
Lattice-Based Refinement
in Bounded Model Checking

Karine Even-Mendoza1, Sepideh Asadi2, Antti E. J. Hyvärinen2,
Hana Chockler1, and Natasha Sharygina2

1 King’s College London, UK
karine.even mendoza@kcl.ac.uk, hana.chockler@kcl.ac.uk

2 Università della Svizzera italiana, Switzerland
antti.hyvaerinen@usi.ch, sepideh.asadi@usi.ch, natasha.sharygina@usi.ch

Abstract. In this paper we present an algorithm for bounded model-
checking with SMT solvers of programs with library functions — either
standard or user-defined. Typically, if the program correctness depends
on the output of a library function, the model-checking process either
treats this function as an uninterpreted function, or is required to use
a theory under which the function in question is fully defined. The for-
mer approach leads to numerous spurious counter-examples, whereas the
later faces the danger of the state-explosion problem, where the resulting
formula is too large to be solved by means of modern SMT solvers.
We extend the approach of user-defined summaries and propose to repre-
sent the set of existing summaries for a given library function as a lattice
of subsets of summaries, with the meet and join operations defined as
intersection and union, respectively. The refinement process is then trig-
gered by the lattice traversal, where in each node the SMT solver uses the
subset of SMT summaries stored in this node to search for a satisfying
assignment. The direction of the traversal is determined by the results of
the concretisation of an abstract counterexample obtained at the current
node. Our experimental results demonstrate that this approach allows
to solve a number of instances that were previously unsolvable by the
existing bounded model-checkers.

1 Introduction

Bounded model checking (BMC) amounts to verifying correctness of a given
program within the given bound on the maximal number of loop iterations and
recursion depth [10]. It has been shown very effective in finding errors in pro-
grams, as many errors manifest themselves in short executions. As the programs
usually induce a very large state space even at bounded depth, there is a need for
scalable tools to make the verification process efficient. The satisfiability modulo
theories (SMT) [22] reasoning framework is currently one of the most success-
ful approaches to verifying software in a scalable way. The approach is based on
modeling the software and its specifications in propositional logic, while express-
ing domain-specific knowledge with first-order theories connected to the logic

through equalities. Successful verification of software relies on finding a model
that is expressive enough to capture software behavior relevant to correctness,
while sufficiently high-level to prevent reasoning from becoming prohibitively
expensive — the process known as theory refinement [28]. Since in general more
precise theories are more expensive computationally, finding such a balance is
a non-trivial task. Moreover, often there is no need to refine the theory for the
whole program. As the modern approach to software development encourages
modular development and re-use of components, programs increasingly use li-
brary functions, defined elsewhere. If the correctness of the program depends on
the implementation of the library (or user-defined) functions, there is a need for
a modular approach that allows us to refine only the relevant functions. Yet, cur-
rently, the theory refinement is not performed on the granularity level of a single
function, hence BMC of even simple programs can result in a state explosion,
especially if the library function is called inside a loop.

In this paper, we introduce an approach to efficient SMT-based bounded
model checking with lattices of summaries for library functions, either taken from
known properties of the functions or user-defined. Roughly speaking, the lattice
is a subset lattice, where each element represents a subset of Boolean expressions
(that we call facts) that hold for some subset of inputs to the function; the join
and meet operators are defined as union and intersection, respectively (see Sec. 2
for the formal definition). The counter-example-guided abstraction refinement
(CEGAR) [14,16] that we describe in this paper is lattice-based, is triggered
by a traversal of the lattice, and the CEGAR loop is repeated until one of the
following outcomes occurs: (i) we prove correctness of the bounded program (that
is, absence of concrete counterexamples), (ii) we find a concrete counterexample,
or (iii) the current theory together with the equalities in the lattice is determined
insufficient for reaching a conclusion.

The following motivational example illustrates the use of lattices with LRA
(quantifier-free linear real arithmetics) theory.

Example 1. The code example in Fig. 1 describes the greatest common divisor
(GCD) algorithm. We assume that both inputs are positive integers. The pro-
gram is safe with respect to the assertion g ≤ x. However, with the LRA theory,
an SMT solver cannot prove correctness of the program, as GCD is not express-
ible in LRA. The standard approach is to have gcd(x, y) assume any real value;
thus, attempting to verify this program with an SMT solver and the LRA theory
results in an infinite number of spurious counterexamples. In the example, we
augment the solver with a set of facts about the modulo function, arranged in
a meet semilattice. These facts are taken from an existing set of lemmas and
theorems of the Coq proof assistant [3] for a%n:

f1 ≡ z mod mult ≡

≡ a mod n = 0 with the assumption a == x ∗ n for some positive integer x;

f2 ≡ z mod pos bound ∧ z mod unique ≡
≡ (0 ≤ a mod n < n) ∧ (0 ≤ r < n =⇒ a = n ∗ q + r =⇒ r = a mod n)

for some positive integers r and q, with the assumption (n > 0) ∧ (a 6= x ∗ n);

f3 ≡ z mod remainder ∧ z mod unique full ≡

2

1 i n t gcd (i n t x , i n t y)
2 {
3 i n t tmp ;
4 whi le (y != 0) {
5 tmp = x%y ;
6 x=y ;
7 y=tmp ; }
8 re turn x ;
9 }

1 i n t main (void)
2 {
3 i n t x=45;
4 i n t y=18;
5 i n t g = gcd (x , y) ;
6

7 a s s e r t (g <= x) ;
8 }

Fig. 1. The GCD program using modulo function.

≡ (n 6= 0 =⇒ (0 ≤ a mod n < n ∨ n < a mod n <= 0)) ∧ ((0 ≤ r < n ∨ n < r ≤ 0)

=⇒ a = b ∗ q + r =⇒ r = a mod n) with the assumption true.

The assumptions are different from the original guards in [3], as these are re-
written during the build of the meet semilattice. The original subset lattice con-
sists of all subsets of the set {f1, f2, f3}. It is analysed and reduced as described
in Sec. 3 to remove contradicting facts and equivalent elements. In this example,
the set {f3} generalises {f1} t {f2}. Fig. 2 shows the original subset lattice on
the left, and the resulting meet semilattice of facts on the right. In the lattice

{ f1 }

{ f1, f2 }

{ f2 }

�

{ f3 }

{ f1, f3 } { f2, f3 }

{ f1, f2, f3 }

{ f1 }

{ f3 }

{ f2 }

�

Fig. 2. Original subset lattice of facts and reduced meet semilattice for the modulo
function in LRA.

traversal, we start from the bottom element ∅ and traverse the meet semilattice
until we either prove that the program is safe or find a real counterexample (or
show that a further theory refinement is needed). In this example, we traverse
the lattice until the element {f3}, which is sufficient to prove that the program
is safe. Specifically, the fact f1 is used to prove loop termination, and the fact
f2 is used to prove the assert.

Our algorithms are implemented in the bounded model checker HiFrog [5]
supporting a subset of the C language and using the SMT solver OpenSMT [29].
We demonstrate the lattice construction on several examples of lattices for the
modulo function. The facts for the lattice construction are obtained from the
built-in theorems and statements in the Coq proof assistant [3].

Our preliminary experimental results show that lattice-traversal-based CE-
GAR can avoid the state-explosion problem and successfully solve programs

3

that are not solvable using the standard CEGAR approach. The lattices are
constructed using data from an independent source, and we show that even with
a relatively small lattice we can verify benchmarks which either are impossible
to verify in less precise theories or are too expensive to verify with the precise
definition. Our set of benchmarks is a mix of our own crafted benchmarks and
benchmarks from the software verification competition SVComp 2017 [4].

The full paper, HiFrog tool, and lattices and programs used in our experi-
ments, are available at http://verify.inf.usi.ch/content/lattice-refinement.

Related Work. Lattices are useful in understanding the relationships between ab-
stractions, and have been widely applied in particular in Craig interpolation [20].
For instance [33] presents a semantic and solver-independent framework for sys-
tematically exploring interpolant lattices using the notion of interpolation ab-
straction. A lattice-based system for interpolation in propositional structures is
presented in [23], further extended in [32,6] to consider size optimisation tech-
niques in the context of function summaries, and to partial variable assignments
in [30]. Similar lattice-based reasoning has also been extended to interpolation
in different SMT theories, including the equality logic with uninterpreted func-
tions [8], and linear real arithmetics [7]. The approach presented in this work is
different from these in that we do not rely on interpolation, and work in tight
integration with model checking.

In addition to interpolation, also computationally inexpensive theories can
be used to over-approximate complex problem. This approach has been used in
solving equations on non-linear real arithmetics and transcendental functions
based on linear real arithmetics and equality logic with uninterpreted func-
tions [31,12,13]; as well as on scaling up bit-vector solving [27,5,28]. Parts of
our work can be seen as a generalisation of such approaches as we support in-
clusion of lemmas from more descriptive logics to increase the expressiveness of
computationally lighter logics.

Abstract interpretation [18] uses posets and lattices to model a sound ap-
proximation of the semantics of code. Partial completeness and completeness in
abstract interpretation [17,19,25,26] refers to the no loss of precision during the
approximation of the semantics of code. Giacobazzi et al. [25,26] present the no-
tation of backward and forward completeness in abstract interpretation and show
the connection between iteratively computing the backward (forward)-complete
shell to the general CEGAR framework[16]; however the completeness of their
algorithm depends on the properties of the abstraction while our algorithm has
no such requirements.

Interesting work on combining theorem provers with SMT solvers include
the SMTCoq system [24]. Our work uses facts from the Coq library, but differs
from SMTCoq in that we import the facts directly to the SMT solver instead
of giving the SMT solver to Coq.

4

2 Preliminaries

Lattices and subset lattices. For a given set X, the family of all subsets of X,
partially ordered by the inclusion operator, forms a subset lattice L(X). The u
and t operators are defined on L(X) as intersection and union, respectively.
The top element > is the whole set X, and the bottom element ⊥ is the empty
set ∅. The height of the subset lattice L(X) is |X| + 1, and all maximal chains
have exactly |X|+1 elements. We note that L(X) is a De-Morgan lattice [11], as
meet and join distribute over each other. In this paper, we consider only lattices
where X is a finite set.

A meet-semilattice is a partially ordered set that has a u for any subset of
its elements (but not necessarily t).

Bounded model checking. Let P be a loop-free program represented as a transi-
tion system, and a safety property t, that is, a logical formula over the variables
of P . We are interested in determining whether all reachable states of P satisfy
t. Given a program P and a safety property t, the task of a model checker is
to find a counter-example, that is, an execution of P that does not satisfy t, or
to prove the absence of counter-examples on P . In the bounded symbolic model
checking approach followed in the paper the model checker encodes P into a
logical formula, conjoins it with the negation of t, and checks the satisfiability of
the encoding using an SMT solver. If the encoding is unsatisfiable, the program
is safe, and we say that t holds in P . Otherwise, the satisfying assignment the
SMT solver found is used to build a counter-example.

Function Summaries. In HiFrog, function summaries are Craig interpolants [20].
The summaries are extracted from an unsatisfiable SMT formula of a success-
ful verification, are over-approximations of the actual behavior of the functions,
and are available for other HiFrog runs. We use the definition of function
summaries [35] and SMT summaries [5] as in our previous works; examples
of function summaries are available at http://verify.inf.usi.ch/hifrog/

tool-usage.

HiFrog and user-defined summaries. The tool HiFrog [5] consists of two main
components: an SMT encoder and an interpolating SMT solver OpenSMT2 [29],
and uses function summaries [34]. It is possible to provide to HiFrog a library
of user-defined summaries, which are treated in the same way as function sum-
maries by the SMT solver. We note that the whole set of summaries is uploaded
to the SMT solver at once, which can lead to time-outs due to the formula being
too large. In contrast, our approach by using lattices only uploads the subset
of summaries that are necessary for solving the current instance of the library
function. In the encodings of the experimental sections and examples we will use
the quantifier-free SMT theories for equality logic with uninterpreted functions
(EUF), linear real arithmetics (LRA), and fixed-width bit vectors. Note that
fixed-width bit vectors are essentially propositional logic.

5

3 Construction of the Lattice of Facts

In this section we formally define the semilattice of facts for a given library
function and describe an algorithm for constructing it; the inner function calls
in the algorithm are explained at the end of Sec. 3.2. We note that while the size
of the semilattice can be exponential in the number of the facts, the construction
of the semilattice is done as a preprocessing step once, and the results are used
for verification of all programs with this function.

3.1 Definitions

A fact for a library function g with its assumption is added to the set of facts Fg

as (assume(X)∧ fact(g)) expression, where X is a constraint on the domain of
the input to g under which fact(g) holds. For example, for the modulo function,
we can have a fact assume((a ≥ 0) ∧ (n > 0)) ∧ a%n ≥ 0. For every fact
(assume(X)∧ fact(g)), we add a fact assume(¬X)∧ true to Fg. As we discuss
later, this is done in order to ensure that the lattice covers the whole domain of
input variables for the function g.

Given a set of facts Fg for a library function g, the subset lattice L(Fg) is
constructed as defined in Sec. 2. The height of L(Fg) is |Fg|+ 1 by construction,
and the width is bounded by the following lemma on the width of a subset
lattice.

Lemma 1. For a set S of size s, let L(S) be the subset lattice of S. Then, the
width of L(S) is bounded by

(
s
b s2 c
)
.

Proof. The bound follows from Sperner’s theorem [9] that states that the width
of the inclusion order on a power set is

(
s
b s2 c
)
.

Not all elements in L(Fg) represent non-contradictory subsets of facts. For
example, a fact f1 = assume((a > 0) ∧ (n > 0)) ∧ a%n ≥ 0 and a fact
f2 = assume(a = 0) ∧ a%n = 0 are incompatible, as the conjunction of their
assumptions does not hold for any inputs. In addition, some elements are equiv-
alent to other elements, as the facts are subsumed by other facts. We remove
the contradictory elements from the lattice, and for a set of equivalent elements
we leave only one element. We denote the resulting set by Lmin(Fg) ⊆ L(Fg),
and the number of facts in an element E, as #E (E ∈ L(Fg)).

It is easy to see that Lmin(Fg) is a meet semilattice, since if two elements
are in Lmin(Fg), they are non-contradictory, and hence their intersection (or an
element equivalent to the intersection) is also in Lmin(Fg). In general, we do
not expect the > element, representing the whole set Fg, to be in Lmin(Fg).
Rather, there is a set of maximal elements of Lmin(Fg), each of which represents
a maximal non-contradictory subset of facts of Fg; we denote the set of maximal
elements of Lmin(Fg) as maxLmin(Fg).

In the next subsection we describe the algorithm for constructing Lmin(Fg).

6

3.2 Algorithm

The construction of a meet semilattice of facts for a library function g given a set
of conjunctions of facts and their constraints expressed as assume statements, is
described in Alg. 1. The algorithm consists of five main components:

Construct a subset lattice from the input. For every statement and its as-
sumption, we construct a fact fg (line 1); given the set Fg of all facts, we construct
a subset lattice L(Fg) as defined in Sec. 3.1 (line 2).
Consistency check. For every element in the subset lattice we analyse the
subset of facts corresponding to this element (lines 3-10); if the subset contains
no contradictions (lines 6-7), we add the node to the meet semilattice (line 8).
Equivalence check. Remove equivalent elements from the meet semilattice
(lines 11-20).
Cleanup. After the execution of the checks and removal of elements above, it
is possible that in the resulting structure, an element has a single predecessor
(lines 21-25). In this case, we unify the element with its predecessor (line 23). This
process is repeated iteratively until all elements have more than one predecessor,
except for the direct successors of the ⊥ element.
Overlapping Assumes. Strengthen an assumption to avoid overlapping be-
tween elements (line 26).

The result of the algorithm is the meet semilattice Lmin(Fg), as defined in
Sec. 3.1. Clearly, the exact Lmin(Fg) depends on the input set of statements,
as well as on the theory. We note, however, that Lmin(Fg) can be used by the
SMT solver with a different theory than the one in which it was constructed, as
long as an encoding of the facts in SMT-LIB2 format with this logic exists. For
example, the reduced meet semilattice in Fig. 2 can be used in EUF, even when
its construction is done via propositional logic, since the encoding of f1, f2, and
f3 exists in EUF. Algorithm 1 invokes the following procedures:

– #E: the number of facts in an element E (defined in Sec. 3.1);
– buildSubsetLattice: construct a subset lattice L(Fg) given a finite set Fg of

facts;
– minimise: given an element E ∈ L(Fg), remove any fact fg ∈ E such as that
∃E′ ⊂ E.(

∧
f ′
g∈E′−{fg} f

′
g) =⇒ fg, starting from the smallest to the largest

E′ (i.e., remove a fact fg if other facts in E imply fg; that way, we minimise
the size of the E);

– checkSAT(F): determine the satisfiablity of a formula F ;
– swap(E1, E2): swap the current subset of facts in E1 with E2, while (roughly

speaking) each element keeps its own edges;
– immediateLower(E): get all immediate predecessors of the element E;
– immediateUpper(E): get all immediate successors of the element E;
– fixOverlapsAssume(Lmin(Fg)): for each meet element E ∈ Lmin(Fg), change

the assumptions of E’s immediate successors to fix any overlapping assump-
tions. assume(X) of an immediate successor with a trivial fact is updated
by intersecting with negations of all (original) assumes of the rest of the im-
mediate upper elements of E, when removing any successor with (altered)

7

Algorithm 1: Construction of Lmin(Fg)

Input : facts = {(X1, Y1), . . . , (Xn, Yn)}: set of pairs of assumptions and facts.
Output: Lmin(Fg)

1 Fg ←
⋃

(X,Y)∈facts{assume(X) ∧ Y, assume(¬X) ∧ true}
2 L(Fg)← buildSubsetLattice(Fg)
3 foreach element E ∈ L(Fg) do
4 minimise(E) //remove facts that are generalised by other facts in E
5 Query ←

∧
fg∈E fg

6 〈result , 〉 ← checkSAT(Query)
7 if result is SAT then
8 Add E to Lmin(Fg)
9 end

10 end

11 foreach two elements Elower, Eupper ∈ Lmin(Fg) such that Elower is lower than
Eupper do

12 Query ← ¬(
∧

fg∈Elower
fg ⇐⇒

∧
fg∈Eupper

fg)

13 〈result , 〉 ← checkSAT(Query)
14 if result is UNSAT then
15 if #Elower < #Eupper then
16 swap(Eupper, Elower)
17 end

18 Remove Elower from Lmin(Fg)

19 end

20 end

21 foreach element E ∈ Lmin(Fg) do
22 if (#immediateUpper(E) is 1) ∧ (#immediateLower(immediateUpper(E)) is

1) then
23 Remove E from Lmin(Fg)
24 end

25 end

26 Lmin(Fg)← fixOverlapsAssume(Lmin(Fg))

27 return Lmin(Fg)

assume(X) equals to false. assume(X) of an immediate successor with facts
in Fg is strengthen by intersecting with the negation of an assume(X) of
overlapping elements with facts in Fg.

In Fig. 2, for example, the assume(X) statement of f2 originally was (n > 0)
thus the assumes of f1 and f2 overlap over many values, e.g., when a = n; in
the example in Fig. 2 we fix the assume of f2 to avoid such overlapping.

4 Lattice-Based Bounded Model Checking

In this section we describe the Lattice-Based Counterexample-Guided Abstrac-
tion Refinement algorithm for verifying programs with respect to a safety prop-

8

erty. We present a formal notation for the data structure we use in the refinement
algorithm and show that the refinement algorithm is complete.

4.1 Definitions

For a program P and a safety property t such as that P ∪{t} has functions which
are missing the full definition in the current level of abstraction, we denote the
set of all such functions in P ∪ {t} as G, thus G = {g1, . . . , gm}. Each function
g ∈ G has a meet semilattice Lmin(Fg). The set of all meet semilattices of
functions in G is Lmin

G = {Lmin(Fg1), . . . , Lmin(Fgm)}.
For each statement s ∈ P ∪{t} with g ∈ G function, we create an instance of

Lmin(Fg). The set Lmin
G,K is a set of all instances of all meet semilattices in Lmin

G .

A meet semilattice instance Lmin
i (Fg) ∈ Lmin

G,K is the i-th instance of function
g in P ∪ {t} where 1 ≤ i ≤ kg, and kg ∈ K is the number of instance of g in
P ∪ {t}. For simplicity of the description of the refinement, we assume each s
has at most one function g ∈ G; if there is more than one g, one can write an
equivalent code that guarantees this property. Note that Alg. 3, Alg. 4, Alg. 2
change instances of meet semilattices and not the meet semilattice itself; since
each statement with a function g requires a different set of facts and thus must
traverse the meet semilattice independently with its instance.

During Alg. 3, we mark elements E ∈ Lmin
i (Fg) as Safe and add any such

E to the cut of Lmin
i (Fg). A cut of Lmin

i (Fg) is a set of all elements with an
in-edge in the cut-set of the graph representation of Lmin

i (Fg). Possible cuts in
the reduced meet semilattice in Fig. 2 can be: {{f1}, {f2}} or {{f3}}.

Definition 1. Let XLmin
i (Fg) ⊂ Lmin

i (Fg) be a subset of elements. We say

XLmin
i (Fg) is a cut of Lmin

i (Fg) if all chains from ∅ to element(s) Emax ∈
maxLmin

i (Fg) contain at least one element in XLmin
i (Fg).

We use the elements in the cut of Lmin
i (Fg) to show Alg. 2 is complete, when

given the union of all assumptions of elements in XLmin
i (Fg) is capturing the

whole domain of the inputs of g,

Lemma 2. Given a cut XLmin
i (Fg) of function g : Din → Dout the union of all

assumptions (assume statements) of all facts in the cut is Din.

Proof. We prove by induction that for a subset lattice L(Fg): for any element
E ∈ L(Fg) its assume refers to the same domain as the union of assumes of all
successors of E element.

(base) the union of assumes of all successors of ∅ element is Din: from line
1 in Alg. 1 we know that the union of assumes of all successors of ∅ element is
Din by construction of Fg, and ∅ element has no assumption and thus captures
all the input domain.

(step) for each element E ∈ L(Fg), the union of assumes of all successors of
E is equivalent to the assume of E. Since L(Fg) is a subset lattice, then all im-
mediate upper elements of an element E ∈ L(Fg) contain exactly one additional
fact from Fg. From line 1 in Alg. 1, we know that any fact (assume(X)∧Y) has

9

the opposite fact (¬assume(X) ∧ true), thus union of any such pair of facts in
Fg leaves the original assume of E the same; since each of the successor of E
must contain either an original fact or its complementary fact, we get that the
assume of the union of the successors of E stays the same as required.

Since all chains start from ∅ which refers to the whole domain Din, and since
the assume of an element is a union of assumes of its immediate successors as
proved by induction above, then if there is a cut where the union of all assumes
of all facts in the cut is not Din then there is a chain from ∅ to maximal element
without an element in the cut, which contradict the definition of a cut. When
extract Lmin(Fg), we only fix overlapping assumes thus the union of assumes
stays the same in a cut and therefore refers to the whole domain as before. ut

Note that, the rest of the changes of elements in Lmin(Fg) do not affect the
union of assumes; consistency check removes elements with no contribution to
the input domain (as these equivalent to false), equivalence check affects only the
number of possible cuts, and cleanup removes elements with the same assume
with a weaker fact in compare to their single immediate successor.

4.2 Algorithm

Algorithm 2 takes the symbolically encoded program P with a safety property t
and constructs an over-approximating formula ϕ̂ of the problem in a given initial
logic (line 1). Algorithm 2 refines ϕ̂ by adding and removing facts from meet
semilattices Lmin(Fg) ∈ Lmin

G according to the traversal on an instance of the
meet semilattice per refined expression (main loop, lines 3-21); the algorithm
terminates once it has proved the current ϕ̂ is Safe (lines 8-10), after extracting
a real counterexample (lines 14-16), or after using all facts in meet semilattices
of Lmin

G while still receiving spurious counterexamples (lines 17-19 or 23). The
refinement in Alg. 2 is finite and returns Unsafe if t does not hold in P . Algo-
rithm 2 returns Safe if and only if the facts in Lmin

G can refine functions in ϕ̂
and t holds in P .

A counterexample in the last known precision is returned when t does not
hold in P and the facts in Lmin

G can refine the over-approximate functions in ϕ̂.
Algorithm 2 checks if CE is a spurious counterexample similarly to the coun-
terexample check in [28] and returns either true with a real counterexample when
all queries are SAT, or false otherwise. The solver produces an interpretation for
the variables or a partial interpretation of uninterpreted functions and uninter-
preted predicates in the case of EUF, for statements s ∈ P ∪ {t} in the current
precision. The counterexample validation determines whether the conjunction
of s and CE with an interpretation or partial interpretation is UNSAT in a
more precise theory; an UNSAT result in any of the queries indicates that the
counterexample is indeed spurious. A more precise theory can be the theory of
bit-vectors as in [28] or the theory the meet semilattice was built with; if no
available description of the g with the current query exist in any preciser theory,
we assume CE is spurious.

10

The data structures used in Alg. 2 are described in Sec. 4.1. Note that Alg. 2
allocates a new instance of a meet semilattice Lmin

i (Fg) ∈ Lmin
G,K for each i-th

instance of function g in P ∪ {t}, thus the main loop in lines 3-21 refers only to
these instances of meet semilattices, where i, kg, g,K,G are defined in Sec. 4.1.

Algorithm 2: Lattice-Based Counterexample-Guided Refinement

Input : P = {s1 := (x1 = t1), . . . , sn := (xn = tn)}: a program, t: safety
property, Lmin

G = {Lmin(Fg1), . . . , Lmin(Fgm)}: a set of meet
semilattices.

Output: 〈Safe,⊥〉 or 〈Unsafe,CE〉 or 〈Unsafe,⊥〉
1 ϕ̂←

∧
s∈P∪{t} convert(s)

2 Lmin
G,K ←

⋃
s∈P∪{t},g∈G,i∈{1,...,kg(∈K)}(Lmin

i (Fg)← initialiseLI(s, Lmin(Fg)))

3 while ∃Lmin
i (Fg) ∈ Lmin

G,K : element(Lmin
i (Fg)) has upper element do

4 χ←
∧

Lmin
i (Fg)′∈Lmin

G,K
currentFacts(Lmin

i (Fg)′)

5 Query ← ϕ̂ ∧ χ
6 〈result ,CE〉 ← checkSAT(Query)
7 if result is UNSAT then
8 if (∀Lmin

i (Fg)′′ ∈ Lmin
G,K : isSafe(Lmin

i (Fg)′′)) ∨ (χ is true) then
9 return 〈Safe,⊥〉 //Safe - Quit

10 end

11 Lmin
G,K ← updateCutAndWalk(Lmin

G,K) //element is safe, continue traversal

12 end
13 else
14 if checkRealCE(Query ,CE) then
15 return 〈Unsafe,CE〉 //Real Counterexample - Quit
16 end

17 if !refine(Query ,CE , P, t,Lmin
G,K) then

18 return 〈Unsafe,⊥〉 //Cannot Refine - Quit
19 end

20 end

21 end
22 // End Of Main Loop
23 return 〈Unsafe,⊥〉 //Cannot refine - Quit

Sub-Algorithm 3 is a high-level description of updateCutAndWalk sub-procedure.
For the current instance of a meet semilattice Lmin

i (Fg) where E is the current
element, updateCutAndWalk marks E as safe, adds E to the cut of Lmin

i (Fg), and
traverses on an instance of a meet semilattice via walkRight on either Lmin

i (Fg)
(if not yet safe) or the last changed instance before Lmin

i (Fg); Lmin
i (Fg) is the last

instance walkRight changed. Note that the sub-procedure walkRight changes
the same instance of a meet semilattice until Alg. 2 is in either lines 9,15,18, or
22, or Alg. 3 is in lines 3-5.

A high-level description of the sub-procedure refine is given in Alg. 4, and
describes the refinement of a single CE via instances of a meet semilattice. The

11

Algorithm 3: updateCutAndWalk - Mark element as safe and traverse the
semilattice

Input : Lmin
G,K : a set of meet semilattice instances.

Output: Lmin
G,K after traversal

1 Lmin
i (Fg)← last changed meet semilattice instance in Lmin

G,K

2 Mark current element in Lmin
i (Fg) as Safe

3 if isSafe(Lmin
i (Fg)) then

4 ∀Lmin
i (Fg)′ ∈ Lmin

G,K .¬isSafe(Lmin
i (Fg))′ =⇒ reset(Lmin

i (Fg)′)

5 Set Lmin
i (Fg) to be an item from the set

{Lmin
i (Fg)′′|Lmin

i (Fg)′′′ ∈ Lmin
G,K ∧ ¬isSafe(Lmin

i (Fg))′′′}
6 end

7 walkRight(Lmin
i (Fg))

8 return Lmin
G,K // Returns back to the main loop in Alg. 2 line 11

main loop (lines 1-13) searches Lmin
i (Fg) which refines CE , the inner loop (lines

3-9) adds facts from elements in Lmin
i (Fg) until CE is refined or a maximal

element is reached; in the latter case we drop the changes in Lmin
i (Fg) (lines

10-12) and try a different Lmin
i′ (Fg′). The refinement successes if the query (line

5) detects CE is a spurious counterexample without using a more precise theory
(lines 4-8) but using new added facts (line 10, previous loop). The refinement
fails if for all Lmin

i (Fg) ∈ Lmin
G,K , no element could refine the current CE (lines 17-

19). The refinement order is determined by the way Alg. 4 goes over statements
s ∈ P ∪ {t} (line 1), which is done according to sets of basic heuristics defined
in [28].

We describe the rest of the function calls in general; let s be a statement
s ∈ P ∪ {t}, F be a logical formula, CE a counterexample, x a meet semilattice
of a statements s with a function g, and x′ an instance of a meet semilattice x.
Algorithms 2, 3, and 4 invoke the following procedures:

– convert(s): create a symbolic formula in the initial logic;
– checkSAT(F): determine the satisfiablity of a formula F ;
– checkRealCE(F,CE): is true if CE is a valid counterexample of formula F ;
– element(x′): retrieve the current element in x′ or > for x′ with a full cut;
– currentFacts(x′): retrieves the formula of facts in x′ which is either a union

of all elements in the cut, an intersection of the facts in the current element,
or true if the current element is the ∅;

– walkRight(x′): simulate a traversal of x′ as described below;
– walkUpper(x′): simulate a traversal of x′ from the current element to upper

elements;
– initialiseLI(s, x): create an instance of a meet semilattice x′ for s and

operation(s), if a meet semilattice exists in Lmin
G for operation(s); operation(s):

retrieve the operation or function call name in s;
– isSafe(x′): indicate if x′ refines g in s with Safe result as described above,

an Unsafe result of the refinement is taken care in the loop itself and does
not need a sub-procedure;

12

Algorithm 4: refine with a Single Counterexample

Input : Query and CE formulas, and P =
{s1 := (x1 = t1), . . . , sn := (xn = tn)}: a program, t: safety property,
Lmin

G,K : a set of meet semilattice instances.
Output: true or false

1 for s ∈ P ∪ {t} with Lmin
i (Fg) ∈ Lmin

G,K do
2 n← element(Lmin

i (Fg)) //To reset later to original location

3 while element(Lmin
i (Fg)) has upper element do

4 χ′ ← currentFacts(Lmin
i (Fg))

5 〈result , 〉 ← checkSAT(Query ∧ CE ∧ χ′)
6 if result is UNSAT then
7 break // Refined the current CE
8 end
9 if result is SAT then

10 walkUpper(Lmin
i (Fg))

11 end

12 end

13 if element(Lmin
i (Fg)) ∈ maxLmin

i (Fg) ∧ result is SAT then
14 reset(Lmin

i (Fg), n)
15 end

16 end

17 if all Lmin
i (Fg) ∈ Lmin

G,K reset location in line 11 then
18 return false // Returns and terminates the main loop in Alg. 2 lines 17-18
19 end
20 return true // Returns back to the main loop in Alg. 2 line 17

– reset(x′): set the current element in the walk to be ⊥ and initialise the inner
state of the search on the meet semilattice instance.

Note that, the function updateCutAndWalk is Alg. 3, and the function refine

is Alg. 4, both are been called in the main loop of Alg. 2, lines 11 and 17
respectively.

Traversal of a meet semilattice. For function g such as that g is over-approximated
in the initial theory and g has a meet semilattice Lmin(Fg) ∈ Lmin

G , the algorithm
creates an instance of a meet semilattice Lmin

i (Fg) to simulate the traversal of
the meet semilattice in a DFS style per instance of g. Several instances of a meet
semilattice of g are required for example when g is part of a loop.

A traversal on an instance of a meet semilattice Lmin
i (Fg) starts with ∅ el-

ement, adding no facts to the query ϕ̂. During execution, if ϕ̂ is SAT in the
current precision, then the next element on the traversal is one of the immediate
successors of the current element, as long as no real counterexample is obtained,
in which case the algorithm terminates and returns Unsafe with the counterex-
ample. After reaching an element in maxLmin

i (Fg) during the traversal indicates
that the facts in the elements of Lmin

i (Fg) cannot refine the i − th instance of

13

g with respect to the spurious counterexample, which can also terminate the
refinement in Alg. 2 and returns Unsafe.

Once the query ϕ̂ with facts of E ∈ Lmin
i (Fg) is UNSAT, the traversal skips

the successors of E, marks E as safe, adds E to XLmin
i (Fg), and continues with

one of the siblings of E according to the DFS order from left to right; if there are
no remaining siblings of E, the traversal of Lmin

i (Fg) terminates, and outputs
the cut XLmin

i (Fg); there is no use of a current element of the meet semilattice

Lmin
i (Fg) once the traversal terminates and only the facts in its cut are used.

For a program with several instances of meet semilattices, once Alg. 2 finds
a cut XLmin

i (Fg), the cut is added to χ′ as a union of all elements in the cut with
their facts. This allows using the facts in the cut for searching cuts on the rest
of the instances of meet semilattices.

The following theorem shows that if Alg. 2 outputs a positive result (that
is, the program is safe with respect to the given bound), then there are no
counterexamples up to the given depth in the program.

Theorem 1. Given a program P , a safety property t, a set of functions (g ∈)
G, and a set of instances of meet semilattices Lmin

G,K for the functions in G, if

there exists a cut XLmin
i (Fg) in the meet semilattice of facts Lmin

i (Fg) for each
instance i ∈ kg of the function g such that the result of solving the program with
each element in XLmin

i (Fg) is UNSAT, then the program is safe with respect to
the given bound and the property.

Proof (Sketch). Alg. 2 returns Safe in line 8 when all Lmin
i (Fg) are safe with re-

spect to their cuts XLmin
i (Fg). The last query (Alg. 2, line 6) just before satisfying

the condition in line 8 is a conjunction of union of elements of cuts XLmin
i (Fg) of

each of the instances of the meet semilattice. By Lemma 2, the union of assume
statements of elements in the cut is the input domain Din of g, for all instances
i ∈ kg of all g ∈ G. Therefore, if no satisfying assignment has been found in the
cut, there is no satisfying assignment in Din of g, for all instances of g in the
unwound program P . Therefore, the result is UNSAT, and the program is safe
with respect to the given bound. ut

The cut we use, is a disjunction (i.e., union of elements in a cut) of a conjunction
of facts (i.e., intersection of all facts in an element in a cut); when using more
than a single cut in Query , the expression is a conjunction of the expression of
a cut above. The full proof of Theorem 1 is shown in App. A using a formal
definition of the expression of a cut.

5 Implementation and Evaluation

This section describes the prototype implementation and the evaluation of the
lattice-based counterexample-guided refinement framework.

The algorithm is implemented on the SMT-based function summarisation
bounded model checker HiFrog [5] and uses the SMT solver OpenSMT [29].
The experiments run on a Ubuntu 16.04 Linux system with two Intel Xeon E5620

14

HiFrog

SMT-Encoder
Symbolic
execution

SSA
Slicing

LRA

EUF

Lattice Traversal

CEX
validator

Refiner

Facts
Model

OpenSMT

OpenSMT

BVP

OpenSMT

LRA EUF
Semi

Lattices

terms + new
facts vs. CEX

SAT

UNSAT

current
encoding SAT

✗ inconclusive;

need to refine theory

Safe
✔Assertion holds

Terms
vs. CEX

UNSAT

SAT
✗error

trace

Facts

UNSAT

SAT +
Model

program +
assertion

selection
of theory

Fig. 3. The SMT-based model checking framework implementing a lattice-based
counterexample-guided refinement approach used in the experiments.

CPUs clocked at 2.40GHz. The timeout for all experiments is at 500 s and the
memory limit is 3 GB.

The scripts for the build of a meet semilattice, the meet semilattice for mod-
ulo operation, the complete experimental results, and the source code, are avail-
able at [1,2]. The script contains greedy optimisations of Alg. 1 to avoid, if
possible, exponential number of SAT-solver calls; lines 3-10: starting the loop
from the smallest subsets of facts, once a small subset of facts of an element is
contradictory, all its upper elements are pruned; lines 11-19: considers only pairs
of (roughly speaking) connected elements.

The overview of interaction between HiFrog, the refiner in HiFrog and
the SMT solver OpenSMT is shown in Fig. 3. In the current prototype we add
facts of the meet semilattice as SMT summaries, while checking before using a
summary that its assume formula holds for better performance. The definition
of the cut stays the same and contains only facts from Fmod where g := mod. The
spurious counterexample check is done via the CEX validator using bit-vector
logic (see [28]); any function that has no precise encoding is then added as a
candidate to refine as HiFrog cannot validate a counterexample in the context
of this function.

The lattice traversal component contains 3 sub-components: (1) facts model
which contains the pure model (the meet semilattice) we load to HiFrog and
instances of a meet semilattice per expression we refine, (2) the CEX valida-
tor that validates the counterexample and reports real counterexamples in case
found, and (3) the refiner which does the refinement, adds facts to and removes
facts from the encoding, interacts with the CEX validator and terminates the

15

Table 1. Verification results of lattice refinement against CBMC [15], theory refine-
ment [28], and EUFand LRAwithout lattice refinement. #-number of instances, FP
SAT-false positive SAT result, TO-time out of 500 s, MO-Out of Memory of 3GB.

Approach #instances solved #instances unsolved
SAT UNSAT FP SAT TO,MO

LRA Lattice Ref. 23 32 9 10,0
EUF Lattice Ref. 23 8 33 10,0
Theory Ref. 22 18 20 11,3
CBMC 5.7 23 34 1 6,10
PURE LRA 23 7 34 10,0
PURE EUF 23 6 35 10,0

refinement for each of the three possible cases. The OpenSMT instances use
either EUF or LRA for modeling and bit-vectors for CEX validation.

Extraction of facts. The preprocessing step of our framework is extracting a set
of facts Fg for a function g. The facts can be imported from another program
or a library. In the experimental results, we import facts from the Coq proof
assistant [3], where g := mod is modulo function. We use a subset of lemmas,
theorems and definitions of modulo from [3] as is, as the data is simple to use, well
known, and reliable. We translate the facts into the SMT-LIB2 format manually
(see [1] for the results of translation).

Validation. The validation test is as follow; given a function g, a set of facts Fg,
a statement s such that a fact fs ∈ Fg is sufficient to verify s, assure that s∧ fs
is UNSAT via a model checker. The validation tests can fail to assure s ∧ fs
holds if too little facts were taken in the build stage (i.e., Fg is too small). A
complementary validation test is the sanity check which verifies that the facts are
not contradictory. We describe in details the validation tests for modulo operator
in Appendix B; thus the function g is mod and the set of facts is Fg := Fmod.

Experimental Results We use a meet semilattice for refinement of modulo func-
tion with a set of 20 facts which are a small arbitrary subset of modulo operation
properties; the width and the high of the modulo meet semilattice are 21 and
18 respectively; the raw data is taken from the Coq proof assistant [3] (see [1]
for a meet semilattice sketch). The UNSAT proof of queries during the refine-
ment are done using either OpenSMT[29] or Z3[21] using a none-incremental
mode of solvers, due to known problems in the OpenSMTimplementation; we
expect better experimental results in terms of time and memory consumption
once improving the implementation.

We compared our lattice-based implementation on HiFrog (using both LRA
and EUF encoding) with pure LRA and EUF encoding, theory-refinement mode
of HiFrog, and cbmc version 5.7 the winner of the software model checking
competition falsification track in 2017 (cbmc version 5.7 --refine option per-
forms as the standard cbmc version, and thus is not included in Table 1). Our
benchmarks consist of 74 C programs using the modulo operator at least few
times; in 19 benchmarks the modulo operator is in a loop. The benchmarks set

16

is a mix of 19 SVComp 2017 benchmarks [4] (8 Unsafe and 11 Safe bench-
marks), our own 24 benchmarks including some hard arithmetic operations with
modulo and multiplication, and 31 crafted benchmarks with modulo operator
(20 Unsafe and 35 Safe benchmarks). Table 1 provides the summary of the
experimental results.

Even with a prototype implementation of meet semilattices of facts, HiFrog
fares quite well in comparison to established tools. In particular, it has better
resource consumption than cbmc and theory-refinement mode of HiFrog, while
also having much better results proving safety of programs than HiFrog with-
out lattices. The lattice base refinement approach can still fail to prove safety
when other operations are abstracted from the SMT encoding (e.g., SHL, SHR,
pointer arithmetics) or, in LRA when the code contains non-linear expressions.
Another reason is related to the modeling itself: a small sample of 20 can be
insufficient to prove safety, as well the combination of several meet semilattices
might require smarter heuristics. None of the approaches in the comparison
reports Unsafe benchmarks as Safe. The full table of results and the set of
benchmarks are available at [1].

Acknowledgments We thank Grigory Fedyukovich for helpful discussions.

References

1. http://verify.inf.usi.ch/content/lattice-refinement

2. https://scm.ti-edu.ch/projects/hifrog/

3. The coq proof assistant. https://coq.inria.fr/
4. Competition on software verification (SV-COMP). https://sv-comp.sosy-lab.

org/2017/ (2017)
5. Alt, L., Asadi, S., Chockler, H., Even Mendoza, K., Fedyukovich, G., Hyvärinen,

A.E.J., Sharygina, N.: HiFrog: SMT-based function summarization for software
verification. In: Proc. TACAS ’17. pp. 207–213. Springer (2017)

6. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A Proof-Sensitive Ap-
proach for Small Propositional Interpolants. In: VSTTE. LNCS, vol. 9593, pp.
1–18. Springer (2015)

7. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
In: Strichman, O., Tzoref-Brill, R. (eds.) Proc. HVC 2017. LNCS, vol. 10629, pp.
195–210. Springer (2017)

8. Alt, L., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Duality-based interpolation
for quantifier-free equalities and uninterpreted functions. In: Stewart, D., Weis-
senbacher, G. (eds.) Proc. FMCAD 2017. pp. 39–46. IEEE (2017)

9. Anderson, I.: Combinatorics of Finite Sets. Clarendon Press, Oxford (1987)
10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Tools and Algorithms for the Analysis and Construction of Systems.
LNCS, vol. 1579. Springer (1999)

11. Birkhoff, G.: Lattice Theory. AMS, 3rd edn. (1967)
12. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking

of NRA transition systems via incremental reduction to LRA with EUF. In: Legay,
A., Margaria, T. (eds.) Proc. TACAS 2017. LNCS, vol. 10205, pp. 58–75 (2017)

17

13. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability mod-
ulo transcendental functions via incremental linearization. In: de Moura, L. (ed.)
Proc. CADE 2017. LNCS, vol. 10395, pp. 95–113. Springer (2017)

14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV. LNCS, vol.
1855, pp. 154–169. Springer (2000)

15. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004). Lecture Notes in Computer Science, vol. 2988,
pp. 168–176. Springer (2004)

16. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

17. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry,
B.Y., Walsh, T. (eds.) Abstraction, Reformulation, and Approximation. pp. 1–25.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 238–252. POPL ’77, ACM, New York, NY, USA (1977)

19. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. pp. 269–282. POPL ’79, ACM, New York, NY, USA (1979)

20. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. In: J. of Symbolic Logic. pp. 269–285 (1957)

21. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg (2008)

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

23. D’Silva, V., Purandare, M., Weissenbacher, G., Kroening, D.: Interpolant strength.
In: Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS,
vol. 5944, pp. 129–145. Springer (2010)

24. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.W.: Smtcoq: A plug-in for integrating SMT solvers into coq. In: Majumdar, R.,
Kuncak, V. (eds.) Proc. CAV 2017. LNCS, vol. 10427, pp. 126–133. Springer (2017)

25. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Cousot, P. (ed.) Static Analysis. pp. 356–373.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

26. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (Mar 2000)

27. Ho, Y.S., Chauhan, P., Roy, P., Mishchenko, A., Brayton, R.: Efficient uninter-
preted function abstraction and refinement for word-level model checking. In: FM-
CAD. pp. 65–72. ACM (2016)

28. Hyvärinen, A.E.J., Asadi, S., Even-Mendoza, K., Fedyukovich, G., Chockler, H.,
Sharygina, N.: Theory refinement for program verification. In: Proc. SAT 2017.
pp. 347–363. Springer International Publishing, Cham (2017)

29. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Proc. SAT 2016. LNCS, vol. 9710,
pp. 547–553. Springer (2016)

18

30. Janćık, P., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Kofron, J., Sharygina, N.:
PVAIR: Partial Variable Assignment InterpolatoR. In: FASE. LNCS, vol. 9633,
pp. 419–434. Springer (2016)

31. Kutsuna, T., Ishii, Y., Yamamoto, A.: Abstraction and refinement of mathematical
functions toward smt-based test-case generation. International Journal on Software
Tools for Technology Transfer 18(1), 109–120 (2016)

32. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in SAT-based software verifica-
tion. In: LPAR. LNCS, vol. 8312, pp. 683–693. Springer (2013)

33. Rummer, P., Subotic, P.: Exploring interpolants. In: Formal Methods in Computer-
Aided Design (FMCAD), 2013. pp. 69–76. IEEE (2013)

34. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded model checking with
interpolation-based function summarization. In: ATVA. LNCS, vol. 7561, pp. 203–
207. Springer (2012)

35. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries
in Bounded Model Checking. In: HVC. LNCS, vol. 7261, pp. 160–175. Springer
(2012)

19

A Completeness Proof of the Lattice-Based
Counterexample-Guided Refinement Algorithm

In this section we present the full proof of Theorem 1, while following the same
structure of the sketch of the proof in Sec. 4. We first define formally the expres-
sion of the facts in an element, in a cut with several elements and finally, in a
conjunction of cuts; we use the later to build the last query, in which the solver
returns UNSAT just before terminating the refinement in line 9 in Alg. 2. Then
we prove by using Lemma 2 and the cuts of all the instances of meet semilattices
that the algorithm is complete.

Proof. Let XG,K be the set of (currently) all known cuts, thus

∀Lmin
i (Fg) ∈ Lmin

G,K .(XLmin
i (Fg) ∈ XG,K ⇐⇒ Lmin

i (Fg) is safe)

following Alg. 3, line 2; thus XLmin
i (Fg) is the cut of Lmin

i (Fg) (Def. 1), and is

unique (assumption on the implementation of lines 3-4, Alg. 3).
Alg. 2 returns Safe in line 8 when all Lmin

i (Fg) are safe with respect to their
cuts XLmin

i (Fg), which is a union of elements of the cut of the i-th instance of
the meet semilattice; this expressed over all elements in the cut as:

ΨX
Lmin
i

(Fg)
=

∨
E∈X

Lmin
i

(Fg)

f̂E, for XLmin
i (Fg) ⊆ L

min
i (Fg),

where each element E contributes the following expression to the cut:

f̂E =
∧

fg∈E⊆Fg

fg, for E ∈ Lmin
i (Fg),

and for E = ⊥ then f̂E is:

f̂⊥ = true, for E = ⊥ and E ∈ Lmin
i (Fg).

Note that, if the cut of Lmin
i (Fg) is with a single element ⊥, then

ΨX
Lmin
i

(Fg)
= f̂⊥ = true.

This can happen if there is no need to refine the i-th instance of function g to
prove the problem encoded in ϕ̂ is Safe.

The last query (Alg. 2, line 6) just before satisfying the condition in line 8 is
a conjunction of union of elements of cuts XLmin

i (Fg) of each of the instances of
the meet semilattice, thus χ in line 4 is:

χlast =
∧

∀Lmin
i

(Fg)∈Lmin
G,K

X
Lmin
i

(Fg)
∈XG,K

g∈G,i∈kg∈K

ΨX
Lmin
i

(Fg)
=

∧
∀Lmin

i
(Fg)∈Lmin

G,K
X

Lmin
i

(Fg)
∈XG,K

g∈G,i∈kg∈K

∨
E∈X

Lmin
i

(Fg)

f̂E =

20

=
∧

∀Lmin
i

(Fg)∈Lmin
G,K

X
Lmin
i

(Fg)
∈XG,K

g∈G,i∈kg∈K

∨
E∈X

Lmin
i

(Fg)

∧
fg∈E

fg =
∧

∀Lmin
i

(Fg)∈Lmin
G,K

X
Lmin
i

(Fg)
∈XG,K

g∈G,i∈kg∈K

∨
E∈X

Lmin
i

(Fg)

∧
fg∈E

(assumefg∧factfg),

and ϕ̂ ∧ χlast is UNSAT.
We split the UNSAT last query case into two; either we are on the first

iteration, χ = χlast = true, ϕ̂ is UNSAT, and there is no need for refinement
or (else) there is a need for refinement, ϕ̂ is SAT, χ = χlast 6= true and ϕ̂∧χ is
UNSAT. The first case is trivial (true for model checking in general); we wish
to prove that the algorithm is complete for the second case.

By Lemma 2, the union of assume statements of elements in the cut is the
input domain Din of g, for all instances i ∈ kg of all g ∈ G, and thus

assumeslast =
∧

∀Lmin
i

(Fg)∈Lmin
G,K

X
Lmin
i

(Fg)
∈XG,K

g∈G,i∈kg∈K

∨
E∈X

Lmin
i

(Fg)

∧
fg∈E

(assumefg)

is SAT when assuming none of the domains are empty. Since also ϕ̂ is SAT
then by Lemma 2 also the conjunction ϕ̂ ∧ assumeslast is SAT.

In addition, we know that χlast 6= true from Alg. 2, lines 17-19. Since the
condition in line 17 was never satisfied (else the result of the whole check is
SAT), then at least once the changes in line 7 in Alg. 4 were not reset, and
hence there is one fact or more in the expression of χlast.

Therefore, if no satisfying assignment has been found for ϕ̂∧χlast, then there
is no satisfying assignment in Din of g, for all instances of g in the unwound
program P for all g ∈ G. Consequently, the result is UNSAT due to the fact(s),
and the program is safe with respect to the given bound. ut

21

Table 2. Results of Validation Test of Facts.

Total Prop Pure
LRA

Pure
EUF

Facts,
LRA

Facts,
EUF

Safe 26 15 0 0 24 8
Unsafe 27 27 27 27 27 27

B Validation Results of Modulo Facts

In this section we describe the validation results for the facts used in the con-
struction of a meet semilattice of modulo operator. However, note that this is
not part of the experiments of any of the algorithms presented in the paper. The
validation part is merely for assuring the input is valid as possible; where the
input for the construction of the meet semilattice, is a set of facts.

We build a benchmark set of 53 C-programs with a single assertion, with 26
safe and 27 unsafe instances. Majority of facts have at least one UNSAT and
one SAT benchmarks. We use HiFrog with summaries such as that each fact
is a summary of g, where g is modulo operator.

Table 2 describes the result of the validation experiments for the three modes
of HiFrog [5]: propositional logic, LRA and EUF encodings. We use summaries
for LRA and EUF; propositional logic supports modulo function without addi-
tional facts. The two last columns in Table 2 is the facts validation results for
LRA and EUF. Propositional encoding verifies 15 out of 26 safe benchmarks.
The remaining 11 benchmarks resulted in either a timeout, out of memory or a
different result than expected. A different result is possible due to choice of im-
plementation of modulo in C. The reason for a timeout or out of memory result,
are expensive operations at the bit-level precision in the crafted benchmarks.
Neither LRA nor EUF can express the modulo function, thus none of them shall
terminate with a Safe result, as reported. However, the validation results of the
facts with LRA shows that combining a fact with LRA coding allows verification
of most cases, unless they contain nonlinear operators. The validation results of
the facts with EUF reports only 8 instances as Safe (EUF’s expected behavior
on mathematical benchmarks). The second row of Table 2 investigates the unsafe
benchmarks, corresponding to the sanity check. All facts are non-contradictory
hence addition of facts does not change the result of verification of an Unsafe
instance for LRA and EUF.

22

