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Abstract. Smart contracts challenge the existing, highly efficient tech-
niques applied in symbolic model checking of software by their unique
traits not present in standard programming models. Still, the majority
of reported smart contract verification projects either reuse off-the-shelf
model checking tools resulting in inefficient and even unsound models,
or apply generic solutions that typically require highly-trained human
intervention. In this paper, we present the solution adopted in the for-
mal analysis engine of the official Solidity compiler. We focus on the
accurate modeling of the central aspects of smart contracts. For that, we
specify purpose-built rules defined in the expressive and highly automat-
able logic of constrained Horn clauses, which are readily supported by
an effective solving infrastructure for establishing sound safety proofs or
finite-length counterexamples. We evaluated our approach on an exten-
sive set of smart contracts recently deployed in the Ethereum platform.
The reported results show that the approach is able to prove correct-
ness and discover bugs in significantly more contracts than comparable
publicly available systems.

1 Introduction

Smart contracts are programs designed to manage and enforce contract trans-
actions without relying on trusted parties but instead exploiting the blockchain
technology to achieve consensus. The safety of smart contracts is increasingly
important: in the past years millions of US Dollars were lost due to bugs [4,6],
and currently the smart contracts deployed in the widely used Ethereum plat-
form control increasing amounts of wealth in the order of billions of dollars.
This issue is even more pronounced because once deployed in the blockchain,
the source code of smart contracts is immutable, complicating the task of fixing
errors with new releases.

Ethereum [17] nowadays is the most popular platform for writing smart con-
tracts. High-level languages for implementing smart contracts such as Solidity [3]
and Vyper [5] are compiled to the low-level Ethereum Virtual Machine (EVM)
that is deployed in the blockchain. In this paper we introduce the direct modeling
for Solidity smart contracts automatic verification implemented inside the Solid-
ity compiler [18] in collaboration with the Euthereum Foundation. The proposed



direct modelling uses constrained Horn clauses (CHCs) [11] for modelling con-
tract behaviours based on the control-flow. Besides being convenient to model
transition systems, CHCs benefit from the current active area of research on
their solving. Recent efforts produced several efficient sequential and parallel
solvers [33,13] that can be directly exploited. Our algorithm for creating formal
models of Solidity smart contracts produces models that are solver-independent
(any theorem prover supporting CHCs can be used to solve them), and accurate
(the models properly encode the semantic traits specific of smart contracts).
Additionally, solving the model automatically provides contract invariants that
prove unbounded safety, or a finite-length counterexample that concretely shows
property violation. Contract invariants can also be used by developers to confirm
the intents of the code. Specifically, they represent conditions over the contract
variables that always hold after any possible transaction. Counterexamples show
the interactions with the contract that lead to a violation of the safety properties.
This is achieved by providing the list of transactions that produce an assertion
error. All these features are implemented in the module (called Solicitous – So-
lidity contract verification using constrained Horn clauses) of the SMTChecker
formal engine inside the official Solidity compiler [18].

In our experiments, our tool solves the CHCs generated with Spacer [29], the
IC3 [14] engine of the SMT solver Z3 [35]. We compared Solicitous with Solc-
Verify [25,24], VeriSol [30] and Mythril [15], and report an extensive experimental
evaluation verifying 6138 smart contracts currently deployed on the Ethereum
blockchain. We show that Solicitous outperforms the other tools both for proving
safety and for discovering bugs. To summarize, this paper provides the following
contributions:
– a direct formal modeling of smart contracts using CHCs that enables fully

automated verification using generic theorem provers (Sec. 3),
– an industrial implementation inside the Solidity compiler (Sec. 5), and
– an extensive verification experimentation over thousands of real-world con-

tracts which demonstrates the effectiveness of our technique (Sec. 6).
We further discuss related work in Sec. 7, and conclude the paper in Sec. 8. An
extended version of this paper including an end-to-end example of the entire
verification process, from the Solidity source code to the counterexample, is
available at http://verify.inf.usi.ch/research/fvsc.

2 Background

Smart contracts consist of a storage and a set of functions. The storage is a per-
sistent memory space used to store variables whose values represent the contract
state. Functions are the interface by which users interact with the contract. Func-
tions are allowed to access the storage both in read and write modes, and their
behavior is defined by the corresponding EVM instructions, stored persistently
in a separate memory residing within the blockchain. The Ethereum yellow pa-
per [17] provides further details of the semantics of the EVM bytecode. Solidity3

3 Solidity official documentation is available at https://solidity.readthedocs.io



is a Turing-Complete language specifically designed for smart contracts target-
ing EVM. A Solidity contract is a structure similar to a class in object-oriented
programming languages. Contracts have data types such as integers, Boolean,
array, map, etc. and either external or internal functions depending on whether
they can be called directly by the user. Solidity supports control structures that
are common in programming languages, such as conditionals and loops.

A control-flow graph (CFG) is a graph representation of the execution paths
of a program, and it is commonly used for static analysis. The graph nodes
represent basic blocks, that is, sequences of program statements that do not
change the control flow of the program. Common programming constructs that
modify the control flow are branching, loops, and function calls. Moving from
one block to the next is a jump. Here we consider that the edges in a CFG are
labeled with a Boolean expression that must be true for the jump to occur.

The interaction with a contract is performed by calling one of its external
functions. During a function execution both external and internal functions can
be called. Each individual function call is an atomic transaction, i.e., it either
executes without exceptions committing the changes, or rolls back completely if
an exception occurs, leaving the state unchanged. Contrarily, in standard pro-
gramming languages all the changes made in the heap by a function prior to
throwing an exception are preserved.

In [12] the Existential Positive Least Fixed-Point logic (E+LFP) is proven to
logically match Hoare logic [27] and is therefore useful for determining partial
correctness of programs. Following [11], in this work we use a specialization of
E+LFP called constrained Horn clauses (CHC) due to the intuitive syntax in
representing transition systems with loops, and the efficient decision procedures
available for them. We give here a characterisation of CHC based on first-order
logic and the fixed-point operator adapted from [12]. Let ψ be a first-order
formula over a theory T with free variables x, and a finite set {P1, . . . , Pn} be
predicates over x not appearing in ψ. We denote by

⋃n
i=1{∆Pi} |=T ψ(x) ∧

P1(x) ∧ . . . ∧ Pn(x) the satisfiability of ψ(x) ∧ P1(x) ∧ . . . ∧ Pn(x) in theory T
when the interpretations of Pi are ∆Pi .

Given a set of predicates P, a first-order theory T , and a set of variables V,
a system of CHCs is a set S of clauses of form

H(x)← ∃y. φ(x,y) ∧ P1(y) ∧ . . . ∧ Pm(y) for m ≥ 0 (1)

where φ is a first-order formula over x,y ⊆ V with respect to the theory T ; x is
the tuple of distinct variables free in φ; H ∈ P a predicate with arity matching
x; Pi ∈ P predicates with arities matching y; and no predicate in P appears in
φ. For a clause c we write head(c) = H and body(c) = ∃y. φ(x,y) ∧ P1(y) ∧
. . . ∧ Pm(y). For each predicate P ∈ P we define the transfinite sequence ∆α

P

given by

∆0
P = ∅

∆α+1
P = ∆α

P ∪ {a |
⋃
Q∈P{∆α

Q} |=T

∨
c∈S,head(c)=P body(c)[a/x]}

∆λ
P =

⋃
α<λ∆

α
P for limit ordinals λ.



Since the sequence ∆α
P is monotonic, there is a value for α such that ∆α

P =
∆α+1
P = ∆P .

In the context of modeling and verification, in this paper we are in addition
interested in determining whether the ∆⊥ of the predicate ⊥ ∈ P is empty. In
particular the CHC solver we use guarantees that if ∆⊥ is nonempty then the
model of a program violates a safety property and the solver is able to map the
construction to an execution. Conversely, if ∆⊥ is empty, the solver either does
not terminate, or provides quantifier-free first-order formulas ψP (x) in T for
each P ∈ P that serve as safe inductive invariants in the following sense. First,
each ψP over-approximate the interpretations ∆P , that is, {∆P } |=T P (x) =⇒
ψP (x). Second, for each clause c ∈ S of the form (1) where head(c) 6= ⊥,
|=T φ(x,y) ∧ ψP1(y) ∧ . . . ∧ ψPm(y) =⇒ ψH(x). Third, if head(c) = ⊥, then
|=T ¬ (φ(x,y) ∧ ψP1(y) ∧ . . . ∧ ψPm(y)). We use the terminology from [11] and
call a set of CHCs satisfiable if ∆⊥ is empty, and unsatisfiable otherwise.

In presenting the clauses we use some conventions that make reading them
easier. First, we omit the existential quantifier since its scope is clear from the
arguments of the body for a given clause. Second, we do not write variables that
that do not appear in the formulas. Third, we often omit superfluous equalities:
if an element yi of y is equated with an element xj of x in a top-level conjunct
of φ, we do not write the equality but instead substitute yi for xj in the head.

3 The Model

We define a contract C with the triplet 〈s, I(s), F 〉, where s is the set of state
variables, I(s) is the initial state of s, and F is the set of all functions in the
contract. The disjoint subsets F+ and F− of F denote respectively the sets of
external and internal functions of F . Given a function f(a)→ r ∈ F , where a is
the set of function arguments and r is the set of return variables, the CFG of f
is the tuple 〈G,α, ω, ρ〉. G = (V,E, λ, µ, S) is a node- and edge-labeled directed
graph, where V is the set of CFG blocks; E ⊆ V × V is the set of control flow
jumps; λv is the set that contains, for all v ∈ V , the set of instructions performed
by v; µe is, for all e ∈ E, the condition under which the jump e is performed; and
S ⊆ V is the set of safety blocks, each representing a safety property. During the
execution of f only local variables are manipulated. Therefore the labelings λ and
µ, respectively, of each block and jump, are instructions performed only over a set
of local variables l of f . The CFG blocks α, ω ∈ V are respectively the entry block
and the exit block. The injection ρ : s ∪ a ∪ r → l maps every state variable,
function argument and return variable to a distinct local variable accessed by
the instructions in each block and jump. We extend the function notation to sets
in the natural way: for a given set of variables z, ρ(z) = {ρ(x) | x ∈ z}.

A safety property in the CFG is represented by a safety block. In Solidity,
safety properties are specified with the assert keyword. Safety properties failing
during the execution cause the function to revert and return immediately. To
achieve this behaviour, for every safety block b ∈ S there exists the jump e =
〈b, ω〉 where the condition µe is the negation of the property. This ensures a



direct jump to the exit block in case the safety property is violated. A jump to
the exit block ω from a safety block requires ω to revert by restoring the state
prior the function’s execution. In order to provide ω with the information that
a safety property has been broken, λb sets the special variable r̃ ∈ l to a value
that uniquely identifies the violated safety property.

Consider functions f and f ′ (which can be the same), represented by CFGs G
andG′ respectively. Function calls are performed by a block v inG whose labeling
λv contains the call instruction toG′. At runtime, the execution of the CFG block
v is performed by executing the CFG block α of G′. When ω of G′ is executed,
the transaction represented by the execution of G′ is finalized by committing any
changes to the state variables. The execution is then resumed from v, mapping
the return variables of f ′ to the expected local variables of f , and updating the
local variables of f representing state variables to match the new values resulting
from the commit just performed by the concluded transaction.

3.1 Model of a Contract Function

This section presents the rules for creating the CHC model of a function f(a)
of a contract having state variables s, returning variables r, and manipulating
local variables l.

The CHCs are constructed given the control flow graph 〈G,α, ω, ρ〉 of the
function f , where G = (V,E, λ, µ). For each CFG block v, the Static Single As-
signment (SSA) formula SSAλv (l, l′), where l′ = {x′ | x ∈ l}, models the behav-
ior of v by formalizing in logic the relation between x and x′ for each x ∈ l, based
on the execution of the instructions in λv. The formula SSAµe(l) of each jump
e is the logical condition under which e is taken. For each CFG block v ∈ V ,
Pvf (s,a, l) is a predicate symbol representing the states that are reachable in the
block v. The set of rules representing the execution of f is defined as follows.
For each jump e = 〈v, u〉 ∈ E, the jump rule of e is the CHC

Puf (s,a, l′)← Pvf (s,a, l) ∧ SSAλv (l, l′) ∧ SSAµe(l). (Jumpf,e)

The entry rule sets the local variables equal to the corresponding current values
of state variables and passed arguments.

Pαf (s,a, l)←
∧

x∈s∪a
x = ρ(x) ∧ ρ(r̃) = 0. (Entryf )

The variables in s and a are symbolically assigned in (Entryf ) and never changed
throughout the jump rules (Jumpf,e) of any e ∈ E. In case of reverting during
execution, these variables provide the necessary information to revert to the
state prior to the execution of f . A revert is caused a jump to ω setting the local
variable ρ(r̃) equal to the integer identifier of a safety property that failed. Ini-
tially, ρ(r̃) is set to zero. Let Sf (s,a, s′, r) be the predicate symbol representing
the function summary of the execution of f . The function summary expresses
the relation between the input and the output of an execution of the function.
In this context the input is represented by the function arguments a and state



variables s prior execution, and the output is represented by the return values
r and the state variables s′ after the execution. The summary rule of f is the
CHC

Sf (s,a, s′, r)← Pωf (s,a, l) ∧ (Sumf )(
ρ(r̃) 6= 0 =⇒

∧
x∈s

x′ = x
)

︸ ︷︷ ︸
revert

∧
(
ρ(r̃) = 0 =⇒

∧
x∈s

x′ = ρ(x)
)

︸ ︷︷ ︸
commit

∧
∧
x∈r

x = ρ(x)︸ ︷︷ ︸
returns

.

The revert constraints in (Sumf ) ensures that an execution is reverted when ω
is reached having the local variable corresponding to r̃ set to the identifier of a
safety property. Conversely, the mutually exclusive commit constraints store the
local copy of the state in s′, modeling a commit of the computed values. The
return constraints equate the return variables r with the corresponding local
variables.

Definition 1. Given a contract function f , the set of CHC Πf modeling f is
the set consisting of the jump rule of e (Jumpf,e) for each control flow jump e
of f , and the entry and summary rules from f (Entryf ) and (Sumf ).

3.2 Function Calls

Let e = 〈v, u〉 be a control flow jump where λv contains a function call to
g(ag) returning variables rg. The summary of g is used to synchronize the local
variables of f with the new state committed after g’s execution terminates.
Therefore, SSAλv (l, l′) is defined as

Sg(s′,ag, s′′, rg) ∧ (Callg,ρcall)∧
x∈ag∪rg

x = ρcall(x)

︸ ︷︷ ︸
arguments and returns passing

∧
∧
x∈s

(
x′ = ρ(x) ∧ x′′ = ρ(x)′

)
︸ ︷︷ ︸

state set and update

∧
∧

x∈l\lcall

x′ = x

︸ ︷︷ ︸
untouched locals

where ρcall : ag → l, rg → l′ is the mapping specific for this call that maps both
arguments of g to l according to how they are passed, and the return variables
of g to l′ according to how they are assigned; lcall = ρcall(rg) ∪ ρ(s) is the
set of local variables that can be affected by the call. We assume arguments
are passed by value. Therefore local variables ρcall(ag) corresponding to the
arguments of g are not affected by the execution of the block. The argument
and return passing uses ρcall to match arguments and return variables to the
respective local variables of the caller. The state set and update conjunction
makes sure that the local variables in l′ representing the state variables get
updated according to the execution of the just-ended transaction. For each local
variable not in lcall, the untouched locals constraint equates its primed and non-
primed versions, modeling that its value is not affected by the block execution,
and therefore remains unchanged after the jump. Note that the primed version
of the local variables in lcall are set in the former constraints according to the



effects of the call. This ensures that all variables in l′, which are passed to the
predicate Puf , are constrained, modeling a deterministic execution. By applying
(Jumpf,e), the resulting CHC is non-linear because it contains the two predicates
Pvf and Sg.

3.3 Contract’s External Behaviour

Given a contract C = 〈s, I(s), F 〉, a contract transaction is the execution of
a public function. A single contract transaction is therefore modelled by the
summaries of every function f in F+, each proving the relation between state
variables s, s′ before and after a transaction performed by calling f . The ex-
ternal behaviour of the contract is defined as the transitive closure of contract
transactions, modelling an arbitrary number of calls to any public function, in
any order. The external behaviour provides the relation between state variables
before and after any possible interaction with the contract performed by an
external contract.

We define the predicate EC(s, s′) that models the external behavior of C
inductively, where the base case is the CHC

EC(s, s)← >, (ExtBaseC)

and the inductive steps are, for each function f in F+, the CHCs

EC(s, s′′)← EC(s, s′) ∧ Sf (s′,a, s′′, r). (ExtIndC,f )

The external behaviour of C can be used to model calls to a function of
an external contracts D which source code in unknown before runtime. In this
way, any possible transaction resulting from D interaction during runtime is
considered. Every control flow jump 〈v, u〉 in C, where the block v contains
a call to a function that is unknown before runtime, is modelled using EC in
place of the called function summary. The resulting SSAλv (l, l′) is built similarly
to (Callg,ρcall), with the difference of omitting the argument and return passing
constraints. The local variables in ρcall are unconstrained in order to nonde-
terministically model any possible values returned by the unknown function.
Specifically, the resulting SSAλv (l, l′) is

EC(s′, s′′) ∧
∧
x∈s

(
x′ = ρ(x) ∧ x′′ = ρ(x)′

)
︸ ︷︷ ︸

state set and update

∧
∧

x∈l\lcall

x′ = x

︸ ︷︷ ︸
untouched locals

. (ECallρcall)

If a safety proof for this model can be obtained, then it is not possible to
construct an external contract that can violate assertions in C by any sequence
of reentrant calls. A counterexample for such model implies that there exists a
contract that can be designed specifically for violating one or more assertions, by
calling one or more public functions in a particular order and returning specific
values.



Input : A contract C = 〈s, I(s), F 〉.
Output : The set of CHC ΠC .
Initially: ΠC = {(InitC), (ExtBaseC)}.

1 foreach f = 〈G,α, ω, ε, ρ〉 ∈ F do
2 Let a, r, l respectively the arguments, returns and local variables of f .
3 Let Πf := {(Entryf ), (Sumf )}
4 Let G = (V,E, λ, µ)
5 foreach e = 〈v, w〉 ∈ E do
6 if v contains a call to g(ag)→ rg then
7 Create ρcall from λv
8 if (Sumg) is known then SSAλv := (Callg,ρcall);
9 else SSAλv := (ECallρcall);

10 else
11 SSAλv (l, l′) := Model(λv)

12 end
13 SSAµe := Model(µe)
14 Πf := Πf ∪ {(Jumpf,e)}
15 end
16 ΠC := ΠC ∪Πf

17 if f ∈ F+ then
18 ΠC := ΠC ∪ {(ExtIndC,f ), (RootTrC,f )}
19 end

20 end
Algorithm 1: The algorithm to construct ΠC .

3.4 Checking Contract Safety

Let C(s) be the predicate representing the reachable values for the contract. The
initial state is modeled by the CHC

C(s)← I(s). (InitC)

Every transition performed by a call to a public function is modeled by the root
transition rule. For each public function f ∈ F+,

C(s′)← C(s) ∧ Sf (s,a, s′, r) ∧ r̃ = 0. (RootTrC,f )

Definition 2. Given a contract C, the set of CHC ΠC modeling any possible
behavior of C is defined as the union of the initial rule (InitC), the external base
case rule (ExtBaseC), all the rules Πf of every function f ∈ F , and for each
public function f ∈ F+ the root transition rule (RootTrC,f ) and the external
inductive rule (ExtIndC,f ).

Algorithm 1 gives an overall view of the modeling technique. Given as input
a smart contract C, the algorithm returns the set ΠC of CHCs modeling C. Ini-
tially, ΠC consists only of the initial rule of C. Then, the loop from line 1 to 20



iterates over each contract function f , gradually producing the respective set Πf

that is finally merged with ΠC in line 16. The internal loop from line 5 to 15
iterates over every edge 〈v, w〉 of the CFG of f . The case where v is a block repre-
senting a function call is handled in lines 6 to 9, using either the summary of the
called function or the external predicate. Otherwise, a formal model representing
the block execution is generated in line 10, and used in the jump rule.

Definition 3 (Safety Rule). The safety rule Σf for the CHC model of a public
function f is ⊥ ← C(s) ∧ Sf (s,a, s′, r) ∧ r̃ 6= 0. The safety rule of a contract C
is the set ΣC of the safety rules of every public function of C.

The safety rule ensures that a function f is safe, in the sense that every possible
transaction of f does not revert, i.e. produce assertion violations. A contract C
is safe if and only if the set ΠC ∪ΣC is satisfiable.

3.5 Counterexample Generation

The refutation, or proof of unsatisfiability, for ΠC ∪ΣC proves that a specific
safety query in ΣC can not be satisfied, i.e., ∆⊥ is non-empty. While our solving
methodology can show satisfiability over unbounded executions through the use
of over-approximation, we can only represent finite counterexamples. This, of
course, is not a practical limitation since in real programs we are only interested
in bugs that manifest themselves after a finite number of steps. While the de-
scription of how a counter-example is constructed in our solver is outside of the
scope of this paper, we give here a short overview of the refutations themselves.

A refutation is a tree-shaped structure obtained by an unwinding of clauses.
The nodes of the refutation are labeled with clauses. The root v0 of the tree
is labeled with a clause with ⊥ as head. For each predicate P in the body of a
clause c, we create a child labeled with a unique clause c′ such that head(c′) = P .
The leaves of the tree are labeled with clauses with no predicates in the body.
Let v0, . . . , vk be a path from the root to a leaf, labeled with clauses c0, . . . , ck.
Given a clause c of form (1), let bodyφ(c) denote the constraint φ of c. Then in
a refutation for all such paths it must hold that

|=T bodyφ(c0)(x0,x1) ∧ bodyφ(c1)(x1,x2) ∧ . . . ∧ bodyφ(ck)(xk−1,xk). (2)

A counterexample corresponds then to a first-order structure satisfying (2) as
follows: The counterexample generation traverses the entire refutation tree and
considers only the nodes that refer to the initial state rule (InitC), the root
transaction rule (RootTrC,f ), or the safety rule. The breath-first search results
in a list of nodes that has the safety rule as first element (the root), a possibly
empty list of elements representing root transaction rules, and finally a leaf
representing an initial rule. The first-order structure satisfying (2) is used to
produce a model of the initial state for the counterexample setup. Then, each
following node represents the result of a transaction whose children model (i) the
contract state prior the transaction, and (ii) a function call with given arguments
that results in a new state. The last transaction involves a call to the function



f̂ that resulted in a revert. The arguments of each such function are then used
to produce a trace of function calls which serves as the counterexample.

4 Example

1 contract Auction {

2 uint bid = 0;

3 uint cash = 0;

4 address payable winner = address (0);

5
6 function offer () public payable {

7 uint new_bid = msg.value - 5 finney;

8 require(bid < new_bid);

9 if (winner != address (0)){

10 assert(bid <= cash);

11 winner.transfer(bid);

12 cash = cash - bid;

13 }

14 bid = new_bid;

15 cash = cash + msg.value;

16 winner = msg.sender;

17 }

18 }

Fig. 1. The auction contract used as example.

This section considers the contract shown in Fig. 1. The contract Auction

provides a realistic support for an auction, where the function offer is used
to place an offer by the users. Although in reality the contract would have
other functions for implementing additional functionalities (e.g. auction end,
payment to the seller, ect.), for simplicity and to avoid unnecessary burden we
focus on providing a model and a counterexample only for the function offer.
The contract state consists of three variables, bid, cash, and winner, which
respectively represent the current winning bid, the amount of money held by the
contract, and the address that made the current winning bid. Every new offerer
pays a fee of 5 finney, (0.005 Ether, or 5×1015 wei) that is worth approximately
1 USD at the time of writing. The fee is deducted upfront from the amount
sent by user when submitting the transaction (msg.value) on line 7, causing an
underflow if such amount is less than the fee. As a result of the underflow, the
current bid can potentially become a very large value, preventing other users to
participate to the action and causing a denial of service. The assertion on line
10 checks that the contract has enough money to pay back a previous bidder if
overcome by an higher offer. In case a previous transaction caused an underflow,



Pαo ← b = lb ∧ c = lc ∧ w = lw ∧ s = ls ∧ v = lv ∧ lr̃ = 0 (Entryo)

P9
o ← Pαo ∧ lnb = lv − 5× 1015 ∧ lb < lnb (Jumpo,〈α,9〉)

P10
o ← P9

o ∧ lw 6= 0 (Jumpo,〈9,10〉)

P14
o ← P9

o ∧ ¬(lw 6= 0) (Jumpo,〈9,14〉)

Pωo ← P10
o ∧ ¬(lb ≤ lc) ∧ l′r̃ = 1 (Jumpo,〈10,ω〉)

P14
o ← P10

o ∧ lb ≤ lc ∧ l′c = lc − lb (Jumpo,〈10,14〉)

Pωo ← P14
o ∧ l′b = lnb ∧ l′c = lc + lv ∧ l′w = ls (Jumpo,〈14,ω〉)

So ← Pωo ∧ lr̃ 6= 0 =⇒ (b′ = b ∧ c′ = c ∧ w′ = w)︸ ︷︷ ︸
revert

∧

¬lr̃ = 0 =⇒ (b′ = lb ∧ c′ = lc ∧ w′ = lw)︸ ︷︷ ︸
commit

∧ r̃ = lr̃︸ ︷︷ ︸
returns

(Sumo)

A ← b = 0 ∧ c = 0 ∧ w = 0 (InitA)

A ← A∧ So ∧ r̃ = 0 (RootTrA,o)

Fig. 2. The set of CHCs ΠA that models the contract Auction shown in Fig. 1.

the bid evaluated to a very large value and it is likely that the contract does not
have enough money to cover the refund, causing the assertion to fail.

The set ΠA modelling the contract Auction is shown if Fig. 2. The signature
of the predicates is intentionally not present in order to avoid cluttering the
notation. The signatures of the predicates Pαo ,P9

o ,P10
o ,P14

o and Pωo representing
CFG blocks of the function offer is (b, c, w, s, v, lb, lc, lw, ls, lv, lnb, lr̃), where
b, c and w respectively represent the state variables bid, cash and winner, s
and v respectively represent the implicit function arguments msg.sender and
msg.value, for each x ∈ {b, c, w, s, v}, lx is the local copy of variable x, lnb
represents the local variable new bid, and lr̃ represents the local copy of the
revert variable. The numbers in superscript for the predicates P9

o ,P10
o , and P14

o

refer to the line numbers where the basic block that each predicate represents
starts. The predicate So represents the summary of function offer and has the
signature (b, c, w, s, v, b′, c′, w′, r̃). The predicate A is the predicate representing
the state of the contract Auction and has the signature (b, c, w). When a primed
version of a variable appears in the body of a CHC we assume that such variable
is applied primed in the head predicate.

The safety rule Σo for function offer is the CHC

⊥ ← A∧ So ∧ r̃ 6= 0

The set of CHCs ΠA ∪ {Σo} is unsatisfiable, that is, there exist a refutation,
shown in Fig. 3, that proves Σo a contradiction given ΠA. In order to create the
counterexample, the tree search provides the list of nodes 〈InitA,RootTrA,o, Σo〉.



〈
⊥,>

〉
Σo

〈
A,

b = B1 ∧
c = 0 ∧
w = 0xA1

〉
RootTrA,o

〈
A,

b = 0 ∧
c = 0 ∧
w = 0

〉
InitA

〈
So,

b′ = B1 ∧
c′ = 0 ∧
w′ = 0xA1 ∧
s = 0xA1 ∧
v = 0 ∧
r̃ = 0

〉

Sumo

〈
Pωo ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
lr̃ = 0

〉

Jumpo,〈14,ω〉

〈
P14
o ,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
lr̃ = 0

〉

Jumpo,〈9,14〉

〈
P9
o,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
lnb = B1 ∧
lr̃ = 0

〉

Jumpo,〈α,9〉

〈
Pαo ,

lb = 0 ∧
lc = 0 ∧
lw = 0 ∧
ls = 0xA1 ∧
lv = 0 ∧
lr̃ = 0

〉

Entryo

〈
So,

b′ = B1 ∧
c′ = 0 ∧
w′ = 0xA1 ∧
s = 0xA2 ∧
v = 1 ∧
r̃ = 1

〉

Sumo

〈
Pωo ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
lr̃ = 1

〉

Jumpo,〈10,ω〉

〈
P10
o ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
lr̃ = 0

〉

Jumpo,〈9,10〉

〈
P9
o,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lnb = B2 ∧
lr̃ = 0

〉

Jumpo,〈α,9〉

〈
Pαo ,

lb = B1 ∧
lc = 0 ∧
lw = 0xA1 ∧
ls = 0xA2 ∧
lv = 1 ∧
lr̃ = 0

〉

Entryo

Fig. 3. A refutation tree for the set of CHCs shown in Fig. 2 modelling the contract
Auction shown in Fig. 1. Σo is the CHC A∧So ∧ r̃ =⇒ ⊥. B1 = 2256 − 5× 1015, and
B2 = 2256−5×1015 +1. The values 0xA1 and 0xA2 represent two Ethereum addresses.

The counterexample is constructed initially by using the node InitA to construct
the contract by setting bid=0, cash=0 and winner=0. Then, the following two
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Fig. 4. Solicitous module inside the Solc compiler.

nodes are used to create two transaction completing the counterexample, which
functions and arguments are given in each node’s children. In particular, the
node RootTrA,o is the result of a call to offer() having msg.sender=0xA1 and
msg.value=0 represented by the child Sumo, and the node Σo that fails an asser-
tion is the result of a call to offer() having msg.sender=0xA2 and msg.value=1

represented by the child Sumo. The counterexample shows that an initial null of-
fer that results in a current bid of 2256−5×1015 wei (B1 in Fig. 3, 2.3×1061 USD
at the time of writing), leaving cash null in line 15. The following transaction
places a very small offer of 1 wei (2×10−16 USD at the time of writing), causing
the the new bid (B2 in Fig. 3) to be higher than the previous. The attempt to
refund the previous offer fails because of the assertion on line 10.

5 Implementation

Our approach is being implemented in collaboration with the engineers from the
Ethereum Foundation, inside the SMTChecker component [2,8] of the Solidity
compiler [18]. Specifically, the implementation of our work consists of the CHC
model checking engine of SMTChecker, called Solicitous.

The Solicitous functionality can be enabled in the compilation by providing
the corresponding pragma directive in the source file. Once enabled, the compiler
provides the main Abstract Syntax Tree (AST) to Solicitous that generates the
CHC model of the contract following Alg. 1. The CHC model is then provided to
the engine Spacer [29] of the SMT solver Z3 [35] for solving. In case an assertion
failure is detected, Solicitous can provide a transaction trace as a witness to the
failure, which can easily be checked by the developer. An overview of Solicitous
and Solidity can be seen in Fig. 4.

The emphasis of this paper is in the modelling of the control flow of Solid-
ity contracts. The control flow corresponds to AST nodes related to language
constructs such as loops and conditional branches. Visiting these nodes triggers
the creation of the corresponding clauses as described in Sec. 3. In addition,
the AST nodes corresponding to Solidity expressions result in accumulating the
constraint φ of the clauses. Each expression node introduces a new SMT variable
of the type of the expression. As an implementation detail, the unique identifiers
the compiler assigns to AST nodes are used for guaranteeing unique names for
these variables.



Solidity offers two special types of functions: modifiers and constructors. Mod-
ifiers represent pieces of code that envelope a function body. Therefore, modifiers’
definitions depend on the functions they envelope, and they are not encoded
separately but instead in-lined to the functions. Constructors define the initial-
ization procedure executed at deployment time of a contract. The constructor
modeling is prepended by providing the initialization I(s) where variables are
either zeroed or given their explicit initial values. In contracts that inherit base
classes, the inheritance order is obtained by the Solidity compiler using the C3
linearization [9]. In addition, each constructor is executed exactly once. In our
implementation, the entire deployment procedure, which might include the in-
heritance linearization and state variable initialization, is in-lined into a single
constructor function.

Solicitous currently supports a working subset of the Solidity language, in-
cluding the complex control flow and arithmetic operators (except exponentia-
tion), integers of all available sizes, Boolean variables, arrays, mappings access
and assignment, and inheritance. Strings and structs are currently not supported,
and their occurrences in φ are replaced by nondeterministic operations in order
to maintain soundness. Continuous support and the addition of the remaining
language features is a goal of the Ethereum Foundation, and the supported sub-
set of language is therefore expected to grow.

6 Experiments

We evaluate the precision and language coverage of Solicitous on a set of real-
world contracts from a 17 month period, between the block 7 million, mined 2nd
of January 2019 and the block 10 million, mined on 4th of May 2020. We took
all contracts in that period that are written in Solidity v0.5 and v0.6, and are
available through the Etherscan block explorer [1]. The benchmarks are available
at https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git.

We queried 1147850 addresses and obtained 136802 contract sources, of
which 27887 are unique: 367 v0.6, 10301 v0.5, and 17219 of previous versions.
We run the tools only on contracts containing assertions. However, we checked
also assertions that were commented out. We believe that commented assertions
are of special interest because developers might have removed them before de-
ployment in order to reduce gas cost, believing them to always hold. In total,
we obtained 6061 v0.5 contracts including 11076 assertions (the V5 benchmark
set), and 77 v0.6 contracts including 163 assertions (the V6 benchmark set).

We compare Solicitous4 against three other tools: Solc-Verify [25,24] and
VeriSol [30] that verify Solidity source code, and Mythril [15] that verifies EVM
bytecode. Mythril differs from the other tools in that it is a purely bounded
checking engine of three transactions. Unlike Solicitous, Solc-Verify and VeriSol,
Mythril does not produce safe inductive invariants, and contracts Mythril re-
ports safe can be considered safe only up to three transactions after contract

4 Available at https://github.com/usi-verification-and-security/solc



deployment. In this sense Mythril can report only unsafe results, and only if a
counterexample within three transactions exists. It is also hard to make claims
about the validity of its counterexamples, as Mythril authors do not provide
any scientific publication that explains their technique. Despite its limitations,
Mythril is well known in the smart contracts community for having the best sup-
port for language features. In our comparative analysis, Mythril serves as a gold
standard for the language support metric. To the best of our knowledge these
tools are the only ones with which an automated comparison is possible.5 Both
Solc-Verify and VeriSol support only Solidity v0.5, thus for the comparative anal-
ysis using V5 we use a legacy version of Solicitous supporting v0.5 that has no
support for counterexample generation. Solc-Verify, VeriSol and legacy Solicitous
are sound but over-approximative. Specifically, while safe results are justified in
these tools by an inductive invariant that proves safety, the tools do not justify
unsafe results: in particular they do not provide an execution that would serve
as a counterexample for the validity of an assertion. Therefore we distinguish
between ‘not safe’ and ‘unsafe’, using the former when no or spurious counterex-
ample is produced and the latter when a concrete counterexample proves a real
bug. We separately evaluate the current Solicitous implementation using V6 to
assess the concrete counter-example generation for proving unsafe results.

6.1 Counterexample Generation

The overall results for the V6 benchmark set is shown in Table 1. We run Solic-
itous with two different types of encodings where integer arithmetic is encoded
both without and with modularity. The former allows arbitrarily large values,
while the latter models overflow and underflow precisely. Mythril reports 13 safe
contracts up to three transactions. Solicitous performs the best over this bench-
mark set, not only guaranteeing a good number of contracts to be safe, but
also supporting the language features present in most contracts. The counterex-
amples of the 7 unsafe contracts reported by Solicitous were all checked to be
concrete with the Ethereum evaluator HEVM [19]. Every counterexample leads
to a runtime exception. Despite the small number of benchmarks due to Solidity
v0.6 being very recent at the time of writing, our results show that Solicitous
is capable of generating valuable witnesses of assertion failures that can help
developers to prevent vulnerabilities.

In addition to its standard execution, in which a potential assertion failure is
reported by mentioning its line number in the source file, Solicitous is also capable
of generating concrete counterexamples to prove that the result is unsafe and
not spuriously reported not safe due to the over-approximations of unsupported
features. Unlike the fixed-size bounded approach of VeriSol and Mythril, Solicitous
generates counterexamples of arbitrary length, reporting assertion failures that
can happen at any point in the lifecycle of a contract.

5 We considered two other tools for the comparison, namely Zeus [28] and SAFEVM
[7], but Zeus is not publicly available and SAFEVM only supports Solidity v0.4.



Table 1. Experimental results for the V6 benchmark set. int and mod stand for integer
and modulo arithimetics. SOL and M respectively stand for Solicitous and Mythril.
Verified shows the percentage of contracts with either Safe or Unsafe result.

int mod

SOL SOL M

Safe 32 27 –
Unsafe 7 7 1
Timeout 5 9 63
Error 33 34 0

Verified 50% 44% 18%

Table 2. Experimental results for the V5 benchmark set. int and mod stand for integer
and modulo arithimetics. SOL, SV, VS, and M respectively stand for Solicitous, Solc-
Verify, VeriSol and Mythril. The Verified row shows the percentage of contracts reported
either Safe or Not safe. The best result in each category is highlighted. * These numbers
refer to unsafe reports proved by a concrete counterexample.

int mod

SOL SV VS SOL SV VS M

Safe 1720 778 135 1681 54 117 –
Not safe 142 572 298 (46*) 93 515 198 (31*) 23*
Timeout 586 89 37 678 56 130 5426
Error 3613 4622 5591 3609 5436 5616 33

Verified 30% 22% 7% 29% 9% 5% 9%

6.2 Comparative Analysis

To get a better understanding of Solicitous performance on a larger benchmark
set, we evaluated the 0.5 version of Solicitous, Solc-Verify, and VeriSol on V5. The
results are shown in Table 2. Safe contracts are those for which all the assertions
in the code are proved safe by safe inductive invariants. Not safe contracts have
at least one assertion that is not proven safe. The timeout of each individual
verification run is 60 seconds. Verification tasks halted for various types of errors
are counted in the error row.

Solicitous reports the largest amount of safe inductive invariants for both
arithmetic encodings. Regarding the not safe results, Solicitous can indistinguish-
ably produce spurious and concrete results depending on whether unsupported
features are present or not, since they are modelled as non-deterministic op-
erations in order to preserve soundness. Similarly, Solc-Verify introduces over-
approximations during its translation to Boogie that produce the same effect.
VeriSol presents the same issue, however if no invariant is found it performs a
further step creating a bounded model of length four. If the bounded check re-



ports unsafe, VeriSol produces a concrete counterexample. In summary, VeriSol
can prove an assertion unsafe only if it can fail within four transactions after
contract deployment. The unsafe reports proved by a concrete counterexample
are shown with an asterisk in Table 2.

The table also provides a comparison against Mythril. Due the tool limita-
tions, the number of contracts reported safe (579) is not reported in Table 2. Our
experiments show that Solicitous is the tool that guarantees the largest amount
of contracts to be safe, and that it is also the one able to verify the largest
amount of contracts in general. Regarding the coverage of language features, us-
ing the amount of errors as a proxy metric, we see that Mythril possesses the best
support. Solicitous is closer to it than Solc-Verify or VeriSol. Given the positive
results, aligned with the practical nature of the benchmarks set used, Solicitous
stands as a valuable tool for Solidity developers.

7 Related Work

There is much interest in formally verifying Ethereum smart contracts, and sev-
eral tools rely on different techniques to verify either Solidity or Vyper source
code, or EVM bytecode. Oyente [31] is one of the pioneers in this field, and uses
symbolic execution of EVM bytecode to find common vulnerabilities. Mythril [15]
is a security tool based on control-flow analysis and concolic execution of EVM,
supporting analysis of assertions up to a fixed bound of transactions. MAIAN [36]
is also bounded in the number of transactions and searches EVM bytecode for
three specific types of vulnerabilities. Securify [39] encodes EVM bytecode into
Datalog to analyze programs, targeting specific types of bugs encoded as data
patterns. VerX [37] verifies temporal properties written using a specification lan-
guage for a particular class of contracts referred as effectively external callback
free. It requires user intervention when the automatic inference of abstraction
predicates fails. The tool is not publicly available. Manticore [34] has a symbolic
execution engine for EVM that uses SMT to systematically explore the state
space of the contract by repeatedly executing symbolic transactions. KEVM [26]
is a formal specification of the EVM semantics written in the K-framework [38].
It provides an assisted theorem prover and a specification language for further
analysis, including reachability. Similarly, KVyper [22] and KSolidity [21] are the
Vyper and Solidity semantics expressed over the the K-framework. KLAB [16]
provides a specification language tailored for smart contracts that compiles to
general K properties and a framework for proof debugging and counterexample
analysis based on KEVM. SAFEVM [7] verifies EVM code produced by Solidity
0.4 through an intermediate translation to C that can be checked with three dif-
ferent backend C-verifiers. Zeus [28] translates Solidity into LLVM bitcode which
is fed to the SeaHorn [23] model checker. A subset of Solidity not including loops
is verified after a translation to F* [10]. Why3 [40] has also been used to verify
translated Solidity programs. However, Why3 does not support many of the So-
lidity constructs and is no longer developed. Slither [20] translates Solidity to its
own intermediate SSA language and performs bounded checks for several vulner-



ability classes. More recently, the tools Solc-Verify [25] from SRI and VeriSol [30]
from Microsoft verify Solidity contracts using the language Boogie as interme-
diate representation. The estimation of gas consumption in order to cope with
gas-related vulnerabilities is considered in [32].

8 Conclusions

We presented a formal technique for modeling smart contracts using CHCs.
The constructed models (i) formally capture semantic features specific to smart
contracts, (ii) enable fully-automated verification of safety properties, and (iii)
are suitable for exploiting generic theorem provers in the task of analysis and
contract invariants generation. We implemented our technique for the Solidity
language and demonstrated its effectiveness through an extensive experimenta-
tion involving 6138 contracts specifying 11239 safety properties. Based on these
experiments we believe that our technique represents an effective, highly promis-
ing avenue for smart contract verification.
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