Experiments. We evaluated eVolCheck on a set of industrial
benchmarks. Four of them (VIT_n) were provided by our
industrial partner, the VTT company. The rest is derived from a
library of Windows device drivers (f Loppy_n, kbfiltr_mn,
diskperf_n). We invented all changes artificially.

Safety of all benchmarks was verified against assertions,
either existing in the code or inserted by us into code without
assertions. Table [[] contains results of the experiments. Each
row corresponds to a different benchmark, groups of columns
represent statistics about the bootstrapping verification and
verification of two upgrades, respectively. Nol estimates the
size of the original source code as a number of instructions
in the goto-binary (Nol is an accurate representation of
code without definitions, and often represents much higher
number of lines of code). IC represents the number of changed
instructions between current and the previous version. The
overhead introduced by upgrade checking, i.e. the syntactic
difference check (Diff) and the interpolants generation (Itp), is
also included in the total running time (Total). To show advan-
tages of our upgrade checking approach, for each change we
calculated the speedup (Speedup) of the upgrade check versus
verification of the changed code from scratch, performed only
for the sake of comparison reasons and hidden from the table.

In order to demonstrate different performance of our tech-
nique, we chose two different classes of changes for each
benchmark. The first class (Ist change) represents changes
with small impact. As expected, those can be verified with
a few local checks. The second one (2nd change) presents
upgrades that affect large portion of the code, potentially
causing traversal of the complete call tree of the program.

Our experiments demonstrate that for the class of problem
with small impact, the upgrade checking approach outperforms
the standalone verification (order(s) of magnitude speedup).
For the second class of changes, the performance of the
upgrade check varies. For some cases, analysis could be done
locally and the speedup is still substantial. For cases where
the algorithms needed to analyze large portion of the call
tree, the performance, as expected, degrades. Note that the

Table I: Experimental evaluation

bad performance occurs when the change introduces a bug
(indicated by ‘— in the Itp column; the PBMC formula is
satisfiable and interpolants are not generated). In this case,
the upgrade check traverses to the root of the call tree, in
order to reconstruct a complete error trace. Of course, this
can be an easy task when the change is close to the root of
the call tree (e.g., in the £1oppy_D benchmark). The results
support our initial intuition that upgrade checking works well
for incremental changes, which is the most common class in
the evolution of systems.

benchmark bootstrap Ist change 2nd change
name Nol Total [s] | Itp [s] IC | Total [s] | Diff [s] Itp [s] | Speedup IC | Total [s] | Diff [s] | Itp [s] | Speedup
VTT_A 329 4.889 0.133 2 0.318 0.006 | <0.001 15.6x 10 15.102 0.006 — 0.3x
VTT_B 332 23.178 0.003 6 7.793 0.007 0.007 3.0x 6 7.805 0.007 0.014 3.0x
VTT_C 129 0.144 0.001 2 0.017 0.002 | <0.001 8.4x 1 0.187 0.002 — 0.8x
VTT D 247 24.735 0.001 0 0.008 0.008 | <0.001 3098.0x 2 46.910 0.006 — 0.8x
floppy_A 292 1.025 0.015 2 0.039 0.009 0.002 26.1x 6 0.201 0.009 0.013 5.0x
floppy_B 294 0.763 0.003 2 0.038 0.009 | <0.001 19.8x 7 0.046 0.009 0.001 16.4x
floppy_C 2082 1.280 0.004 2 0.383 0.182 | <0.001 3.4x 7 0.394 0.183 0.001 3.2x
floppy_D 2099 60.469 0.257 6 0.374 0.182 | <0.001 161.7x 23 3.614 0.189 — 16.8x
kbfiltr_A 529 1.307 0.014 2 0.030 0.011 | <0.001 43.1x 6 0.111 0.012 0.006 10.6x
kbfiltr_B 529 1.040 0.001 1 0.052 0.011 0.001 19.6x 2 1.835 0.011 — 0.6x
kbfiltr_C 1010 2.522 0.014 2 0.063 0.021 0.002 40.2x 23 0.124 0.021 0.002 20.3x
kbfiltr_D 1011 3.060 0.009 2 0.061 0.022 | <0.001 50.5x 7 0.231 0.022 0.003 7.0x
diskperf_A 486 1.028 0.001 1 0.033 0.008 | <0.001 31.3x 2 1.751 0.008 — 0.6x
diskperf_B 492 2.580 0.049 2 0.091 0.009 0.006 28.3x 12 2.468 0.009 0.029 1.1x
diskperf_C | 1664 1.126 0.001 1 0.072 0.034 | <0.001 15.6x 4 0.097 0.034 0.001 11.5x
diskperf_D | 1685 38.609 1.179 1 0.295 0.035 0.016 130.4x 2 0.508 0.035 0.020 75.7x




