
1 An Example of Construction and Usage of a
Lattice of Guarded Literals

The code example in Fig. 1 describes the greatest common divisor (GCD) algo-
rithm. We assume that both inputs are positive integers. The program is safe
with respect to the assertion g ≤ x. However, with the LRA theory, an SMT
solver cannot prove correctness of the program, as GCD is not expressible in
LRA. The standard approach is to have gcd(x, y) assume any real value; thus,
attempting to verify this program with an SMT solver and the LRA theory
results in an infinite number of spurious counterexamples.

i n t gcd (i n t x , i n t y)
{

i n t tmp ;
whi l e (y != 0) {

tmp = x%y ;
x=y ;

y=tmp ; }
re turn x ;

}

i n t main (void)
{

i n t x=45;
i n t y=18;
i n t g = gcd (x , y) ;

a s s e r t (g <= x) ;
}

Figure 1: The GCD program using modulo function.

In the example, we augment the solver with a set of guarded literals about
the modulo function, arranged in a meet semilattice. These guarded literals are
taken from an existing set of lemmas and theorems of the Coq proof assistant [1]
for a%n:

f1 ≡ z mod mult ≡
≡ a mod n = 0 with the assumption a == x ∗ n for some positive integer x;

f2 ≡ z mod pos bound ∧ z mod unique ≡
≡ (0 ≤ a mod n < n) ∧ (0 ≤ r < n =⇒ a = n ∗ q + r =⇒ r = a mod n)

for some positive integers r and q, with the assumption (n > 0) ∧ (a 6= x ∗ n);

f3 ≡ z mod remainder ∧ z mod unique full ≡
≡ (n 6= 0 =⇒ (0 ≤ a mod n < n ∨ n < a mod n ≤ 0)) ∧ ((0 ≤ r < n ∨ n < r ≤ 0)

=⇒ a = b ∗ q + r =⇒ r = a mod n) with the assumption true.

The assumptions are different from the original guards in [1], as these are re-
written during the build of the meet semilattice. The original subset lattice
consists of all subsets of the set {f1, f2, f3}. It is analysed and reduced as
described in Sec. ?? to remove contradicting guarded literals and equivalent
elements. In this example, the set {f3} generalises {f1}{f2}. Fig. 2 shows the
original subset lattice on the left, and the resulting meet semilattice of guarded
literals on the right.

In the lattice traversal, we start from the bottom element ∅ and traverse the
meet semilattice until we either prove that the program is safe or find a real
counterexample (or show that a further theory refinement is needed). In this

1

{ f1 }

{ f1, f2 }

{ f2 }

�

{ f3 }

{ f1, f3 } { f2, f3 }

{ f1, f2, f3 }

{ f1 }

{ f3 }

{ f2 }

�

Figure 2: Original subset lattice of guarded literals and reduced meet semilattice
for the modulo function in LRA.

example, we traverse the lattice until the element {f3}, which is sufficient to
prove that the program is safe. Specifically, the guarded literal f1 is used to
prove loop termination, and the guarded literal f2 is used to prove the assert.

2

References

[1] The coq proof assistant. https://coq.inria.fr/

3

