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Abstract. Symbolic model checking is one of the most successful tech-
niques for formal verification of software and hardware systems. Many
model checking algorithms rely on over-approximating the reachable
state space of the system. This task is critical since it not only greatly af-
fects the efficiency of the verification but also whether the model-checking
procedure terminates. This paper reports an implementation of an over-
approximation tool based on first computing a propositional proof, then
compressing the proof, and finally constructing the over-approximation
using Craig interpolation. We give examples of how the system can be
used in different domains and study the interaction between proof com-
pression techniques and different interpolation algorithms based on a
given proof. Our initial experimental results suggest that there is a non-
trivial interaction between the Craig interpolation and the proof com-
pression in the sense that certain interpolation algorithms profit much
more from proof compression than others.

1 Introduction

Automated methods for formally verifying the absence of faults in a computer
system are becoming increasingly important due to the significant role computers
have in the society. Model checking [4] is one of the most successful approaches
for formal verification. The underlying idea in model checking is to exhaustively
explore a well-defined part of the state space of a system and either find errors
or prove their absence in the studied state space. The problem is generally seen
to be very hard and often undecidable, especially when the state space to be
explored is the full state space of the system. To overcome the computational
difficulty of verification many of the efficient approaches are based on describing
the system using a logic-based formalism in which the lack of faults can be
checked using efficient reasoning engines [3,6,7].

Many of the tools supporting traversal of the search space using logic-based,
symbolic representation require methods for over-approximating parts of the
state-space of the system being studied. A widely used approach is based on
constructing Craig interpolants [5]. The idea is to partition an unsatisfiable logic
formula into two parts A∧B of which the A part needs to be over-approximated.
Craig interpolation provides a way of constructing an interpolant I which safely
over-approximates A in the sense that A→ I and I ∧B is still unsatisfiable.



This paper studies a framework for constructing propositional Craig inter-
polants through compressed resolution refutations and the labeled interpolation
system [8]. The approach itself has been discussed in our previous work [13,12,1];
the novelty of this paper is in presenting the techniques under a uniform notation
and reporting initial experimental results on combining the previously studied
techniques.

The presented techniques have been implemented in the PeRIPLO inter-
polation engine http://verify.inf.usi.ch/periplo. The paper is organized
as follows: Section 2 discusses approaches for symbolic model checking where
interpolation has natural applications and introduces interpolation and our no-
tation for propositional logic. Section 3 discusses the approach PeRIPLO uses
for compressing the refutations it creates, and Sec. 4 discusses the PeRIPLO
implementation of the labeled interpolation system. We report the experimental
study in Sec. 5 and conclude in Sec. 6.

2 Preliminaries

Symbolic model checking consists of determining exhaustively whether the im-
plementation of a system conforms to its specification. The system is defined
as a finite set of variables X = {x1, . . . , xn} whose values change over discrete
time t = 0, 1, . . . according to a transition relation T , and at time t = 0 satisfy
the initial condition I(X). The initial condition and the transition relation are
defined as formulas over first order logic. An assignment σ(X) mapping each
variable in X to a concrete value is a state of the system. Given two copies of
the system variables X and X ′ and two states σ(X) and σ′(X ′) the system can
transition from σ(X) to σ′(X ′) from time t to t + 1 if the assignments satisfy
the transition relation T (X,X ′). In this paper we consider specifications on the
safety of a system: A system is safe if, whenever the system starts from a state
satisfying the initial conditions and transitions according to the transition rela-
tion, the visited states σ0, σ1, . . . never satisfy the error condition E(X) defined
in the specification also as a formula in first order logic.

To show a system unsafe it sufficies to find a sequence of states σ0, . . . σn
satisfying

I(X0) ∧ T (X0, X1) ∧ . . . ∧ T (Xn−1, Xn) ∧ E(Xn). (1)

To show a system safe one needs to find a formula R(X) such that

|= I(X)→ R(X) (2)

|= R(X) ∧ T (X,X ′)→ R(X ′), and (3)

R(X) ∧ E(X) is unsatisfiable. (4)

The formula R(X) above is the safe inductive invariant which is inductive by
the second tautology and safe by the third formula. It is often more practical
to interchange the roles of initial and error conditions since this will make the
problem solving more incremental. In some algorithms this requires the definition
of the inverse of the transition relation T−1(X,X ′).



In the following we will present two model-checking applications using this
generic framework that will motivate our work on computing over-approximations:
the k-induction for unbounded model checking, and function summarization. Fi-
nally we give the notation for propositional satisfiability and interpolation we
will use in the paper.

k-Induction. A widely used algorithm for symbolic model checking is based on
constructing the safe inductive invariant R(X) by means of unrolling the transi-
tion relation k times, showing that the states reached after k steps do not satisfy
the error condition, and trying to obtain a safe over-approximation of the initial
condition based on the proof to heuristically compute an inductive invariant.
This process is known as k-induction. To obtain the invariant in the form given
in (2) the problem is stated as an over-approximation of the initial condition.
In case of over-approximation of the final condition the resulting invariant will
be safe in the sense that the inverse transition function T−1 cannot lead to a
state satisfying the initial condition starting from a state satisfying the error
condition. The critical part of this algorithm is the construction of the safe tran-
sitive invariant through over-approximation of the initial condition. A widely
used approach for computing the over-approximation is through interpolation.

Function Summarization. In typical programming languages the programmer
imposes a logical structure for a system by organizing the program into func-
tions. From the perspective of model checking the functions offer an interesting
approach for guiding the construction of the proof of correctness through func-
tion summaries.

Functions and their summaries are encoded into the transition function T
modularly. Let program P have a function f , and let the encoding of the function
f in logic be |f |(X). If a proof of safety with respect to a verification condition c
for a program is obtained, the function f can be over-approximated with respect
to the verification condition in a safe way by replacing the encoding |f |(X)

with the over-approximating encoding |f̂c|(X) that can still be used to prove
correctness of the condition c(X).

We mention two potential uses for this approach. The first is in verifying
a sequence of verification conditions. Often the error condition E(X) can be
split in a natural way to several verification conditions c0, . . . , cn such that
E(X) = ∨ni=0ci(X). Depending on the over-approximation and the relations
between the conditions in the sequence it is often possible to organize the se-
quence so that the strong conditions are checked before the weak conditions.
For instance [9] presents a heuristic for ordering verification conditions in a way
that likely results in such a sequence. In this case an initial over-approximation
can be used to verify the remaining conditions. The second application of func-
tion summaries is in verifying software upgrades. Given a function f and an
upgraded function f ′, depending on the type of the upgrade it might be possible
to avoid checking the compatibility of the new version of the software against
the error condition. Instead of the expensive re-verification the check can be



done locally by determining whether the safe over-approximation of the encod-
ing |f̂c|(X) contains the behavior of the upgraded function |f ′|(X), that is, by

checking whether |f̂c|(X)→ |F ′|(X).

Interpolation and Propositional Satisfiability. All the above presented scenarios
need an approach for constructing over-approximations of parts of the formula in
Eq. (1). A widely used framework for this purpose is the Craig interpolation [5].
In this work we study in particular the proof compression and the labeled inter-
polation system [8] for propositional satisfiability.

Propositional satisfiability provides a convenient an expressive language for
presenting instances of different model checking problems. Given finite set of
Boolean variables B, the set of literals over B is {p,¬p | p ∈ B}. A clause is a set
of literals and a formula in conjunctive normal form (CNF) is a set of clauses. We
use interchangeably the notation {l1, . . . , ln} and l1∨. . .∨ln, where li are literals,
to denote clauses. Given a clause n, the set vars(n) = {p | p ∈ n or ¬p ∈ n}
gives the variables of n.

A resolution step is a triple n+, n−, (n+ ∪ n−) \ {p,¬p}, where n+ and n−

are two clauses such that p ∈ n+, ¬p ∈ n−, and for no other variable q both
q ∈ n−∪n+ and ¬q ∈ n−∪n+. The clauses n+ and n− are called the antecedents,
the latter is the resolvent and p is the pivot of the resolution step. A resolution
refutation R of an unsatisfiable formula φ is a directed acyclic graph where
the nodes are clauses and the edges are directed from the antecedents to the
resolvents. The leaf nodes of a refutation R, i.e., nodes with no incoming edge,
are the clauses of φ, and the rest of the clauses are resolvents derived with a
resolution step. The unique node with no outgoing edges is the empty clause.

3 Methods of Proof Compression

A common approach for constructing interpolants is to compute a resolution
refutation and label the refutation iteratively in a way that finally results in an
interpolant. Since the resolution proof is often big and the interpolant size is one
of the critical factors determining the usability of the interpolant it is preferable
to obtain as small interpolants as possible. This section gives an in-depth view of
the techniques implemented in the PeRIPLO tool for compressing the refutation
once it has been constructed. In particular we cover the local transformation
framework, the pivot recycling algorithm and an approach for delaying resolution
steps that involve a unit clause as an antecedent.

The local transformation framework. In our experiments an important factor
making resolution proofs of SAT solvers big is that the solver often resolves on
a pivot several times. This type of redundancy can always be removed from a
refutation and the resulting refutation will remain sound. The local transforma-
tion framework [13] addresses this issue. The framework consists of two rules for
reducing a proof, complemented with two reshuffling rules that are employed to
give more opportunities for the application of the two reducing rules. The four



reduction and reshuffling rules are presented in Fig. 1. The restrictions on the
application on the rule are listed on the leftmost column.
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Fig. 1. Transformation rules

The PeRIPLO system uses the local transformation system to detect and
remove redundancies from a refutation. The algorithm for applying the system
is given in Fig. 2. The critical part of the algorithm is on lines 8–9 where the
algorithm identifies a context, an environment which matches one of the rules
in Fig. 1. The context consists of the two pivots p and q and the surrounding
clauses, and since the system is symmetric the resolvents have both left and right
contexts. Once a context is found the algorithm applies heuristically one of the
transformation rules on the context on line 10.

The use of the transformation rules might render the refutation invalid if a
clause is a resolvent in more than one resolution steps. To avoid the problem
the rules R1 and R2 are not used in such cases. Finally the lines 12, 14, and
16 take care of the cases where resolution step has become useless due to the
compression.

The pivot recycling algorithm. While the removal of the doubly appearing pivots
can be done with the proof transformation system of Fig. 1, it is often useful
to combine the approach with a more aggressive approach based on reachability



Input : R — A refutation
T — A time limit

Output : R′ — a compressed refutation
1 while T is not surpassed:
2 TS := topologically sorted list of clauses in R
3 for n ∈ TS :
4 if n is not a leaf:
5 p := piv(n)
6 if ¬p ∈ n− and p ∈ n+:
7 n := (n− ∪ n+) \ {p,¬p}
8 lc := left context of n
9 rc := right context of n
10 ApplyRule(lc, rc)
11 else if p ∈ n+:
12 Substitute n with n−

13 else if ¬p ∈ n−:
14 Substitute n with n+

15 else
16 Heuristically choose either n+ or n− and substitute n with it

Fig. 2. The Local Transformation Framework Algorithm.

on the refutation. One way of implementing the safe removal of extra resolution
steps in a refutation DAG is to prevent the removal operation on resolvents
that are used in more than one resolution step. However this approach is too
restrictive since often the literals are resolved on other paths as well. For this
purpose PeRIPLO uses the recycle pivots with intersection algorithm, presented
in [10] and based on the original recycle pivots algorithm of [2]. We present
an implementation adapted from [13] in Fig. 3, designed for a slightly more
general case where the root of the refutation might contain a non-empty clause.
The algorithm takes as input a refutation R and computes for each clause n
in R the set of literals that can be safely removed from the literal into the
set RL. The respective literals in n ∩ RL[n] are then removed from n and the
algorithm guarantees that the refutation can be transformed to a valid refutation
afterwards. The critical reasoning is done on lines 14, 20, 25, and 29 where the
information on which literals can be removed on other paths where a resolvent
n is resolved is used to refine the removable literals for its parents n− and n+.

Delaying unit resolution. A good heuristic for reducing the size of the refutation
is to move the resolution steps where one of the resolvents is a unit clause to
the root. This is useful since it gives a natural way of guaranteeing that the unit
clauses are resolved only once in the refutation. The PeRIPLO solver implements
this idea as the PushdownUnits algorithm [13] by identifying sub-refutations
that end in a unit clause, detaching them from the refutation and, if necessary,
attaching them above the resolution step resulting in the root.



Input : R — A refutation
Output : RL — the mapping from resolvents to the literals that can be removed in them
1 TS := topologically sorted list of clauses in R
2 RL := ∅ // The set of removable literals
3 for n ∈ TS :
4 if n is not a leaf:
5 if n is the root:
6 RL[n] := {¬p | p ∈ n}
7 else:
8 p := piv(n)
9 if p ∈ RL[n]:
10 n+ := null
11 if n− not seen yet:
12 RL[n−] := RL[n]
13 Mark n− as seen
14 else RL[n−] := RL[n−] ∩ RL[n]
15 else if ¬p ∈ RL[n]:
16 n− := null
17 if n+ not seen yet:
18 RL[n+] := RL[n]
19 Mark n+ as seen
20 else RL[n+] := RL[n+] ∩ RL[n]
21 else if p 6∈ RL[n] and ¬p 6∈ RL[n]:
22 if n− not seen yet:
23 RL[n−] := RL ∪ {p}
24 Mark n− as seen
25 else RL[n−] := RL[n−] ∩ (RL[n] ∪ {p})
26 if n+ not seen yet:
27 RL[n+] := RL[n] ∪ {¬p}
28 Mark n+ as seen
29 else RL[n+] := RL[n+] ∩ (RL[n] ∪ {¬p})
30return RL.

Fig. 3. The RecyclePivotsWithIntersection algorithm



The PeRIPLO proof compression algorithm. The PeRIPLO system uses an ap-
proach for proof compression that combines both the pivot recycling algorithm
presented in Fig. 3 and the proof reduction framework (Fig. 2). The hybrid algo-
rithm is presented in Fig. 4. The algorithm calls as the first step the procedure
for moving unit resolutions to the root of the refutation and then repeatedly calls
the functions RecyclePivotsWithIntersection and ReduceAndExpose to gradually
obtain a more compact proofs.

Input : R — A refutation;
I — the number of loop iterations;
T — A time limit for the proof reduction framework

Output : R′ — A compressed refutation
1 R′ := PushdownUnits(R)
2 for i = 0 to I
3 R′ := RecyclePivotsWithIntersection(R′)
4 R′ := ReduceAndExpose(R′,T )
5 return R′.

Fig. 4. The hybrid algorithm for proof compression

4 Labeling in Interpolation

The PeRIPLO interpolation algorithm is based on computing the propositional
interpolant from a refutation and a labeling which allows tuning of the inter-
polant to specific needs and the refutation. The implementation is based on the
labeled interpolation system originally presented in [8] (LIS) and further devel-
oped in [1].

The system works on an interpolation instance (R,A,B), where R is the
refutation of A ∧ B and A is the formula to be over-approximated. Given a
clause n in R and a variable p ∈ vars(n) occurring in the clause, the system
assigns a unique label L(p, n) from the set {a, b, ab} to the occurrence (p, n).
In the leaf clauses the labeling is restricted to L(p, n) = a if p 6∈ vars(B) and
L(p, n) = b if p 6∈ vars(A), but can be freely chosen for leaf occurrences of
variables in vars(A) ∩ vars(B). In the resolvent clauses nr of R the labeling
L(p, nr) is determined by the label in n+ and n−. If p ∈ vars(n+) ∩ vars(n−)
and L(p, n+) 6= l(p, n−), then L(p, n) = ab, and in all other cases the label of
the occurrence L(p, n) is either L(p, n+) or L(p, n−).

The final interpolant is constructed based on the labeling and the refutation
R iteratively for each clause in R starting from the leaf clauses and ending in
the root. In particular, for a leaf clause nl the interpolant is

I(nl) =

{∨{p | p ∈ nl and L(vars(p), nl) = b} if nl ∈ A, and∧{¬p | p ∈ nl and L(vars(p), nl) = a} if nl ∈ B (5)



The partial interpolant of a resolvent clause nr with pivot p and antecedents n+

and n−, where p ∈ n+ and ¬p ∈ n−, is

I(nr) =

 I(n+) ∨ I(n−) if L(p, n+) = L(p, n−) = a,
I(n+) ∧ I(n−) if L(p, n+) = L(p, n−) = b, and
(I(n+) ∨ p) ∧ (I(n−) ∨ ¬p) otherwise.

(6)

Several different approaches for constructing efficient labelings have been pro-
posed. These include approaches for logically strong and weak interpolants [11,8],
and our recent work on proof-sensitive labelings [1].

5 Experiments

We report here experimental results on both the proof compression approaches
discussed in Sec. 3 and the labeled interpolation system of Sec. 4 using the
PeRIPLO tool. Figure 5 shows the architecture of the tool. The experiments use
a very basic form of proof compression where the algorithm in Fig. 4 uses the iter-
ation count I = 1 and does not run ReduceAndExpose on line 4. The interpolator
is used with six different interpolation algorithms: the weakest and the strongest
interpolants Mw ,Ms available from the LIS; three versions PSw ,PS ,PSs of a
labeling function that attempt to minimize the interpolant size by labeling oc-
currences so that the minimum number of literals appear in the partial inter-
polants of the leaves; and P , an algorithm that labels all occurrences with ab.
The experiments are done using the FunFrog system as the application. The
system employs function summarization as explained in Sec. 2.

Proof expander

Resolution proof

Proof compression

compressed proof

SAT solver

φ

Interpolator

Itp

PeRIPLO

Application

proof skeleton

Fig. 5. The PeRIPLO architecture.

Table 1 reports the relation of size and time between the interpolants re-
sulting from the algorithm without and with proof compression over roughly 25
interpolation instances. In general the proof compression helps in reducing both
the size of the interpolant and the time required to construct the interpolant.
The reduction in size is more significant than in run time. This is not unexpected



Table 1. Relative compression efficiency for different labeling functions.

Mw PSw P PS PSs Ms

time 3.25 3.10 2.77 2.19 2.10 2.20
size 15.15 15.86 12.04 7.20 6.57 6.13

since the run time contains several constant elements such as the time required
to solve the instance. Interestingly the efficiency of the proof compression is
not the same for all the interpolation algorithms. The algorithms Mw ,PSw , and
P profit significantly more from the compressed refutation than the other al-
gorithms. These algorithms often produce bigger interpolants, and there seems
to be a non-trivial interaction between how the proof is reduced and how the
different labeling functions are able to use the smaller proof.

We report the individual results as scatter plots in figures 6 and 7 for both
time (×) and size (ut). The results show a consistent reduction in all cases but
also show several cases where the compression results in two orders of magnitude
reduction in size.

6 Conclusions

This paper presents a range of applications in model checking where interpolation
plays a critical role. We present two major techniques that affect the efficiency
of interpolation: proof compression and labeling. Both techniques are described
in detail showing how they are implemented in the propositional interpolation
tool PeRIPLO. Finally we analyze the effect of proof compression when com-
bined with different interpolant labellings on one of the applications. We reveal
an interesting behavior that not all labeling functions profit in the same way
from the proof compression. This suggests a non-trivial interaction between the
interpolation and the proof compression that requires further studying.

Currently we are planning to extend the ideas presented in this paper to
Satisfiability Modulo Theories in general, and applying them in other novel ap-
plication domains where interpolation is useful.
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