
1 An Example of Construction of a Lattice of
Guarded Literals

To demonstrate the construction of a meet-semilattice from a set of equations
and inequalities via a subset lattice, we use an algorithm for constructing a
meet-semilattice of expressions from our previous paper [2] on a small set of
equations. We do not change any algorithm related to the construction of the
meet-semilattice as it is not the focus of this paper. The presentation is self-
contained and aims to clarify the concepts of a non-contradictory sub-set of
expressions, overlapping assumptions, a subset lattice and a meet-semilattice of
expressions.

The actual meet-semilattices which were used in our experimental results,
can be found at our web-page [1] as a pair of two files: a file of user-defined
summaries (library of summaries), and a file of the meet-semilattice structure,
which order the summaries in the former file. Any decision that was made here,
was for the sake of the example; in the actual construction of the sine meet-
semilattice we made different decision, mainly because we used ∼40 equations
and inequalities of trigonometric definitions, identities and inequalities in our
experiments, and not 3 identities as in this example.

It is the best to note that we did not use any of the lattices in this small
example in our evaluation of the algorithms in this paper.

Construction of a Meet-semilattice Small Example. In the example, we
augment the solver with a set of equations (with their guards) about the sin
function, arranged in a meet-semilattice. These equations are taken from an
existing set of lemmas of the Coq proof assistant [3] for sinx:

f1 ≡ sin eq 0 0 ≡

≡ x = (k · PI) with the assumption sin x = 0 for some positive integer k;

f2 ≡ sin eq O 2PI 0 ≡
≡ x = 0 ∨ x = PI ∨ x = 2 · PI with the assumption 0 ≤ x ∧ x ≤ 2 · PI ∧ sin x = 0;

f3 ≡ sin period ≡
≡ sin (x + 2 · k · PI) = sin x with the assumption true for some positive integer k.

The original subset lattice consists of all subsets of the set {f1, f2, f3}. It
is analysed and reduced as described in [2] to remove contradicting expressions
and equivalent elements. In this example, the set {f2} generalises {f1}, and
there are no contradictory expressions in the set Fsin = {f1, f2, f3}.

To construct the meet-semilattice from a subset lattice, we removed two
equivalent elements: {f1, f2} (that is equivalent as a formula to {f1}) and
{f1, f2, f3} (that is equivalent as a formula to {f1, f3}). Assumptions of the
elements {f2} and {f3} are re-written to eliminate the case where two or
more assumptions of elements of a unique meet, refer to the same input value
(e.g., both elements referred to sin 0). In that case, we added the negation of
the assumptions of {f2} to the assumption of {f3}; and for {f1} and {f2, f3},

1



we added the negation of the assumption of {f2, f3} to the assumption of {f1},
for the same reason (e.g., both elements referred to sin 0 and sinPI). The size
of the meet-semilattice is smaller and contains half of the chains from minimal
to maximal elements than the original subset lattice. The maximal element is
{f1, f3}. In larger meet-semilattice we expect to have more than a single max-
imal element. With a large set of equations and inequalities, the size of the
meet-semilattice is expected to be significantly small than the size of the orig-
inal subset lattice as we reported in our evaluation with the meet-semilattices
for sin and cos functions (Fsin was a set of ∼40 equations and inequalities of
trigonometric definitions, identities and inequalities in the experiments of the
LB-CEGAR algorithm.

�����
�

����

Æ

�����
�

����� ���

���� ���

�����
�

����� ���
�

�����
�

Æ

�����
�

����� ���
� ����� ���

�

����� ��� ���
�

))))))))))))))))))))

�))�)��)�)))�)))))��))�))

�)))�))�)))))))) ))))�))�))))))

�)))��))�))))�))�)�

Figure 1: Original subset lattice and reduced meet-semilattice, for properties of
the sine function in LRA.

Figure 1 shows the original subset lattice on the left, and the resulting meet-
semilattice of expressions on the right. In the lattice traversal, we start from
the bottom element ∅ and traverse the meet-semilattice until we either prove
that the program is safe or find a real counterexample (or show that a further
theory refinement is needed) by using each iteration the guarded literals in the
current element.

2



References

[1] http://verify.inf.usi.ch/content/trig_refinement

[2] Even-Mendoza, K., Asadi, S., Hyvärinen, A.E.J., Chockler, H., Sharygina,
N.: Lattice-based refinement in bounded model checking. In: Verified Soft-
ware. Theories, Tools, and Experiments - 10th International Conference,
VSTTE 2018, Oxford, UK, July 18-19, 2018, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 11294, pp. 50–68. Springer (2018)

[3] The coq proof assistant. https://coq.inria.fr/

3


