
Developing your own SMT-based Model Checker 
 

Prof. Natasha Sharygina and Grigory Fedyukovich 
 
Model Checking [1] is a well-known scientific approach to check safety 
of a program. It is a fully automatic approach to decide whether a 
program is safe with respect to a given assertion or to provide a witness 
of the bug. Assertion is a logical expression over program variables in a 
particular program location. The set of well-known model checkers for 
software [2,3,4,5,6] includes FunFrog [5] and eVolCheck [6], developed 
at Formal Verification and Security group at USI. 
 
In a nutshell, FunFrog delegates the problem of checking safety to an 
external decision procedure (more concretely, a SAT solver) called 
PeRIPLO [7]. SAT solving allows precise reasoning over the program 
variables and arithmetic operations, but requires an expensive encoding 
the program into a bit-blasted form. As a result, the SAT formulas 
produced even from the simplest C programs become large and 
incomprehensible. Alternatively, there exist SAT modulo theories (SMT) 
solvers that can deal with reals and integers without bit-blasting. One of 
the most known SMT solvers, Z3 [8], provides an understandable 
interactive framework available online. 
 
We propose to extend FunFrog to support SMT encoding. The student 
will be given an access to the sources of the model checker, and will be 
taught the algorithms used in the SAT/SMT encoding. Then the student 
will be asked to implement new algorithms and evaluate the resulting 
tool. We believe, the support of SMT solving will drastically improve the 
performance of FunFrog for certain benchmarks. In such a case, the 
results of the student’s work will be used as a basis for a publication in a 
highly ranked scientific conference in Model Checking. Thus, if the 
student is planning to start a research career, the experience with 
SAT/SMT techniques will be useful. 
 
While this project does not require any theoretical background in Formal 
Methods, we will appreciate if the student already has some background 
knowledge in Logics and Theory of Computation. Initial experience in 
C++ is required. 
 

References: 
[1] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 
1999 



[2] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C 
programs. In Tools and Alg. for Con. and Anal. of Sys. (TACAS ’04), 
LNCS, pages 168–176, 2004. 
[3] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based Predicate Abstraction for ANSI-C. In Tools and Alg. for Con. and 
Anal. of Sys. (TACAS ’05), LNCS, pages 570–574, 2005. 
[4] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for 
Configurable Software Verification. In Computer Aided Verification 
(CAV ’11), LNCS, pages 184–190, 2011. 
[5] O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog: Bounded 
Model Checking with Interpolation-based Function Summarization, In 
ATVA’12 
[6] G. Fedyukovich, O. Sery, and N. Sharygina. eVolCheck: Incremental 
Upgrade Checker for C. In TACAS’13 
[7] http://verify.inf.unisi.ch/periplo.html 
[8] http://rise4fun.com/z3 
 
	  


