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Abstract—Theory propagation in Satisfiability Modulo The-
ories is crucial for the solver’s performance. It is important,
however, to pay particular care to the amount of deductions to
perform. The risk is in fact to clog the SAT-Solver with too many
(and potentially useless clauses). In this paper we review some
techniques for generating and communicating clauses to the SAT-
Solver. In addition we propose a generic and flexible schema for
theory propagation in which explanations for entailed facts are
generated by re-using the consistency check procedure that is
normally available in a theory solver. We argue that our schema
can simplify the design of a theory solver, and allow a flexible
form of theory propagation even for inherently hard theories
(such as bit-vectors).

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) [4] can be seen as
a generalization of Boolean satisfiability: besides Boolean
variables SMT-Solvers also accept atomic constraints in some
background decidable first-order theory T .

A well-studied architecture for SMT-Solvers uses a DPLL
SAT-Solver in cooperation with a decision procedure for a
background theory T (T -solver). In this schema the search
is driven by the SAT-Solver, while the T -solver is called
on partial assignments to check the consistency in T of the
set of enumerated constraints. If the set of constraints is
found to be T -inconsistent a conflict clause is produced by
the T -solver and it is added to the SAT-Solver’s database.
This approach is currently implemented in many SMT-Solvers
such as BARCELOGIC [6], CLSAT, CVC3 [5], MATHSAT [9],
OPENSMT [10], SATEEN [16], VERIT [7], YICES [14], and
Z3 [12]. For a detailed introduction on SMT we refer the
reader to [4], [23], [20].

Theory propagation consists of discovering and acti-
vating constraints that are a logical consequence in T
(T -consequences) of a partial assignment. Theory propagation
can be used in combination with standard Boolean Constraint
Propagation (BCP) to achieve a higher degree of deduction
power. Explanations1 for T -consequences are clauses that
encode logical implications in T . For instance, if x = y and
y = z belong to the partial assignment, then x = z is a
T -consequence of the partial assignment. The explanation of
the consequence is: ¬(x = y) ∨ ¬(y = z) ∨ (x = z).

Explanations are potentially necessary during the conflict
analysis in the SAT-Solver. However (as pointed out in [20])
only a small ratio of all explanations for T -consequences is

1Also called reasons, justifications, or lemmata in the literature.

required during conflict analysis (for some benchmarks no
explanation at all is needed). For efficiency it is important,
therefore, to generate and communicate only those explana-
tions that are strictly necessary.

In this paper we propose a method for computing explana-
tions on demand by reusing the consistency check algorithm
for a generic theory T . We argue that our approach simplifies
the design of a T -solver, as it does not have to provide the
implementation of any additional procedure for generating
explanations of T -consequences.

Moreover, we show mechanisms to detect T -consequences
for the theory of equality with uninterpreted functions (EUF)
and the theory of bit-vectors (BV). The mechanisms are based
on simple modifications of the original consistency checking
algorithms.

The paper is structured as follows. In §II we recall some
preliminary notions and previous approaches to theory prop-
agation. In §III we describe our approach. In §IV we show
how to efficiently detect T -consequences for an EUF and a
BV theory solvers. In §V we discuss the quality of explanation
for a DL solver w.r.t. different theory propagation methods.
We conclude in §VI.

II. PRELIMINARIES AND BACKGROUND

A. Notation

In the following we shall use the letters {a, b, . . . , h}
(possibly with subscripts) to denote Boolean variables or
the Boolean abstraction of a theory atom, l for a literal,
{v, w, x, y, z} to denote variables in a theory, F to denote
an uninterpreted function, and {s, t} for generic terms in a
theory. η is a (partial) Boolean assignment, i.e., the set of
literals (Boolean variables or negated variables) assigned to
true by the SAT-Solver at some point in time during the
search. Sometimes we shall refer to η as to the trail.

B. Theory Propagation

In the context of SMT, theory propagation (TP) can be
seen as a form of Boolean Constraint Propagation (BCP)
driven by the background theory [2], [3], [13], [19], [8], [11],
[20]. There is however a crucial difference between BCP and
TP. In BCP any propagated literal l is associated with an
explicit explanation clause in the database (i.e., the clause that
caused the propagation); in theory propagation, instead, the
explanation is generated by the T -solver, and communicated
to the SAT-Solver’s clause database.



There are two main approaches to theory propagation in
the SMT literature, with respect to the way explanations are
generated and communicated.

Figure 1 depicts the approach as described and used in the
MATHSAT solver [8]. The loop marked with the dashed line
represents the interaction between BCP and TP (BCP-TP loop
TP runs after BCP if the partial assignment η is consistent.
The loop closes after TP eagerly adds (to the clause database)
an explanation ηl ⊆ η for each T -consequence l.

Cotton and Maler [11] describe two variations of the BCP-
TP loop. In the first variation, explanations for TPs are
communicated all-at-once; in the second (which was shown to
be faster), each TP run is interleaved with a BCP run. In both
variations explanations are eagerly generated communicated
inside the BCP-TP loop.
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Fig. 1. Eager communication schema (figure adapted from [17]). The BCP-
TP loop is marked with the dashed line. BCP runs first. Then the partial
assignment η is given to the T -solver. If η is T -consistent a T -consequence l
may be derived, and the explanation ηl is eagerly added to the clause database.
The loop is repeated until no more propagations are derived or a conflict is
detected.

Nieuwenhuis and Oliveras [19] proposed the approach de-
picted in Figure 2 for the theory of difference logic. In this
approach the BCP-TP loop does not eagerly add explanations
to the database: explanations are generated and communicated
during conflict analysis (Expl. loop in Figure 2). In other
words, explanations are lazily generated and communicated.

This theory propagation schema was presented in [19]
with a method of generating explanations restricted to the
difference logic theory. [20] (§5) reports a more detailed
presentation of eager vs. lazy strategies for theory propagation,
and discusses the problem of avoiding the generation of “too
new explanations”. Basically, when generating an explanation,
one has to make sure that all the literals in the explanation of
a literal l have been assigned before l. The absence of “too
new explanations” is a sufficient condition to guarantee the
absence of loops in the implication graph of the SAT-Solver.

In this paper we present another technique for generating
explanations lazily. Our approach is generic (i.e., it is not
restricted to a particular theory) as it reuses the consistency
check procedure available in the theory solver, and it is

CONFLICT

ANALYZE-

assignment

UNSAT

SAT

partial

full
assignment

BCP

BACKTRACK

DECIDE

l? ηlη

T -SOLVER

l
Conflict /
Theory Prop

ADDCLAUSES
BCP-TP

loop
Expl.
loop

conflict

Fig. 2. Lazy communication schema was first used in [19] for the case
of SMT(DL). In the BCP-TP loop a T -consequence l is passed without
an explanation. Explanations can be requested during conflict analysis. If
an explanation for a T -consequence is requested (l?) it is generated and
communicated on demand.

guaranteed not to generate “too new explanations”. The tech-
nique is the core theory propagation strategy implemented in
OPENSMT solver [10]. According to the results of the SMT-
COMP’09 [1], despite not being as competitive as other in-
dustrial solvers, OPENSMT was the fastest open-source solver
for the categories QF UF, QF IDL, QF RDL, QF LRA.

C. Lazy explanations: a running example

Before we describe our method, we briefly recall the lazy
theory propagation schema by means of a running example.

In this example we focus on the execution of an SMT-Solver
for the theory of equality with uninterpreted functions and
predicates (EUF). We assume that the input formula contains
the following set of theory atoms and Boolean atoms (each
atom corresponds to Boolean abstraction (BA) in the SAT-
Solver):

Atom BA Atom BA
y = z a v = w e

F (x) = w b F (x) = v f
x = y c g g
x = z d v = F (z) h

Let’s now consider a possible branch of the search. Suppose
that at the current decision level, which we assume to be 2, the
partial assignment in the SAT-Solver is {a, b} ({y = z, F (x) =
w}). Also suppose that the remaining unsatisfied clauses are

¬(x = z) ∨ (v = w)
¬(F (x) = v) ∨ ¬g
g ∨ ¬(x = z) ∨ ¬(F (z) = v)

At the current decision level no further propagation can be
done (neither BCP nor TP). So, the SAT-Solver decides to
increase the decision level to 3 by assuming c. The new
assumption does not cause any BCP, but it triggers a TP. The
propagated theory atom is x = z because {y = z, F (x) =
w, x = y} is EUF-consistent and x = y ∧ y = z → x = z.
Also, x = y is added to the trail at the decision level 3.



The previous TP causes BCP to assign v = w in the clause
¬(x = z) ∨ (v = w) (x = z is added to the trail). The
trail is still EUF-consistent, so TP assigns F (x) = v because
F (x) = w∧v = w → F (x) = v. Finally, ¬g is Boolean prop-
agated by the clause ¬(F (x) = v) ∨ ¬g, and ¬(v = F (z)) is
Boolean propagated by the clause g∨¬(x = z)∨¬(v = F (z)).
Now, the call to the EUF-solver returns unsat because the
set {x = z, F (x) = v,¬(F (z) = v)} is inconsistent.

Figure 3 shows the mixed Boolean-theory implication graph
before the theory conflict is detected. The graph includes both
BCPs (solid lines) and TPs (dashed lines). The following is
the complete list of clauses involved in the described run:

1) ¬(x = y) ∨ ¬(y = z) ∨ (x = z)
2) ¬(x = z) ∨ (s = w)
3) ¬(F (x) = w) ∨ ¬(v = w) ∨ (F (x) = v)
4) ¬(F (x) = v) ∨ ¬g
5) g ∨ ¬(x = z) ∨ ¬(v = F (z))

where clauses 1 and 3 are the explanations for the two TPs.
The crucial point to observe is that the SAT-Solver behaved

as if the explanation clauses for TPs (1 and 3) were already
part of the original problem. The T -solver can “substitute”
the missing clauses (1 and 3) by just detecting the deduced
literals that would have been propagated if 1 and 3 were part
of the original problem.

D. Theory Propagation and Conflict Analysis

Explanations for propagations (both Boolean and theory) are
needed by the SAT-Solver during conflict analysis to compute
a conflict clause, and therefore to choose the right decision
level for backtracking. In this paper we use the common
conflict analysis technique [18], in the variant implemented
in the MINISAT solver [15], that we briefly recall as follows.

Conflict analysis is performed with a number of resolution
steps: the clause that causes the conflict (also called the
conflicting clause) is iteratively resolved with the clauses that
caused the literals involved in the conflict to be propagated.
The resolution steps are driven by the trail: the pivot literal
for each resolution step is the one in the conflicting clause
that has been last assigned on the trail and not yet resolved.
In other words, the resolution steps are performed in reverse
chronological order w.r.t. trail assignments. Figure 4 shows the
conflict analysis steps for our running example.

The resolution process begins with the conflicting clause
g ∨ ¬d ∨ ¬h, generated by the T -solver during the last
consistency check. The pivots for resolution are chosen among
the literals occurring in the candidate clause, and in reversed
assignment order. The conflict analysis stops whenever the
candidate clause contains exactly one literal implied by the
latest assumption.

As observed in [18], not all the clauses used to perform a
sequence of BCPs are needed during conflict analysis. Only
the explanations of the literals appearing within the implication
cone of the conflict will be used by the resolution-based
analysis (as depicted in Figure 5).

This observation is also true for theory propagations. In
other words, from the SAT-Solver point of view, the com-
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Fig. 5. Example of an implication cone for two conflicting literals (black-
filled nodes); only clauses {5, 4, 3, 8, 9, 12, 13} are used in conflict analysis.

putation of the conflict clause can be performed without
knowing all the explanations for the TPs performed: only the
explanations for the atoms involved in the resolution steps
have to be known.

To give a glimpse of the number of redundant explanations
for TP, we ran experiments on a set of benchmarks from the
SMT-LIB [22]. The results are reported in Table I. Data was
computed using OPENSMT. This data seem to be consistent
with the observations contained in [20].

Logic Bench. Suite TP done E. need % Ratio

QF_UF

SEQ 110.3 M 2.1 M 1.9
PEQ 78.7 M 2.2 M 2.8
NEQ 16.4 M 3.2 M 2.0
loops6 23.0 M 2.3 M 9.9
qg6 195.3 M 18.0 M 9.3
qg7 180.1 M 1.7 M 9.3

QF_BV
tacas07 13.8 K 0 0
brummayerbiere 109 0 0
brummayerbiere2 93.0 K 57.0 K 61.1

QF_IDL

job_shop 60.2 M 1.6 M 2.7
schedulingIDL 142.5 M 9.4 M 6.6
parity 201.5 K 4.4 K 2.2
mathsat 10.2 K 0.5 K 4.5
qlock 27.4 M 0.5 M 1.8
queens_bench 412.3 M 1.8 M 0.4

TABLE I
NUMBER OF TPS, NUMBER EXPLANATIONS NEEDED BY THE SAT-SOLVER

DURING CONFLICT ANALYSIS, AND PERCENTAGE OF EXPLANATIONS
NEEDED, DIVIDED BY CATEGORIES AND BENCHMARKS.

In Table I third column shows the sum of the number of
TPs done, fourth column shows the number of explanations
needed in conflict analysis, and the last column shows the ratio
between the two values. For most benchmarks the number
of explanations to be computed is a very small fraction
of the total amount of TPs done (in some benchmarks no
explanations at all is required).

III. LAZY EXPLANATIONS FOR T -CONSEQUENCES BY
CONSISTENCY CHECK

In our approach we follow the lazy theory propagation
schema, i.e., we do not compute any explanation a priori in
the T -solver. The unassigned T -atoms that are deduced by
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Fig. 3. Mixed Boolean-Theory Implication Graph for the running example of §II-C. Solid lines correspond to BCPs, while dashed lines correspond to TPs.
The edges are labelled with the number of the clause that is responsible of the propagation. The gray-colored node is the latest assumption.

¬d ∨ e
¬b ∨ ¬e ∨ f
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¬d ∨ ¬f ∨ h g ∨ ¬d ∨ ¬h

(h)
g ∨ ¬d ∨ ¬f
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(f)¬b ∨ ¬e ∨ ¬d (e)¬b ∨ ¬d

Fig. 4. Conflict Analysis for our running example. Each resolution step is labelled with the pivot variable.

the T -solver are simply propagated to the SAT-Solver with
a dummy explanation, a placeholder for a real explanation.
The minimal requirements for the T -solvers are shown in the
interface of Figure 6a: pushBckPoint sets a backtrack point
in the T -solver, in such a way that its current state can be
restored later with a call to popBckPoint. assertLit(l) com-
municates that the literal l has been assigned to true. check is
the consistency check procedure: if the set of asserted literals
η is inconsistent it returns a (possibly minimal) explanation
ηl, or an empty set if η is consistent.

class TSolver
. . .
// Assert a literal
bool assertLit( T -atom );

// Set a backtrack point
void pushBckPoint( );

// Restore last backtrack point
void popBckPoint( );

// Consistency check
set<T -atom > check( );

class SAT -Solver
. . .
TSolver t;
. . .
// l is the top-literal of the trail
Clause getExplanation(l)
t.popBckPoint();
t.pushBckPoint();
t.assertLit(¬l);
ηl = t.check();
t.popBckPoint();
// Computes expl. clause
ClauseR = false
for e ∈ ηl

R = R ∨ ¬e
return R

(a) (b)

Fig. 6. (a): the T -solver interface of OPENSMT. (b): the explicit code for
getExplanation, for a generic T -solver.

The main modification occurs inside the conflict analysis
procedure of the SAT-Solver, and it is based on the following

well-known observation2.

Remark 1: Let η be a partial assignment such that η 6|=T ⊥.
Suppose that η |=T l. Therefore η ∪ {¬l} |=T ⊥.

The modified conflict analysis procedure works as follows.
When a conflict is found, either during BCP or a theory
consistency check, we let the SAT-Solver proceed with the
resolution steps of conflict analysis as usual; at the same time
we backtrack the T -solver of the T -atoms already resolved.
Whenever a dummy explanation for an atom l is about to be
considered, we demand the T -solver to return an explanation
for its previous deduction with the procedure getExplanation
(see Figure 6b for the explicit code): we backtrack l from the
T -solver, and we temporarily push back ¬l. For Remark 1 the
T -solver is now in an inconsistent state. We can therefore ask
the T -solver for an explanation of the inconsistent state. Since
η 6|=T ⊥, but η ∪ {¬l} |=T ⊥, the explanation ηl ⊆ η ∪ {¬l}
is guaranteed to contain l. The equivalent clausal form of ηl

can be used as an explanation for the interrupted resolution
step.

Notice that η considered at the moment of getting the
explanation, might be different from the partial assignment
that caused the T -detection of l; this fact does not affect
the soundness of the approach, as it is sufficient that the
explanations for l always contain literals that have been
assigned before l, in order to avoid circular dependencies in
the implication graph [18] (i.e., we do not produce “too new
explanations”).

2Remark 1 is also used in [2], [13] to detect T -consequences, and it is often
called plunging. Plunging detects T -consequences by means of consistency
check calls on all unassigned literals. It is therefore computationally very
expensive. In this respect our method an be seen as a lazy form of plunging.



The whole method is based on a double deception: the SAT-
Solver behaves as if the explanations for TP were already part
of the initial problem, while the T -solver is used to compute
explanations on demand as if it were performing a normal
consistency check.

We argue that our variant of lazy theory propagation may
greatly simplify the design of a T -solver because it is only
required to detect T -consequences without providing an ad-
ditional infrastructure for computing explanations. Moreover,
in our schema T -consequences detection does not have to be
exhaustive. This is the key-point that enables the possibility of
lazy communication for inherently hard theories such as BV .
Notice that detecting T -consequences is generally an easy task
compared to that of generating an explanation.

IV. DETECTING T -CONSEQUENCES FOR EUF AND BV
In this section we show how to detect T -consequences for

EUF and BV by modifying a congruence closure algorithm
for EUF and a solver based on bit-blasting for BV . To the
best of our knowledge the following is the first complete
description of a lazy theory propagation schema for EUF and
BV .

A. Equality and Uninterpreted Functions

We describe how EUF-consequences can be efficiently
detected in a congruence closure algorithm with a minor
modification of the consistency check procedure.

Congruence closure is usually computed with an extension
of the union-find algorithm. The procedure keeps track of
the set of equivalence classes induced by the axioms of
equality (reflexive, symmetric, and transitive) and by the con-
gruence axiom (x1 = y1, . . . , xn = yn → F (x1, . . . , xn) =
F (y1, . . . , yn), for any functional symbol F ). Each term t is
initially associated with an individual equivalence class (t is
the class representant).

Equivalence classes may merge for two reasons. First,
classes merge when terms in different classes become equal.
For example, let t, s, F (t), and F (s) be in four different
classes. Then, equality t = s merges classes of t and s into
one. Second, classes merge because of the congruence axiom.
In the example, t = s implies F (s) = F (t). Hence, classes of
F (s) and F (t) merge into one.

We can consider the equality symbol = as a normal
functional symbol =(·, ·) with co-domain {true, false}. So,
the congruence algorithm can treat equality as any other
functional symbol. We achieve this by introducing the two
special constants true and false (each constant represents an
unmergable equivalence class). During the search, we merge
true with the positive EUF-atoms (e.g., t = s) and false
with the negative EUF-atoms (e.g., t 6= s).

When an EUF-atom t = s or t 6= s is assigned, the
congruence closure algorithm runs as usual. Additionally,
we maintain two sets of unassigned EUF-atoms that are
merged by congruence with the equivalence classes of true
and false. The atoms in the set P are merged with the
equivalence class of true, the atoms in the set N are merged

with the equivalence class of false. The two sets represent
EUF-consequences to be propagated: atoms in P positively,
atoms in N negatively. We can detect EUF-consequences for
other generic predicates in the same way.

Example 1: Consider again the running example of §II-C.
We focus only on variables x, y, and z, and we assume that
initially no EUF-atom is assigned. Figure 7a shows the initial
state of equivalence classes. When the atom y = z is asserted
to true, y and z are merged into the same class; =(y, z) is
merged with true (Figure 7b). When the atom x = z is
asserted to true, x is merged with the class of z, and =(x, z) is
merged with true. As a consequence of the congruence axiom
and the fact that x, y, and z are equivalent, =(x, y) is merged
with the class of =(y, z), =(x, z), and true (Figure 7c). Since
=(x, y) is unassigned and merged with true, we have P = {
=(x, y) }, i.e., x = y is an EUF-consequence of the current
assignment.

To evaluate our theory propagation mechanism for EUF
we ran a set of experiments using OPENSMT on the most
challenging benchmarks from the SMT-LIB for EUF . Table II
shows the results with theory propagation disabled (NOTP)
and enabled (TP). Tests were run with a timeout of 600 s on
an Intel Xeon 3.4 GHz. Results show that with our theory
propagation schema we solve more benchmarks or solve them
in less time.

Bench. Suite # of timeouts accumulated time (s)
NOTP TP NOTP TP

SEQ 5 4 2243 1331
PEQ 16 14 1588 1849
NEQ 10 6 2827 2587
loops6 0 0 257 159
gq6 0 0 6913 4567
gq7 0 0 4901 3205

TABLE II
NUMBER OF TIMEOUTS AND ACCUMULATED TIME FOR THEORY

PROPAGATION DISABLED (NOTP) AND ENABLED (TP). THE BEST
PERFORMANCE IS HIGHLIGHTED WITH THE BOLD-FACED FONT.

B. Bit-Vectors

The BV-solver of OPENSMT is based on an incremental
reduction to SAT that can also be efficiently backtracked to a
previous state. The main engine is based on another instance
of the SAT-Solver used as a global enumerator, that we shall
call bit-blaster from now on, to avoid confusion.

Each bit-vector term t[n] can be represented as an ar-
ray of Boolean formulæ [tn, . . . , t1] by means of a well-
known technique, that we briefly recall as follows. Each bit-
vector variable x[n] is represented by n Boolean variables
[xn, . . . , x1] inside the bit-blaster, while bit-vector operators
are encoded into arrays of Boolean formulæ that encode the
semantic of the operators: for instance t[2] + s[2] is encoded
as [t2 ⊕ s2 ⊕ (t1 ∧ s1), t1 ⊕ s1], where [t2, t1] and [s2, s1]
are, recursively, the encodings for t[2] and s[2] respectively.
Predicates, such as equalities, are instead encoded into a



x y z =(x, y) =(y, z) =(x, z) true false(a)

x y, z =(x, y)
=(y, z)
true

=(x, z) false(b)

x, y, z =(y, z) true
=(x, z) =(x, y) false(c)

Fig. 7. Congruence classes for Example 1.

single Boolean formula: for instance t[2] = s[2] results into
[(t2 ↔ s2) ∧ (t1 ↔ s1)].

In our approach we collect, at the initialization phase, all the
BV-atoms that might be assigned during the search process,
and we bit-blast them upfront. Each BV-atom a, with encoding
[a], is associated with an activation variable va and given to
the bit-blaster as va ↔ a. The activation variable controls the
activation of the encoding of an entire BV-atom inside the
bit-blaster.

Whenever, during the search, an assertLit(l) is called, and
var(l) = a, we retrieve the activation variable va associ-
ated with a: va is then assigned inside the bit-blaster with
the same polarity as l. The bit-blaster can be then queried
for satisfiability. In case of a satisfiable call, the detection
of BV-consequences can be performed in a straightforward
manner: it is sufficient to track the sets P and N of BV-atoms
corresponding to those activation variables that have been
forced (i.e., propagated at decision-level 0) to true or false
by the bit-blaster during the satisfiability check. As for EUF ,
P and N are the sets of BV-atoms that can be propagated to
true and false respectively.

In practice we observed that it is beneficial to call the check
method of the BV-solver only when a complete Boolean as-
signment is enumerated, given the complexity of check itself.
On partial models (in particular, on each call to assertLit),
instead, only Boolean constraint propagation is performed
inside the bit-blaster: BV-consequences can be still detected
as a result of the mere propagation process (this is the
method we use for computing statistics of Table I). Our bit-
blaster supports efficient backtracking. Theory conflicts can
be detected by tracking the activation variables involved in
the conflict analysis procedure of the bit-blaster.

To demonstrate the effectiveness of our theory propaga-
tion mechanism for BV we ran a set of experiments using
OPENSMT on a set of benchmarks from the SMT-LIB (these
benchmarks have a non-trivial Boolean structure compared to
others), with theory propagation disabled (NOTP) and enabled
(TP). Results are shown in Table III. Tests were run with a
timeout of 600 s on an Intel Xeon 3.4 GHz. Using our theory

propagation schema for BV results in a better performance,
either in the number of timeout or in the accumulated solving
time.

Bench. Suite # of time/mem-outs accumulated time (s)
NOTP TP NOTP TP

tacas07 0 0 71 60
brummayerbiere 7 6 274 715
brummayerbiere2 35 34 1398 309

TABLE III
NUMBER OF TIMEOUTS AND ACCUMULATED TIME FOR THEORY

PROPAGATION DISABLED (NOTP) AND ENABLED (TP). THE BEST
PERFORMANCE IS HIGHLIGHTED WITH THE BOLD-FACED FONT.

V. QUALITY OF EXPLANATIONS

The discussion in [20] (§5.1) about the advantages of using
lazy instead of eager explanations mostly focuses on the
aspect that certain explanations are not required during conflict
analysis. Adding the explanation to the SAT-Solver may result
in an useless burden for the solver’s data structures. Here we
suggest an additional reason why one should prefer lazy w.r.t.
eager explanations: the quality of the generated explanations.

We have implemented both the eager generation schema
(E) and the lazy generation schema (L) by consistency check
(described in §III) in our difference logic (DL) solver. The
solver is based on the algorithm described in [11]: the consis-
tency check algorithm reduces to an incremental negative cycle
detection procedure. Eager theory propagation is performed
via two single source shortest path (SSSP) computations (as
described in [11]). Table IV shows a comparison of the size
of the explanations obtained with the eager and lazy methods.

The reason why this happens is outlined as follows. Let
A be the current set of asserted literals, and suppose that a
literal la, not in A, is now asserted in the DL solver. la might
cause another unassigned literal ld to be deduced. However,
since BCP may run after ld is deduced, a number of literals
la1 , . . . , lan

may be asserted in the DL solver before ld is
asserted. Consider now the way E and L generate explanations
for ld. In E the explanation is generated eagerly based on the



Bench. Suite avg expl. size max expl. size min expl. size
E L E L E L

job_shop 14.7 14.1 32.3 19.2 3.0 2.9
schedIDL 15.6 14.2 35.6 20.1 2.9 2.7
parity 15.0 15.1 26.0 25.8 7.1 7.1
mathsat 6.5 6.6 12.5 12.4 2.6 2.6
qlock 8.1 7.3 29.7 25.8 2.2 2.1
queens_bench 7.8 6.7 25.7 18.2 2.3 2.3
Total 13.1 12.1 30.6 20.9 3.5 3.4

TABLE IV
AVERAGE VALUES OF AVERAGE EXPLANATION SIZE, MAX EXPLANATION

SIZE, AND MIN EXPLANATION SIZE.
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x1 x2 x3
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x4 y

zx5
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−1 2

0

0

0 −1

0

−12
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x1 x2 x3

w

−1

−1 2

0

0

π = (v, x1, x2, x3, x4, y, z, x5, x3, w) π = (v, x1, x2, x3, w)

(a) (b)

Fig. 8. Explanation path (π) for the deduced edge v 0→ w: (a) generated
with approach E with respect to the edge y 0→ z that caused the deduced
edge; (b) generated with approach L.

information A∪{la}. In L instead the explanation is generated
lazily based on the information A ∪ {la, la1 , . . . , lan}. Notice
in fact that the explanation for ld to be used in conflict analysis
is just required to contain literals that have been pushed before
ld. This richer set of information generally leads to producing
shorter explanations for L.

An additional reason why L creates shorter explanations
than E lies in the different way they generate explanations.
We explain the reason in the context of the DL theory solver.
Note that the DL theory constraints can be interpreted as a
graph: a theory literal x−y ≤ c corresponds to an edge x c→ y
in the graph.

Figure 8 shows a comparison of explanations generated with
E and L. In E the explanation for a deduced edge (v 0→ w) is
computed eagerly when the edge causing the deduction (y 0→
z) is asserted, by traversing two shortest path trees. The two
shortest path trees are created from the asserted edge endpoints
(y, z) as the source vertices. Consequently, the shortest path
for v 0→ w is necessarily a shortest path local to (y 0→ x) as in
Figure 8a. In general this is not the global shortest path from
w to v.

In L, instead, the explanation is computed lazily using the
consistency check procedure for DL. The path explaining the
deduction is, therefore, the global shortest path w to v, and it
does not necessarily include y 0→ z (see example in Figure 8b).

VI. CONCLUSION

In this paper we have studied a method for generating
explanations on demand in the context of lazy theory prop-
agation for Satisfiability Modulo Theories. Our approach is
generic (i.e., not restricted to a particular theory) because it

only requires a detection mechanism for T -consequences and
consistency check procedure to generate explanations.

This may simplify the design of a theory solver as it has only
to detect T -consequences, without explicitly supporting a pro-
cedure for generating explanations. Moreover we have shown
how to effectively perform the detection of T -consequences
in the context of EUF and BV theories.

As a further reason for preferring lazy over eager theory
propagation, we have shown, by means of experiments, that
the explanations generated on demand are usually shorter than
the ones produced eagerly with a state-of-the-art DL solver.
The explanation generation schema described is available in
the open-source SMT-Solver OPENSMT [21].
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[15] N. Eén and N. Sörensson. An Extensible SAT-Solver. In Theory and
Applications of Satisfiability Testing (SAT2003), pages 502–518, 2003.

[16] H. Kim and F. Somenzi. Finite Instantiations for Integer Difference
Logic. In FMCAD, pages 31–38, 2006.

[17] D. Kroening and O. Strichman. Decision procedures an algorithmic
point of view. Theoretical computer science. Springer-Verlag, May 2008.

[18] J. Marques-silva and K. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers, 48:506–
521, 1999.

[19] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory
Propagation and Its Application to Difference Logic. In CAV’05, pages
321–334, 2005.

[20] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). JACM, 53(6):937–977, 2006.

[21] OPENSMT Web Page. http://verify.inf.usi.ch/opensmt.
[22] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.smtlib.org, 2006.
[23] R. Sebastiani. Lazy Satisfiability Modulo Theories. JSAT, 3:144–224,

2007.

http://www.smtcomp.org
http://yices.csl.sri.com/tool-paper.pdf
http://verify.inf.usi.ch/opensmt
www.smtlib.org

	Introduction
	Preliminaries and Background
	Notation
	Theory Propagation
	Lazy explanations: a running example
	Theory Propagation and Conflict Analysis

	Lazy Explanations for T-consequences by Consistency Check
	Detecting T-consequences for EUF and BV
	Equality and Uninterpreted Functions
	Bit-Vectors

	Quality of explanations
	Conclusion
	References

