
Developing a smart versioning system

Prof. Natasha Sharygina and Grigory Fedyukovich

During its lifetime any program evolves. A developer can fix a bug, apply
optimizations, or add a new functionality to the existent code. After such
changes the developer should be sure that the new code is correct, i.e., it
does not break any old functionality which is supposed to be preserved in
the new version. In order to do it efficiently, a tool called eVolCheck [1]
has been developed by researchers of Formal Verification and Security
group at USI. eVolCheck formally verifies each version of a program and
reuses some efforts (namely, function summaries) between consequent
runs. For example, if just one function is changed in the program, it may
be enough to re-check only the new code of this function, and do not
touch the (preserved) rest of the program.

In the GUI of eVolCheck integrated with Eclipse IDE [2], the process is
visualized as follows. First, the syntactic difference between the current
version and the previous one is shown. Depending on the amount of the
modified code, the user decides to run the upgrade checking tool. Then
the Eclipse IDE internally runs eVolCheck, it configures the tool
automatically and keeps the settings in a subsidiary storage, so the user
does not need to adjust the environment for every check. After
eVolCheck completes its tasks, the positive/negative result is returned to
the user. In the former case, the change impact (namely, the number of
re-checked summaries) is displayed - it represents the semantic influence
of the change on the whole program. In the latter case, if a bug is found,
the Eclipse IDE shows the trace to the counter-example.

Software versioning is the way to distinguish between the program
versions [3]. Software versioning systems (e.g., SVN [4] or Git [5]),
integrated to different IDEs, are widely used by software developers in
industry and academia. But since it is always up to the user, whether to
make a new revision, the existent versioning systems cannot give
guarantees that the correspondent program version is correct. We propose
to extend one of the existent software versioning systems to support
program verification by eVolCheck. We will call it a “smart versioning
system”.

The proposed smart versioning system should work as follows. If a
current version of the program is proven correct, it might be a good
justification to create a new revision in the versioning system. Otherwise,

if at least one assertion in the version is violated (i.e., a counter-example
is given), the user should analyze the counter-example, then fix it, and
finally run eVolCheck once again. So the revisions in the versioning
system will become trustworthy. In our proposed smart versioning
system, every new revision will be confirmed safe. We propose the
student to implement such technology on the top of the existent tools.

We are sure the proposed technology can be easily implemented because
its main ingredients already exist: the Eclipse IDE with available source
code and APIs, eVolCheck, and eVolCheck plugin to Eclipse. The
student should investigate how to use software versioning systems, and
how these systems are being handled by Eclipse IDE. We believe such an
integration will make easier to apply formal verification in most software
development projects, which are currently unfortunately still not able to
use this powerful technology. And this will ultimately increase the quality
of software being developed.

There are two main benefits for a student who is going to implement the
proposed technology. First, the student will become familiar with formal
verification and state-of-the-art verification systems. It will give the
young researcher a taste of what kind of research is being done in the
modern Computer Science. No theoretical background in Formal
Verification is required. Second, the student will earn an important
experience in software development. Eclipse IDE is known in developers
community, and experience in working with its source code will indicate
the student is familiar with modern trends in software development. For
this, initial experience in Java programming language is required.

References:

[1] G. Fedyukovich, O. Sery, and N. Sharygina. eVolCheck: Incremental
Upgrade Checker for C. In TACAS’13
[2] http://eclipse.org/
[3] http://en.wikipedia.org/wiki/Software_versioning
[4] http://tortoisesvn.net/
[5] http://git-scm.com/

