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Abstract—Transition Power Abstraction (TPA) is a recent sym-
bolic model checking approach that leverages Craig interpolation
to create a sequence of symbolic abstractions for transition paths
that double in length with each new element. This doubling
abstraction allows the approach to find bugs that require long
executions much faster than traditional approaches that unfold
transitions one at a time, but its ability to prove system safety
is limited. This paper proposes a novel instantiation of the TPA
approach capable of proving unbounded safety efficiently while
preserving the unique capability to detect deep counterexamples.
The idea is to split the transition over-approximations in two
complementary parts. One part focuses only on reachability
in fixed number of steps, the second part complements it by
summarizing all shorter paths. The resulting split abstractions
are suitable for discovering safe transition invariants, making
the SPLIT-TPA approach much more efficient in proving safety
and even improving the counterexample detection. The approach
is implemented in the constrained Horn clause solver GOLEM
and our experimental comparison against state-of-the-art solvers
shows it to be both competitive and complementary.

I. INTRODUCTION

Automated formal verification by means of model checking
is popular because of the ability to both 1) find error paths
for unsafe systems, and 2) prove the absence of error paths
for safe systems. Recent techniques based on Satisfiability
Modulo Theories (SMT) as well as the continuing improve-
ments of SMT solvers [1, 12, 16, 27, 35] enable scalable
applications of model checking to software verification [3].
Specifically, the idea of building a safe inductive invariant
incrementally—pioneered by the hardware model checking
algorithm IC3/PDR [8, 17]—has been successfully applied in
several IC3-inspired approaches [10, 11, 18, 24, 29, 30], thus
improving the capabilities of verification tools significantly.

Although this progress is undeniably encouraging, model
checking still suffers from scalability issues associated with
an exhaustive exploration of a system’s states. For many
systems, a large set of states need to be observed to eventually
detect a counterexample or synthesize an invariant. Multi-
phase loops [39] often exhibit such behaviour, in particular.
A recently introduced approach based on Transition Power
Abstraction (TPA) [5] successfully attacks the first part of the
problem. It uses abstraction to summarize the reachability of
an exponentially increasing number of steps. Thus TPA can
quickly focus on the essential part of the search space and
not waste time examining short paths that cannot lead to a
counterexample. Interestingly, the abstractions that enable TPA

to detect long counterexample paths quickly can also be used
to prove safety by discovering safe transition invariants [5].
However, the required condition that the over-approximating
relation must be closed under composition with transition
relation is rarely satisfied, and the algorithm performs rather
poorly on safe systems.

In this paper we leverage the ideas from TPA that enable
a fast exploration of large parts of the state space to detect
invariants in the system that hold only after a specific (often
very large) number of transitions. Our new approach, called
SPLIT-TPA, also uses the idea of the transition power ab-
straction sequence but computes the abstractions in a different
way that generates significantly more suitable candidates for
transition invariants. In the original TPA sequence nth element
over-approximates reachability up to 2n steps of the transition
relation. The TPA sequence is used to check reachability by
doubling the number of explored states at every iteration
of the verification run. At the same time the sequence is
expanded and its elements are refined as a direct consequence
of information learned in these bounded reachability checks.

The novelty of SPLIT-TPA lies in splitting the over-
approximating sequence into two complementary parts: TPA=

and TPA<. Elements of TPA= summarize paths of a fixed
number of steps: nth element covers exactly 2n steps of the
transition relation. The elements of TPA< complement the
first sequence: nth element summarizes all paths of length
less than 2n. The abstractions of TPA= sequence allow SPLIT-
TPA to discover a special type of safe transition invariants,
which are not possible to obtain in the original TPA algorithm.
These invariants are composed of two orthogonal parts: one
part summarizes safe transitions up to a specific bound; the
second part summarizes unbounded safety, but only from that
specific bound onwards. The final invariant is a disjunction of
these two orthogonal parts which together cover any number
of transitions. This specific structure makes these invariants
suitable for proving safety of a large class of problems
including some challenging instances that cannot be tackled
by other state-of-the-art approaches.

We have implemented SPLIT-TPA in our publicly available
CHC solver GOLEM and compared it against the original
TPA approach and other state-of-the-art solvers ELDARICA
and SPACER. On a set of challenging public benchmarks
representing multi-phase loops [39], SPLIT-TPA significantly
outperforms TPA on the safe version of these benchmarks and
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is able to prove safe several benchmarks that state-of-the-art
tools are not able to solve. Moreover, SPLIT-TPA outperforms
TPA also on the unsafe version of these benchmarks.

The rest of the paper is organized as follows. Section II
presents the necessary background. Section III gives a detailed
overview of the TPA algorithm from [5]. Our novel instanti-
ation is presented in Section IV. In Section V we show how
the transition invariants from SPLIT-TPA can be translated into
state invariants. The experiments are described in Section VI.
Finally, we discuss the related work in Section VII and
conclude in Section VIII.

II. PRELIMINARIES

We assume a finite set of (typed) variables x⃗, called state
variables, and we associate with it a primed copy x⃗′. A
formula S(x⃗) over the state variables is a state formula and
a formula T (x⃗, x⃗′) is a transition formula. A state s is an
interpretation of x⃗ that assigns value to each x ∈ x⃗. For a
formula S(x⃗) and a state s we say s is an S-state iff s |= S.
We identify state formulas with sets of states where they hold
and freely move between these two representations. Similarly,
we identify transition formulas with binary relations over the
set of states. The identity relation Id(x, x′) corresponds to the
transition formula x = x′. For readability we typically drop the
vector notation and use x, x′ instead of x⃗, x⃗′. Additional copies
of the state variables are denoted as x′′, x′′′, or in general x(n)

for x with n primes added. Given binary relations R1 and
R2, R1 ◦R2 represents relational composition of R1 and R2,
R1 ∪R2 represents their union. For R = R1 ◦R2, R(x, z) ≡
∃y : R1(x, y) ∧ R2(y, z). Similarly, for R = R1 ∪ R2,
R(x, y) ≡ R1(x, y)∨R2(x, y). For a binary relation R and a
set A, we denote the restriction of the domain of R to A as
A ◁ R = {(x, y) | (x, y) ∈ R and x ∈ A} and the restriction
of codomain as R ▷ A = {(x, y) | (x, y) ∈ R and y ∈ A}. In
terms of logical formulas, (A ◁ R)(x, y) ≡ R(x, y) ∧ A(x),
(R ▷ A)(x, y) ≡ R(x, y) ∧A(y).

Transition system is a pair S = ⟨Init ,Tr⟩ where Init(x⃗)
defines the initial states and Tr(x⃗, x⃗′) is a defines the tran-
sition relation of the system. A safety problem is a triple
⟨Init ,Tr ,Bad⟩ where ⟨Init ,Tr⟩ is a transition system and
Bad(x⃗) represents erorr states. Relation Trn denotes the com-
position of n copies of the transition relation and represents
reachability in exactly n steps. Tr0 = Id .

A set of states S is a k-inductive invariant iff
• Init(x(0)) ∧ Tr i(x(0), x(i)) =⇒ S(x(i)) for 0 ≤ i < k,
•
⋀︁k−1

i=0 S(x(i)) ∧ Tr(x(i), x(i+1)) =⇒ S(x(k)).
S is an inductive invariant if it is 1-inductive.

A binary relation R is a (full) transition invariant iff R ⊇
Tr∗, where Tr∗ is a reflexive transitive closure of Tr . We
say that R is a left-grounded transition invariant iff Init ◁
R ⊇ Init ◁ Tr∗. Similarly, R is a right-grounded transition
invariant iff R▷Bad ⊇ Tr∗ ▷Bad . R is a grounded transition
invariant if it is either left-grounded or right-grounded. Note
that a full transition invariant is also both left-grounded and
right-grounded. We say R is safe iff ∀x, x′ : x ∈ Init ∧ x′ ∈
Bad =⇒ (x, x′) /∈ R, or in other words, Init(x)∧R(x, x′)∧

Bad(x′) is unsatisfiable. If a safe grounded transition invariant
exists, then Bad is not reachable from Init , and the system is
safe.

A Craig interpolant [15] for an unsatisfiable A ∧ B is a
formula I such that (i) A =⇒ I; (ii) I ∧ B =⇒ ⊥; (iii) I
uses only common symbols of A and B.

III. AN OVERVIEW OF TPA

Here we give a brief overview of the TPA algorithm as
introduced in [5]. The main procedure is given in Algorithm 1
and resembles the typical main loop of bounded model check-
ing that checks bounded reachability for gradually increasing
bound. The main difference is that TPA increases this bound
in exponential steps (ISREACHABLE(n, Init ,Bad ) checks for
paths of length ≤2n+1), instead of in one-step increments,
as is typical for bounded model checking algorithms. This
allows TPA to detect much longer counterexamples compared
to state-of-the-art competitors, as witnessed in [5].

Algorithm 1: ISSAFETPA(⟨Init ,Tr ,Bad⟩): TPA’s
main procedure

input : transition system S = ⟨Init ,Tr ,Bad⟩
global : TPA sequence ATr≤0, . . . ,ATr≤n, . . . (lazily

initialized to true)
1 ATr≤0 ← Id ∨ Tr ; n← 0; res ← ∅
2 while res = ∅ do
3 res ← ISREACHABLE(n, Init ,Bad)
4 n← n+ 1
5 return UNSAFE

The key ingredient that allows efficient bounded reachability
checks is the transition power abstraction sequence. It is
a sequence of relations where nth element over-approximates
reachability in up to 2n steps of Tr . The construction and
refinement of the TPA sequence happen as part of the bounded
reachability check, inside the procedure ISREACHABLE, given
in Algorithm 2.

Algorithm 2: ISREACHABLE(n,Src,Tgt): Reachabil-
ity query using TPA sequence

input : level n, source states Src, target states Tgt
output: subset of target states truly reachable in ≤2n+1 steps
global : TPA sequence ATr≤0, . . . ,ATr≤n, . . .

1 while true do
2 q ← Src(x) ∧ATr≤n(x, x′) ∧ATr≤n(x′, x′′) ∧ Tgt(x′′)
3 sat_res ← CHECKSAT(q)
4 if sat_res = UNSAT then
5 Itp(x, x′′)← GETITP(ATr≤n(x, x′) ∧ATr≤n(x′, x′′),

Src(x) ∧ Tgt(x′′))
6 ATr≤n+1 ← ATr≤n+1 ∧ Itp[x′′ ↦→ x′]
7 return ∅
8 else
9 if n = 0 then return QE(∃x, x′ q)[x′′ ↦→ x]

10 Inter ← QE(∃x, x′′.q)[x′ ↦→ x]
11 InterReach ← ISREACHABLE(n− 1,Src, Inter)
12 if InterReach = ∅ then continue
13 TgtReach ← ISREACHABLE(n− 1, InterReach,Tgt)
14 if TgtReach ̸= ∅ then return TgtReach



This procedure returns a subset of reachable states of Tgt
if there exists a path from Src to Tgt of length at most
2n+1. If no such path exists, it returns an empty set. First,
it checks existence of an abstract path consisting of two steps
of ATr≤n, the nth element of the TPA sequence (lines 2-3).
If no such abstract path exists (line 4), then no real path of
length ≤2n+1 exists (line 7). Additionally, n + 1st element
of the TPA sequence is constructed or refined using Craig
interpolation [15] (lines 5-6).

If an abstract path does exist, the procedure attempts to
refine it to a real path. The refinement begins by applying
quantifier elimination (QE) to determine a set of candidate
intermediate states (line 10). These are states that can be
reached from Src by one step of ATr≤n and also can reach
Tgt by another step of ATr≤n. Given a set of intermediate
states, the procedure recursively determines the existence of a
real path from Src to the intermediate states (line 11) and
then the existence of a real path from the truly reachable
intermediate states to Tgt (line 13). The bound for these
recursive calls is decremented, and n = 0 represents the
base case where no recursive calls are needed as ATr≤0

represents true reachability in the system (line 9). If any of
the two abstract steps cannot be refined, the procedure tries to
find a new abstract path and repeats the whole process. The
strengthening of ATr≤n in the recursive call to ISREACHABLE
with n−1 guarantees that refuted abstract paths cannot repeat,
and the procedure makes progress.

Note that instead of full quantifier elimination, any under-
approximation can be used in ISREACHABLE. In particular,
experiments in [5] showed that TPA works much better with
model-based projection [4, 30].

One way to understand the procedure ISREACHABLE in
TPA is that it mimics bounded reachability checks using a
sequence of (precise) relations R≤n defined inductively as

R≤0 = Id ∪ Tr ,

R≤n+1 = R≤n ◦R≤n.
(1)

However, this precise sequence is over-approximated by the
TPA sequence. The over-approximation keeps the satisfiability
queries manageable: Each ATr≤n is a formula only over
two copies of the state variables, no matter how large n is.
This is guaranteed by using Craig interpolation to compute
the abstractions. Compared to that, representing relation R≤n

precisely requires 2n + 1 copies of the state variables.
The TPA algorithm has been designed to detect long coun-

terexample paths quickly and in this has achieved significant
improvements over the state-of-the-art. Interestingly, the TPA
sequence can also provide candidates for safe transition in-
variant, which could be used to prove safety. However, the
capabilities of TPA in this respect are very limited, as also
exhibited by the experimentation in [5].

Fig. 1 illustrates the limitations of TPA in generating safe
transition invariants. The loop on the left has been studied
extensively in the context of loop invariants, e.g., in [39].
We scaled the constants to better demonstrate the behaviour
of TPA. TPA proves safety up to 8192 = 213 iterations

x=0; y=5000;
while(x<10000){

if(x>=5000)
y=y+1

x=x+1;
}
assert(y==10000);

v=0; w=0;
assume(x>z);
while(v<1000){

if(x<z)
v=v+1;

else
w=w+1;

x=x+1;
z=z+2;

}
assert(w>0);

Fig. 1. Examples of multi-phase loops

of the loop very quickly. Each of the first 13 top-level
calls to ISREACHABLE determines bounded safety with a
single satisfiability query. In the process, TPA learns that
ATr≤n ≡ x′ ≤ x + 2n for n = 1 . . . 13. It utilizes the fact
that x must be incremented more than 213 times to exit the
loop and reach the assert. However, in the next iteration
of Algorithm 1 an abstract path of two steps of ATr≤13

is discovered and the refinement process in ISREACHABLE
begins. To make progress, the algorithm must refine the over-
approximating relation ATr≤13 in order to show that the error
is not reachable in two steps of ATr≤13. This requires learning
a suitable relation between variables x and y. However, since
ATr≤13 must capture all paths of length ≤213, it is not easy
to learn such a relation. At least in our implementation, TPA
is continuously discovering and refuting new abstract paths,
making very little progress in refining the elements of the TPA
sequence with each refutation. Due to this slow progress, the
algorithm fails to prove safety in a reasonable amount of time.

The second loop depicted on the right of Fig. 1 is benchmark
17 from the suite of multi-phase benchmarks used in our
experiments (Section VI). The behaviour of TPA is similar to
the previous case, but this time it can find a safe invariant,
though at a considerable cost, as illustrated below. It uses
variable v and the fact that at least 1000 increments are
required and quickly proves bounded safety up to 29 iterations
of the loop. In the next iteration of its main procedure TPA
spends a considerable amount of time in ISREACHABLE
refining the abstraction and capturing the behaviour of the
other variables and the relations between them. Finally, after
proving safety up to 211 iterations of the loop, it manages to
discover a safe transition invariant.

We will see in the next section that SPLIT-TPA is able
to prove the first loop safe and it can find a safe transition
invariant for the second loop much faster.

IV. SPLIT TRANSITION POWER ABSTRACTION

In this section we present SPLIT-TPA, a new instantiation of
the TPA approach suitable for proving unbounded safety. We
start by revisiting R≤ from Eq. (1) and show that the idea of
splitting the TPA sequence arises naturally from a redundancy
present in the inductive definition of R≤. Then we show how
SPLIT-TPA performs bounded reachability checks with the
split sequences and how it discovers safe transition invariants.



A. Overview

As mentioned previously, the TPA algorithm has been
designed to be a simple and efficient procedure for detecting
deep counterexample paths. It can also prove safety by dis-
covering a safe transition invariant for the system. However,
the only source of candidates for the required safe transition
invariants are the elements ATr≤n of the TPA sequence.
ATr≤n can be proved to be a transition invariant if it is
closed under composition with one step of Tr . The problem is
that this condition is rarely fulfilled. The abstractions ATr≤n

are primarily constructed as proofs of bounded safety in the
system: they must summarize all paths of lengths from 0 to 2n

and they must be safe. While it is possible that such bounded
proof is in fact an unbounded proof, in many cases these
abstractions are not closed under composition with Tr , and
the bounded proofs do not generalize to unbounded proofs.

Our solution to TPA’s lack of ability to prove unbounded
safety in practice is to introduce new source of candidates
for transition invariants. We split the over-approximating TPA
sequence into two complementary parts: TPA= and TPA<.
Elements of TPA= summarize paths of fixed length and the
corresponding elements of TPA< summarize all shorter paths.
While TPA< leads to similar transition invariants as TPA,
TPA= leads to invariants with different structure and different
properties, which allows SPLIT-TPA to prove safety of some
challenging problems.

The idea of splitting is motivated not only by the need
for another source of candidates for invariants, but also by a
possible redundancy in the TPA algorithm, which could lead
to unnecessary work. TPA sequence is based on the sequence
R≤ from Eq. (1). The intuition behind this inductive definition
is that every path of length ≤2n+1 can be obtained as a
concatenation of two paths of length ≤2n. However, there
can be multiple ways to decompose such a path into two
smaller paths (see Fig. 2) and proving one such decomposition
infeasible does not entail that others are infeasible as well.

Tr Tr Tr Tr Tr Tr

R≤3

R≤2 R≤2

R≤2 R≤2

R≤2 R≤2

Fig. 2. Three different ways of decomposing path of length 6 into two paths
of length at most 4

Splitting arises naturally from an attempt to fix this redun-
dancy. The reasoning is as follows: Instead of concatenating
two steps of R≤n to obtain R≤n+1, we replace one of these
steps with a step of R=n = Tr2

n

, which represents reacha-
bility in exactly 2n steps. However, R≤n ◦ R=n covers only
paths of length from 2n to 2n+1. To keep the smaller lengths
covered as well, we can add R≤n. The result, R≤n+1 =
R≤n ∪R≤n ◦R=n, almost gives us the unique deconstruction
we are seeking. The exceptions are paths of length exactly 2n

which are covered by both R≤n and R≤n ◦ R=n. The final
step is a realization that this last redundancy is removed by
replacing the relation R≤n by R<n. The sequence R< has the
following inductive definition:1

R<0 = Id ,

R<n+1 = R<n ∪R<n ◦R=n,
(2)

with the sequence R= also defined inductively:

R=0 = Tr ,

R=n+1 = R=n ◦R=n.
(3)

Notice that we have effectively split the R≤ sequence into
two sequences R< and R=, because R≤n = R<n∪R=n. Now,
decomposing a path according to the inductive definitions from
Eq. (2) and (3) is unique. For example, there is only one way
to decompose the path of length six from Fig. 2, now viewed
as one step of R<3, according to Eq. (2): first two steps are
covered by R<2 and the last four steps are covered by R=2.

Following the TPA template, we do not use the sequences
R< and R= directly. We build over-approximating sequences
TPA< and TPA= whose representation in terms of copies
of state variables does not blow up with increasing n. The
elements of the over-approximating sequences TPA< and
TPA= are denoted as ATr<n and ATr=n, respectively, and
we require that

ATr<n ⊇ R<n = Id ∪ Tr ∪ Tr2 ∪ · · · ∪ Tr2
n−1, (4)

ATr=n ⊇ R=n = Tr2
n

. (5)

SPLIT-TPA uses these over-approximating sequences TPA<

and TPA= both for bounded reachability checks and for
detecting safe transition invariants. We will see later that TPA=

sequence allows SPLIT-TPA to find interesting invariants and
prove safety of challenging problems. The main procedure
of SPLIT-TPA is similar to Algorithm 1 and is given in
Algorithm 3.

Algorithm 3: ISSAFESPLITTPA(⟨Init ,Tr ,Bad⟩):
SPLIT-TPA’s main procedure

input : transition system S = ⟨Init ,Tr ,Bad⟩
global : TPA< sequence ATr<0, . . . ,ATr<n, . . .

TPA= sequence ATr=0, . . . ,ATr=n, . . . (lazily
initialized to true)

1 ATr<0 ← Id ; ATr=0 ← Tr ; n← 0
2 while true do
3 if ISREACHABLELT(n, Init ,Bad) ̸= ∅ or

ISREACHABLEEQ(n, Init ,Bad) ̸= ∅ then return
UNSAFE

4 if HASTRANSITIONINVARIANT(S, n) then return SAFE
5 n← n+ 1

In the rest of this section we present the implementa-
tion of the methods ISREACHABLELT and ISREACHABLEEQ
for bounded reachability checks and the implementation of
the method HASTRANSITIONINVARIANT for discovering safe
transition invariant.

1An alternative inductive definition R<n+1 = R<n ∪R=n ◦R<n leads
to a different variant of our algorithm.



B. Bounded reachability checks with TPA= and TPA<

SPLIT-TPA performs the bounded reachability check at level
n in two phases. First, all paths of length strictly smaller
than 2n+1 are checked in ISREACHABLELT. Then all paths
of length exactly 2n+1 are checked in ISREACHABLEEQ.

To implement ISREACHABLEEQ, we can reuse Algo-
rithm 2, with the modification that all references to TPA
sequence and its elements ATr≤n are replaced by TPA=

sequence and its elements ATr=n (we do not repeat the
pseudocode for the sake of space). To understand why this
works, compare the inductive definitions of the underlying
sequences R≤ and R= from Eq. (1) and (3). The induction step
is the same in both cases. The only difference is the base case:
TPA= sequence starts with ATr=0 = R=0 = Tr , as opposed
to ATr≤0 = R≤0 = Id∪Tr . The output of ISREACHABLEEQ
is either a non-empty subset of Tgt that is truly reachable from
Src in exactly 2n+1 steps of Tr , or an empty set if no path
from Src to Tgt of length 2n+1 exists.

The procedure ISREACHABLELT is designed to comple-
ment ISREACHABLEEQ by covering all paths with <2n+1

steps. The implementation is given in Algorithm 4. It follows
the inductive definition of R< from Eq. (2) in the same manner
as ISREACHABLEEQ follows the inductive definition of R=.

Algorithm 4: Reachability query using TPA< se-
quence

input : level n, source states Src, target states Tgt
output: subset of target states truly reachable in <2n+1 steps
global : TPA< sequence ATr<0, . . . ,ATr<n, . . .,

TPA= sequence ATr=0, . . . ,ATr=n, . . .
1 while true do
2 opt1← ATr<n[x′ ↦→ x′′]
3 opt2← ATr<n(x, x′) ∧ATr=n(x′, x′′)
4 q ← Src(x) ∧ (opt1 ∨ opt2) ∧ Tgt(x′′)
5 sat_res,model← CHECKSAT(q)
6 if sat_res = UNSAT then
7 Itp(x, x′′)← GETITP(opt1 ∨ opt2,Src(x) ∧ Tgt(x′′))
8 ATr<n+1 ← ATr<n+1 ∧ Itp[x′′ ↦→ x′]
9 return ∅

10 else
11 if n = 0 then return QE(∃x, x′ : q)[x′′ ↦→ x]
12 if model |= opt1 then
13 TgtReach ← ISREACHABLELT(n−1,Src,Tgt)
14 if TgtReach = ∅ then continue
15 return TgtReach
16 else
17 Inter ← QE(∃x, x′′ :

Src(x) ∧ opt2 ∧ Tgt(x′′), x′)[x′ ↦→ x]
18 InterReach ← ISREACHABLELT(n−1,Src, Inter)
19 if InterReach = ∅ then continue
20 TgtReach ←

ISREACHABLEEQ(n−1, InterReach,Tgt)
21 if TgtReach = ∅ then continue
22 return TgtReach

ISREACHABLELT first assembles the query for an abstract
path (lines 2–4) and sends it to the satisfiability solver (line 5).
Following the inductive definition of Eq. (2), the abstract path
consists of either one step of ATr<n or a step of ATr<n

followed by a step of ATr=n. If no such abstract path exists
(line 6), the procedure reports that no real path of length
<2n+1 exists (line 9). Before reporting the result, it uses Craig
interpolation [15] to refine the abstraction at the next level
(line 8).

If an abstract path exists (line 10), the procedure checks
whether there is a corresponding real path. On level 0 (line 11),
the discovered abstract path is real, and the procedure returns a
reachable subset of target states. On other levels, the procedure
first needs to determine which abstract path has been found
and then try to refine it.

The first possibility is that the abstract path is a single step
of ATr<n (line 12). The refinement of this single abstract
step is checked with a single recursive call. If the refinement
is not successful, the procedure attempts to find a new abstract
path (line 14). Otherwise, the reached target states from the
recursive call are returned (line 15).

The second possibility is that abstract path consists of one
step of ATr<n followed by one step of ATr=n (line 16).
One after another, the procedure attempts to refine these
abstract steps into a real path by calling the corresponding
procedures ISREACHABLELT and ISREACHABLEEQ with de-
creased bound. If any of the two steps cannot be refined, that
abstract path has been refuted and the procedure attempts to
find a new abstract path (lines 19, 21). If both abstract steps
have been successfully refined, a reachable subset of target
states is reported (line 22).

Similarly to Algorithm 2, quantifier elimination can be
replaced by its under-approximation, such as model-based
projection, and we do so in our implementation.

The correctness of the reachability procedures guarantees
the correctness of UNSAFE answer of SPLIT-TPA.

Lemma 1: If ISREACHABLEEQ(n,Src,Tgt) or ISREACH-
ABLELT(n,Src,Tgt) returns a non-empty set Res , then Res ⊆
Tgt and every state in Res can be reached from some state in
Src in exactly 2n+1 steps (for ISREACHABLEEQ) or in <2n+1

steps (for ISREACHABLELT).
Proof: By induction on n, relying on the properties of

quantifier elimination (QE) and the fact that ATr<0 = Id and
ATr=0 = Tr represent true reachability.

Theorem 1: If SPLIT-TPA (Algorithm 3) returns UNSAFE,
then there exists a counterexample path in the system, i.e.,
some bad state is reachable from some initial state.

Proof: Follows directly from Lemma 1.

C. Proving safety by discovering safe transition invariants

If a bounded safety has been proved on level n in Al-
gorithm 3, i.e., there is no counterexample path of length
≤2n+1 in the system, then the algorithm attempts to ex-
tend the bounded proofs to unbounded ones. The procedure
HASTRANSITIONINVARIANT tries to construct a (grounded)
transition invariant based on the elements of TPA= and TPA<

sequences. If a safe transition invariant is found, SPLIT-TPA
has proven unbounded safety.

We have identified sufficient conditions for the elements
ATr<n and ATr=n that guarantee the existence of a transition



invariant. These conditions are formalized in Lemma 2 and
Lemma 3, respectively.

Lemma 2: Assume that for some n, Init ◁ ATr<n ◦ Tr ⊆
Init ◁ ATr<n. Then ATr<n is a left-grounded transition
invariant.

If Tr ◦ATr<n ▷ Bad ⊆ ATr<n ▷ Bad , then ATr<n is a
right-grounded transition invariant.

Proof: Suppose that s ∈ Init and (s, t) ∈ Tr∗, i.e., t is
reachable from s. We show that (s, t) ∈ ATr<n by induction
on d, the length of minimal path from s to t.

Base case d < 2n: (s, t) ∈ ATr<n holds by Eq. (4).
Induction step: Suppose that the claim holds for all paths

of length d. We show that then it also holds for all paths of
length d+1. Consider a path between s and t of length d+1.
Then t has a predecessor m on this path, i.e., m lies d steps
from s and reaches t in 1 step. Then (s,m) ∈ ATr<n by the
induction hypothesis. Since (m, t) ∈ Tr it follows that (s, t) ∈
ATr<n ◦ Tr . Since s ∈ Init , it follows by the assumption of
the lemma that (s, t) ∈ ATr<n.

We have shown that if s ∈ Init and (s, t) ∈ Tr∗ then
(s, t) ∈ ATr<n. Thus ATr<n is a left-grounded transition
invariant. The case of the right-grounded transition invariant is
analogous. In the inductive case, we consider m the successor
of s on the path from s to t.

Note that with a slightly stronger assumption we can use
the same proof idea to discover full transition invariants:

Observation 1: If ATr<n ◦Tr ⊆ ATr<n or Tr ◦ATr<n ⊆
ATr<n then ATr<n is a transition invariant.

Discovering transition invariants based on TPA< sequence
is similar to how the invariants were detected in TPA sequence
in [5]. This is not surprising, as the elements ATr<n and
ATr≤n have similar properties. The key advantage of SPLIT-
TPA is the additional ability to discover transition invariants
by detecting fixed points in the TPA= sequence.

Lemma 3: Assume that for some n, Init ◁
ATr<n ◦ATr=n ◦ATr=n ⊆ Init ◁ ATr<n ◦ATr=n

then Init ◁ Tr∗ ⊆ Init ◁ATr<n ∪ATr<n ◦ATr=n.
If ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆ ATr=n ◦ATr<n ▷

Bad then Tr∗ ▷ Bad ⊆ ATr<n ∪ATr=n ◦ATr<n ▷ Bad .
Proof: The proof uses the same ideas as the proof of

Lemma 2. Suppose that s ∈ Init and (s, t) ∈ Tr∗, i.e., t is
reachable from s. We proceed by induction on d, the length
of minimal path from s to t.

Base case d < 2n+1: It follows by Eq. (4) and (5) that
(s, t) ∈ ATr<n ∪ATr<n ◦ATr=n.

Induction step: Assuming the claim holds for all paths of
length d, we show that it also holds for all paths of length
d + 2n. Consider a path between s and t of length d + 2n.
There exists m on this path that lies d steps from s and reaches
t in exactly 2n steps. Then (m, t) ∈ ATr=n by Eq. (5) and
(s,m) ∈ ATr<n ∪ATr<n ◦ATr=n by induction hypothesis.
Consider the two cases:

• (s,m) ∈ ATr<n: It follows that (s, t) ∈ ATr<n◦ATr=n.
• (s,m) ∈ ATr<n ◦ ATr=n: It follows that (s, t) ∈
ATr<n◦ATr=n◦ATr=n. Then (s, t) ∈ ATr<n◦ATr=n

by the assumption of the lemma.

We have shown that if s ∈ Init and (s, t) ∈ Tr∗ then (s, t) ∈
ATr<n ∪ ATr<n ◦ ATr=n. Thus ATr<n ∪ ATr<n ◦ ATr=n

is a left-grounded transition invariant. For the right-grounded
transition invariant, in the induction step pick m that lies
exactly 2n steps from s (and reaches Bad in d steps).

Similarly to Lemma 2, full transition invariants can be
discovered by checking a stronger condition:

Observation 2: If ATr=n ◦ ATr=n ⊆ ATr=n then both
ATr<n ∪ATr<n ◦ATr=n and ATr<n ∪ATr=n ◦ATr<n are
full transition invariants.

Note that transition invariants obtained using Lemma 3 are
disjunctive by definition. The disjunctive structure reflects the
inductive nature of the proof of Lemma 3. ATr<n corresponds
to the base case and represents the bounded part of the proof;
ATr=n corresponds to the induction step and represents the
unbounded part of the proof. Since the induction step makes
2n steps of Tr instead of 1, the unbounded proof corresponds
to k-induction rather than induction.

The procedure HASTRANSITIONINVARIANT checks the
conditions of Lemma 2 and Lemma 3 using an SMT
solver. For example, ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆
ATr=n ◦ATr<n ▷ Bad iff ATr=n(x, x′) ∧ ATr=n(x′, x′′) ∧
ATr<n(x′′, x′′′)∧Bad(x′′′)∧¬ATr=n(x, x′′) is unsatisfiable.
When the procedure discovers a grounded transition invariant
it must also verify that the invariant is safe, i.e., it does not
relate any initial with any bad state. This can also be checked
with a single satisfiability query. In the case of transition
invariant detected using conditions of Lemma 2, the check is
not even necessary. The invariant, which is ATr<n for some
n, is guaranteed to be safe after ISREACHABLELT proved
bounded safety on level n− 1.

The detection of safe (grounded) transition invariants as
described above allows SPLIT-TPA to prove safety and the
correctness is guaranteed by Lemma 2 and Lemma 3.

Theorem 2: If SPLIT-TPA returns SAFE, there is no coun-
terexample path from Init to Bad in S.

To demonstrate the behaviour of SPLIT-TPA, recall the
loops from Fig. 1. For the first loop, similarly to TPA,
SPLIT-TPA quickly proves bounded safety up to 8192 = 213

iterations of the loop, and in the process learns that ATr<n ≡
x′ < x+2n and that ATr=n ≡ x′ ≤ x+2n for n = 1 . . . 13.
In the next iteration of its main loop, SPLIT-TPA discovers
an abstract path consisting of a step of ATr<13 followed by
a step of ATr=13. After some time spent in the refinement,
the algorithm manages to refute all abstract paths and proves
bounded safety for < 214 iterations. As part of the refinement,
it strengthens ATr=13 to include the facts x′ = x + 8192
and x ≤ 1808. With this strengthened information, it can
easily prove that no path of length exactly 214 = 16384 exists
because it is not possible to make two steps of the abstract
relation ATr=13 from the initial state. In addition, it learns
that ATr=14 ≡ x ≤ −6384. This satisfies the condition of
Observation 2, namely ATr=14 ◦ ATr=14 ⊆ ATr=14. Thus
SPLIT-TPA concludes at this point that the system is safe.

When analyzing the second loop, SPLIT-TPA behaves dif-
ferently than TPA. After proving bounded safety in the first



iteration of Algorithm 3, SPLIT-TPA learns that ATr=1 ≡
x > z =⇒ w′ ≥ w + 2. In the next iteration, ATr=1

is strengthened with facts x ≥ z =⇒ w′ ≥ w + 1 and
x < z =⇒ w′ ≥ w. These three facts together concisely
over-approximate the change to w after precisely two iterations
of the loop. Moreover, ATr=1 with these three components is
closed under composition, i.e., ATr=1 ◦ ATr=1 ⊆ ATr=1.
Thus, SPLIT-TPA concludes already at this point that the sys-
tem is safe (based on Observation 2). The transition invariant,
using a⃗ = (x, z, v, w), is then ATr<1(a⃗, a⃗′′)∨(ATr<1(a⃗, a⃗′)∧
ATr=1(a⃗′, a⃗′′)), where

ATr<1(a⃗, a⃗′) ≡ w′ ≥ w ∧ v′ ≤ v ∧
((x′ ≥ x ∧ z′ ≤ z) ∨ (x′ ≥ x+ 1 ∧ z′ ≤ z + 2)),

ATr=1(a⃗, a⃗′) ≡ x > z → w′ ≥ w + 2 ∧
x ≥ z → w′ ≥ w + 1 ∧
x < z → w′ ≥ w.

Note that the exact value of ATr<1 is not important in this
case, as long as it over-approximates all paths of length <2.

V. FROM TRANSITION INVARIANTS TO STATE INVARIANTS

In Section IV-C, we have shown how SPLIT-TPA can prove
a transition system safe by finding a safe transition invariant.
However, many applications require a proof of safety in the
form of a safe inductive (state) invariant. Here we show that
(k-)inductive invariants can be obtained from the discovered
transition invariants by quantifying over the source or target
states. This follows Lemma 2 and Lemma 3 and their proofs.

Lemma 4: Assume that for some n, the following holds:

Init ◁ATr≤n ◦ Tr ⊆ Init ◁ATr≤n.

Then the following is an inductive invariant:

Inv(x′) ≡ ∃x : Init(x) ∧ATr≤n(x, x′).

Proof: Analogous to the proof of Lemma 2. Intuitively,
Inv represents all states reachable by one step of ATr<n from
Init . Since ATr<n is a left-grounded transition invariant by
Lemma 2, making one additional step of Tr cannot end up
outside this set. Also, Init ⊆ Inv , because Id ⊆ ATr≤n, i.e.,
Inv holds in the initial states.

Lemma 5: Assume that for some n, the following holds:

Tr ◦ATr≤n ▷ Bad ⊆ ATr≤n ▷ Bad .

If ATr<n is safe, then the following is an inductive invariant:

Inv(x) ≡ ¬(∃x′ : ATr≤n(x, x′) ∧ Bad(x′)).

Proof: Analogous to the proof of Lemma 4.
Compared to Lemma 2, the proof of Lemma 3 uses an

inductive step of size 2n. Following that proof we can turn the
transition invariant from TPA= into 2n-inductive invariant.

Lemma 6: Assume that for some n, the following holds:

Init ◁ATr<n ◦ATr=n ◦ATr=n ⊆ Init ◁ATr<n ◦ATr=n.

Then the following is 2n-inductive invariant:

Inv(x′′) ≡ ∃x, x′ : Init(x)∧
(ATr<n(x, x′′) ∨ (ATr<n(x, x′) ∧ATr=n(x′, x′′))).

Proof: We follow the proof of Lemma 3. Inv represents
the set of states reachable from Init either by one step of
ATr<n or by a combined step of ATr<n and ATr=n. It
follows that Inv over-approximates the set of states reachable
from Init in less than 2n+1 steps of Tr . Thus, Inv satisfies
the base step of k-induction (for k = 2n).

For the inductive step, we need to prove that making 2n

steps of Tr from an Inv -state leads again to an Inv -state. We
rely on Eq. (5), i.e., ATr=n ⊇ Tr2

n

. If s is an Inv -state, then
it is reachable from some initial state i either in one step of
ATr<n or in one step of ATr<n◦ATr=n. Moreover, all states
reachable from s in 2n steps of Tr are reachable from s by
one step of ATr=n. Thus, in the first case, they are reachable
from i in one step of ATr<n◦ATr=n. In the second case, they
are reachable from i in one step of ATr<n ◦ATr=n ◦ATr=n.
Based on the assumption of the lemma, they are reachable
from i also in one step of ATr<n ◦ATr=n.

Lemma 7: Assume that for some n, the following holds:

ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆ ATr=n ◦ATr<n ▷ Bad .

If ATr<n(x, x′′) ∨ (ATr=n(x, x′) ∧ ATr<n(x′, x′′)) is safe
then the following is 2n-inductive invariant:

Inv(x) ≡ ¬(∃x′, x′′ : Bad(x′′)∧
(ATr<n(x, x′′) ∨ (ATr=n(x, x′) ∧ATr<n(x′, x′′)))).

Proof: Analogous to the proof of Lemma 6.
Note that in each given case, the (k-)inductive invariants

are quantified and quantifier elimination must be applied
if quantifier-free inductive invariants are required. Inductive
invariants can be obtained from k-inductive invariants by
quantifying over the intermediate states [29].

VI. EXPERIMENTS

We have implemented SPLIT-TPA in our Horn solver
GOLEM2. In our experiments we used GOLEM 0.1.0, which
uses OPENSMT 2.3.2 for SMT solving and interpolation.

The goal of the experiments was to compare SPLIT-TPA
to TPA [5], which is also available in GOLEM, and to
state-of-the-art tools ELDARICA 2.0.8 [26], Z3-SPACER [30]
implemented in Z3 4.8.17 [35], and GSPACER [22] a more
recent version enriched with global guidance. All experiments
were conducted on a machine with AMD EPYC 7452 32-core
processor and 8x32 GiB of memory. We used a timeout of 5
minutes for every task.3

For the evaluation we used the set of benchmarks represent-
ing multi-phase loops [39], which are known to be challenging
for automated analysis techniques. We used both the safe

2https://github.com/usi-verification-and-security/golem.git
3Full results at http://verify.inf.usi.ch/content/split-tpa-experiments, artifact

at https://doi.org/10.5281/zenodo.6988735

https://github.com/usi-verification-and-security/golem.git
http://verify.inf.usi.ch/content/split-tpa-experiments
https://doi.org/10.5281/zenodo.6988735


TABLE I
SUMMARY OF THE EXPERIMENTS ON MULTI-PHASE BENCHMARKS.

Benchmark suite SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

multi-phase safe 19 (7) 12 (0) 6 (0) 24 (3) 26 (4)
multi-phase unsafe 37 (3) 35 (2) 20 (0) 17 (0) 17 (0)

Solved (unique) instances out of 54 benchmarks.

TABLE II
FULL RESULTS ON SAFE (LEFT) AND UNSAFE BENCHMARKS (RIGHT)

Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 26.28 TO TO TO TO
02 TO TO 133.28 <1 TO
03 TO TO TO TO 1.33
04 TO TO TO <1 3.70
05 <1 <1 <1 <1 1.19
06 TO TO TO TO 3.95
07 TO TO TO <1 1.32
08 TO TO TO TO TO
09 TO TO TO TO TO
10 TO TO TO TO TO
11 TO TO TO 5.68 TO
12 TO TO TO TO 1.62
13 <1 <1 ERR <1 1.16
14 53.94 TO TO TO 118.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 <1 37.50 TO <1 7.53
18 <1 <1 TO <1 3.66
19 TO TO <1 <1 1.22
20 TO TO TO TO TO
21 <1 10.39 TO <1 15.45
22 TO TO TO TO TO
23 <1 <1 ERR <1 1.79
24 TO TO TO TO TO
25 TO 45.93 TO TO 9.33
26 2.60 1.55 TO <1 TO
27 TO TO TO TO TO
28 <1 TO TO TO 1.61
29 3.94 TO TO 118.98 34.22
30 TO TO TO TO 20.48
31 TO TO TO <1 1.60
32 TO TO TO 11.49 TO
33 TO TO TO TO TO
34 TO TO TO <1 5.86
35 TO TO TO <1 1.80
36 <1 <1 TO <1 1.92
37 <1 <1 <1 <1 14.33
38 TO <1 TO <1 1.36
39 TO TO 67.41 58.73 2.48
40 109.05 TO TO TO ERR
41 TO TO TO TO TO
42 TO TO TO <1 4.37
43 TO TO TO 5.20 TO
44 TO TO TO TO TO
45 TO TO TO TO TO
46 TO 288.20 13.07 <1 1.28
47 TO TO TO TO TO
48 47.00 TO TO TO TO
49 122.96 TO TO TO TO
50 TO TO TO TO TO
51 TO TO TO TO TO
52 235.24 TO TO TO TO
53 147.28 TO TO TO TO
54 133.63 TO TO TO TO

Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 14.53 10.12 TO TO TO
02 <1 <1 1.25 TO TO
03 <1 <1 <1 <1 1.16
04 TO TO TO TO TO
05 <1 <1 <1 <1 1.18
06 TO TO TO TO TO
07 TO TO TO TO TO
08 TO TO TO TO TO
09 TO TO TO TO TO
10 20.40 233.78 TO TO TO
11 152.28 TO TO TO TO
12 TO TO TO TO TO
13 <1 <1 <1 <1 1.13
14 <1 <1 <1 8.91 89.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 14.84 15.81 181.59 TO TO
18 <1 <1 <1 <1 1.57
19 <1 <1 <1 <1 20.74
20 TO TO TO TO TO
21 <1 <1 <1 <1 10.63
22 TO TO TO TO TO
23 <1 <1 <1 <1 1.17
24 <1 TO 96.64 TO TO
25 <1 <1 <1 <1 1.19
26 2.01 1.46 TO TO TO
27 <1 <1 TO TO TO
28 <1 <1 TO TO 162.43
29 <1 <1 2.76 32.56 45.75
30 <1 <1 <1 <1 10.22
31 TO TO TO TO TO
32 <1 <1 <1 <1 7.17
33 <1 <1 <1 <1 1.21
34 <1 <1 <1 <1 1.15
35 <1 <1 <1 <1 1.20
36 16.68 14.45 TO TO TO
37 <1 <1 <1 <1 13.37
38 262.18 TO TO TO TO
39 TO TO TO ERR TO
40 <1 <1 <1 133.07 ERR
41 TO 4.60 TO TO TO
42 18.31 40.39 TO TO TO
43 TO TO TO TO TO
44 34.18 TO TO TO TO
45 TO TO TO TO TO
46 TO 239.05 TO TO TO
47 5.71 6.79 TO TO TO
48 17.52 12.10 TO TO TO
49 32.59 12.49 TO TO TO
50 TO TO TO TO TO
51 6.71 11.57 TO TO TO
52 70.83 82.43 TO TO TO
53 57.42 33.00 TO TO TO
54 40.74 15.15 TO TO TO

TO: timeout; ERR: memory out or other inconclusive answer.

versions of the benchmarks from CHC-COMP repository4 and
the unsafe versions of the benchmarks from [5]. The results
are summarized in Table I and times for each tool/benchmark
pair are given in Table II.

Regarding safety, Table I shows that SPLIT-TPA overall
solved 7 more benchmarks than TPA, but still less than
GSPACER or ELDARICA. However, it solved seven bench-
marks uniquely (the other competitors did not solve them).
This indicates that SPLIT-TPA is quite orthogonal to the
existing techniques for proving safety.

The results on unsafe benchmarks show that SPLIT-TPA
not only preserves the capability of TPA to detect deep
counterexample, but it was even able to outperform it by
solving two more benchmarks overall.

4https://github.com/chc-comp/aeval-benchmarks

Besides the multi-phase benchmarks, we also evaluated the
tools on a general benchmark set from the LRA-TS category of
CHC-COMP 2021, the latest edition with a publicly available
selected benchmark set.5 Out of 498 benchmarks, SPLIT-TPA
proved 128 benchmarks safe and 72 unsafe. TPA proved 62
benchmarks safe and 71 unsafe. Even though the performance
of SPLIT-TPA still lacks behind Z3-SPACER and GSPACER
(ELDARICA does not support arithmetic over reals) on CHC-
COMP benchmarks, it still achieved a significant improvement
over TPA, especially on safe benchmarks.

To better understand the advantage of SPLIT-TPA over
TPA, we collected statistics from the runs of SPLIT-TPA on
safe instances to see which transition invariants it used to
prove safety. In our implementation TPA< is checked before
TPA=. Moreover, each sequence element is first checked for
a full transition invariant. This is followed by checks for left-
grounded and finally right-grounded transition invariant.

On CHC-COMP2021 LRA-TS benchmarks, out of 128
benchmarks proven safe, 63 invariants were discovered from
TPA< and 65 invariants were discovered with TPA=. Regard-
less of the sequence, 81 were full transition invariants and
47 were left-grounded transition invariants. Surprisingly, no
(purely) right-grounded transition invariants were discovered.
For safe multi-phase benchmarks the results were similar. Out
of 19 invariants, 15 invariants were found with TPA= and 4
invariants were found with TPA<. Fifteen of these invariants
were full transition invariants and 4 were left-grounded. Again,
no purely right-grounded transition invariant was found. These
statistics confirm the essential role of the TPA= sequence in
SPLIT-TPA as a source of transition invariants.

VII. RELATED WORK

Many model-checking algorithms search for a safe inductive
invariant to prove safety. Candidates for inductive invariants
are typically obtained from proofs of bounded safety. The
algorithms try to construct the safe inductive invariant either in
monolithic [32, 34, 38] or incremental way [8, 10, 17, 24, 30].
Our work follows a similar strategy, but it primarily computes
transition invariants, not state invariants.

Transition invariants have been introduced in [36] as a proof
rule for program verification, especially termination and other
liveness properties. Transition predicate abstraction [37] has
been introduced as a way to compute transition invariants.
In contrast, we use transition invariants to prove safety, with
candidates automatically obtained from proofs of bounded
safety using Craig interpolation.

Craig interpolation [15] is a popular abstraction technique
widely used in model checking. We use standard algorithms to
compute interpolants from proofs of unsatisfiability [6, 13, 33].
The integration of domain-specific knowledge [31] is future
work.

While in most model checking algorithms interpolants are
used as over-approximations of states, we use them to over-
approximate transitions. The idea of abstracting transition

5https://github.com/chc-comp/chc-comp21-benchmarks/tree/main/LRA-TS

https://github.com/chc-comp/aeval-benchmarks
https://github.com/chc-comp/chc-comp21-benchmarks/tree/main/LRA-TS


relation with interpolants originates from [28]. However, they
maintained an abstraction of only a single step of the tran-
sition relation. We build two sequences of relations over-
approximating doubling number of steps of the transition rela-
tion, which are useful both for detecting deep counterexamples
and as a source of candidates for safe transition invariant.

Loop acceleration [2, 7, 19] is a loop analysis technique that
can prove safety and detect deep counterexamples. However,
on its own, it is applicable only to limited types of integer
loops. Acceleration have also been successfully integrated into
interpolation-based model checking [9, 25] where interpolants
computed from accelerated paths lead to much better ab-
straction refinement in the traditional CEGAR algorithm [14].
In contrast, SPLIT-TPA computes transition interpolants, not
state interpolants. It also does not try to capture all possible
behaviour of a loop (by accelerating it). Instead, it builds over-
approximations of (exponentially increasing) bounded number
of iterations. By relying purely on Craig interpolation it can
handle transition relations where acceleration is not possible.

The k-induction principle [20] has been successfully used
as a replacement for basic inductive reasoning in IC3-style
algorithms [21, 23, 29]. k-inductive invariants can be more
compact than inductive invariants and for some theories
k-induction is a strictly stronger proof rule [29]. SPLIT-
TPA uses both inductive reasoning (applied to TPA<) and
k-inductive reasoning (applied to TPA=) to discover transition
invariants. We believe that SPLIT-TPA’s success on challeng-
ing systems can be in large part attributed to the inclusion of
k-inductive reasoning, which was missing in TPA [5].

VIII. CONCLUSION

In this work we have presented SPLIT-TPA, a novel in-
stantiation of a recently introduced TPA approach. Splitting
the transition power abstraction into two complementary parts
makes the algorithm more efficient in proving safety by de-
tecting safe transition invariants while still retaining and even
improving the capability of detecting long counterexamples.
The advantage of our instantiation has been confirmed experi-
mentally on a set of challenging multi-phases benchmarks and
on an extensive general benchmark set from CHC-COMP. The
experiments also show that SPLIT-TPA is both competitive
and complementary compared to state-of-the-art in safety
verification. As the next step, we plan to study extensions of
SPLIT-TPA from transition systems to general CHC systems.
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