
Clause Sharing and Partitioning for
Cloud-Based SMT Solving

Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina

Università della Svizzera italiana, Switzerland

Abstract. Satisfiability modulo theories (SMT) allows the modeling
and solving of constraint problems arising from practical domains by
combining well-engineered and powerful solvers for propositional satisfi-
ability with expressive, domain-specific background theories in a natural
way. The increasing popularity of SMT as a modelling approach means
that the SMT solvers need to handle increasingly complex problem in-
stances. This paper studies how SMT solvers can use cloud comput-
ing to scale to challenging problems through sharing of learned infor-
mation in the form of clauses with approaches based on both divide-
and-conquer and algorithm portfolios. Our initial experiments, executed
on the OpenSMT2 solver, show that parallelization with clause sharing
speeds up the solving of instances, on average, by a factor of four or five
depending on the problem domain.

1 Introduction

The Satisfiability Modulo Theories (SMT) [5] approach to constraint solving
consists of determining whether a logical formula is satisfiable, given that some
of the Boolean variables have an interpretation in background theories. The ex-
pressiveness of SMT makes it suitable for a vast range of application domains,
including software and hardware model checking [9,4], bioinformatics [26], and
optimization [24], and has recently attained significant interest from a wide range
of users. The computational cost of solving SMT instances can be very high,
given that already propositional satisfiability is an NP-complete problem and
the introduction of background theories can only make the problem harder. The
SMT solvers tackle complexity with a tightly integrated loop where the SAT
solver attempts to find a satisfying solution and queries the validity of a candi-
date solution from the theory solvers. In case the candidate solution is shown
to be invalid the theory solvers and the SAT solver work together to extract
new expressive constraints in the form of learned clauses, by combining theory
specific information and resolution.

This work studies how employing parallelism and in particular cloud comput-
ing can be used in helping SMT solvers to scale to increasingly hard problems.
We study two different approaches: a portfolio where several copies of a random-
ized SMT solver is run on a single instance; and an approach where the SMT
instance is divided into several partitions that are guaranteed by construction
not to share models, and each partition is solved by an SMT solver. We combine

these two approaches in a natural way by having several SMT solvers work on
each partition. The emphasis of the work is in how the different ways of or-
ganizing the search can co-operate to speed up the solving. We implement the
co-operation by having SMT solvers working on the same partition share the
clauses they learn during the execution.

To study the effects of parallelism and clause sharing we implement the ap-
proach using the SMT solver OpenSMT2 [13] and experiment with two partic-
ularly central background theories, the quantifier-free theories of uninterpreted
functions and equalities [5] (QF UF) and linear real arithmetics [7] (QF LRA).
The experimental results suggest that both the portfolio and the partitioning
based approach can greatly benefit from clause sharing. Interestingly, a com-
parison between portfolio and partitioning reveals that the portfolio approach
performs better even if the partitioning is combined with portfolio. We give an
analysis in the form of a case study to understand the reason for this and confirm
the effect in a more controlled experiment. Finally we discuss to what extent the
results obtained with OpenSMT2 can be generalized to other SMT solvers. In
particular clause sharing with partitioning is tedious to implement in a solver
and therefore we make the comparison in an indirect way, studying the run-time
distribution of the Yices2 solver [6] in comparison to OpenSMT2.

Related Work. The portfolio approach combined with clause sharing has been
implemented using the SMT solver Z3 [25]. The implementation provides an ef-
ficient clause sharing strategy within the same computer using lockless queues
that hold references to the lemmas that a solver core wants to export. The ex-
perimental evaluations show that clause sharing leads to a substantial speedup
on benchmarks from the QF IDL logic. In contrast to this work, we support
two SMT theories (QF UF and QF LRA), and exploit the advantages of com-
bining portfolio with search-space partitioning. Moreover our implementation is
designed to run in a cluster or a cloud in addition to a single machine. Simi-
larly to Z3, the SMT solver CVC4 [3] supports a portfolio-style parallel solving.
Unlike our approach, the approach used in CVC4 is designed to run in a single
computer and does not implement clause sharing.

In [14] we introduced the parallelization tree formalism for combining port-
folio and search-space partitioning. The work also describes and reports results
on the QF UF logic on some instantiation of the framework. Our work extends
this tool based on the OpenSMT2 SMT solver by introducing clause sharing and
the logic QF LRA.

A divide-and-conquer approach for the quantifier-free bit-vector logic has
been implemented on top of the SMT solver Boolector [23]. A portfolio par-
allelization approach for the logic of quantifier-free bit-vectors and bit-vector
arrays is presented in [21]. Compared to these, our work differs in the supported
theories and in that we support cloud computing and are not limited to pure
divide-and-conquer or portfolio approach.

In this work we use techniques similar to those used in parallel SAT solving.
The more elaborate problem descriptions of SMT constitute a significant theo-
retical and engineering challenge for parallelization. In addition the use of SMT

allows extending these techniques to a different domain. While the results are to
some extent preliminary it seems already that there are substantial differences in
how the techniques perform in the two domains. Given the close relation of the
topics there is a significant amount of relevant research on parallel SAT solving,
overviewed for instance in [17]. In particular we point out the portfolio approach
combined with clause sharing implemented in ManySAT [8] and HordeSAT [2].
A promising future direction for SMT is the combination of search-space parti-
tioning and clause sharing [1].

Recently there has been a renewed interest in parallel model checking. In [22],
the authors give a method for parallel concolic execution, while [10] introduces
a method for using massive parallelism to obtain a high coverage in an explicit-
state model-checking approach in a stochastic way. These differ from our work
in that they do not provide solutions directly for SMT solving.

In this paper we first introduce the basic concepts required for interpreting
our results in Sec. 2, and then describe implementation details in Sec. 3. The
experimental results obtained with the implementation are presented in Sec. 4,
and conclusions are drawn in Sec. 5.

2 Background

This section gives an overview of how SMT solvers work concentrating on the
mechanisms that are relevant for interpreting the framework, implementation,
and experimental results we present in the following sections. In describing the
preliminaries we use the set notation.

A literal is a Boolean variable x or its negation ¬x. A clause is a set of literals
and a propositional formula in conjunctive normal form (CNF) is a set of clauses.
Throughout the text we use both a set of literals and disjunction, and a set of
clauses and a conjunction, interchangeably. An assignment σ is a set of literals
such that for no variable x, both x ∈ σ and ¬x ∈ σ. A variable x is assigned if
either x ∈ σ or ¬x ∈ σ. An assignment σ satisfies a clause c if σ ∩ c 6= ∅ and a
formula F if it satisfies all its clauses.

Most SMT solvers are based on the DPLL(T) framework [20] which takes as
input a problem instance presented as a propositional formula where some of the
Boolean variables have an interpretation as Boolean relations, such as equalities,
disequalities, and inequalities, in a theory T . A DPLL(T) solver consists of a
solver for the propositional satisfiability problem (SAT) and one or more theory
solvers that are capable of reasoning on a conjunction of Boolean relations over
the theory T . In the pre-processing phase the input formula is converted into
an equisatisfiable propositional formula F in CNF while preserving the special
T -interpretations of the Boolean variables.

The SMT solving process is driven by a SAT solver maintaining a set of
clauses which initially consists of the formula F . During the search the SAT
solver builds an assignment σ and alternates between two phases.

– In the propagation phase the solver identifies clauses c = l1∨. . .∨ln such that
(i) there is a single unassigned literal li ∈ c, and (ii) σ falsifies the literals

lj , 1 ≤ j ≤ n, j 6= i. Any such literal li is added to σ until no new clauses
satisfying (i) and (ii) can be found.

– In the decision phase the solver chooses a literal li unassigned in σ and adds
it to σ.

A conflict occurs if during the propagation phase the SAT solver detects a clause
with all literals falsified. The decisions and propagations are stored in the impli-
cation graph [16], a directed graph having as nodes the literals of the assignment
σ and as edges the arches {(¬lj , li) | 1 ≤ j ≤ n, j 6= i} obtained in the propaga-
tion phase.1

A SAT solver learns a clause c by performing essentially resolution steps
directed by the implication graph when it finds a conflict. The learned clauses
are by construction guaranteed to be logical consequences of F , and are both used
in guiding the search and added temporarily to the clause database to reduce
the number of assignments the solver needs to cover during the search. Finally
the solver makes with a decreasing frequency a restart where the assignment σ
is cleared and the search is continued without otherwise changing the state of
the solver.

The SAT solver queries periodically whether the conjunction of the theory
atoms in σ is consistent with the theory. In case a theory solver determines an
inconsistency it identifies a subset σ′ ⊆ σ that causes the inconsistency and
returns the clause cT := {¬l | l ∈ σ′} to the SAT solver. Minimizing σ′ is critical
for the good performance of the SMT solvers (see, e.g., [19,7]). The clause cT is
used together with the implication graph to learn a clause c in the way described
above for clause learning. The solving process terminates when either the clause
database becomes unsatisfiable or a satisfying assignment consistent with the
theory T is found.

Parallel algorithm portfolios. An algorithm portfolio [11] is a set of algorithms
that compete in finding a solution for a given problem. The decision phase em-
ploys an heuristic for choosing li and introduces in a natural way nondeterminism
into the solver. Small changes to the heuristic can cause big changes in the run
time of the solver. For example, Fig. 5 shows the effect of allowing the SAT solver
to make random choices against the heuristic in small number of cases to a sin-
gle instance. The lines labeled OpenSMT2 and Yices2 illustrate the probability
of solving an instance from the QF LRA category of the SMT-LIB benchmark
collection in a given time or number of decisions for the SMT solvers OpenSMT2
and Yices2 [6], respectively. A natural algorithm portfolio can be obtained by
seeding differently the pseudo-random-number generator of the SMT solver and
running several solvers in parallel.

Clause sharing. In clause sharing the clauses learned by an SMT solver while
solving a formula F are distributed among the solvers in the parallel portfolio.
Since clause learning plays an important part of the SMT solving process this
sharing can speed up the parallel solving process. For example the shared clauses

1 We equate x and ¬¬x.

make it easier to produce the required clauses in case of unsatisfiability, and
reduce the number of assignments the solver covers before finding a satisfying
assignment.

Search space partitioning. The SMT solver bases its search on the SAT solver,
and therefore a natural way of dividing the work and avoiding overlap for the
solvers is to constrain the SMT formula F into partitions F1, . . . , Fn such that
the original formula is satisfiable if and only if one of F1, . . . , Fn is satisfiable.
This can be done through adding additional constraints Ci to the formula F ,
resulting in the partition Fi := F ∧Ci. In principle conjoining a single literal {l}
to the formula F halves the search space, but this happens rarely in practice.
Often the resulting partitions Fi will have overlap in their search due to the
heuristics of the solver and therefore the observed speedup will be less dramatic.
The situation is made worse by the unpredictability of the SMT solver run
time in case the instance is unsatisfiable. Assuming the shape of the run-time
distribution is the same for both the instance F and the partition Fi, it can be
shown that independent of the number of partitions there are distributions for
which the expected run time increases when partitioning is done as described
above [15]. To lessen this effect several more complex parallelization algorithms
combining elements from search-space partitioning and algorithm portfolios have
been suggested [14]. For example running a parallel portfolio for each partition
makes it less likely that one of the partitions will require excessive time for being
solved.

Constructing partitions. We use in this work an approach for constructing
partitions called scattering, initially introduced in [12]. Given a formula F , a
number of partitions to be created n, and a sequence of positive d1, . . . , dn−1 the
partitions are obtained following the iteration

F1 := F∧ l11 ∧ . . . ∧ l1d1

Fk := F∧ (¬l11 ∨ . . . ∨ ¬l1d1
) ∧ . . . ∧ (¬lk−11 ∨ . . . ∨ ¬lk−1dk−1

) ∧ lk1 ∧ . . . ∧ lkdk

Fn := F∧ (¬l11 ∨ . . . ∨ ¬l1d1
) ∧ . . . ∧ (¬ln−11 ∨ . . . ∨ ¬ln−1dn−1

)

The goal of using the sequence di is to make the search space of each Fi as
close as possible to 1/n of the search space of the instance F . We obtain the
sequence di by assuming that conjoining a disjunction of k literals with a formula
F reduces the size of the search space by factor of (1 − 1/2k). For example
for n = 2 partitions this gives d1 = 1, while for n = 8 we get the sequence
d1 = 3, d2 = 3, d3 = 3, d4 = 3, d5 = 2, d6 = 2, and d7 = 1. Note that the
number of constructed partitions in this method does not have to be a power
of 2. Finally, the literals lji are chosen using the same heuristic the SMT solver
uses during the search.

3 The parallelization Framework

In this section we present the framework uses in the experiments of the paper
for studying the effect of parallelization approaches and clause sharing. We give

an overview of the framework in Fig. 1. The framework is designed to run on a
cluster of computers or a cloud, even though it is also possible to run the system
on a single computer. The design follows a client-server approach in which the
server, acting as a front-end to the user, receives input instances in the SMTLIB2
format2, and at the same time handles the connection with the clients, managing
client failures and asynchronous new client connections gracefully. The clients
are implemented as SMT solvers wrapped by a network layer that handles the
connection with the server.

The server works in two modes: depending on the configuration it either splits
the instance into several partitions using the scattering approach described in
Sec. 2, or runs in a pure portfolio mode without splitting. In the beginning of
the solving the server distributes either the partitions or the original formula to
the solvers in all the available clients.

...

FIFO Channel

Filter
Heuristic

Server

Clause DB

Selection
Heuristic

Cluster
Head node

Client

SMT Solver

Client

SMT Solver

Client

SMT Solver

C , C , ... ,C1 2 nC , C , ... ,C1 2 nC , C , ... ,C1 2 n

Partition
Heuristic

Input
instances

Fig. 1. Parallel SMT solver framework with clause sharing

During the solving phase, each client contacts the server both to publish
newly learned clauses and to request new interesting clauses published by the
clients. To avoid problems with the high throughput we use a FIFO Channel
that allows multiple clients to push clauses to the server without turnaround
delays. Once a batch of clauses is received, the server uses the filter heuristic to
choose potential clauses for merging them with the previously received clauses
into the clause database (Clause DB in Fig. 1). Hence, at any given time, that
database will contain all the learned clauses sent by the clients and that have
passed the filter heuristic of the server. Inside the clause database the clauses
are divided by partitions and each client has only access to the clauses published
by the solvers working on the same partition.

2 http://smtlib.cs.uiowa.edu

Upon a restart each client will ask for clauses from the server. However, the
request cannot be replied by sending the entire clause set of the partition that
is being solved, because it usually consists of prohibitively many clauses. A high
number of clauses slows down the client solver since the overhead related to the
growth of the internal data structure is higher than the speedup obtained from
the clauses. To address the problem, the framework allows the use of the selection
heuristic which attempts to choose clauses that are particularly promising for
the problem at hand. The current version implements näıve heuristics for both
filtering and selection. The filtering heuristic is based on the number of literals
inside each clause: clauses with more than a fixed number of literals will be
discarded. The selection heuristic works by randomly selecting a fixed number
of clauses from the database, and each new set will replace the old one inside
the solver.

3.1 Implementation

The goal of the implementation is to provide scalability, fault-tolerance, and
low latencies during data transfer, as well as ease of use and portability from a
cluster of machines to a single machine with many cores or CPUs. In the rest of
this section we will present the central choices made during the implementation.
The implementation is highly modular in order to allow studying the effects of
its components in isolation. For example the system can handle several different
policies for scheduling the partitions among the solvers in the cluster. This allows
research on how to best combine portfolio and search-space partitioning.

The SMT solver. The abstract framework allows the use of any DPLL(T)
solver, but our current implementation uses the SMT solver OpenSMT2 [13].
OpenSMT2 is a light-weight SMT solver that currently supports the quantifier-
free theories of uninterpreted functions with equalities (QF UF) and linear real
arithmetics (QF LRA). The solver is written in C++ and has been developed
in Università della Svizzera italiana since 2008. The code is easily approachable
because of its limited size of roughly 50,000 lines of code and the object-oriented
architecture. In addition it is released under the MIT license3. Most recently
the solver competed in the SMT competitions in 2014 and 2015, performing in
the mid-range in the competition. The implementation is efficient featuring low-
level memory management and a cache-friendly design for many of the central
algorithms. These reasons make it our choice over other, maybe more optimised
tools.

Networking. The server and the clients communicate using our custom-built
message passing protocol through TCP/IP sockets, making the solution light-
weight, easy to implement and modify as well as portable by being compatible
with clusters, cloud computing and single computers. The network components
of the implementation are shown in Fig. 1. Almost all the connections consist of

3 http://opensource.org/licenses/MIT

push message passing which achieves the goal to be as fast as possible by avoiding
the turnaround time. The connection between solvers and the selection heuristic
is the only one that does not use the push mechanism, but instead needs a pull
request. This choice has been made since the schedule at which the clients can
receive clauses is unpredictable, making push impractical. To indicate the pull
request, the interaction is drawn with dashed lines.

A binary format for SMT. In order to use clause sharing we must ensure that
the internal clausal representation of each instance is the same in every client
solver. This property cannot be guaranteed by the SMTLIB2 language since
small changes in the input formula might result in subtle optimizations that will
dramatically change the CNF structure seen by the SAT solver embedded in the
SMT solver. For that reason we designed a binary format for SMT, representing
the internal state of OpenSMT2. This format is used for data transfers between
each client and the server but also results in us being forced to limit ourselves
to a specific SMT solver.

FIFO channel and clause DB. For these challenges we use REDIS4, an open
source in-memory data structure store, used as database, cache, and message
broker. In order to get a scalable, fast, and fault-tolerant push connection from
multiple sources we use the Publisher / Subscriber messaging paradigm of RE-
DIS. The clauses are stored using the REDIS SET feature that automatically
handles cases where a clause would be added to clause database that is syntac-
tically equal to an already present clause. The SET feature is used by both the
filter and the selection heuristics.

4 Experiments

This section describes the experiments we performed on the implementation de-
scribed in the paper. The implementation is available at http://verify.inf.

usi.ch/opensmt. The experiments concentrate on four topics: Sec. 4.1 demon-
strates how the clause sharing works on the (i) pure portfolio and (ii) the ap-
proach where we split the instance into partitions and use a portfolio for solving
each partition; Sec. 4.2 studies the difference between the approaches (i) and
(ii) above; Sec. 4.3 reports how the filtering heuristic affects the performance of
the algorithm; and Sec. 4.4 compares the cloud-based implementation against a
sequential version of OpenSMT2 and a widely used reference solver Z3 [18].

Our hardware configuration is kept the same in all experiments we run. The
experiments were run in a cluster where we used eight compute nodes for the
clients and the head node for the server. Each compute node is equipped with
two CPU Quad-Core AMD Opteron 2384 and 16GB of RAM. During the ex-
periments each cluster node had eight client processes implementing the SMT
solver OpenSMT2, resulting in total of 64 solvers in the entire cluster. We did
not explicitly limit the memory available to the solvers. The timeout is fixed

4 http://redis.io

10

100

1000

10 100 1000

s1
C
S

s1
timeout

10

100

1000

10 100 1000

s2
C
S

s2
timeout

10

100

1000

10 100 1000

s8
C
S

s8
timeout

Fig. 2. Using clause sharing against not using clause sharing with 1, 2, and 8 partitions.
Framework run with 64 solvers on the QF LRA benchmark set

everywhere to 1000 seconds. The search-space partitioning heuristic, when used,
is the scattering approach [12].

We used a fixed benchmark set obtained from the SMTLIB2 benchmarks
repository5 and the QF LRA and QF UF theories. The set from the QF LRA
theory was created by selecting the instances with an average sequential exe-
cution time between 100 and 1000 seconds (including those in timeout) using
OpenSMT2; the set consists of 106 instances in total. The benchmark set for
the QF UF theory consists of 254 instances. This set includes all instances that
could be solved with the sequential OpenSMT2 between 100 and 1000 seconds;
11 instances which are known to be difficult for OpenSMT2 and time out in 1000
seconds; and 200 randomly chosen instances of which half are guaranteed to be
satisfiable and the other half unsatisfiable.

5 http://smtlib.cs.uiowa.edu/benchmarks.shtml

10

100

1000

10 100 1000

s1
C
S

s1
timeout

10

100

1000

10 100 1000

s2
C
S

s2
timeout

10

100

1000

10 100 1000

s8
C
S

s8
timeout

Fig. 3. Using clause sharing against not using clause sharing with 1, 2, and 8 partitions.
Framework run with 64 solver on the QF UF benchmark set

In the figures we use the labels S1, S2 and S8 to indicate the number of
partitions created from the input instance. Therefore the label S1 indicates the
pure portfolio approach. The label CS indicates that clause sharing is used.
Throughout the plots we denote satisfiable instances with the symbol × and
unsatisfiable instances with the symbol ut.

4.1 The Effect of Clause Sharing

Our first experiments show how sharing clauses affects the solving time using
different partitioning methods for QF LRA (Fig. 2) and QF UF (Fig. 3). For
both figures the graph on the top shows how the parallelization algorithm based
on pure portfolio benefits most from clause sharing: with both theories it gives a
2.05 times speedup, as well as one more QF LRA instance and nine more QF UF
instances solved within the timeout compared to not using clause sharing.

10

100

1000

10 100 1000

s8

s1
timeout

10

100

1000

10 100 1000
timeout

s8

s1

Fig. 4. Comparing S1 against S8 on the QF LRA benchmark set. The graph on the
left shows the results using the framework of Sec. 3, the graph on the right shows a
controlled experiment where network delays are removed.

With both theories the combination of portfolio and search-space partitioning
performs worse than pure portfolio: the speedup due to clause sharing is 1.97
times for partitioning in two and solving each partition with a portfolio of 32
solvers (S2), and speedup of 1.67 for partitioning in eight and solving each
partition with a portfolio of eight solvers (S8).

To some extent these results are expected, since the number of learned clauses
available inside the clause database for a single portfolio is bigger when there are
more solvers running in the portfolios, and therefore also the quality of clauses
that the heuristic picks is higher.

4.2 The Effect of Partitioning

Figure 4 (left) compares the portfolio approach against the approach where an
instance is split into eight partitions in the framework, from the QF LRA bench-
mark set. Interestingly the portfolio approach is almost consistently better than
the approach using partitioning, in particular for the unsatisfiable instances (de-
noted with ut). To study this effect in more detail and to rule out effects such as
network delays or time used in constructing the partitions, we designed a sec-
ond experiment in more controlled setting (Fig. 4 (right)). For this experiment
we chose a set of instances that require more than 1000 seconds to solve using
the sequential version of OpenSMT2. The instances were split off-line into eight
partitions and each partition was solved with a portfolio of eight OpenSMT2s to
obtain the results for the vertical axis. The horizontal axis shows the minimum
solving time over 64 OpenSMT2s. The benchmark sets are different on the two
figures.

The more controlled experiment verifies the phenomenon that an approach
based on partitioning performs worse in particular in the unsatisfiable instances,

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900

so
lv
in
g
p
ro
b
ab

il
it
y

time

split
OpenSMT2

Yices2

Fig. 5. Run time distribution for solving an example instance with a single solver
compared to the distribution of one of the splits. For reference the figure also shows
the decision distribution for the Yices2 SMT solver on the original problem (the scale
is not shown).

while the results seem to be better for many of the satisfiable instances. This
behavior is often observed when the shape of the distribution of an unsatisfiable
instance has most of the probability mass at relatively low run times but still
a significant mass at significantly higher run time [15]. In such cases the effect
of partitioning that tends to make instances easier to solve is not enough to
compensate the benefit from a pure portfolio approach. To further study this
phenomenon we chose one of the instances where this effect was particularly
pronounced, and constructed the run time distribution for OpenSMT2 for this
instance and a partition that was empirically difficult. The results for this ex-
periment are reported in Fig. 5. First, the run time distribution shows that
there is only a 25% probability that OpenSMT2 solves this instance within the
timeout of 1000 seconds, even though the fastest run time for this instance is
only slightly above 10 seconds. This explains the good behavior of the portfolio
approach. Second, based on the experiment it is possible that the partition run
time is in fact higher than that of the original instance run time. The differ-
ence is not big and therefore this could be an effect caused by low amount of
samples (64 in total). Finally, to understand to what extent this phenomenon is
generalizable to other SMT solvers we ran the original instance 64 times using a
randomized version of the SMT solver Yices2. Instead of reporting the run-time
distribution, we show the number of decisions Yices2 did on this problem, since
the run times were too low to get meaningful results. We can see that also for
Yices2 the amount of decisions needed varies greatly but the shape of the dis-
tribution seems to be different. The observation that the run time with another
SMT solver is much faster suggests that this instance can be solved by using an

10

100

1000

10 100 1000
timeout

s1
C
S
(fi
lt
er

>
30
)

s1

Fig. 6. Using clause sharing with a loose filtering heuristic against not using clause
sharing. Framework run with 64 solvers on the QF UF benchmark set.

optimization that is not implemented on OpenSMT2 and that in such cases it is
not safe to draw the conclusion that the partitioning approach would not work
well if this optimization were implemented in the underlying solver.

4.3 The Clause Sharing Heuristics

Fig. 6 shows that clause sharing heuristics are very important: the experiment
performed using a filtering heuristic that discards clauses with more that 30
literals results in clause sharing having 1.12 times greater run time compared to
the run without clause sharing. Interestingly the same heuristic is working well
for QF LRA (used in Fig. 2). To obtain good results for our benchmark instances
in QF UF the heuristic needs to be more restrictive. Reducing the threshold to
10 literals still leads to worse performance (results not shown), and discarding
clauses with five or more literals gives the results on Fig 3.

4.4 Comparison to Other Solvers

Figure 7 compares the best known configuration of the framework against the
solvers OpenSMT2 and Z3 for QF LRA (top) and for QF UF (bottom). The
results are very promising when compared to OpenSMT2. For instances with
sequential run time higher than one second and for which neither the sequential
or the parallel solver timed out the average case speed-up is 4.78 for QF LRA
and 4.01 for QF UF. Our implementation is not yet competitive against Z3 in the
majority of instances. This is due to the lack of optimizations in the underlying
solver. Based on the experimental evidence presented in this section it seems
reasonable that if either the optimizations available in Z3 were implemented in

10

100

1000

10 100 1000

s1
C
S

OpenSMT2
timeout

10

100

1000

10 100 1000

s1
C
S

Z3
timeout

10

100

1000

10 100 1000

s1
C
S

OpenSMT2
timeout

10

100

1000

10 100 1000

s1
C
S

Z3
timeout

Fig. 7. Our best configuration against OpenSMT2 and Z3 for QF LRA (top) and
QF UF(bottom)

OpenSMT2 or the approach presented in this work were implemented in Z3 the
results would be similarly promising in comparison to Z3.

5 Conclusions

SMT solving in cloud environments so far has received relatively little atten-
tion from the community developing and researching SMT solvers. This paper
addresses the challenges related to integrating one of the key components of a
modern SMT solver, the sharing of learned clauses, to parallel SMT solving algo-
rithms. We provide a generic framework for clause sharing in a cloud computing
environment and implement a system that supports clause sharing with paral-
lelization algorithms based on both a portfolio and splitting the input formula
into partitions.

The framework and the parallelization algorithms are agnostic to the under-
lying theories used by the SMT solver. We provide results on two fundamen-
tal theories: the quantifier-free theories of uninterpreted functions and equality

(QF UF), and linear real arithmetics (QF LRA). The results show that both
theories can benefit significantly from clause sharing, but especially QF UF is
sensitive to the heuristic used for selecting clauses to be shared. In the experi-
ments we also observe that the partitioning approach, while working relatively
well for QF UF, performs somewhat worse for QF LRA in the benchmark set
we study on this paper. We conjecture that this results from the partitioning
heuristic behaving in an unexpected way where the problems sometimes get
more difficult to solve, in combination with a run-time increasing phenomenon
observed with unsatisfiable instances.

Finally we address the question of how well the parallel computing results
obtained with one solver generalize to other solvers. Experimentally we observe
that the run-time distribution of an instance, one of the key factors determining
how parallelization works on an instance, can be dramatically different on two
solvers. Therefore it is difficult to estimate the speed-up of a given instance on
one solver based on results from another solver. It is nevertheless likely that
observations made in this paper would carry over to other solvers in general.

Future work. The framework we set in this paper opens several interesting
research directions. In particular we point out two central open questions we plan
to address in the future: how to construct a good heuristic for (i) partitioning
for QF LRA and (ii) for filtering and selecting the clauses to be shared in a
portfolio.

Acknowledgements. This work was financially supported by SNF project num-
ber 200021 153402.

References

1. Audemard, G., Hoessen, B., Jabbour, S., Piette, C.: Dolius: A distributed parallel
SAT solving framework. In: Berre, D.L. (ed.) POS-14. EPiC Series, vol. 27, pp.
1–11. EasyChair (2014)

2. Balyo, T., Sanders, P., Sinz, C.: HordeSat: A massively parallel portfolio SAT
solver. In: Proc. SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer (2015), http:
//dx.doi.org/10.1007/978-3-319-24318-4_12

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV 2011. LNCS, vol. 6806, pp. 171 –
177. Springer (2011)

4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS ’99. LNCS, vol. 1579, pp. 193–207. Springer (1999)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. Journal of the ACM 52(3), 365–473 (2005)

6. Dutertre, B.: Yices 2.2. In: CAV 2014. LNCS, vol. 8599, pp. 737 – 744. Springer
(2014)

7. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer (2006)

8. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on
Satisfiability Boolean Modeling and Computation 6(4), 245 – 262 (2009)

9. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
Blast. In: Tenth International Workshop on Model Checking of Software (SPIN).
LNCS, vol. 2648, pp. 235–239. Springer (2003)

10. Holzmann, G.J.: Cloud-based verification of concurrent software. In: Verification,
Model Checking, and Abstract Interpretation - 17th International Conference, VM-
CAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. pp. 311–327
(2016), http://dx.doi.org/10.1007/978-3-662-49122-5_15

11. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

12. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT
in grids. In: Proc. SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer (2006)

13. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Proc. SAT 2016. pp. 547 – 553. No.
9710 in LNCS, Springer (2016)

14. Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space partitioning for
parallelizing SMT solvers. In: Proc. SAT 2015. LNCS, vol. 9340, pp. 369–386.
Springer (2015)

15. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning search spaces of a ran-
domized search. Fundamenta Informaticae 107(2-3), 289–311 (2011)

16. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

17. Martins, R., Manquinho, V.M., Lynce, I.: An overview of parallel SAT solving.
Constraints 17(3), 304–347 (2012)

18. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. TACAS 2008.
LNCS, vol. 4963, pp. 337 – 340. Springer (2008)

19. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Proc. RTA
2005. LNCS, vol. 3467, pp. 453 – 468. Springer (2005)

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937 – 977 (2006)

21. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In:
Proc. CAV 2013. LNCS, vol. 8044, pp. 53–68. Springer (2013)

22. Rakadjiev, E., Shimosawa, T., Mine, H., Oshima, S.: Parallel SMT solving and con-
current symbolic execution. In: 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki,
Finland, August 20-22, 2015, Volume 3. pp. 17–26 (2015), http://dx.doi.org/
10.1109/Trustcom.2015.608

23. Reisenberger, C.: PBoolector: a Parallel SMT Solver for QF BV by Combining
Bit-Blasting with Look-Ahead. Master’s thesis, Johannes Kepler Univesität Linz,
Linz, Austria (2014)

24. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Transactions on Computational Logic 16(2), 12:1–12:43 (2015)

25. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: A concurrent portfolio approach
to SMT solving. In: Proc. CAV 2009. LNCS, vol. 5643, pp. 715–720. Springer (2009)

26. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis of
biological computation. In: Proc. NFM 2013. LNCS, vol. 7871, pp. 78–92. Springer
(2013)

