
1, . . . , s

n1
1 ), a1, (s1

2, s
2
2, . . . , s

n2
2 ), a2, . . .〉 of

a mobile program is an alternating (possible infinite) sequence of tuples of states and
events such that:
(i) nj ∈ N and, ∀i, j ≥ 1, si

1 = Initi, si
j ∈ Si, and aj ∈ ∪iΣi;

(ii) either si
j

aj−−→ si
j+1 or si

j = si
j+1 for 1 ≤ i ≤ nj+1;

(iii) if aj = fork:

– then nj+1 = nj + 1 and s
nj+1
j+1 = Initk with sk

j

aj−−→ sk
j+1

– else nj+1 = nj.

A path includes tuples of states, rather than a single state. The reason for that is that
when a fork operation is executed, the state of the newly created thread must be
recorded. Our notation indicates each state sj

i by two indices, i and j, one to indicate
the thread number, the other one to indicate the position in the path, respectively. The
size of the tuple of states (i.e., the number of the currently existing threads) increases
only if a fork is executed, otherwise it remains unchanged (case (iii)). In case of a
fork, index k identifies the thread that performed the action. Thus, the state of the
newly created thread is a copy of the initial state of thread Tk. Moreover, depending on
the type of action (i.e., shared or local) one or more threads will change state, whereas
the others do not change (case (ii)).
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Table 2. The labeled transition relation for the parallel composition of two threads

(SYNC-ACTION)

a ∈ ΣS
1 ∧ s1 a−→ 1 s

′ 1
∧ a ∈ ΣS

2 ∧ s2 a−→ 2 s
′2

∧ s1.η(1) = s2.η(2)

(s1, s2) a−→ (s
′1

, s
′2

)

(L-PAR)

a ∈ ΣM
1 ∧ s

a−→ 1 s
′ 1

(s1, s2) a−→ 1 (s
′1

, s2)

(R-PAR)

a ∈ ΣM
2 ∧ s2 a−→ 2 s

′2

(s1, s2) a−→ 2 (s1, s
′ 2

)

4 Specifying Security Policies of Mobile Programs

In order to support features of mobile systems, we devised a policy specification lan-
guage that defines rules for expressing also the code location. This security language
primarily works at the level of method calls and variable accesses. Methods may be
disallowed to an agent, either in general, or when invoked with specific arguments.
(Global) variables may be marked as having a high security level, and they cannot be
assigned to variables of a lower level; it is also possible to specify methods that may not
be accessed within or passed to (no Read Up, no Write Down). In this way, it is possible
to express both information flow and access control policies with the same language .

The BNF specification of the language follows, where terminals appear in Courier,
non terminals are enclosed in angle brackets, optional items are enclosed in square
brackets, items repeated one or more times are enclosed in curly brackets, and alterna-
tive choices in a production are separated by the | symbol. A policy might contain: (i)
the definition of security levels; (ii) a list of operation definitions; and (iii) a list of
deny statements, each one including one or more permission entries. In the definition of
security levels, we enumerate the high level variables to specify a multi-level security
policy. The definition of an operation collects together functions with the same meaning
or side-effect (e.g., scanf and fread). A deny statement specifies which types of actions
are not allowed to entities. By default, in the absence of deny statements, all actions are
allowed to every possible user.

The entities to deny permissions to consist of processes (e.g., agents), identified by
their current location. The keyword public means that the permission is denied to all
entities. As we are dealing with mobile systems, an entity can also be identified by the
host address (via codeBase), or by the location (via codeOrigin) it came from.
The keyword remote identifies non-local locations.

A permission entry must begin with the keyword permission. It specifies actions
to deny. An action can be a function (either user-defined or from the standard library),
or an operation (a collection of functions). If it is a function, it is possible to also specify
(i) formal parameters (variable names), (ii) actual parameters (the value of the argu-
ments passed), (iii) an empty string, denying access to the function regardless of the
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arguments to it, or (iv) the keyword high (no high variables can be passed as argu-
ments to this function). Notably, an actual parameter may be a location (a trailing *
prevents not only the location, but all sub-locations too).

〈policy〉 −→ {〈sec levels〉 | 〈operation def〉 | 〈deny statement〉}
〈deny statement〉 −→ deny to 〈deny target〉 [〈code base〉] [〈code origin〉]

{ 〈permission entry〉 {, 〈permission entry〉} }

〈deny target〉 −→ public | 〈entity list〉
〈entity list〉 −→ 〈entity id〉 {, 〈entity id〉}
〈entity id〉 −→ 〈location id〉

〈location id〉 −→ 〈identifier〉
〈identifier〉 −→ (〈letter〉 | 〈symbol〉) {〈letter〉 | 〈digit〉 | 〈symbol〉}

〈symbol〉 −→ _ | .
〈code base〉 −→ codeBase 〈IPv4 addr〉

〈code origin〉 −→ codeOrigin (〈location〉 | remote)

〈location〉 −→ 〈location id〉 {: 〈location id〉}
〈permission entry〉 −→ permission 〈action〉

〈action〉 −→ 〈function〉 | 〈operation〉
〈function〉 −→ function 〈function id〉 〈parameters〉

〈function id〉 −→ 〈identifier〉
〈parameters〉 −→ 〈actual par〉 | 〈formal par〉 | high | ε

〈actual par〉 −→ " 〈string〉"
〈formal par〉 −→ args 〈vars〉 | " 〈location id〉" [*]

〈vars〉 −→ 〈identifier〉 {, 〈identifier〉}
〈operation def〉 −→ 〈operation 〉{ 〈function id〉 {, 〈function id〉} }

〈operation〉 −→ operation 〈operation id〉
〈operation id〉 −→ 〈identifier〉

〈receiver〉 −→ 〈location id〉
〈sec levels〉 −→ High={ 〈vars〉}

Consider the Java sandbox: it is responsible for protecting a number of resources by
preventing applets from accessing the local hard disk and the network. In our language,
a sketch of this security policy could be expressed as:

operation read_file_system { fread, read, scanf, gets}
deny to public codeOrigin remote
{ permission function connect_to_location,
permission operation read_file_system }

A multi-level security policy could be expressed as:

High={confidential_var, x}
deny to public codeOrigin remote
{ permission function fopen high}
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4.1 Security and Projection

To cope with the computational complexity of verifying mobile programs, we define
projection abstractions. Given a path of a multi-threaded program T1 ‖ · · · ‖ Tn, one
can construct projections by restricting the path to the actions in the alphabet of threads,
or to states satisfying some conditions. We exploit the explicit notion of locations and
define the location-based projections, which allow efficient verification of location-
specific security policies (security policies in which codeOrigin or codeBase is
present). With a location-specific policy, only processes which run on the indicated lo-
cation need to be verified.

In the following, we assume only paths of finite length, as they are computed by
the symbolic fix-point algorithm to handle verification of systems with an unbounded
number of threads. In addition, we write 〈〉 for the empty path, and we use the dot
notation to denote the concatenation of sequences. The concatenation of sequences will
be used in the inductive definitions of projections to concatenate subsequences of paths.
Notice that . is the concatenation operator for sequences of characters, thus it is not
affected by the presence of mismatched parentheses.

Definition 4 (Location Projection, π ↓ �). Let P be T1 ‖ · · · ‖ Tn and � ∈ Loc be
a location. The projection function Proj� : L(P)∗ → L(P)∗ is defined inductively as
follows (we write π ↓ � to mean Proj�(π)):

1. 〈〉 ↓ � = 〈〉
2. If si.η(i) = � then (〈si〉.π) ↓ � = 〈si〉.(π ↓ �)
3. If si.η(i) �= � then (〈si〉.π) ↓ � = π ↓ �
4. If a ∈ Σi, with i s.t. si.η(i) = �, then (〈a〉.π) ↓ � = 〈a〉.(π ↓ �)
5. If a �∈ Σi, with i s.t. si.η(i) �= �, then (〈a, (s1, s2, . . . , sn)〉.π) ↓ � = π ↓ �

This projection traces the execution of threads for a particular location. The following
information is collected: (i) states of threads whose location is � (i.e., threads Ti such
that si.η(i) = �), and (ii) actions that are performed by the threads whose location is
� (i.e., actions a such that a ∈ Σi, with �[[Ti ]] ). Here, the concatenation is done on
each state element of the path, since each single state is examined to satisfy condition
(i) (rules 2-3). On the contrary, once an action does not satisfy condition (ii), the next
tuple is erased (rule 4).

With respect to what happens at a particular location during execution of a mobile
program, there is no loss of precision in this projection-based abstraction. The pro-
jection removes only states and actions which are irrelevant to the particular location.
Moreover, since security policies are defined in terms of a single location, this abstrac-
tion does not introduce spurious counterexamples during the verification of security
policies using the codeOrigin entry.

5 A Model Checking Framework for Verification of Security
Policies

A prototype framework for security analysis of mobile programs is shown in the picture
below. A mobile program, P , and a security policy, S, are provided as an input to the
model checking engine.
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These inputs are processed, creating a new program, P ′, annotated with the security
invariants. It has the following property: an assertion assert(0) (a security invariant)
is not reachable in P ′ if and only if P enforces the security policy S. Thus, it is sufficient
to give P ′ as an input to a model checker to statically determine whether or not an
assert(0) is reachable in P .

The procedure for annotating the program with security invariants is a multi-step pro-
cess. First, the intersection of methods in the security policy and methods used within
the agent to verify is found. Then, a wrapper method is created for each of these meth-
ods. This wrapper contains an assert(0), either unconditionally, or within a guard,
based on the policy (this may check where the agent came from, and/or the arguments
being passed to the method). The handling of high variable access is more complex (due
to scoping and syntax), but analogous. This annotating procedure, as in SLIC [18], is the
implementation of Schneider’s security automata [19]. In fact, the annotated program
P ′ consists of program P with inlined the reference monitor that enforces the security
policy S.

Our framework uses a model checking toolset, SATABS [1]. Applying model check-
ing to the analysis of mobile and multi-threaded systems is complicated by several fac-
tors, ranging from the perennial scalability problems to thread creation that is potentially
unbounded and that thus leads to infinite state space. Predicate abstraction is one of the
most popular and widely applied methods for systematic state-space reduction of pro-
grams. It abstracts data by only keeping track of certain predicates on the data. Each
predicate is represented by a Boolean variable in the abstract program, while the original
data variables are eliminated. The resulting Boolean program is an over-approximation
of the original program. One starts with a coarse abstraction, and if it is found that an
error-trace reported by the model checker is not realistic, the error trace is used to re-
fine the abstract program, and the process proceeds until no spurious error traces can
be found. The actual steps of the loop follow the abstract-verify-refine paradigm [20].
SATABS implements the abstraction refinement loop by computing and refining abstract
programs. The procedure for the location-specific projections can be seen as the extension
of SATABS’s abstraction procedures. Among various techniques employed by SATABS,
there is a model checker for Boolean programs (computed by the SATABS abstraction
engine), BOPPO[16] that handles unbounded thread creation. The execution of a fork
action corresponds to the migration of the code to the new sites and potentially leads to
the creation of an unbounded number of new threads. SATABS implements a symbolic
algorithm for over-approximating reachability in Boolean programs to support arbitrary
thread creation which is guaranteed to terminate [21]. The devised algorithm is used as
the underlying reachability engine in the CEGAR framework and is efficient. The SA-
TABS ability to handle programs with arbitrary thread creation was the key reason for
using it as a model checking engine of our security framework.
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An initial configuration file can also be provided, to test whether the policy is upheld
in specific network configurations (where the agent came from, both on the underlying
network and the location network, and where it’s currently running). Several functions
exist within the mobile code framework to check these values; there is a dynamic ver-
sion to be used at run-time, and a static version which is generated from the specified
initial configuration. To check whether the policy holds under all possible conditions,
it suffices to not provide these function definitions to SATABS, which then treats the
results as non-deterministic; this can be accomplished by telling SATABS to use the
run-time version of the definitions, not providing an initial configuration, or by not pro-
viding the generated location file as an input to SATABS.

SATABS supports C programs, thus our benchmarks have a C-base mobile lan-
guage. Since serialization is not possible in C, we only allow code mobility (i.e., applet
sending); running code cannot migrate. It is straightforward to extend our approach to
benchmarks using other programming languages (e.g., Java, Telescript, etc.) by imple-
menting a different front-end targeted to the language of choice.

5.1 Experimental Results

To validate the theoretical concepts presented in this paper, an experimental mobile
code framework was developed, for which a number of examples of mobile code agents
were generated. The mobile code agents were a shopping agent [22] and an updating
agent [23].

The shopping example deals with a shopping query client, which sends several
agents out to query simulated airline services in order to find available airfares. The
agent is run on a simulated airline server, which is a distinct location on the location net
from the original query client, and may be on a remote host. When the agent receives a
reply, or fails to, it then tries to report back to the shopping query client.

The updating example specifies a central update server and several clients. The
clients contact the server, and updates are sent, as an executable agent, whenever an
update is available. This represents a way to keep the client software up to date, without
forcing the client to poll the update server.

We verified a number of security policies ranging from file access control to policies
that conditionally allowed the use of mobile code APIs based on the codeOrigin.
The examples have been tested against different security policies, some general and
some application dependent, as well as different initial location configurations. Both
contain a ”malicious” action (opening a connection to the location named ”bad” and
opening /etc/passwd, respectively), and one of the security policies for each checks
this. The results of the experiments, with a location projection (where �=the agent’s
location) on the whole system, are reported in Table 5.1.

The above policies are of a few forms, best shown by example. The updating agent
opens /etc/passwd: Policy 2 (ua) disallows this action if and only if the agent came from
a remote location, whereas every other argument to fopen is allowed.

deny to public codeOrigin remote
{ permission function fopen "/etc/passwd"}
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Table 3. Agent benchmarks with deterministic configurations: pv = policy violated, ua = updating
agent, sa = shopping agent

policy time (s) # iterations # predicates pv? SATABS: pv?
none (ua) 0 1 0 no no

1 (ua) 10.888 2 11 yes yes
2 (ua) 34.812 14 18 yes yes
3 (ua) 0.194 1 3 yes yes

none (sa) 0.001 1 0 no no
no effect (sa) 0 1 0 no no

1 (sa) 151.644 7 17 yes yes
2 local (sa) 100.234 5 15 no no

2 remote (sa) 524.866 12 36 yes yes
3 codeBase (sa) 340.011 12 22 yes yes

3 (sa) 108.564 6 16 yes yes

Policy 3 codeBase in the shopping agent example is a variant on the policy above: it
specifies codeBase (an IPv4 origin address) instead of codeOrigin, and is tailored to the
”malicious action” found in the shopping agent.

deny to public codeBase 127.0.0.1
{ permission function connect_to_location bad}

Other policies are: ”none” (verifying the agent without any security policy), the Java-
like policy described in Section 4 (Policy 1 (ua)), and the security-level example policy
also described in Section 4 (Policy 3 (ua)).

We were able to validate our technique on systems of different complexities, by
changing the number of agents instantiated. Our tools correctly detected every secu-
rity policy violation with no false positives. We observed that without performing pro-
jections the verification was problematic, whereas when using location projection the
technique scaled gracefully and the complexity of the verification was highly reduced.
Table 1 reports the total verification time (in sec) for the shopping agent and the up-
dating examples; a number of predicates and a number of the CEGAR loop iterations
indicate the complexity of the abstracted models.

6 Conclusion

In this paper, we introduced a framework for the modeling and verification of mobile
programs. The system semantics were presented in terms of Labeled Kripke Structures,
which encapsulated the essential features of mobile programs: namely, location and
unbounded thread creation. The explicit modeling of these features enabled the spec-
ification of mobile systems security policies, which are otherwise difficult to define.
The verification was based on model checking, exploiting abstraction-refinement tech-
niques that not only allowed handling unbounded state space, but also deal effectively
with large systems.
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